Содержание

Двигатель внутреннего сгорания и турбина

Начиная с 17-го века широко используется свойство газа совершать работу при расширении. Устройства, которые преобразуют внутреннюю энергию газа в механическую работу, называются тепловыми машинами. Труд таких известных инженеров и ученых, как Ползунов, Ньюкомен, Джеймс Уатт, Шарль, Мариотт, Авогадро, Бойль, Дальтон, Карно, Клапейрон и, другие, позволил изобрести различные виды тепловых машин. Благодаря экскаваторам, подъемным кранам, станкам и другим механическим устройствам, снабженным тепловыми машинами, за короткое время мы можем выполнить большие объемы работы.

Расширение и работа газа

Газ, расширяясь, может совершать работу. От кастрюльки с кипящей водой, накрытой крышкой, слышен звук постукивающей крышки. Звук возникает благодаря тому, что кипящая вода бурно испаряется. Пар поднимается над водой, занимая пространство между поверхностью воды и крышкой. Расширяясь, пар приподнимает крышку (рис. 1).

Рис. 1. Расширяясь, горячий пар поднимает крышку, совершая работу

Часть пара покидает кастрюльку через образовавшуюся под крышкой щель. И крышка опускается. Этот процесс будет повторяться до тех пор, пока мы не прекратим подогревать кастрюльку.

Главным здесь является то, что нагретый пар (газ), расширяясь, может совершать работу, сдвигая крышку.

Джеймс Уатт в конце 17-го века придумал способ увеличить эффективность использования этого свойства нагретого пара. Он изобрел конденсатор пара, благодаря ему усовершенствовал паровую машину Ньюкомена. Это позволило увеличить ее эффективность в 3 раза.

Четыре вида тепловых двигателей

На сегодня известны такие типы тепловых двигателей (рис. 2):

  1. двигатель внутреннего сгорания,
  2. паровая турбина и газовая турбина,
  3. паровая машина,
  4. реактивный двигатель.

Рис. 2. Виды тепловых двигателей – ДВС, турбина, реактивный и паровой двигатели

Превращение энергии в тепловом двигателе

В любом тепловом двигателе по цепочке происходят такие превращения энергии (рис. 3):

  • тепловая энергия топлива преобразуется во внутреннюю энергию газа;
  • нагретый газ расширяется, и совершает работу, охлаждаясь при этом;
  • часть внутренней энергии газа переходит в механическую энергию.

Рис. 3. В тепловом двигателе энергия топлива превращается в механическую энергию

Двигатель внутреннего сгорания (ДВС)

Чтобы представить простой тепловой двигатель, кастрюльку заменим цилиндром, а крышку – металлическим поршнем. Поршень должен плотно прилегать к стенкам отполированного цилиндра, так, чтобы двигаться по нему с минимальным трением. Если в пространство под поршнем поместить газ, то нагреваясь и расширяясь, он сможет сдвинуть поршень. Полученное устройство называется тепловым двигателем.

Поступательное движение поршня с помощью дополнительных механических частей можно преобразовать во вращательное движение рабочего вала.

На сегодняшний день ДВС – это самый распространенный вид тепловых двигателей. В таких двигателях используется жидкое или газообразное топливо – бензин, керосин, спирт, нефть, горючий газ. Топливо в таком двигателе сгорает внутри цилиндра, поэтому его назвали двигателем внутреннего сгорания (ДВС).

Примечание: Паровая машина и, к примеру, двигатель Стирлинга, относятся к двигателям внешнего сгорания. Топливо в таких машинах сгорает за пределами рабочего цилиндра.

Существуют одноцилиндровые и многоцилиндровые двигатели внутреннего сгорания.

По количеству тактов работы двигателя, умещающихся в рабочий цикл, выделяют

  • двухтактные и
  • четырехтактные двигатели.

Как устроен одноцилиндровый ДВС

Рассмотрим, какие части включает в себя одноцилиндровый двигатель (рис. 4).

Рис. 4. Основные части двигателя внутреннего сгорания

Основными частями являются цилиндр и поршень, который может двигаться внутри цилиндра поступательно. Над рабочей поверхностью поршня располагается свеча. В пространство между поршнем и свечой помещаются смесь паров топлива и воздуха. Такой газ называют рабочим телом. Электрическая свеча зажигания вызывает процесс горения топливовоздушной смеси.

Впуск воздуха и паров топлива и выпуск сгоревших газов осуществляется двумя клапанами, которые так и называют – впускным и выпускным.

А шатун соединяет поршень и коленчатый вал. С помощью такого соединения возвратно-поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.

Для эффективной работы двигателя необходимо открывать и закрывать каждый клапан и подавать электричество к свече в нужные моменты времени. Поэтому, клапаны, поршень и свеча работают согласованно. Согласованность их работы реализована с помощью кулачкового механизма и различных датчиков, которые на рисунке не показаны.

Что такое мертвая точка и ход поршня

Вначале познакомимся с понятиями мертвых точек и рабочего хода. Это поможет разобраться, из каких частей состоит рабочий цикл двигателя.

Две мертвые точки — это крайние положения поршня. В этих положениях поршень меняет направление движения на противоположное. Выделяют две мертвые точки – верхнюю и нижнюю (рис. 5). Расстояние между ними называют ходом поршня.

Расстояние между мертвыми точками образует ход поршня

Что происходит внутри цилиндра при работе ДВС

При работе двигателя в цилиндре периодически происходит сгорание смеси топлива и воздуха, а, так же, производится выброс отработанных газов.

Сжатые поршнем газы загораются от электрической искры. Температура горения поднимается до 1800 градусов Цельсия. Поэтому, каждый двигатель внутреннего сгорания дополнительно содержит систему охлаждения.

Раскаленные газы расширяются, давление на поршень и стенки цилиндра резко возрастает. Это давление с силой толкает поршень, приводя его в движение. Усилие передается с поршня на шатун и далее на коленчатый вал, вращая его.

Примечание: Раскаленные газы обладают большим запасом внутренней энергии. Расширяясь, газы охлаждаются, при этом часть их внутренней энергии переходит в механическую работу.

Таким образом, энергия топлива преобразуется во вращение коленчатого вала.

Этапы работы четырехтактного ДВС

Теперь перейдем к рассмотрению рабочего цикла двигателя. Весь рабочий цикл состоит из четырех тактов — движений поршня. Двух движений вверх и двух — вниз. Поэтому двигатель называют четырехтактным. Каждому движению поршня вверх, или вниз соответствует половина оборота коленчатого вала (рис. 6).

Рис. 8. Четыре такта работы двигателя внутреннего сгорания

Первый такт – впрыск топлива

Сначала поршень движется вниз (рис. 6а). При этом между поршнем и клапанами создается область пониженного давления. Поэтому, когда открывается впускной клапан, пары топлива и воздух засасываются внутрь цилиндра. Сдвигаясь, поршень через шатун приводит во вращение коленчатый вал, снабженный утяжеляющим его маховиком. Первый такт заканчивается в момент достижения поршнем нижней мертвой точки.

Второй такт – сжатие топливовоздушной смеси

Коленчатый вал продолжает вращение по инерции и увлекает поршень с помощью шатуна.  Теперь поршень движется вверх (рис. 6б). Он сжимает смесь топлива и воздуха, находящуюся в объеме над ним. Давление над поршнем повышается и газ разогревается. Процесс сжатия заканчивается в верхней мертвой точке.

Третий такт – рабочий ход

В момент, когда поршень проходит верхнюю мертвую точку и начинает движение вниз (рис. 6в), на свечу зажигания подается высокое электрическое напряжение. Между рабочими электродами свечи проскакивает искра. Эта искра поджигает смесь паров топлива и воздуха. Температура газов поднимается почти до двух тысяч градусов. Давление раскаленного газа на стенки цилиндра и поршень возрастает в тысячи раз. Сила давления толкает поршень, он движется к нижней мертвой точке. Раскаленные газы расширяются и охлаждаются. При этом, они двигают поршень вниз, то есть, совершают механическую работу. Отсюда и название такта – рабочий ход.

Четвертый такт – выброс отработавших газов в окружающую среду

В момент, когда поршень минует нижнюю мертвую точку и, вращение коленчатого вала с помощью шатуна увлекает его вверх (рис. 6г), открывается выпускной клапан. Отработанные газы покидают цилиндр. Это продолжается до момента, когда поршень достигнет верхней мертвой точки. В этот момент полный цикл работы завершается. Двигатель готов к началу нового четырехтактного процесса.

Во время второго и третьего тактов впускной и выпускной клапаны закрыты. Впускной клапан открыт во время первого такта, выпускной – во время четвертого.

Двухтактные ДВС и их особенности

Двигатель называют двухтактным, когда полный цикл его работы совершается за два хода поршня – такта. Пока поршень совершает два хода, коленчатый вал совершает один оборот.

Сжатие и рабочий ход происходят аналогично четырехтактному двигателю. Отличие заключается в процессах впрыска и выпуска отработанных газов. Эти процессы происходят совместно и в течение короткого времени, покуда поршень проходит нижнюю мертвую точку.

Впрыск топливовоздушной смеси и выпуск отработанных газов называется продувкой цилиндра.

Изобрел двухтактный двигатель инженер из Шотландии Д. Клерк в 1881 году.  Джозеф Дей и Ф. Кок спустя десять лет в Англии усовершенствовали конструкцию. Двумя годами ранее — в 1879 году, свой двухтактный двигатель независимо от них построил Карл Бенц.

Количество нерабочих ходов поршня в два раза меньше, по сравнению с четырехтактным двигателем. Поэтому потери на трение сократились в два раза.

Но главное преимущество двухтактного двигателя в том, что он обладает в полтора раза большей мощностью при одинаковых с четырехтактным двигателем объемом цилиндра и оборотах двигателя.

Благодаря этому двухтактные двигатели используются на средних и тяжелых морских судах и в авиации. Вал двигателя с валом гребного винта, или воздушным винтом, соединяется без редуктора. В судостроении используют тяжелые малооборотные двигатели. А в конструкциях самолетов, в основном двухтактные роторные двигатели.

Некоторые модели мотоциклов, малолитражных автомобилей, грузовиков и автобусов, так же, оснащаются двухтактными двигателями внутреннего сгорания.

Основной недостаток таких двигателей заключается в том, что их детали работают при более высоких температурах. Это вызывает сокращение срока службы. А в мощных двигателях требует дополнительного охлаждения поршней.

Еще один недостаток заключается в одновременном впрыске топлива и выпуска отработанных газов. При этом пары топлива смешиваются с отработанными газами, полностью исключить такое смешивание не получается. Из-за этого снижается эффективность сжигания топлива в цилиндрах таких двигателей.

Преимущества многоцилиндровых двигателей и их устройство

В многоцилиндровых двигателях топливо воспламеняется в различные моменты времени последовательно в нескольких цилиндрах. При этом рабочий вал двигателя вращается более равномерно, ему передается больше энергии. Это позволяет повысить мощность двигателя.

В мопедах и скутерах чаще всего используют одноцилиндровые двигатели (рис. 7).

Рис. 7. Двигатели внутреннего сгорания могут иметь не один цилиндр, а несколько

В мотоциклах – двухцилиндровые. В легковых автомобилях — четырехцилиндровые двигатели. А грузовые автомобили, большие тракторы и спецтехника могут оснащаться восьмицилиндровыми двигателями. Более мощная и грузоподъемная техника, а, так же, речные и морские суда, оснащаются двигателями, имеющими, двенадцать, шестнадцать и, более цилиндров.

Рабочий вал многоцилиндрового двигателя вращается более равномерно и получает энергию от нескольких поршней. Поэтому многоцилиндровые двигатели имеют повышенную мощность.

В сложных двигателях цилиндры располагают, поворачивая один относительно другого на различные углы (рис. 8).

Рис. 8. Несколько цилиндров в двигателе располагают, поворачивая их на различные углы один относительно другого

Имеются такие конструкции двигателей:

  • V-образные, в которых цилиндры располагаются в виде латинской буквы V;
  • рядные, когда несколько цилиндров располагают в ряд один за другим;
  • оппозитные, в которых одни цилиндры развернуты на 180 градусов по отношению к другим цилиндрам и поршни одновременно проходят либо верхнюю, либо нижнюю мертвую точку, двигаясь в противоположные стороны;
  • роторные, несколько цилиндров в них располагаются в виде многолучевой звезды, такие двигатели применяются в авиации.

Примечания:

  1. Существуют V-образные двигатели, в которых цилиндры развернуты на 180 градусов. При этом, когда один поршень проходит свою верхнюю мертвую точку, соседний поршень проходит свою нижнюю точку.
  2. В оппозитных двигателях оба поршня двигаются в противоположные стороны — либо расходятся максимально далеко, либо максимально сближаются. Двигаясь, поршни одновременно проходят либо верхнюю, либо нижнюю мертвую точку. Поэтому двигатель называется оппозитным.

Паровая турбина

Турбина от двигателя внутреннего сгорания отличается более простым устройством. Основная сложность при изготовлении турбин заключается в создании легких, прочных и эффективных лопаток, приводящих в движение диски и рабочий вал.

Тепловой двигатель, в котором вал двигателя вращается без помощи поршня, шатуна и коленчатого вала, называется паровой турбиной.

Устройство турбины отличается простой конструкцией (рис. 9).

Рис. 9. Турбина состоит из диска с лопатками, рабочего вала и сопел

На вал насажен диск, содержащий на ободе лопатки. На эти лопатки направлены сопла, из них под большим давлением в сторону лопаток подается горячий газ или пар, который вращает лопасти и приводит в движение диск турбины и вал двигателя.

Современные турбины содержат несколько дисков с лопастями, находящихся на общем валу. Пар последовательно проходит лопатки нескольких дисков и каждому передает часть своей энергии. Это повышает эффективность турбины.

В качестве двигателей турбины применяются на больших судах.

Частота вращения турбин может достигать нескольких тысяч оборотов в минуту. На электростанциях вал турбины соединяется с генератором тока, благодаря чему механическая энергия вращения турбины преобразуется в электрическую энергию.

В России изготавливают турбины мощностью до 1,2 миллиардов Ватт.

Выводы

  1. Расширяясь, газ может совершать работу.
  2. Тепловой двигатель — это устройство, которое преобразует внутреннюю энергию газа в механическую энергию.
  3. Двигатель внутреннего сгорания (ДВС) — самый распространенный вид двигателя, жидкое или газообразное топливо в таком двигателе сгорает внутри цилиндра.
  4. Существуют одноцилиндровые или многоцилиндровые ДВС.
  5. Простейший одноцилиндровый ДВС состоит из цилиндра и поршня, свечи зажигания, впускного и выпускного клапанов, шатуна, коленчатого вала с маховиком. Клапаны, поршень и свеча работают согласованно.
  6. Крайние положения поршня называют мертвыми точками — верхней и нижней. Поршень в этих точках меняет направление движения на противоположное.
  7. Ход поршня – это расстояние между мертвыми точками.
  8. С помощью шатуна возвратно-поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.
  9. Через впускной клапан в цилиндр подается смесь топлива и воздуха.
  10. Электрическая свеча зажигает сжатые пары топлива и воздуха.
  11. Выпускной клапан выводит сгоревшие газы из цилиндра.
  12. Два движения поршня вверх и два движения вниз образуют четыре такта работы двигателя: впуск, сжатие, рабочий ход и выпуск.
  13. За время каждого движения поршня вверх, или вниз коленчатый вал совершает половину оборота.
  14. Многоцилиндровые двигатели имеют повышенную мощность, так как рабочий вал двигателя получает энергию от нескольких поршней.
  15. Двухтактные ДВС при одинаковых с четырехтактными двигателями объеме цилиндра и количеству оборотов коленвала, обладают повышенной в 1,5 раза мощностью, но меньшим сроком службы из-за перегрева.
  16. Турбины проще ДВС, они содержат несколько дисков с лопастями, насаженных на общий вал. Пар из сопел проходит лопатки нескольких дисков и заставляет вал вращаться. Мощность таких турбин может достигать 1,2 миллиардов Ватт.

Тепловые двигатели. | Объединение учителей Санкт-Петербурга

Основные ссылки

CSS adjustments for Marinelli theme

Объединение учителей Санкт-Петербурга

Форма поиска

Поиск

Вы здесь

Главная » Тепловые двигатели.

Тепловые двигатели.

Машины, преобразующие внутреннюю энергию механическую работу называют тепловыми двигателями

Хронология изобретений:

1690 — пароатмосферная машина Д. Папена (Франция) — теоретически

1698 —  пароатмосферная машина Т.Севери (Англия)

1705 —  пароатмосферная машина Т.Ньюкомена (Англия)

1763 — паровая машина И.Ползунова (Россия)

1774 — паровая машина Д.Уатта (Англия)

1860 — двигатель внутреннего сгорания Ленуара (Франция)

1865 — двигатель внутреннего сгорания Н.Отто (Германия)

1871 — холодильная машина К.Линде (Германия)

1887 — паровая турбина К.Лаваля (Швеция)

1897 — двигатель внутреннего сгорания Р.Дизеля (Германия)

Круговой (циклический) процесс — если в результате изменений система вернулась в исходное состояние, то говорят, что она совершила круговой процесс или цикл.

А1а21б2 — по модулю (из сравнения площадей).

А1а2>0

А1б2<0

Суммарная работа за циклический процесс численно равна площади, ограниченной линией процесса.

Из второго з-на термодинамики: ни один тепловой двигатель не может иметь кпд равный единице (100%). 

, где А — работа двигателя за цикл, Q — количество теплоты, полученное двигателем  за цикл.

Принцип работы теплового двигателя:

Q = A’ + ΔU — количество теплоты, переданное системе расходуется на совершение этой системой механической работы и на увеличение ее внутренней энергии (т.е. система должно отдать тепло в окружающее пространство) — 1-й з-н термодинамики.

Q = A’ + ΔU

Нагреватель передает тепло рабочему телу при температуре Т1.

Рабочее тело совершает полезную механическую работу A’.

Холодильник (охладитель) получает часть тепла, обеспечивая циклический процесс.

A’ = Q— Q2

Коэффициент полезного действия теплового двигателя:

         

Кпд реальных двигателей:

турбореактивный — 20 -30%; карбюраторный — 25 -30%, дизельный — 35-45%.

0 — 1 — впуск горючей смеси (изобара)

1 — 2 — сжатие (адиабата)

2 — загорание горючей смеси

2 -3 -резкое возрастание давления (изохора)

3 -4 — рабочий ход (адиабата)

4 — 0 — выпуск

Идеальная тепловая машина — машина Карно (Сади Карно, Франция, 1815).

Машина работает на идеальном газе.

1 — 2 — при тепловом контакте с нагревателем газ расширяется изотермически.

2 — 3 — газ расширяется адиабатно.

После контакта с холодильником:

3 — 4 — изотермическое сжатие;

4 — 1 — адиабатное сжатие.

КПД идеальной машины:

η является функцией только двух температур, не зависит от устройства машины и вида топлива.

 

Теорема Карно: кпд реальной тепловой машины не может быть больше кпд идеальной машины, работающей в том же интервале температур.

 

Цикл Карно обратим. Машина, работающая по обратному циклу наз. холодильной машиной.

 

Теги: 

конспект

Тепловые двигатели

Тепловые двигатели

Для преобразования теплоты в работу необходимо как минимум два места
с разными температурами. Если вы возьмете в Q максимум в
температура T высокая необходимо сбросить как минимум Q низкая при
температура T низкая . Объем работы, которую вы получаете от
тепловой двигатель W = Q высокий — Q низкий . Максимальный объем работы, который вы можете получить от
тепловая машина это сумма которую вы получите
из реверсивного двигателя.

Вт макс. = (Q высокий — Q низкий ) реверсивный
= Q высокий — Q высокий T низкий /T высокий
= Q старший (1 — T низкий /T высокий ).

W является положительным, если T high больше T low .

КПД тепловой машины
отношение полученной работы к затраченной тепловой энергии
температура, e = W/Q высокий . Максимально возможное
КПД е макс такого двигателя

e макс = W макс /Q высокий = (1 — T низкий
/T старший ) = (T высокий — T низкий )/T высокий .


Паровые двигатели

Паровая машина — разновидность тепловой машины. Он забирает тепло от
горячий пар, преобразует часть этого тепла в полезную работу и сбрасывает
отдохнуть на более холодном окружающем воздухе. Максимальная доля тепла
которые можно превратить в работу, можно найти, используя законы
термодинамики, и она увеличивается с разницей температур между
горячий пар и окружающий воздух. Чем горячее пар и
чем холоднее воздух, тем эффективнее паровая машина при преобразовании
тепло в работу.

В типичном паровом двигателе поршень движется вперед и назад внутри
цилиндр. В котле вырабатывается горячий пар высокого давления.
этот пар поступает в цилиндр через клапан. Однажды внутри
цилиндр, пар выталкивается наружу на каждую поверхность, включая
поршень. Поршень движется. Пар совершает механическую работу над
поршень, а поршень совершает механическую работу над присоединенными механизмами
к этому. Расширяющийся пар передает часть своей тепловой энергии
это оборудование, так что пар становится холоднее, когда оборудование работает.

Когда поршень достигает конца своего диапазона, клапан останавливает
поток пара и открывает цилиндр для наружного воздуха.
после этого поршень может легко вернуться. Во многих случаях допускается использование пара.
введите другой конец цилиндра так, чтобы пар толкал поршень
вернуться в исходное положение. Как только поршень вернется в исходное положение
начальной точки, клапан снова впускает пар высокого давления в
цилиндр и весь цикл повторяется. В общем, тепло идет.
от горячего котла к более прохладному окружающему воздуху и части этого тепла
преобразуется в механическую работу движущимся поршнем.
максимальный КПД паровой машины e max = (T пар
— T воздух )/T пар . Фактическая эффективность
обычно намного ниже.

Внешняя ссылка: Паровоз (Youtube)

Проблема:

Максимум
возможный КПД паровой машины, принимающей теплоту при 100 o C
и сброс его при комнатной температуре примерно 20 o C?

Решение:

  • Обоснование:
    Максимальный КПД любой тепловой машины равен КПД двигателя Карно. e max = (T высокий — T низкий )/T высокий .
  • Детали расчета:
    100 o C = 373 K и 20
    o С = 293 К. 
    максимально возможная эффективность
    (T высокий — T низкий )/T высокий
    =  (373 —
    293)/373 = 0,21 = 21%.

Двигатели внутреннего сгорания

Двигатель внутреннего сгорания сжигает смесь топлива и воздуха.
Наиболее распространенным типом является четырехтактный двигатель. Поршень скользит в
и из цилиндра. Два или более клапана позволяют топливу и
воздух для входа в цилиндр и газы, которые образуются, когда топливо и воздух
сжечь, чтобы покинуть цилиндр. Когда поршень скользит вперед и назад
внутри цилиндра изменяется объем, который могут занимать газы
кардинально.

Процесс преобразования теплоты в работу начинается, когда поршень
вытащили из цилиндра, расширив замкнутое пространство и позволив
топливо и воздух поступают в это пространство через клапан. Это движение
называется тактом впуска или тактом впуска . Далее топливо и
воздушная смесь сжимается, вдавливая поршень в
цилиндр. Это называется сжатием .
ход
. В конце такта сжатия при
топливно-воздушная смесь сжата максимально плотно, свеча зажигания
в запаянном конце цилиндра срабатывает и воспламеняет смесь.
Горячее горящее топливо имеет огромное давление и толкает поршень.
из цилиндра. это рабочий ход — это то, что обеспечивает мощность двигателя и навесного оборудования.
Наконец, сгоревший газ выдавливается из цилиндра через другой
клапан в такте выпуска .
Эти четыре удара повторяются снова и снова. Самый внутренний
двигатели внутреннего сгорания имеют не менее четырех цилиндров и поршней. Там
всегда хотя бы один цилиндр проходит рабочий такт, и это
может нести другие цилиндры через нерабочие такты.
максимальный КПД такого двигателя е max = (T зажигание
— T воздух )/T зажигание где T зажигание
— температура топливно-воздушной смеси после воспламенения. К
максимизировать эффективность использования топлива, вы должны создать максимально горячую
топливно-воздушной смеси после зажигания. Самая высокая эффективность, которая
было достигнуто примерно 50% e max .

Внешняя ссылка: Внутреннее сгорание
двигатель (Ютуб)

Проблема:

Тепловая машина поглощает 360 Дж тепловой энергии и совершает 25 Дж работы в
каждый цикл. Найти
(а) КПД двигателя и
(b) тепловая энергия, выделяемая в каждом цикле.

Решение:

  • Обоснование:
    Количество работы, которую вы получаете от тепловой машины, равно W = Q high — Q low .

    КПД e = W/Q высокий .
  • Детали расчета:
    Q высокий = 360 Дж. W = 25 Дж. Q низкий
    = Q высокая — W = 335
    J.
    (a) Эффективность e = W/Q высокая = 6,9%.
    (b) Излучаемая тепловая энергия Q низкая
    = 335 Дж.

Как работают тепловые двигатели?

Как работают тепловые двигатели? — Объясните этот материал

Вы здесь:
Домашняя страница >
Инжиниринг >
Двигатели

  • Дом
  • Индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

В наш век топливных элементов и
электромобили, паровозы (и
даже автомобили с бензиновым двигателем) может показаться ужасно старой технологией.
Но взгляните на историю шире, и вы увидите, что даже древнейшие
паровой двигатель действительно очень современное изобретение. Люди были
используя инструменты, чтобы увеличить свою мышечную силу примерно в 2,5 раза
миллионов лет, но только за последние 300 лет мы усовершенствовали
искусство создания «мускулов» — машин с двигателем, — которые работают
все сами по себе. Скажем иначе: люди были без
двигатели более 99,9 процента нашего существования на Земле!

Теперь у нас есть двигатели, без которых, конечно, не обойтись
их. Кто мог представить себе жизнь без автомобилей, грузовиков, кораблей или
самолеты — все они приводились в движение мощными двигателями. И двигателей нет
просто перемещают нас по миру, они помогают нам радикально изменить его.
От мостов и туннелей до небоскребов
и плотины, практически каждое крупное здание и сооружение, построенное людьми.
в последние пару столетий был построен с помощью
двигателей — кранов, экскаваторов, самосвалов и бульдозеров.
их. Двигатели также подпитывают современную сельскохозяйственную революцию: значительная часть всех наших
еда теперь собирается или транспортируется с использованием мощности двигателя. Двигатели не заставляют мир двигаться
круглые, но они участвуют практически во всем остальном, что происходит
на нашей планете. Рассмотрим подробнее, что они из себя представляют и как
работа!

Фото: Паровоз «в паре» (на самом деле работает) в Железнодорожном музее Мид-Континент в Норт-Фридом, штат Висконсин. Фото предоставлено архивом Кэрол М. Хайсмит,
Библиотека Конгресса, Отдел эстампов и фотографий.

Содержание

  1. Что такое тепловая машина?
  2. Как двигатель приводит машину в движение?
  3. Типы двигателей
    • Двигатели внешнего сгорания
    • Двигатели внутреннего сгорания
  4. Двигатели в теории
    • Цикл Карно
    • Насколько эффективен двигатель?
    • Каков максимальный КПД двигателя?
  5. Узнать больше

Что такое тепловая машина?

Двигатель — машина, которая вращает
энергия, заключенная в топливе, превращается в силу и движение. Уголь — нет
очевидное использование
кто-нибудь: это грязный, старый, каменный материал, зарытый под землю. Сожги это в
однако двигатель, и вы можете высвободить содержащуюся в нем энергию, чтобы
заводские машины, автомобили, лодки или локомотивы. То же самое верно
других видов топлива, таких как природный газ, бензин, древесина и торф. С
двигатели работают, сжигая топливо для выделения тепла, иногда они
позвонил тепловые двигатели . Процесс сжигания топлива включает
химическая реакция, называемая горение , при которой топливо сгорает в
кислород в воздухе, чтобы сделать углекислый газ и пар. (Как правило, двигатели также загрязняют воздух, потому что топливо не всегда на 100% чистое и не сгорает идеально чисто.)

Всем известно, что тепло может производить движение.
В том, что оно обладает огромной движущей силой, никто не может сомневаться…
»

Николя Сади Карно, 1824 г.

Существует два основных типа тепловых двигателей: внешнего сгорания и внутреннего сгорания.
сгорания:

  • В двигателе внешнего сгорания топливо сгорает снаружи
    и вдали от основной части двигателя, где сила и движение
    производятся. Хорошим примером является паровая машина: есть угольный огонь
    на одном конце, который нагревает воду, чтобы сделать пар. Пар подается в прочный металлический цилиндр , где он перемещает
    плотно прилегающий плунжер, называемый поршнем туда и обратно.
    движущийся поршень приводит в действие все, к чему прикреплен двигатель (возможно,
    заводской станок или колеса паровоза). Это внешний
    двигатель внутреннего сгорания, потому что уголь горит снаружи и некоторые
    расстояние от цилиндра и поршня.
  • В двигателе внутреннего сгорания топливо сгорает внутри
    цилиндр. В типичном автомобильном двигателе, например, есть
    что-то вроде четырех-шести отдельных цилиндров, внутри которых бензин
    постоянно горит кислородом с выделением тепловой энергии.
    цилиндры «зажигаются» поочередно, чтобы гарантировать, что двигатель производит
    стабильная подача мощности, которая приводит в движение колеса автомобиля.

Двигатели внутреннего сгорания, как правило, гораздо более эффективны, чем двигатели с внешним
двигатели внутреннего сгорания, потому что энергия не тратится впустую на передачу тепла от
огонь и котел к цилиндру; все происходит в одном месте.

Художественное произведение: В двигателе внешнего сгорания (например, паровом двигателе) топливо сгорает вне цилиндра, и тепло (обычно в виде горячего пара) должно отводиться на некоторое расстояние. В двигателе внутреннего сгорания (например, в автомобильном) топливо сгорает прямо внутри цилиндров, что гораздо эффективнее.

Фото: Паровой двигатель является двигателем внешнего сгорания, потому что уголь горит в топке (там, где стоит машинист) на некотором расстоянии от цилиндра, где вырабатывается фактическая мощность.

Как двигатель приводит машину в движение?

Работа: Основная концепция тепловой машины: машина, которая преобразует тепловую энергию в работу, перемещаясь туда и обратно между высокой температурой и более низкой. Типичный тепловой двигатель питается от сжигания топлива (внизу слева) и использует расширяющийся-сжимающийся поршень (вверху в центре) для передачи энергии топлива на вращающееся колесо (внизу справа).

В двигателях используются поршни и цилиндры, поэтому мощность, которую они производят,
непрерывный возвратно-поступательный, толкающий и тянущий или возвратно-поступательный
движение. Проблема в том, что многие машины (и практически все транспортные средства) полагаются на
на колесах, которые вращаются и вращаются, другими словами, вращающихся
движение. Существуют различные способы поворота возвратно-поступательного движения.
движение во вращательное (или наоборот). Если вы когда-нибудь смотрели
пыхтя паровой машины, вы, должно быть, заметили, как крутятся колеса.
приводимый в движение кривошипом и шатуном: простой
рычажно-рычажный механизм, соединяющий одну сторону колеса с поршнем, так что
колесо вращается, когда поршень качает вперед и назад.

Альтернативный способ преобразования возвратно-поступательного движения во вращательное
заключается в использовании передач. Это то, что гениальный шотландский инженер
Джеймс Уатт (1736–1819) решил сделать это в 1781 году, когда открыл кривошипно-шатунный механизм, который он
Необходимость использовать в своей усовершенствованной конструкции паровой двигатель была, по сути,
уже защищен патентом. Конструкция Уатта известна как
солнечная и планетарная шестерни ) и состоит из двух или более шестерен
колеса, одно из которых (планета) толкается вверх и вниз поршнем
стержень, движущийся вокруг другой шестерни (Солнца) и приводящий ее во вращение.


Фото: Два способа преобразования возвратно-поступательного движения во вращательное: Первое фото: Солнечная и планетарная передача. Когда поршень движется вверх и вниз, шестерни крутятся. Второе фото: На этом токарном станке с ножным приводом просто решена проблема преобразования движения вверх-вниз в круговое. Когда вы нажимаете вверх и вниз на педаль (педаль), вы заставляете струну подниматься и опускаться. Это заставляет вал, к которому прикреплена струна, вращаться со скоростью, приводя в действие токарный станок и сверло или другой инструмент, прикрепленный к нему. Обе фотографии сделаны в Музее науки Think Tank в Бирмингеме, Англия.

Некоторым двигателям и машинам необходимо преобразовать вращательное движение в
возвратно-поступательное движение. Для этого вам нужно что-то, что работает в
противоположное коленчатому валу, а именно кулачок. Кулачок — это
некруглое (обычно яйцевидное) колесо, имеющее что-то вроде
бар, опирающийся на него. Когда ось поворачивает колесо, колесо
заставляет штангу подниматься и опускаться. Не можете представить это? Попробуйте представить автомобиль, колеса которого
яйцевидный. По мере движения колеса (кулачки) вращаются, как обычно, но кузов автомобиля подпрыгивает вверх и
вниз одновременно, поэтому вращательное движение производит
возвратно-поступательные движения (подпрыгивания) у пассажиров!

Кулачки работают во всех видах машин. Есть камера в
электрическая зубная щетка, которая делает
щетка двигается вперед и назад, когда электрический двигатель внутри вращается.

Рекламные ссылки

Типы двигателей

Фото: Внешнее сгорание: Эта стационарная паровая машина использовалась для подачи природного газа в дома людей с 1864 года. Фотография сделана в Think Tank.

Существует полдюжины или около того основных типов двигателей, которые вырабатывают мощность за счет сжигания топлива:

Двигатели внешнего сгорания

Лучевые двигатели (атмосферные двигатели)

Первые паровые двигатели были гигантскими машинами, заполнявшими целые здания
и они обычно использовались для откачки воды из затопленных шахт. Создан англичанином Томасом Ньюкоменом.
(1663/4–1729) в начале 18 века имели одноцилиндровый
и поршень, прикрепленный к большой балке, которая качалась вперед и назад.
Тяжелая балка обычно была наклонена вниз, так что поршень находился высоко в цилиндре.
В цилиндр закачивали пар, затем впрыскивали воду, охлаждая
пар, создавая частичный вакуум и заставляя луч наклоняться назад
другой путь, прежде чем процесс был повторен. Лучевые двигатели были важным технологическим достижением,
но они были слишком большими, медленными и неэффективными для заводских машин и поездов.

Работа: Как работает атмосферный (лучевой) двигатель (упрощенно). Двигатель состоит из тяжелой балки (серая), установленной на башне (черная), которая может качаться вверх и вниз. Обычно балка наклоняется вниз и вправо под весом прикрепленного к ней насосного оборудования. Водогрейный котел (1) подает пар (2) вверх в цилиндр (3). Когда цилиндр заполнен, из резервуара (4) впрыскивается холодная вода. Это конденсирует пар, создавая более низкое давление в цилиндре. Поскольку атмосферное давление (воздуха) над поршнем выше, чем давление под ним, поршень толкается вниз, вся балка наклоняется влево, а насос тянет вверх, выкачивая воду из шахты (5).

Паровые машины

В 1760-х годах Джеймс Уатт значительно усовершенствовал паровую машину Ньюкомена, сделав ее
меньше, эффективнее и мощнее — и эффективно превращает пар
двигателей в более практичные и доступные машины. Работа Уатта привела к созданию стационарного пара
двигатели, которые можно было бы использовать на заводах, и компактные движущиеся двигатели
которые могли бы привести в действие паровозы. Подробнее читайте в нашей статье о паровых двигателях.

Двигатели Стирлинга

Не все двигатели внешнего сгорания большие и неэффективные.
Шотландский священник Роберт Стирлинг (179 г.0–1878) изобрел очень умный
двигатель с двумя цилиндрами с поршнями, приводящими в действие два кривошипа
езда на одном колесе. Один цилиндр постоянно поддерживается горячим (нагревается внешней энергией).
источником, который может быть чем угодно, от угольного пожара до геотермальной энергии.
подачи), в то время как другой остается постоянно холодным. Двигатель работает по
челночный тот же объем газа (постоянно запечатанный внутри
двигатель) туда и обратно между цилиндрами через устройство, называемое
регенератор , который помогает сохранять энергию и значительно увеличивает
экономичность двигателя. Двигатели Стирлинга не обязательно включают сгорание,
хотя они всегда питаются от внешнего источника тепла. Узнайте больше в нашей основной статье о двигателях Стирлинга.

Фото: Машинный зал Think Tank (музей науки в Бирмингеме, Англия) представляет собой удивительную коллекцию энергетических машин 18 века. Экспонаты включают огромный паровой двигатель Smethwick, самый старый работающий двигатель в мире. На этом снимке он не показан, в основном потому, что он был слишком большим, чтобы его можно было сфотографировать!

Двигатели внутреннего сгорания

Бензиновые (бензиновые) двигатели

В середине 19 века несколько европейских инженеров, в том числе
Француз Жозеф Этьен Ленуар (1822–1819 гг.).00) и Герман Николаус Отто
(1832–1891) усовершенствовали двигатели внутреннего сгорания, которые сжигали
бензин. Это был короткий шаг для Карла Бенца (1844–1929).
подключить один из этих двигателей к трехколесному
карету и сделать первый в мире автомобиль, работающий на газе. Читать далее
в нашей статье об автомобильных двигателях.

Фото: Мощный бензиновый двигатель внутреннего сгорания от спортивного автомобиля Jaguar.

Дизельные двигатели

Позже, в 19 веке, другой немецкий инженер, Рудольф Дизель
(1858–1919 гг.)13), понял, что может сделать гораздо более мощное внутреннее
двигатель внутреннего сгорания, который мог работать на всех видах топлива.
В отличие от бензиновых двигателей, дизельные двигатели сжимают топливо намного сильнее.
он самопроизвольно воспламеняется и выделяет тепловую энергию
заперта внутри него. Сегодня дизельные двигатели по-прежнему являются предпочтительными машинами для вождения.
тяжелые транспортные средства, такие как грузовики, корабли и строительные машины, а также многие автомобили.
Подробнее читайте в нашей статье о дизельных двигателях.

Роторные двигатели

Одним из недостатков двигателей внутреннего сгорания является то, что они
нужны цилиндры, поршни и вращающийся коленчатый вал, чтобы использовать их
мощность: цилиндры неподвижны, а поршни и коленчатый вал
постоянно перемещаются. Роторный двигатель — это принципиально другая конструкция
двигателя внутреннего сгорания, в котором
«цилиндры» (которые не всегда цилиндрические
форме) вращаются вокруг неподвижного коленчатого вала.
Хотя роторные двигатели относятся к 19 веку, возможно,
самый известный дизайн — относительно современный Роторный двигатель Ванкеля ,
особенно используется в некоторых японских автомобилях Mazda. Статья в Википедии о
Роторный двигатель Ванкеля
хорошее введение с блестящей маленькой анимацией.

Двигатели в теории

Фото: машинист: гениальный Николя Сади Карно, 17 лет.

Пионерами двигателей были инженеры, а не ученые.
Ньюкомен и Уатт были практическими, практическими «деятелями», а не головоломными теоретиками.
Так продолжалось до тех пор, пока француз Николя Сади Карно (1796–1832) появился в 1824 году — более чем через столетие после того, как Ньюкомен построил свой первый паровой двигатель, — что были предприняты какие-либо попытки понять теорию
того, как работают двигатели и как их можно улучшить с истинно научной точки зрения.
Карно интересовался тем, как сделать двигатели более эффективными (в
Другими словами, как больше энергии можно получить из того же количества топлива).
Вместо того, чтобы возиться с настоящим паровым двигателем и пытаться его улучшить
Методом проб и ошибок (подобный подход применил Уатт к двигателю Ньюкомена) он сделал себя
теоретический движок — на бумаге — и вместо этого поиграл с математикой.

Фото: Паровые двигатели по своей природе неэффективны.
Работа Карно говорит нам, что для максимальной эффективности пар в двигателе
как это нужно перегреть (так что это выше его
обычная температура кипения 100 ° C), а затем ему дают максимально расшириться и остыть в цилиндрах, чтобы он отдавал как можно больше энергии поршням.

Цикл Карно

Тепловая машина Карно представляет собой довольно простую математическую модель
того, как в теории мог бы работать наилучший поршневой и цилиндровый двигатель,
бесконечно повторяя четыре шага, которые теперь называются Цикл Карно .
Мы не собираемся вдаваться здесь в детальную теорию или математику (если вам интересно, см.
Страница цикла НАСА Карно
и замечательную страницу «Тепловые двигатели: цикл Карно» Майкла Фаулера с великолепной флэш-анимацией).

Базовый двигатель Карно состоит из газа, заключенного в цилиндр с поршнем. Газ получает энергию от источника тепла,
расширяется, охлаждается и выталкивает поршень. Когда поршень возвращается в цилиндр, он сжимает и нагревает газ, так что газ завершает цикл при точно таком же давлении, объеме и температуре, с которых он начал. Двигатель Карно не теряет энергию на трение или окружающую среду. Это полностью обратимо — теоретически совершенная и идеально теоретическая модель работы двигателей. Но это многое говорит нам и о реальных двигателях.

Насколько эффективен двигатель?

Мы не должны рассчитывать когда-либо использовать на практике всю движущую силу горючих веществ. »

Николя Сади Карно, 1824

Следует отметить вывод, к которому пришел Карно: КПД двигателя
(реальная или теоретическая) зависит от максимальной и минимальной температур, в пределах которых он работает
.
С математической точки зрения КПД двигателя Карно, работающего в диапазоне от Tmax (его максимальная температура) до
Tmin (его минимальная температура):

(Tmax-Tmin) / Tmax

, где обе температуры измеряются в кельвинах (K).
Повышение температуры жидкости внутри цилиндра в начале цикла делает его более эффективным; снижение температуры на противоположном конце цикла также делает его более эффективным. Другими словами, действительно эффективная тепловая машина работает при максимально возможной разнице температур.
Другими словами, мы хотим, чтобы Tmax была как можно выше, а Tmin как можно ниже.
Вот почему такие вещи, как паровые турбины на электростанциях, должны использовать градирни для максимально возможного охлаждения своего пара: именно так они могут получать больше энергии из пара и производить больше электроэнергии. В реальном мире движущиеся транспортные средства, такие как автомобили и самолеты, очевидно, не могут иметь ничего похожего на градирни, и трудно достичь низких температур Tmin, поэтому вместо этого мы обычно сосредотачиваемся на повышении Tmax.
Настоящие двигатели — в автомобилях, грузовиках, реактивных самолетах и ​​космических ракетах — работают
при чрезвычайно высоких температурах (поэтому они должны быть построены из высокотемпературных
материалов, таких как сплавы и керамика).

Каков максимальный КПД двигателя?

Есть ли предел эффективности тепловой машины? Да! Tmin никогда не может быть меньше нуля (при абсолютном нуле), поэтому, согласно
Согласно нашему уравнению, приведенному выше, ни один двигатель не может быть более эффективным, чем Tmax/Tmax = 1, что соответствует 100-процентному КПД, и большинство
настоящие двигатели и близко к этому не подходят. Если бы у вас была паровая машина, работающая при температуре от 50°C до 100°C,
это было бы около 13 процентов эффективности. Чтобы получить 100-процентную эффективность, вам нужно охладить пар.
до абсолютного нуля (-273°C или 0K), что, очевидно, невозможно. Даже если бы вы могли охладить его до замерзания
(0 ° C или 273 K), вы все равно получите только 27-процентную эффективность.

Таблица: Тепловые двигатели более эффективны, когда они работают при больших перепадах температур. Предполагая постоянную минимальную температуру льда (0 ° C или 273 K), эффективность медленно растет по мере повышения максимальной температуры. Но обратите внимание, что мы получаем убывающую отдачу: с каждым повышением температуры на 50 ° C эффективность растет с каждым разом меньше. Другими словами, мы никогда не сможем достичь 100-процентной эффективности, просто повысив максимальную температуру.

Это также помогает нам понять, почему более поздние паровые двигатели (созданные такими инженерами, как Ричард Тревитик
и Оливер Эванс) использовали намного более высокие давления пара на больше, чем у таких людей, как Томас Ньюкомен.
Двигатели более высокого давления были меньше, легче и их было проще устанавливать на движущихся транспортных средствах, но они также были намного эффективнее:
при более высоких давлениях вода закипает при более высоких температурах, и это дает нам большую эффективность.
При удвоенном атмосферном давлении вода кипит при температуре около 120°C (393K), что дает КПД 30%.
с минимальной температурой 0°С; при четырехкратном атмосферном давлении температура кипения составляет 143°C (417K), а эффективность близка к 35%. Это большое улучшение, но все еще далеко от 100 процентов. Паровые турбины на электростанциях используют очень высокое давление (более чем в 200 раз превышающее атмосферное давление).
является типичным). При 200 атмосферах вода кипит при температуре около 365°C (~640K), что дает максимальный теоретический КПД около 56 процентов, если мы также сможем охладить воду до точки замерзания (и если нет других потерь тепла или неэффективности).
Даже в этих экстремальных и идеальных условиях мы все еще очень далеки от 100-процентной эффективности;
реальные турбины с большей вероятностью достигают 35–45 процентов.
Создание эффективных тепловых двигателей намного сложнее, чем кажется!

Узнайте больше

На этом сайте

  • Дизельные двигатели
  • Энергия
  • Бензиновые двигатели
  • Тепло
  • Реактивные двигатели
  • Паровые двигатели
  • Двигатели Стирлинга

На других сайтах

Один из лучших способов понять двигатели — посмотреть их анимацию в работе.
Вот два очень хороших сайта, которые исследуют самые разные движки:

  • Анимированные двигатели. Этот замечательный сайт охватывает практически все виды двигателей, которые вы только можете себе представить, с простыми для понимания анимациями и очень четкими письменными описаниями.
  • Посмотрите, как работают двигатели: коллекция очень красиво нарисованных анимаций реальных двигателей из Лондонского музея науки. (Архивировано через Wayback Machine.)

Книги

Введение
  • Шесть легких пьес Ричарда П. Фейнмана. Penguin, 1998. Глава 4 представляет собой очень оригинальное объяснение сохранения энергии, включая довольно простое объяснение того, почему ни один двигатель или машина не является более эффективным, чем полностью обратимый (идеальный).
Более сложный
  • Цикл Карно и тепловой двигатель. Основы и приложения Мишеля Фейдта (ред.). MDPI AG, 2020. Сборник коротких статей об эффективности тепловых двигателей и смежных темах.
  • Механический КПД тепловых двигателей, Джеймс Р. Сенфт. Издательство Кембриджского университета, 2007. Исследует и сравнивает термодинамические циклы в различных тепловых двигателях.
  • «Размышления о движущей силе тепла», Н. Сади Карно, Нью-Йорк, Wiley, 189.7. Прочитайте идеи Карно его собственными словами.
Детские книги
  • «Паровой двигатель — прорыв в энергетике» Ричарда Теймса. Heinemann, 1999. В этом 32-страничном введении (для детей 9–12 лет) рассматривается влияние паровых двигателей на общество.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2019.