Содержание
Лямбда регулирование, катализатор и ГБО
В связи с жесткой конкуренцией и ужесточением экологических норм автопроизводители вынуждены постоянно совершенствовать свои автомобили. Двигатели, оснащенные карбюратором, уже не обеспечивали желаемой экономичности, экологичности и мощности автомобиля. Это обусловлено невозможностью точной настройки карбюратора на различных режимах. Поэтому производителями при первой возможности была внедрена электронная система управления впрыском под управлением 8-ми битного микропроцессора с тактовой частотой 4 мгц в 1979г. Это произошло через 8 лет после появления первого в мире 4-х битного микропроцессора 4004. На данный момент, система управления двигателем является довольно сложной в плане количества датчиков и исполнительных механизмов, сложных математических моделей записанных в виде программы блока управления.
Переход на более точную систему управления стал возможным не только благодаря появлению микропроцессора. Пригодился и опыт построения автоматизированных систем на промышленных предприятиях накопленный десятилетиями. На тот момент в ВУЗах уже давно появился предмет, без которого уже немыслима автоматизация процессов — Теория автоматического управления (ТАУ). ТАУ — это наука, которая позволяет просчитать уровень и скорость воздействия сразу на некоторое количество элементов управления для получения предсказуемо точного результата в отведенное время. На основании ТАУ для промышленности была создана и теория управления двигателем.
В процессе развития электронных систем управления двигателем улучшалась их точность, а вместе с ними и характеристики двигателей. Для того, что бы следовать все более жестким экономическим и экологическим параметрам, увеличивается количество узлов системы управления двигателем, улучшается точность их изготовления, увеличивается вычислительная мощность блоков управления двигателем для того, что бы использовать более точные и сложные модели управления и математику.
Так как механические элементы системы имеют допуски изготовления и свойство изнашиваться, то понадобился датчик, который мог бы прояснить реальную картину по соотношению воздух — топливо. Так с конца 1970-х годов в автомобилях начали применять датчики кислорода (лямбда зонды).
Познавательная книга по теории управления.
Зачем нужен лямбда зонд? (датчик кислорода)
Лямбда зонд позволяет постоянно отслеживать количество кислорода в выхлопных газах и вводить корректировку впрыска топлива для достижения лучшей экономичности и экологичности двигателя.
Циркониевый лямбда зонд
Самый распространенный вариант — циркониевый лямбда зонд, который выдает сигнал о бедной или богатой смеси. Если смесь богатая — лямда зонд выдаст напряжение более 0,45В, если бедная — менее 0,45В. Понятие бедной и богатой смеси связано с соотношением массы всасываемого в цилиндры двигателя воздуха к массе топлива. Условно соотношение выражается числом лямбда (уровень избытка кислорода). Например, при числе λ (лямбда) = 1, соотношение массы воздуха к массе топлива составляет 14,7 кг воздуха / 1 кг топлива, что является наиболее экологичным соотношением. Такую пропорцию еще называют «стехиометрической смесью».
Таким образом, в простой системе управления с лямбда зондом, состав топливно-воздушной смеси постоянно колеблется возле λ = 1. Это происходит из-за того, что система управления пытается максимально приблизится к λ=1, а чувствительный элемент циркониевого лямбда зонда может показать только больше или меньше.
Циркониевый лямбда зонд обладает еще некоторыми важными параметрами, которые используются в более продвинутых системах управления с целью соответствия экологическим нормам евро-4 и выше. Например, по внутреннему сопротивлению чувствительного элемента, выходного напряжения и сопоставляя эти параметры с другими параметрами системы, можно судить о концентрации вредных химических элементов в выхлопе (CH, CO, h3) и температуре чувствительного элемента датчика кислорода. Таким образом, системой управления могут быть предприняты меры по улучшению экологических показателей мотора.
Широкополосный лямбда зонд
Существуют 2 основных типа широкополосных лямбда зондов, которые отличаются по принципу считывания информации.
- 4-х проводный. Используется на автомобилях Toyota, Lexus, Subaru, Suzuki.
- 5-ти проводный (возможен 6-й провод для калибровочного резистора) имеет дополнительную камеру — кислородный насос. Используется обычно на немецких автомобилях.
У этих датчиков кислорода есть общая особенность — они не просто показывают бедную или богатую смесь, а способны измерить состав смеси в большом диапазоне. Это позволяет более точно удерживать требуемый состав смеси. Так же становится возможным удерживать состав смеси λ не равный 1. Это может потребоваться на переходных режимах или частичных нагрузках, что позволяет добиться лучшей экономичности и улучшить другие показатели.
Принцип работы этих датчиков подробно описан во многих источниках. Поэтому останавливаться на нем мы не будем.
Задний лямбда зонд (за катализатором)
Для того, что бы понять смысл заднего лямбда зонда, кратко остановимся на работе катализатора. Автомобильный катализатор — устройство, которое преобразовывает выхлопные газы до относительно безвредного состояния. Главным образом в катализаторе догорает недогоревшее в моторе топливо ( 2CO + O2 → 2CO2) и разложение оксида азота (2NOX → XO2 + N2), который получается при температурах горения выше положенного и избытке кислорода. Реакции в нейтрализаторе возможны при его температуре примерно от 300 до 800 градусов. Так же на эффективность его работы и срок службы сильно влияет состав топливно — воздушной смеси, который удерживается передним лямбда зондом. Если горючая смесь будет богаче, то упадет эффективность нейтрализации СО и СН, если беднее — NOX.
В соответствии с нормами Евро-3 и выше, в выхлопную систему за катализатором внедрен контролирующий датчик, с помощью которого ЭБУ контроллирует эффективность катализатора. В случае проблемы, на панели приборов загорается индикатор Check engine, а мотор переходит в аварийный режим работы (на аварийные карты).
Для еще большей эффективности каталитической реакции, в автомобилях с нормами евро-4 и выше, используются и показания заднего лямбда зонда B1S2. В таких автомобилях показания используются не только для диагностики, но и для более точной коррекции топливной смеси для того, что бы увеличить эффективность нейтрализации газов.
Работа заднего лямбда зонда
Катализатор производит разложение оксида азота на азот и кислород. Производится и связывание свободного кислорода с недогоревшим топливом (из СО получаем СО2). В катализаторе так же протекает множество других сложных реакций.
Как следует из описанного выше, содержание кислорода за катализатором заметно меньше, чем его содержание до катализатора. Способность катализатора накапливать и отдавать кислород определяет инерционность изменения содержания кислорода после катализатора. Поэтому основным показателем исправного катализатора является преобладание напряжения с заднего лямбда зонда более 0,6В даже если напряжение переднего лямбды значительное время держится на низком уровне.
На современных автомобилях с нормами Евро-4 и выше, задний лямбда B1S2 влияет так же и на топливные коррекции с целью обеспечить максимально оптимальную смесь для работы катализатора. Поэтому, эффективность катализатора напрямую влияет на расход топлива. При снижении эффективности катализатора расход топлива растет. Это происходит из за того, что количество кислорода, который может использовать катализатор уменьшается, а система пытается удержать его содержание, добавляя топлива за катализатором.
Например, на современных автомобилях (например Subaru и некоторых других), старение или отсутствие катализатора вызывает существенное увеличение расхода топлива — вплоть до 30% (если не приняты никакие меры по решению проблемы с катализатором). Кроме того, с помощью лямбда измеряется температура выхлопных газов за катализатором и ЭБУ стремиться разогреть холодный катализатор управляя подачей топлива и EGR так как время разогрева катализатора тоже регламентировано ЕВРО нормами (Температура определяется путем измерения сопротивления подогревателя лямбды и импеданса ее чувствительного элемента).
Признаком нормальной работы катализатора с нормами евро-4 и выше явлется удержание напряжения на заднем лямбда зонде в районе 0,6 . .. 0,7 вольт на стабильных режимах работы. При этом, топливные коррекции по задним B1S2 и передним B1S1 лямбда зондам должны быть около 0%. При неправильной работе катализатора топливные коррекции по задним и передним датчикам могут сильно отличаться от нуля.
Но не только напряжение от лямбда зонда и его динамические характеристики влияют на работу системы управления современного двигателя. Так как показания лямбда зонда зависят от состава прочих компонентов в выхлопных газах — система управления может косвенно определять их концентрацию. Так же система может косвенно определять и температуру катализатора, которая примерно равна температуре лямбда зонда. От температуры лямбда зонда зависит внутренне сопротивление его чувствительного элемента и потолок формируемого напряжения. По верхней и нижней полке напряжения ЭБУ может косвенно судить о концентрациях других примесей.
Исходя из вышеописанного, следует, что современные системы управления двигателем умеют не только удерживать концентрацию кислорода за катализатором. Дополнительно удерживается температура каталитического нейтрализатора в требуемом диапазоне, косвенно отслеживается и удерживается содержание других примесей за катализатором.
К сожалению, катализатор имеет ограниченный ресурс. И в тот момент, когда автовладелец сталкивается с проблемой катализатора, у него есть выбор — приобрести новый катализатор или решить проблему другим способом. Наш человек смотря на дымящиеся трубы заводов и стоимость катализатора, конечно же ищет альтернативный вариант. На современных автомобилях обмануть блок управления совсем не просто, так как в процессе участвует множество параметров с узким коридором. Поэтому народные методы в виде проставок и резисторов с конденсаторами уже не годятся. Даже если эти методы и работают не некоторых автомобилях, то неизбежно растет расход топлива. Ввиду этого, производители эмуляторов катализатора постоянно совершенствуют алгоритмы эмуляции для наиболее точного воссоздания всех требуемых параметров. В современном эмуляторе катализатора эмулируются около 10 различных параметров: напряжения на различных режимах, динамические параметры, количество запасенного кислорода, эффективность катализатора, внутреннее сопротивление датчика, импеданс, время отсечки, реакция на манипуляцию педали газа, температура катализатора, режим прогрева, скорость реакции чувствительного элемента, изменение эффективности катализатора при изменении нагрузки.
ГБО и катализатор
Мы все чаще сталкиваемся с проблемами катализаторов на автомобилях оборудованных газобалонным оборудованием.
Обычно проблема вызвана не катализатором, а самим газобалонным оборудованием. Обратите внимание — если автомобиль работает на бензине продолжительное время без проблем — обратите внимание на ГБО.
Наиболее часто встречаются 3 причины появления кодов неисправности по катализатору на автомобилях с газом:
- Неправильная настройка ГБО. решение простое — настройте ГБО;
- нестабильное давление газа в рампе форсунок. Обычно вызвано неспособностью редуктора удерживать требуемое давление. Ошибки обычно появляются, когда запас газа в баллоне заканчивается. Решение — заменить редуктор или чаще заправляться;
- Часто встречающаяся проблема — нестабильность работы газовых форсунок. Обычными методами диагностировать невозможно.
- Проблема с газовыми форсунками часто появляется из-за нестабильности их работы, разброса параметров. Наиболее часто встречается залипание форсунок и разброс в производительности. Все параметры определялись нами специальным тестером газовых форсунок.
Напомню, что современная система управления очень требовательна к параметрам всех звеньев, поэтому, даже незначительный разброс параметров форсунок ведет к непредсказуемым результатам. Из-за разброса параметров блок управления не может адекватно откорректировать топливные коррекции.
Наиболее эффективная работа двигателя, работающего на пропане возможна при более раннем угле зажигания и более бедной смеси с соотношением 15,5 : 1 для пропана по сравнению со смесью для бензина 14,7 : 1. При снандартной схеме с ГБО 4-го и 5-го поколения управление смесью производится бензиновым блоком управления, газовый блок управления только вносит корректировки для управления газовыми форсунками.
В связи с этим, смесь при работе на газу удерживается по бензиновым стандартам, что влечет за собой нештатную работу катализатора и более быстрое его разрушение.
Как проверить лямбда-зонд мультиметром — Kvazar-wp
Экологические нормы становятся более жесткими, поэтому в каждую машину устанавливают катализатор (каталитический нейтрализатор), благодаря которому выхлопные газы становятся менее токсичными. Среди условий для правильной и долгой работы катализатора — контроль топливно-воздушной смеси. Эта роль возложена на датчик, который именуется лямбда-зондом. Если он работает не в полную силу или ломается, топливо становится менее качественным, что плохо сказывается на работоспособности двигателя. Мастера рекомендуют проверять датчик каждые 10 тыс км, даже если нет явных признаков сбоя. Давайте разбираться, как проверить лямбда-зонд мультиметром.
Contents
- 1 Особенности устройства
- 2 Проверяем напряжение
- 3 Проверяем сопротивление
- 3.1 Вопрос — ответ
Особенности устройства
Датчик так называется из-за буквы (ƛ) греческого алфавита лямбда, обозначающей в автомобильной области коэффициент превышения уровня воздуха в топливовоздушной смеси. То есть это элемент, измеряющий кислородный объём в выхлопе. Он сравнивает его со стандартом, при несоответствии показаний подаёт сигнал. Называется также кислородным датчиком.
Место расположения соответствует количеству датчиков в машине. Если автомобиль выпустили до начала 21 века, обычно датчик один (под капотом, перед катализатором). В более современных авто от двух датчиков: первый — на привычном месте, другой — под днищем.
Принцип функционирования основан на прохождении выхлопов через датчик, внутрь которого идет чистый атмосферный воздух. Так как окислительная способность этих двух масс отличается, создаётся разность потенциалов, значения выводятся на электронный блок управления. Система в датчике начинает функционировать, когда прогрев достигает от трех до четырех сотен градусов (в титановых разновидностях нужна ещё более высокая t°), чтобы твердый электролит мог проводить электричество
Есть несколько видов датчиков, очень популярны циркониевые, которые бывают одно-, двух-, трёх- и четырехпроводные.
Обычно лямбда-зонд становится неисправен из-за проблем с топливом: плохое качество, попадание внутрь (как и масла) или проблемы с подачей.
Признаками того, что с датчиком неполадки, могут быть:
- Падение или “плавание” оборотов на холостом ходу.
- “Дерганье” авто, после запуска движка появляются необычные хлопки.
- Снижение мощности двигателя, медленная реакция, когда нажимается газовая педаль.
- Сильный перегрев мотора, увеличение бензинового расхода.
- Изменение запаха в выхлопной трубе (более «ядерные”).
Конечно, лучше не допускать появление таких признаков, регулярно выполняя проверку датчика кислорода мультиметром на неисправность.
Срок использования лямбда-зонда 60-130 тыс. км, но его служба может закончиться раньше из-за неблагоприятных факторов.
Перед тестированием датчика измерительным прибором важно провести его осмотр. Не должно быть оплавленных мест, обрывов. Нужно обратить внимание на состояние нижней части, которая прячется в катализаторе (для этого датчик выкручивается). Если замечены отложения, датчик важно заменить из-за его плохой работоспособности.
Если внешне не выявлено никаких проблем, приступаем к тестированию тестером.
Перед измерениями советуем посмотреть на картинку, которая поможет при распределении щупов измерителя в зависимости от модели кислородного датчика:
Также полезно прочитать статью о правильном использовании мультиметра, а также руководство к своей модели кислородного датчика.
Благодаря изложенной ниже информации вы узнаете, как проверить мультиметром лямбда-зонд с 4 контактами и другими вариациями, потому что принцип тестирования схож.
Проверяем напряжение
Способ, как проверить напряжение в цепи подогрева своими руками:
- Включить зажигание без снятия разъёма с лямбда-зонда.
- Соединить щупы с цепью подогрева.
- Посмотреть на значения мультиметра: в норме они такие же, как напряжение на АКБ — 12 В.
Два момента:
- «+» направлен на датчик от АКБ с помощью предохранителя. Если его нет, нужно прозвонить эту цепь.
- «—» идёт от управленческого блока. Если не обнаружили, тестируйте клеммы линии «лямбда-зонд — электронный управленческий блок».
Как померить опорное напряжение:
- Включить зажигание.
- Замерить напряжение между массой и сигнальным проводком.
- Норма показаний — приблизительно 0,45-0,50 В.
Полезное видео, как прозвонить лямбда зонд мультиметром на исправность:
Важно проверить сигнал, то есть восприимчивость наконечника. Инструкция, как проверить датчик кислорода мультиметром:
- Завести автомобиль и прогреть движок до семи-восьми десятков градусов°. Довести его до трех тысяч оборотов в минуту и удерживать так две-три минуты, чтобы датчик был прогретым.
- Отрицательный провод мультиметра подключить на корпус движка (к массе авто). Положительный к сигнальному проводку (чаще это черный проводок).
- Посмотреть на показания мультиметра. В норме они варьируются от 0,2 до 1 В, часто меняясь. Примерно за десять секунд датчик включается такое же количество раз. Если мультиметр показывает 0,5 В, а включения нет, датчик неисправен.
- Нажать газовую педаль в пол и резко отпустить. У рабочего датчика значение в 1 В, после чего падает до 0. Если при манипуляциях с педалью значения не меняются и показывают, скажем, 0,4 В, лямбда-зонд неисправен.
Если же напряжения вообще нет, проведите диагностику проводки: прощупайте с помощью мультиметра все кабели, которые соединяют реле с выключателем зажигания.
Проверяем сопротивление
Как проверить сопротивление:
- Выбрать на мультиметре режим измерения сопротивления и диапазон 200 Ом.
- Вывести из колодки лямбда-зонда контакты нагревателя (например, в датчике с четырьмя контактами это 3 и 4 разъёмы).
- Присоединить наконечники мультиметра к выходам и посмотреть на показания.
В норме значение в диапазоне 2-10 Ом в зависимости от модели кислородника. Часто показание выше 5 Ом указывает на отличную функциональность лямбда-зонда. Если на дисплее нет никаких показаний, произошел разрыв цепи, то есть в нагревателе порвался провод.
Вы узнали, как проверить лямбда-зонд мультиметром правильно и безопасно. Делитесь своим опытом в комментариях.
Желаем безопасных и точных измерений!
Вопрос — ответ
Вопрос: Как проверить напряжение датчика кислорода мультиметром?
Имя: Матвей
Ответ: Чтобы проверить напряжение в цепи подогрева, нужно включить зажигание без снятия разъёма с лямбда-зонда. Соединить щупы с цепью подогрева. Посмотреть на значения мультиметра: в норме они должны совпасть с напряжением на АКБ — 12 В.
Вопрос: Как проверить цифровым мультиметром лямбда зонд 4 контакта?
Имя: Дмитрий
Ответ: Кислородный датчик можно проверить на напряжение и сопротивление. Во втором случае нужно выбрать на мультиметре режим измерения сопротивления и диапазон 200 Ом. Вывести из колодки лямбда-зонда контакты нагревателя (например, в датчике с четырьмя контактами это 3 и 4 разъёмы). Присоединить наконечники мультиметра к выходам и посмотреть на показания.
Вопрос: Как проверить опорное напряжение лямбды мультиметром?
Имя: Рамиль
Ответ: Включить зажигание. Замерить напряжение между массой и сигнальным проводком. Норма показаний — приблизительно 0,45-0,50 В.
Вопрос: Как правильно прозвонить лямбда-зонд мультиметром?
Имя: Александр
Ответ: Советуется проверять восприимчивость наконечника датчика. Для этого завести автомобиль и прогреть движок. Довести его до трех тысяч оборотов в минуту и удерживать так две-три минуты. Отрицательный провод мультиметра подключить на корпус движка (к массе авто). Положительный к сигнальному проводку (чаще это черный проводок).
Лямбда-зонд — до и после
Изделия, подходящие для этого управляемого теста*
Набор датчиков для обратного штифта
£34.00
Гибкий штифтовой зонд
Зажим для аккумулятора PicoScope
Измерительный провод премиум-класса: BNC до 4 мм, 3 м
£41,00
*В Pico мы всегда стремимся улучшить нашу продукцию. Инструменты, использованные в этом пошаговом тесте, могли быть заменены, а вышеперечисленные продукты являются нашими последними версиями, используемыми для диагностики неисправности, задокументированной в этом тематическом исследовании.
Целью данного теста является проверка работы датчиков кислорода до и после каталитического нейтрализатора.
Как выполнить тест
Просмотрите рекомендации по подключению.
- Используйте данные производителя для определения функции цепей датчика кислорода до и после каталитического нейтрализатора.
- Подключить Канал PicoScope A . к цепи выходного сигнала датчика перед кат.
- Подключение Канал PicoScope B . к цепи выходного сигнала датчика пост-кат.
- Запустите двигатель и дайте ему поработать, пока не будет достигнута нормальная рабочая температура, затем дайте ему поработать на холостом ходу.
- Свернуть страницу справки. Вы увидите, что PicoScope отобразил образец сигнала и настроен на захват вашего сигнала.
- Запустите область , чтобы увидеть данные в реальном времени.
- С вашими осциллограммами на экране остановите осциллограф.
- Используйте буфер сигналов , увеличение и Измерения инструментов для изучения формы сигнала.
Пример сигнала
Примечания к форме сигнала
Эти известные исправные сигналы имеют следующие характеристики:
- Сигнал датчика перед каталитическим нейтрализатором Канал A периодически переключается между примерно 0,1 В (указывает на бедную смесь) и 0,8 В (указывает на богатую смесь).
- Переход сигнала перед каталитическим нейтрализатором с обедненной смеси на богатую или наоборот занимает около 0,5 с.
- Сигнал датчика после каталитического нейтрализатора, канал B , остается около 0,1 В, что указывает на бедную смесь на выходе каталитического нейтрализатора, независимо от входных сигналов обогащенной смеси, показанных датчиком перед каталитическим нейтрализатором, канал A .
Библиотека кривых
Перейдите к строке раскрывающегося меню в нижнем левом углу окна Библиотеки кривых и выберите Датчик кислорода/O2/лямбда .
Дополнительные указания
Лямбда-зонд также называется датчиком кислорода или датчиком O 2 или датчиком кислорода в выхлопных газах с подогревом (HEGO). Он играет очень важную роль в контроле выбросов выхлопных газов на автомобилях с каталитическим нейтрализатором. Датчик предварительного каталитического нейтрализатора устанавливается в выхлопную трубу перед каталитическим нейтрализатором, а автомобили, использующие новый EOBD2, также имеют лямбда-зонд после каталитического нейтрализатора.
Датчики имеют различное количество электрических соединений, максимум до четырех проводов. Они реагируют на содержание кислорода в выхлопной системе и создают небольшое напряжение в зависимости от воздушно-топливной смеси, наблюдаемой в данный момент. Диапазон напряжения, в большинстве случаев, варьируется между 0,2 и 0,8 вольта: 0,2 вольта указывает на обедненную смесь, а 0,8 вольта на более богатую смесь.
Автомобиль, оснащенный лямбда-зондом, называется «замкнутым контуром», что означает, что после сгорания топлива в процессе сгорания датчик анализирует полученные выбросы и соответствующим образом регулирует подачу топлива в двигатель.
Лямбда-зонды могут иметь нагревательный элемент, который нагревает датчик до оптимальной рабочей температуры 600 °C. Это позволяет расположить датчик дальше от источника тепла на коллекторе в «более чистом» месте. Датчик не работает при температуре ниже 300 °C.
Лямбда-зонд представляет собой два пористых платиновых электрода. Внешняя поверхность электрода подвергается воздействию выхлопных газов и покрыта пористой керамикой, а внутренняя поверхность с покрытием подвергается воздействию свежего воздуха.
Наиболее часто используемый датчик имеет элемент из диоксида циркония, вырабатывающий напряжение при наличии разницы в содержании кислорода между двумя электродами. Затем этот сигнал отправляется в электронный блок управления (ECM), и смесь корректируется соответствующим образом.
Титан также используется в производстве другого типа лямбда-зонда, который обеспечивает более быстрое время переключения, чем более распространенный циркониевый датчик. Кислородный датчик Titania отличается от датчика Zirconia тем, что он не способен генерировать собственное выходное напряжение и поэтому зависит от 5-вольтового питания от ECM автомобиля. Опорное напряжение изменяется в зависимости от соотношения воздух-топливо в двигателе, при этом на бедной смеси возвращается всего 0,4 вольта, а на богатой смеси — около 4,0 вольт.
Модуль управления двигателем будет контролировать подачу топлива в «замкнутом контуре» только тогда, когда позволяют соответствующие условия, что обычно происходит на холостом ходу, при малой нагрузке и в крейсерском режиме. Когда автомобиль ускоряется, ECM допускает перегрузку и игнорирует лямбда-сигналы. Это также происходит во время начального разогрева.
Датчики из титана и циркония при правильной работе переключаются примерно раз в секунду (1 Гц) и оба начинают переключаться только после достижения нормальной рабочей температуры. Это переключение можно наблюдать на осциллографе или с помощью мультиметра по напряжению низкого диапазона. На осциллографе результирующий сигнал должен выглядеть так, как показано на рисунке выше. Если частота переключения медленнее, чем ожидалось, снятие датчика и его очистка с помощью спрея с растворителем может улучшить время отклика.
Постоянное высокое напряжение на выходе Zirconia указывает на то, что двигатель постоянно работает на обогащенной смеси и выходит за пределы диапазона регулировки ECM; тогда как низкое напряжение указывает на обедненную или слабую смесь.
Напряжение переключения на датчике после каталитического нейтрализатора указывает на то, что газы проходят через керамический монолит каталитического нейтрализатора, не подвергаясь химическому изменению, и, следовательно, каталитический нейтрализатор требует замены заведомо исправным, при условии, что форма сигнала до каталитического нейтрализатора находится в пределах Спецификация.
Типичный циркониевый лямбда-зонд имеет четыре провода. Цвета варьируются в зависимости от производителя, но наиболее распространенное расположение показано ниже.
Верхний провод: белый нагреватель (+)
2-й провод: белый нагреватель (-)
3-й провод: черный — сигнал
4-й провод: серый — масса
GT128-3
Отказ от ответственности меняется без уведомления. Информация внутри тщательно проверяется и считается достоверной. Эта информация является примером наших исследований и выводов и не является окончательной процедурой.
Pico Technology не несет ответственности за неточности. Каждое транспортное средство может быть разным и требует уникального теста
настройки.
Помогите нам улучшить наши тесты
Мы знаем, что наши пользователи PicoScope умны и креативны, и мы будем рады получить ваши идеи по улучшению этого теста. Нажмите кнопку Добавить комментарий , чтобы оставить отзыв.
Добавить комментарий
Как они работают и что они делают
Что делают датчики O2? Датчики
02 измеряют количество кислорода в выхлопных газах и сообщают об уровне на компьютер вашего автомобиля. Есть датчики O2 до и после каталитического нейтрализатора. Верхний датчик O2 контролирует, сколько топлива добавляется в воздушно-топливную смесь. Датчик O2 на выходе следит за работой каталитического нейтрализатора.
При бедной топливной смеси (недостаточное количество топлива в смеси) напряжение относительно низкое — примерно 0,1 вольта. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольта. Когда воздушно-топливная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольта.
Узнайте разницу между богатыми и обедненными топливными смесями. Правильное соотношение воздух-топливо имеет решающее значение для обеспечения бесперебойной работы вашего автомобиля.
Где расположены датчики кислорода?
Каждый автомобиль, выпущенный после 1996 года, оснащен датчиком кислорода до и после каждого каталитического нейтрализатора. Большинство автомобилей имеют два датчика O2. В зависимости от вашего двигателя и выхлопа может быть 4 датчика O2. Двигатели V6 и V8 с двойным выхлопом имеют четыре кислородных датчика. Пара датчиков O2 для каждого ряда двигателей.
Симптомы неисправности датчика O2
Признаки неисправности датчика O2 могут включать следующее:
- Работа на обедненной или богатой смеси
- Плохое ускорение
- Двигатель колеблется
- Черный дым из выхлопной трубы (богатые условия работы) черный дым — это избыток топлива, выходящего из выхлопной трубы
Когда датчик O2 в случае неудачи обычно загорается индикатор проверки двигателя. Датчик O2 может выйти из строя по многим причинам. Используйте сканер OBD2, например FIXD, чтобы увидеть конкретный код неисправности, из-за которого загорелся индикатор Check Engine. Основываясь на этом коде неисправности, он укажет на то, как он вышел из строя, а затем перейдет к диагностике.
Вы также можете использовать датчик FIXD и приложение, чтобы измерить напряжение датчиков O2 и определить, неисправны ли они и нуждаются ли они в замене. Это поможет вам понять основную причину вашей проблемы.
Проблема Симптомы Код неисправности Неисправность цепи верхнего датчика O2 Снижение расхода топлива на галлон, повышенный выброс выхлопных газов, иногда бессимптомный P0130 Низкое напряжение датчика O2 на входе Недостаток мощности, Неровная работа автомобиля, Запах выхлопных газов, иногда бессимптомный P0131 Высокое напряжение датчика O2 на входе Неровная работа автомобиля, низкий расход топлива P0132 Неисправность цепи нижнего датчика O2 Снижение расхода топлива на галлон, повышенный выброс выхлопных газов, иногда бессимптомный P0136 Низкое напряжение нижнего датчика O2 Отсутствие мощности, Неровная работа автомобиля, Запах выхлопных газов, иногда бессимптомный P0137 Высокое напряжение нижнего датчика O2 Низкий расход топлива, неравномерный холостой ход, сильные пары P0138 Неисправный датчик кислорода (обедненный) Отсутствие мощности двигателя, неровный холостой ход, двигатель кашляет/пропускает зажигание, кончики свечей зажигания белые P0171 Неисправный кислородный датчик (обогащенный) Отсутствие мощности двигателя, неровный холостой ход, колебания/пропуски зажигания двигателя, нагар на диоде свечи зажигания P0172 Неисправный каталитический нейтрализатор (возможно, из-за поломки датчика O2) Недостаточная мощность двигателя, снижение расхода топлива, запах тухлых яиц или серы P0420 Диапазон напряжения датчика O2
Название датчика Расположение Диапазон напряжения Причины выхода за пределы диапазона Датчик O2 выше по потоку/ряд 1 Датчик 1 Между выпускным коллектором и каталитическим нейтрализатором Напряжение должно колебаться в пределах от 0,1 В до 0,9 В Если напряжение никогда не превышает 0,75 В, топливно-воздушная смесь обеднена
Если напряжение никогда не падает ниже 0,25, воздух /топливная смесь богатая
Если напряжение стабильное, возможно проблема в самом датчикеНижний датчик кислорода/ряд 1 Датчик 2 Между каталитическим нейтрализатором и глушителем Напряжение должно быть устойчивым на уровне около 0,45 В Если напряжение стабильное и высокое, в воздушно-топливной смеси не хватает кислорода
Если напряжение устойчивое и низкое, в воздушно-топливной смеси слишком мало кислорода смесь
Если напряжение колеблется, как на верхнем датчике O2, возможно, неисправен каталитический нейтрализаторДатчики O2 работают только после того, как они нагрелись до температуры более 600 градусов. При запуске холодного двигателя или при отказе кислородного датчика кислородный датчик не регулирует состав топливной смеси. Вместо этого ваш автомобиль использует фиксированную богатую топливную смесь, пока не получит сигнал от датчика O2. Пока автомобиль не получает сигнал от датчика, у него повышен расход топлива и выбросы. Многие новые кислородные датчики содержат нагревательные элементы. Это помогает быстрее довести их до рабочей температуры. Это уменьшает количество времени, в течение которого ваш автомобиль работает неэффективно.
Верхний датчик кислорода (ряд 1, датчик 1)
Датчик кислорода 1 также может называться датчиком кислорода выше по потоку или датчиком 1 ряда 1. Он находится после выпускного коллектора и перед каталитическим нейтрализатором. Он измеряет соотношение воздух-топливо в выхлопных газах, выходящих из выпускного коллектора, чтобы поддерживать соотношение топлива и кислорода 14,7:1.
Когда датчик O2 имеет сигнал низкого напряжения (обедненный), он компенсирует это увеличением количества топлива в смеси. Когда датчик O2 имеет сигнал высокого напряжения (богатый), он уменьшает количество топлива, которое автомобиль добавляет в смесь.
Верхний датчик O2 регулирует соотношение топливной смеси, переключаясь между богатой и обедненной смесями. Это позволяет каталитическому нейтрализатору снизить выбросы за счет поддержания надлежащего баланса среднего соотношения топливной смеси.
Нижний датчик O2 (ряд 1, датчик 2)
Датчик O2 2 также можно назвать датчиком O2 на выходе или датчиком 2 ряда 1. Он находится после каталитического нейтрализатора и перед глушителем. Это гарантирует, что каталитический нейтрализатор исправен и работает правильно. Каталитический нейтрализатор должен выдавать постоянное количество кислорода, поэтому напряжение на датчике O2 2 должно быть постоянным.
Когда все работает правильно, соотношение кислорода и топлива должно быть 14,7:1. Когда ваш автомобиль способен поддерживать это соотношение, нижний кислородный датчик должен показывать около 0,45 В. Если кислородные датчики, каталитический нейтрализатор или топливные форсунки повреждены, напряжение нижнего кислородного датчика может быть выше или ниже. Более высокое напряжение означает, что в смеси слишком много топлива. Более низкое напряжение означает, что в смеси слишком много кислорода.
Как проверить датчики кислорода
Поскольку датчик O2 играет важную роль в поддержании максимально эффективной и чистой работы двигателя, важно убедиться, что он работает правильно. Большинство кислородных датчиков обычно служат от 30 000 до 50 000 миль или 3-5 лет, а новые датчики служат еще дольше при надлежащем обслуживании и обслуживании. Стоимость замены датчика кислорода колеблется от 155 до 500 долларов, в зависимости от того, делаете ли вы его сами или идете в магазин. Вы можете ознакомиться с нашим полным руководством по стоимости здесь.
Вы можете проверить датчик кислорода дома с помощью вольтметра или сканера OBD2, такого как датчик FIXD. Перейдите к потоку данных в реальном времени в приложении FIXD, чтобы увидеть напряжение и время отклика ваших датчиков O2. Щелкните здесь, чтобы узнать, что еще может предложить FIXD.
Как правило, правильно функционирующий передний (вверх по потоку) датчик O2 1 будет переключаться с богатого на обедненное с достаточно постоянной скоростью, создавая волнообразную форму. Напряжение, генерируемое датчиком O2, должно составлять от 0,1 В до 0,9 В, при этом 0,9 В на богатой стороне и 0,1 В на обедненной. Если ваши показания находятся в этом диапазоне, датчик O2 работает правильно.
Задний (нижний) кислородный датчик 2 является датчиком катализатора, и если все работает нормально, этот датчик будет колебаться около половины вольта. Однако это измерение может колебаться в зависимости от производителя.
Дополнительные советы по тестированию датчика O2
Если датчик O2 не реагирует быстро на тестирование:
Если датчик кажется вялым или медленно реагирует во время тестирования и есть другие симптомы без кода неисправности, это может быть проблемой. «ленивого» датчика O2, который может вызвать другие проблемы.
Если напряжение датчика O2 держится на богатой или обедненной смеси:
Попробуйте ввести противоположное условие, чтобы определить, связана ли проблема с кислородным датчиком или с воздушно-топливной смесью. Например, если ваш датчик O2 залипает на обедненной смеси, добавьте топлива в ситуацию, чтобы увидеть, среагирует ли он. Если датчик O2 находится на богатой стороне, попробуйте создать вакуумную утечку или добавить больше кислорода, чтобы увидеть, как и реагирует ли датчик.
Как работают датчики кислорода?
Кислородные датчики работают, вырабатывая собственное напряжение, когда они нагреваются (примерно 600°F). На наконечнике кислородного датчика, который подключается к выпускному коллектору, находится керамическая колба из циркония. Внутри и снаружи колба покрыта пористым слоем платины, которые служат электродами. Внутренняя часть колбы вентилируется внутри через корпус датчика во внешнюю атмосферу.
Когда внешняя часть колбы подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между колбой и внешней атмосферой внутри датчика вызывает протекание напряжения через колбу.