Типы и параметры ДВС

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) обладают множеством показателей – мощность, крутящий момент, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных параметров.

Содержание статьи

  • 1 Типы двигателей
  • 2 Компоновка поршневых двигателей
  • 3 Конструктивные параметры двигателей
  • 4 Показатели двигателей
  • 5 Характеристики двигателей

Типы двигателей

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

  • впуск воздуха или его смеси с топливом;
  • сжатие рабочей смеси,
  • рабочий ход при сгорании рабочей смеси;
  • выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:

  • в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
  • в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
  • двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).

Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:

  • большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
  • большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
  • меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.

Компоновка поршневых двигателей

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

Рядный двигательV-образный двигатель

Рядный двигатель (рис. 1, а) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (2, 3, 4, 5 и 6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной.

V-образный двигатель (рис. 1, б) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала. Наиболее часто такое размещение цилиндров применяется для шести- и восьмицилиндровых двигателей и обозначается V6 и V8 соответственно. Такая компоновка позволяет уменьшить длину двигателя, но увеличивает его ширину.

Оппозитный двигательVR-двигатель

Оппозитный двигатель (рис. 1, в) имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок.

VR-двигатель (рис. 1, г) обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата.

W-двигательW-двигатель

W-двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 1, д) или как бы две VR-компоновки (рис. 1, е).Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

 

Конструктивные параметры двигателей

Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

Конструктивные параметры двигателей

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.

Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.

Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.

Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.

Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

 

Показатели двигателей

Силы, действующие в цилиндре

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:

  • рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
  • давления горящих газов в цилиндрах , которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется “стуком поршневых пальцев”) или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:

  • рабочего объема , что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
  • оборотов коленчатого вала , число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т. д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
  • давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Характеристики двигателей

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Пунктирной линией на графике показаны более оптимальные характеристики двигателя.

ᐉ Общее уcтройство и характерные параметры поршневых двигателей

Поршневые двигатели внутреннего сгорания представляют собой комплекс механизмов и систем, обеспечивающий преобразование в механическую работу части тепловой энергии, выделяющейся при сгорании топлива непосредственно в цилиндрах.

Рис. Схема устройства типичного поршневого двигателя внутреннего сгорания:
а) продольный вид; б) поперечный вид

Схема типичного поршневого двигателя внутреннего сгорания показана на рисунке. В зависимости от назначения и класса таких двигателей их конструкции имеют различную сложность, но все они состоят из следующих основных деталей: цилиндра 5, крышки цилиндра 1, поршня 4 , шатуна 14, вала 8, маховика 7 и картера 6.

Цилиндр, его крышка, картер и различные вспомогательные корпусные и прочие неподвижные элементы конструкции двигателя прочно скрепляются между собой с помощью резьбовых соединений, а некоторые из них, как картер и цилиндры, в автомобильных двигателях часто отливаются совместно.

Цилиндр 5 с помощью фланца крепится к верхней половине картера 6 и закрывается крышкой 1, называемой головкой цилиндра.

Картер служит основанием для цилиндров, в нем также размещается вал 8 двигателя. Картер автомобильных двигателей изготовляется литым, чаще всего разъемным, состоящим из двух половин, стенки его усиливаются ребрами жесткости. Нижней, не несущей его частью является литой или штампованный поддон 9.

В цилиндр 5 вставлен поршень 4, имеющий форму стакана, с повернутым в сторону головки цилиндра днищем. При движении поршня стенки цилиндра служат для него направляющими. Уплотняется цилиндр поршневыми кольцами 2. В полости цилиндра, заключенной между днищем поршня и крышкой 7, происходят все основные и вспомогательные процессы, связанные с окислением (сжиганием) топлива и преобразованием части выделяющегося при этом тепла в механическую работу.

Перемещение поршня в цилиндре передается на вал 8 с помощью связующего их звена — шатуна 14, имеющего форму профильного стержня с двумя головками. Одна головка, соединяющая его стержень с шейкой 11 колена или кривошипа вала 8, называется большой, или нижней, головкой. Другая головка, через отверстие которой проходит поршневой палец 3, обеспечивающий необходимое шарнирное соединение шатуна с поршнем, называется малой или верхней головкой.

Длина шатуна определяется величиной l, равной расстоянию между осями его верхней и нижней головок. Для каждого цилиндра или группы их на валу 8 имеется отдельное колено, образованное цапфой 11 кривошипа, щеками 10 и опорными шейками 13, поэтому вал двигателя называют коленчатым.

Размер кривошипа (колена) определяется радиусом r, равным расстоянию между осью вращения коленчатого вала и осью цапфы кривошипа.

В двигателях с разъемным картером коленчатый вал вращается в опорных подшипниках 12, расположенных в верхней части картера 6. Эти подшипники и соответствующие им опорные шейки 13 коленчатого вала называют коренными. Цапфу 11 кривошипа, шарнирно связывающую вал 8 с нижней головкой шатуна 14, в двигателях автомобильного типа называют шатунной шейкой.

В судовых и стационарных двигателях цапфу кривошипа называют иногда мотылевой; коренные шейки 13 — рамовыми, а часть корпуса (остова), несущую коренные опоры, — рамой.

На коленчатом валу 8 крепится маховик 7, выполненный в виде литого диска с массивным ободом. Энергия маховика, накапливаемая им при вращении, расходуется на вспомогательные процессы в цилиндре двигателя. В одноцилиндровых двигателях кинетическая энергия маховика обеспечивает вывод кривошипно-шатунного механизма из мертвых (крайних) его положений.

Безразмерной характеристикой кривошипно-шатунного механизма считают отношение радиуса r кривошипа к длине l шатуна. В поршневых двигателях внутреннего сгорания это отношение определяется из условий незадевания шатуна за стенку цилиндра и поршня о коренные подшипники при внешнем крайнем его положении.

В двигателе с кривошипно-шатунным механизмом возвратнопоступательное движение поршня вдоль оси цилиндра вызывает вращательное движение коленчатого вала около своей продольной оси, расположенной перпендикулярно коси цилиндра. И, наоборот, вращение коленчатого вала вызывает соответствующее перемещение поршня в цилиндре.

Для двигателя, схематично изображенного на рисунке, наибольшее перемещение поршня или его ход равен удвоенному радиусу кривошипа:

S = 2r

Следовательно, ход поршня — это расстояние между двумя крайними его положениями в цилиндре, занимаемыми им последовательно при каждом полуобороте вала двигателя (через каждые 180° поворота). Положение поршня, при котором он максимально удален от оси коленчатого вала, условно называется внутренней или верхней мертвой точкой (сокращенно в.м.т.), а положение, при котором поршень находится на минимальном расстоянии от оси вала, называется наружной или нижней мертвой точкой (н.м.т.).

Необходимо отметить, что мертвые точки присущи механизму и соответствуют таким двум положениям кривошипа (или колена), при которых шатун и кривошип вытянуты в одну линию, как это имеет место в рассматриваемом соосном механизме (ось цилиндра в котором пересекается с осью коленчатого вала). В общем случае мертвыми точками называют такие положения, при которых поршень меняет направление своего движения, и скорость его перемещения становится равной нулю.

Ход поршня S и диаметр цилиндра D относятся к главным оценочным параметрам двигателя, определяющим основные его размеры. В поршневых двигателях отношение хода поршня к диаметру цилиндра S/D изменяется примерно в пределах от 0,7 до 2,2. Если двигатель имеет S/D < 1,0, то его называют короткоходным. Современные автомобильные двигатели в основном, строятся короткоходными.

Объем, описываемый поршнем при его перемещении от в.м.т. до н.м.т., называется рабочим объемом цилиндра и обозначается Vh. Сумма рабочих объемов всех цилиндров в многоцилиндровых двигателях называется рабочим объемом, или литражом, двигателя так как рабочий объем чаще всего выражается в литрах.

Объем, образующийся в надпоршневой полости при положении поршня в в.м.т., называется объемом камеры сжатия или объемом камеры сгорания и обозначается Vr. Камеры сгорания двигателей часто имеют сложную геометрическую форму, поэтому действительный объем их определяют экспериментально.

Сумма рабочего объема цилиндра и объема его камеры сжатия называется полным объемом цилиндра. Полный объем цилиндра:

Va = Vh+Vc,

т. е. это объем, образующийся в надпоршневой полости цилиндра, когда поршень находится в н.м.т.

Степень сжатия — отношение полного объема цилиндра к объему камеры сжатия.

Эта величина показывает, во сколько раз уменьшается объем рабочего тела, находящегося в цилиндре при перемещении поршня от одного крайнего его положения к другому, т. е. из нижней мертвой точки в верхнюю мертвую точку. В зависимости от типа и назначения поршневых двигателей степень сжатия для них выбирают в пределах 5—22. Автомобильные двигатели строятся со степенями сжатия 7—9 и выше, если это не ограничивается свойствами топлива или другими факторами, оказывающими неблагоприятное влияние на работу данного типа двигателя. Принятая степень сжатия как оценочный параметр предопределяет экономичность и мощность данного двигателя.

Основы двигателя

Основы двигателя

Ханну Яаскеляйнен, Магди К. Хайр

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Полный доступ требует подписки DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

  • Эффективность двигателя

Реферат :
Поршневые двигатели внутреннего сгорания — подкласс тепловых двигателей — могут работать в четырех- и двухтактном циклах. В каждом случае двигатель может быть оснащен системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI). Возможен ряд других классификаций двигателей, основанных на подвижности двигателя, применении, топливе, конфигурации и других конструктивных параметрах. Теоретически процесс сгорания можно смоделировать, применив к процессам в цилиндре двигателя законы сохранения массы и энергии. Основные конструктивные и эксплуатационные параметры двигателей внутреннего сгорания включают степень сжатия, рабочий объем, объем зазора, выходную мощность, указанную мощность, тепловой КПД, указанное среднее эффективное давление, среднее эффективное тормозное давление, удельный расход топлива и многое другое.

  • Тепловые двигатели
  • Классификация поршневых двигателей внутреннего сгорания
    • Четырехтактные и двухтактные циклы
    • Другие классификации двигателей
  • Основы поршневого двигателя внутреннего сгорания
  • Рабочие параметры двигателя

Определение и классификация

Тепловые двигатели — это машины для преобразования энергии: они преобразуют химическую энергию топлива в работу, сжигая топливо в воздухе для получения тепла. Это тепло используется для повышения температуры и давления рабочая жидкость , которая затем используется для выполнения полезной работы. Тепловые двигатели можно классифицировать как:

  • Двигатели внутреннего сгорания , в которых продукты сгорания или реагенты (воздух и топливо) служат рабочим телом двигателя, или
  • Двигатели внешнего сгорания , в которых энергия передается (например, через теплообменник) рабочей жидкости, отделенной от продуктов сгорания или реагентов.

Двигатели также можно разделить на поршневые или роторные:

  • В поршневых двигателях рабочая жидкость используется для линейного перемещения поршня. Затем линейное движение обычно преобразуется во вращательное движение с помощью кривошипно-ползункового механизма (шатун / коленчатый вал).
  • В роторном двигателе рабочая жидкость раскручивает ротор, соединенный с выходным валом.

Двигатели внутреннего сгорания

В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливно-воздушной смеси или продуктов сгорания самой топливно-воздушной смеси. Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в действие автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших утилитах. Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются 9.0036 двухтактный и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.

Общие цели при проектировании и разработке всех тепловых двигателей включают: максимизацию работы (выходной мощности), минимизацию потребления энергии и уменьшение загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу. На рис. 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами индустрии крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях. Впускные и выпускные клапаны для простоты опущены, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей вместо клапанов используются впускные и выпускные каналы.

Рисунок 1 . Основные узлы поршневых тронковых (а) и крейцкопфных (б) двигателей

Как двух-, так и четырехтактный поршневой двигатель внутреннего сгорания может быть оснащен системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).

Обычно системы с искровым зажиганием характеризуются предварительно смешанным зарядом (т. е. топливо и воздух смешиваются перед воспламенением) и внешним источником воспламенения, таким как свеча зажигания. Предварительное смешение может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве применений, это распределение также может быть неоднородным. Горение инициируется искрой, и пламя распространяется наружу вдоль фронта от места искры. Говорят, что сгорание в двигателях SI контролируется кинетическим путем, потому что вся смесь легко воспламеняется, а скорость сгорания определяется тем, насколько быстро химическая реакция может поглотить эту смесь, начиная с источника воспламенения.

Обычные дизельные двигатели характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заряд воздуха и топлива в этих двигателях очень неоднороден: в одних регионах они чрезмерно богаты, а в других — обеднены. Между этими крайностями будет существовать смесь топлива и воздуха в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания. Температура испаряемого топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс горения. Температура самовоспламенения топлива зависит от его химического состава. В отличие от системы SI, сгорание в двигателях с воспламенением от сжатия может происходить во многих точках, где соотношение воздух-топливо и температура могут поддерживать этот процесс. Говорят, что основная часть процесса сгорания в двигателях с центральным охлаждением регулируется смешиванием, поскольку скорость контролируется образованием воспламеняющихся смесей воздуха и топлива в камере сгорания.

В некоторых случаях различие между двигателями SI и CI может быть размыто. Из-за стремления сократить выбросы и расход топлива были разработаны системы сгорания, которые могут использовать некоторые функции двигателей как с SI, так и с CI; например, самовозгорание предварительно смешанных смесей бензина, дизельного топлива или их смеси.

Газовые турбины, рис. 2, являются еще одним примером двигателей внутреннего сгорания. Однако, в отличие от поршневых двигателей, сгорание происходит отдельно в специальной камере сгорания.

Рисунок 2 . Газовая микротурбина для увеличения запаса хода в транспортных средствах средней и большой грузоподъемности.

(Источник: Wrightspeed Inc.)

Двигатели внешнего сгорания

В двигателях внешнего сгорания рабочее тело полностью отделено от топливно-воздушной смеси. Тепло от продуктов сгорания передается рабочему телу через стенки теплообменника. Паровой двигатель является хорошо известным примером двигателя внешнего сгорания.

Примером поршневого двигателя внешнего сгорания является двигатель Стирлинга, в котором тепло передается рабочему телу при высокой температуре и отводится при низкой температуре. Тепло, добавленное к рабочей жидкости, может быть получено практически из любого источника тепла, такого как сжигание ископаемого топлива, дерева или любого другого органического материала.

Цикл Ренкина, на котором основаны многие конструкции паровых двигателей, является еще одним примером двигателя внешнего сгорания. Тепло, добавляемое из внешнего источника, повышает температуру жидкости, такой как вода, до тех пор, пока она не превратится в пар, который используется для движения поршня или вращения турбины. Паровые двигатели приводили в движение автомобили в США между 1900 и 1916; однако к 1924 году они почти исчезли. Паровые грузовики были популярны в Англии до середины 1930-х годов. В то время как паровые локомотивы во многих странах постепенно заменялись тепловозами на протяжении большей части 20 го века, некоторые из них оставались на магистральных линиях вплоть до 21 го века. Причины отказа парового двигателя как основного двигателя в мобильных приложениях заключались в размере и количестве основных компонентов, необходимых для их работы, таких как печь, котел, турбина, клапаны, а также в их сложном управлении 9.0100 [422] . Паровая турбина, которая до сих пор используется на многих стационарных электростанциях, является примером роторного двигателя внешнего сгорания.

В 21-м -м веке акцент на повышении эффективности двигателя возродил интерес к циклу Ренкина для мобильных приложений — в форме рекуперации отработанного тепла выхлопных газов (WHR). В то время как в некоторых из этих устройств используется пар, в других используются органические жидкости, которые лучше подходят для применений с относительно низкой температурой выхлопных газов автомобиля. Из-за сочетания цикла Ренкина и органической рабочей жидкости эти системы часто называют системами рекуперации отработанного тепла с органическим циклом Ренкина (ORC).

###

Основные параметры поршня и цилиндра двигателя – x-engineer.org

Чтобы охарактеризовать основные характеристики двигателя внутреннего сгорания в его рабочем диапазоне, мы можем использовать некоторые параметры и геометрические соотношения поршня и камеры сгорания. Характеристики двигателя связаны как с эффективностью использования топлива, так и с динамической отдачей (мощностью и крутящим моментом), на которые напрямую влияют основные параметры двигателя.

Чтобы вспомнить принцип работы двигателя внутреннего сгорания, прочитайте статью Как работает двигатель внутреннего сгорания.

Основные геометрические параметры цилиндра, поршня, шатуна и коленчатого вала изображены на изображении ниже.

Изображение: Основные параметры геометрии поршня и цилиндра двигателей внутреннего сгорания

где:

IV – впускной клапан
EV – выпускной клапан
ВМТ – верхняя мертвая точка
НМТ – нижняя мертвая точка
B – отверстие цилиндра
S – поршень ход
r – длина шатуна
a – радиус кривошипа (вылет)
x – расстояние между осью кривошипа и осью поршневого пальца
θ – угол поворота коленчатого вала
V d – рабочий (рабочий) объем
V c – рабочий объем

Поршень движется внутри цилиндра между ВМТ и НМТ. Для завершения полного цикла сгорания поршень совершает четыре хода, а коленчатый вал делает два полных оборота. Смещенный объем — это объем, в котором движется поршень, а зазор — это объем, остающийся в цилиндре, когда поршень достигает ВМТ.

В этом уроке мы рассмотрим, как рассчитать 93\]

Рабочий объем современных двигателей внутреннего сгорания колеблется от 1,0 л до примерно 6,0 л, в среднем около 1,5 – 2 л. Наблюдается четкая тенденция уменьшения объемного объема двигателя (уменьшение габаритов) для для выполнения более строгих стандартов выбросов топлива.

Основная геометрия поршневого (поршневого) двигателя внутреннего сгорания определяется следующими параметрами:

  • степень сжатия
  • отношение диаметра цилиндра к ходу поршня
  • отношение длины шатуна к радиусу кривошипа (смещение)

Степень сжатия рассчитывается как отношение между максимальным (полным) объемом цилиндра (когда поршень находится в НМТ) и минимальным (зазором) объем (когда поршень находится в ВМТ).

В технической литературе греческая буква эпсилон ε используется для определения степени сжатия двигателя.

\[\varepsilon = \frac{V_{max}}{V_{min}}= \frac{V_c + V_d}{V_c}\]

Большинство современных двигателей с искровым зажиганием (бензиновых) имеют степень сжатия от 8 до 11, а двигатели с воспламенением от сжатия (дизельные) имеют степень сжатия от 12 до 24.

Обычно двигатели внутреннего сгорания с наддувом или турбонаддувом имеют более низкая степень сжатия, чем у двигателей без наддува.

Чем выше степень сжатия, тем выше давление сгорания в цилиндре. Максимальное значение степени сжатия зависит главным образом от материалов двигателя, технологии и качества топлива.

Поскольку это зависит от геометрии двигателя, степень сжатия является фиксированной. Существуют различные попытки разработать двигатели с переменной степенью сжатия, которые должны иметь более высокий общий КПД.

Отношение диаметра цилиндра к ходу поршня в большинстве случаев определяется греческой буквой zeta ζ :

\[ \zeta = \frac{B}{S} \]

Для легковых автомобилей отношение диаметра цилиндра к ходу обычно составляет от 0,8 до 1,2. Когда отверстие равно ходу, B = S , двигатель называется квадратный двигатель . Если ход поршня больше диаметра цилиндра, двигатель имеет под квадратом . Если длина хода меньше диаметра цилиндра, двигатель называется по площади . В нашем примере отношение диаметра цилиндра к ходу составляет 0,87.

Отношение длины шатуна к радиусу кривошипа  обычно определяется как R :

\[R = \frac{r}{a}\]

Для небольших двигателей R находится между 3 и 4, для больших двигателей запусков от 5 до 10.

При фиксированном объемном объеме двигателя более длинный ход позволяет использовать меньший диаметр (под квадрат). Преимуществом является меньшая площадь поверхности в камере сгорания и, соответственно, меньшие потери тепла. Это повысит тепловой КПД в камере сгорания. Недостатком является то, что чем длиннее ход, тем выше скорость поршня и выше потери на трение, что снижает эффективную мощность двигателя.

Если уменьшить ход, диаметр отверстия необходимо увеличить, и двигатель будет неквадратным. Это приводит к меньшим потерям на трение, но увеличивает потери теплопередачи. Большинство современных автомобильных двигателей имеют почти квадратную форму, некоторые немного больше квадратной формы, а некоторые – чуть меньше квадратной.

В таблице ниже приведены несколько примеров двигателей внутреннего сгорания с их основными геометрическими параметрами.

9030 7

9030 1 1.

Производитель Топливо Количество цилиндров Объем двигателя [см 900 96 3 ] Отверстие [мм] Ход [мм] ζ [-] ε [-]
Фиат Бензин 2 875 80,5 86 0,94 10:1
Renault Бензин 3 898 72,2 73,1 0,99 9 .5: 1
Audi Дизель 3 1422 79,5 95,5 0,83 19,5:1
Рено Бензин 4 1149 69 76,8 0,9 9,8:1
Mazda Бензин 4 1496 74,5 85,8 0,87 14: 1
VW Дизель 4 1598 79,5 80,5 0,9 9 16,5:1
Рено Дизель 4 1598 80 79,5 1,01 15,4:1