Содержание

ПТЭЭП. Глава 2.5. Электродвигатели | Библиотека

  • 9 февраля 2007 г. в 02:14
  • 663011
  • Поделиться

  • Пожаловаться

Раздел 2. Электрооборудование и электроустановки общего назначения

Глава 2.5. Электродвигатели

2.5.1. Настоящая глава распространяется на электродвигатели переменного и постоянного тока.

2.5.2. Электродвигатели, пускорегулирующие устройства и защиты, а также все электрическое и вспомогательное оборудование к ним выбираются и устанавливаются в соответствии с требованиями правил устройства электроустановок.

2.5.3. На электродвигатели и приводимые ими механизмы должны быть нанесены стрелки, указывающие направление вращения.

На электродвигателях и пускорегулирующих устройствах, должны быть надписи с наименованием агрегата и (или) механизма, к которому они относятся.

2.5.4. Плавкие вставки предохранителей должны быть калиброванными и иметь клеймо с указанием номинального тока уставки, нанесенное на заводе-изготовителе или подразделении Потребителя, имеющего соответствующее оборудование и право на калибровку предохранителей. Применение некалиброванных вставок не допускается.

2.5.5. При кратковременном перерыве электропитания электродвигателей должен быть обеспечен при повторной подаче напряжения самозапуск электродвигателей ответственных механизмов для сохранения механизмов в работе по условиям технологического процесса и допустимости по условиям безопасности.

Перечень ответственных механизмов, участвующих в самозапуске, должен быть утвержден техническим руководителем Потребителя.

2.5.6. Продуваемые электродвигатели, устанавливаемые в пыльных помещениях и помещениях с повышенной влажностью, должны быть оборудованы устройствами подвода чистого охлаждающего воздуха, температура которого и его количество должны соответствовать требованиям заводских инструкций.

Плотность тракта охлаждения (корпуса электродвигателя, воздуховодов, заслонок) должна проверяться не реже 1 раза в год.

2.5.7. Электродвигатели с водяным охлаждением активной стали статора и обмотки ротора, а также со встроенными водяными воздухоохладителями должны быть оборудованы устройствами, сигнализирующими о появлении воды в корпусе. Эксплуатация оборудования и аппаратуры систем водяного охлаждения, качество воды должны соответствовать требованиям заводских инструкций.

2.5.8. На электродвигателях, имеющих принудительную смазку подшипников, должна быть установлена защита, действующая на сигнал и отключение электродвигателя при повышении температуры вкладышей подшипников или прекращении поступления смазки.

2.5.9. Напряжение на шинах распределительных устройств должно поддерживаться в пределах (100÷105)% от номинального значения. Для обеспечения долговечности электродвигателей использовать их при напряжении выше 110 и ниже 90% от номинального не рекомендуется.

При изменении частоты питающей сети в пределах ±2,5% от номинального значения допускается работа электродвигателей с номинальной мощностью.

Номинальная мощность электродвигателей должна сохраняться при одновременном отклонении напряжения до ±10% и частоты до ±2,5% номинальных значений при условии, что при работе с повышенным напряжением и пониженной частотой или с пониженным напряжением и повышенной частотой сумма абсолютных значений отклонений напряжения и частоты не превышает 10%.

2.5.10. На групповых сборках и щитках электродвигателей должны быть предусмотрены вольтметры или сигнальные лампы контроля наличия напряжения.

2.5.11. Электродвигатели механизмов, технологический процесс которых регулируется по току статора, а также механизмов, подверженных технологической перегрузке, должны быть оснащены амперметрами, устанавливаемыми на пусковом щите или панели. Амперметры должны быть также включены в цепи возбуждения синхронных электродвигателей. На шкале амперметра должна быть красная черта, соответствующая длительно допустимому или номинальному значению тока статора (ротора).

На электродвигателях постоянного тока, используемых для привода ответственных механизмов, независимо от их мощности должен контролироваться ток якоря.

2.5.12. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего — 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.

Повторные включения электродвигателей в случае отключения их основными защитами разрешаются после обследования и проведения контрольных измерений сопротивления изоляции.

Для электродвигателей ответственных механизмов, не имеющих резерва, одно повторное включение после действия основных защит разрешается по результатам внешнего осмотра двигателя.

Повторное включение электродвигателей в случае действия резервных защит до выяснения причины отключения не допускается.

2.5.13. Электродвигатели, длительно находящиеся в резерве, должны быть постоянно готовы к немедленному пуску; их необходимо периодически осматривать и опробовать вместе с механизмами по графику, утвержденному техническим руководителем Потребителя. При этом у электродвигателей наружной установки, не имеющих обогрева, должны проверяться сопротивление изоляции обмотки статора и коэффициент абсорбции.

2.5.14. Вертикальная и поперечная составляющие вибрации (среднеквадратичное значение виброскорости или удвоенная амплитуда колебаний), измеренные на подшипниках электродвигателей, сочлененных с механизмами, не должны превышать значений, указанных в заводских инструкциях.

При отсутствии таких указаний в технической документации вибрация подшипников электродвигателей, сочлененных с механизмами, должна быть не выше следующих значений:

Синхронная частота вращения, об/ мин

3000

1500

1000

750 и менее

Удвоенная амплитуда колебаний подшипников, мкм

30

60

80

95

Допускается работа агрегатов с повышенной вибрацией подшипников электродвигателей, сочлененных с механизмами, работающими в тяжелых условиях, у которых вращающиеся рабочие части быстро изнашиваются, а также электродвигателей, сроки эксплуатации которых превышают 15 лет, в течение времени, необходимого для устранения причины повышения вибрации. Нормы вибрации для этих условий не должны быть выше следующих значений:

Синхронная частота вращения, об/ мин

3000

1500

1000

750 и менее

Удвоенная амплитуда колебаний подшипников, мкм

30

100

130

160

Периодичность измерения вибрации подшипников электродвигателей ответственных механизмов должна быть установлена графиком, утвержденным техническим руководителем Потребителя.

2.5.15. Контроль за нагрузкой электродвигателей, щеточным аппаратом, вибрацией, температурой элементов и охлаждающих сред электродвигателя (обмотки и сердечники статора, воздуха, подшипников и т.д.), уход за подшипниками (поддержание требуемого уровня масла) и устройствами подвода охлаждающего воздуха, воды к воздухоохладителям и обмоткам, а также операции по пуску и останову электродвигателя должен осуществлять персонал подразделения, обслуживающего механизм.

2.5.16. Электродвигатели должны быть немедленно отключены от сети в следующих случаях:

  • при несчастных случаях с людьми;
  • появлении дыма или огня из корпуса электродвигателя, а также из его пускорегулирующей аппаратуры и устройства возбуждения;
  • поломке приводного механизма;
  • резком увеличение вибрации подшипников агрегата;
  • нагреве подшипников сверх допустимой температуры, установленной в инструкции завода-изготовителя.

В эксплуатационных инструкциях могут быть указаны и другие случаи, при которых электродвигатели должны быть немедленно отключены, а также определен порядок устранения аварийного состояния и пуска электродвигателей.

2.5.17. Профилактические испытания и ремонт электродвигателей, их съем и установку при ремонте должен проводить обученный персонал Потребителя или подрядной организации.

2.5.18. Периодичность капитальных и текущих ремонтов электродвигателей определяет технический руководитель Потребителя. Как правило, ремонты электродвигателей должны производиться одновременно с ремонтом приводных механизмов.

2.5.19. Профилактические испытания и измерения на электродвигателях должны проводиться в соответствии с нормами испытаний электрооборудования (Приложение 3)

Elec.ru в любимой социальной сети ВКонтакте

Актуальные новости, мероприятия, публикации и обзоры в удобном формате.

Подписаться

51.Что должно быть нанесено на электродвигатели и приводимые ими механизмы?

В данной инструкции изложены основные функции сайта, и как ими пользоваться

Здравствуйте,  

Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете  функции каждой кнопки.
Мы начнем сверху, продвигаясь  вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии  все кнопки располагаются, исключительно сверху вниз. 
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы,  попадете на главную страницу.
«Главная» —  отправит вас на первую страницу.
«Разделы сайта» —  выпадет список разделов, нажав на один из них,  попадете в раздел интересующий Вас.

На странице билетов добавляется кнопка «Билеты», нажимая — разворачивается список билетов, где выбираете интересующий вас билет.

«Полезные ссылки» — нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.

 

 

 

В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.

  • Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
  • Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
  • Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
  • Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.

Опускаемся ниже, в серой полосе расположились кнопки социальных сетей, если Вам понравился наш сайт нажимайте, чтобы другие могли так же подготовиться к экзаменам.
Следующая функция «Поиск по сайту» — для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.

На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.
На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.

С уважением команда Тестсмарт.

Что такое электродвигатель?

Все, что превращает электричество в движение, то есть электрическую энергию в механическую, называется электродвигателем . Электродвигатели повсюду! Почти каждое механическое движение, которое вы видите вокруг себя, может быть создано электродвигателем.

Учитывая почти неограниченное количество применений электродвигателей, нетрудно представить, что по всему миру работают сотни миллионов двигателей. Давайте разберемся, что они из себя представляют и как они работают.

Как работают электродвигатели?

Электродвигатели работают по очень простому принципу: когда электричество и магнетизм объединяются в одну силу, это называется электромагнитной силой . Таким образом, электрические двигатели работают на принципах электромагнетизма. Когда электрический ток вводится в магнитное поле, возникает сила. В электродвигателе используется замкнутых провода — те самые провода, по которым течет ток, — которые расположены под прямым углом к ​​магнитному полю в электродвигателе. Поскольку магнитное поле имеет двойную полярность, каждый конец провода перемещается в другом направлении. Это создает вращательное движение.

Крутящий момент , то есть способность вращающегося элемента преодолевать сопротивление вращению, регулируется добавлением нескольких контуров к якорю, а магнитное поле создается электромагнитом. Эта конструкция позволяет вращать ротор простым электромеханическим усилием. Есть очень мало деталей, которые на самом деле изнашиваются, и с учетом этих двух факторов электродвигатели могут продолжать работать в течение невероятно долгого времени, демонстрируя очень небольшой износ.

Действительно, одна из самых замечательных особенностей электродвигателей заключается в том, что в них очень мало деталей. По сравнению, например, с двигателем внутреннего сгорания, электродвигатель представляет собой простое устройство. На самом деле, все различные части электродвигателя можно легко вытащить и разложить на очень маленьком столе, конечно, в зависимости от размера двигателя.

Неподвижная часть электродвигателя называется статором . Статор будет снабжен постоянные магниты или обмотки, в зависимости от технологии двигателя. Обмотки будут знакомы любому, кто имеет опыт работы с другими электрическими компонентами. Обычно они представляют собой простые обмотки проволоки вокруг магнитного железного сердечника. Когда через эти обмотки проходит ток, они генерируют магнитное поле.

Ротор — это часть, которая фактически преобразует электрическую энергию в механическую. Они бывают различных конструкций. Одним из самых больших прорывов в конструкции электродвигателей был поиск способа непрерывной работы ротора, обеспечивающего непрерывный крутящий момент всему, что приводится в действие электродвигателем. Современные электродвигатели способны развивать невероятный крутящий момент. Коммутатор, тем временем, представляет собой устройство, которое используется для переключения входа электродвигателя.

Если мы вернемся в историю, электродвигатели, как и многие электрические устройства, начинались как простые эксперименты, а затем использовались в качестве демонстрационных устройств, пока не нашли практического применения.

Очень краткая история электрического двигателя

В 1821 году британский ученый Майкл Фарадей объяснил преобразование электрической энергии в механическую, поместив проводник с током в магнитное поле, что привело к вращению проводника из-за к крутящему моменту, создаваемому взаимным действием электрического тока и поля. Самой примитивной из машин была машина постоянного тока, разработанная другим британским ученым Уильямом Стердженом в 1832 году. Но его модель была слишком дорогой и не использовалась для каких-либо практических целей. Позже в 1886 году Первый электродвигатель , способный вращаться с постоянной скоростью при различной нагрузке, был изобретен ученым Фрэнком Джулианом Спрагом .

Эволюция электродвигателя

Сегодня на рынке представлено несколько различных типов электродвигателей. Прежде всего, их можно отличить по тому, используют ли они мощность переменного или постоянного тока в качестве средства активации двигателя. Электродвигатели переменного тока приводятся в действие переменным током, например синхронный двигатель, который всегда работает при синхронная скорость . Здесь ротор представляет собой электромагнит, который магнитно заперт с вращающимся магнитным полем статора и вращается вместе с ним. Скорость этих машин варьируется путем изменения частоты (f) и числа полюсов (P).

Асинхронные двигатели основаны на взаимодействии магнитного поля и циркулирующих токов, так что ротор начинает вращаться и продолжает вращаться. Асинхронные двигатели, также известные как асинхронные двигатели , работают со скоростью, немного меньшей синхронной скорости. Существуют и другие типы электродвигателей, например, серводвигатели со специальными характеристиками, такими как высокий крутящий момент в компактной конструкции или высокие динамические характеристики, которые были разработаны в соответствии с потребностями отрасли. Обычно в этих двигателях в ротор встроен постоянный редкоземельный магнит.

Как запустить электродвигатель?

Электродвигатели используют различные пусковые механизмы. В самых простых и малогабаритных типах пускатель может подключаться непосредственно к сети электропитания. Это также известно как Direct On Line (DOL) 9.0004 . Для более крупных двигателей требуются более сложные устройства, такие как устройства плавного пуска .

Устройство плавного пуска позволяет оператору запускать устройство с пониженным напряжением. Пользователь может определить пределы для пускового тока и других переменных. Пускатель звезда-треугольник — это тип устройства плавного пуска, который постепенно увеличивает напряжение до максимальной нагрузки по мере увеличения скорости двигателя. Плавный пуск имеет то преимущество, что позволяет контролировать механическую нагрузку и выходной крутящий момент нагрузки. Вместо внезапного запуска двигателя с полным крутящим моментом и скоростью, как в случае с пускателем DOL, двигатель постепенно раскручивается.

Приводы с регулируемой скоростью и электродвигатели

Приводы с регулируемой скоростью все чаще используются с трехфазными асинхронными двигателями. Эти контроллеры используются в электродвигателях всех размеров. Наиболее значительным преимуществом является то, что они обеспечивают высочайший уровень контроля и функциональности. В промышленных условиях предлагаемое ими управление крутящим моментом, натяжением, ускорением и потоком может способствовать повышению эффективности и управляемости процессов. Приводы также объединяют множество функций, таких как автоматизация и ПЛК, средства связи, полевые шины, контроль безопасности и т. д.

Электродвигатели можно найти в огромном количестве приложений. Все, начиная от насосов, компрессоров, вентиляторов, башенных кранов и погрузочно-разгрузочных работ, текстиля, полиграфии, упаковки, деревообрабатывающего оборудования и испытательных стендов, использует их возможности. Они являются одними из наиболее распространенных электрических компонентов, используемых сегодня, поэтому справедливо сказать, что электродвигатели сильно повлияли на нашу повседневную жизнь.

Мы будем рады присылать вам ежемесячный информационный бюллетень, наполненный полезными экспертными знаниями и случайными специальными предложениями. Мы не будем отправлять вам больше одного электронного письма в месяц и не будем использовать ваши данные ни для чего другого.

Уведомление о конфиденциальности

Что такое электродвигатель?

Электродвигатели представляют собой устройства, преобразующие электрическую энергию в механическую, обычно в форме вращательного движения. Проще говоря, это устройства, которые используют электроэнергию для выработки движущей силы.

Электродвигатели не только обеспечивают простое и эффективное средство создания высокой выходной мощности привода, но и их легко уменьшить, что позволяет встраивать их в другие машины и оборудование. В результате они находят широкое применение как в промышленности, так и в повседневной жизни.

Принцип работы

Помнишь, тебя в школе учили правилу левой руки Флеминга? Электродвигатели являются применением этого правила, при этом сила, создаваемая электрическим током, протекающим через катушку в присутствии магнитного поля, заставляет вал двигателя вращаться.
На приведенной ниже диаграмме правило левой руки Флеминга говорит нам, что направленная вверх сила генерируется, когда ток течет перпендикулярно магнитному полю от магнита * .

  • *

    Магнитное поле: Область, в которой присутствует магнитная сила (направленная от северного (N) к южному (S) полюсу магнита).

Как достигается вращение в электродвигателе

В случае щеточного электродвигателя постоянного тока *1 , например, эту силу можно использовать для поддержания непрерывного вращения путем изменения направления тока на каждом полуобороте катушки (что достигается с помощью щеток и коммутатора *2 )

  • *1

    Двигатель постоянного тока: Двигатель, работающий от постоянного тока (DC)

  • *2

    Щетки и коллектор: При совместном использовании они меняют направление тока каждый раз, когда вал двигателя делает пол-оборота.

История электродвигателей

Британский ученый Майкл Фарадей считается особенно влиятельным среди многих ученых 19 века, сыгравших определенную роль в изобретении и разработке электродвигателей. В 1821 году Фарадей провел успешный эксперимент, в котором вращение проволоки осуществлялось с помощью магнита вместе с магнитным полем, создаваемым электрическим током. В 1831 году он изобрел закон магнитной индукции, заложив основу для значительного прогресса в области электродвигателей и генераторов.

Со временем было изобретено множество других типов электродвигателей, а также конструкции, которые можно считать архетипическими двигателями постоянного тока.

Впоследствии, в 1872 году, практический электродвигатель был не столько изобретен, сколько обнаружен, когда один из генераторов, выставленных на Всемирной выставке в Вене, начал вращаться сам по себе после того, как был случайно подключен к другому генератору. Это привело людей к пониманию того, что то, как работают генераторы, можно использовать и в двигателях. Последовавший за этим быстрый рост практического использования генераторов был таким, что они стали основой многих отраслей промышленности в 20 веке.

Двигатели и генераторы

В то время как электродвигатели преобразуют электрическую энергию во вращение и другие формы механической энергии, генераторы выполняют обратную функцию преобразования механической энергии в электрическую.
Несмотря на эти противоположные функции, двигатели и генераторы очень похожи по конструкции и принципу действия. Фактически, простой эксперимент, в котором два модельных двигателя соединяются вместе, — это все, что нужно, чтобы продемонстрировать, что электрический двигатель может также работать как генератор.
Естественно, учитывая разные способы их использования, два типа машин всегда разрабатывались отдельно.

Типы электродвигателей

Электродвигатели бывают самых разных форм в зависимости от типа используемого тока, конструкции их катушек (обмоток) и того, как они генерируют магнитное поле. Соответственно, их можно классифицировать по различным признакам.
Ниже описаны три типа электродвигателей, обычно используемых как в быту, так и в промышленности.

Двигатели постоянного тока

Это двигатели, приводимые в действие источником постоянного тока. Они подразделяются на щеточные и бесщеточные (BLDC) двигатели в зависимости от того, используют ли они щетки *1 .
В то время как коллекторным двигателям постоянного тока для работы требуется только подключение к источнику питания постоянного тока, бесщеточным двигателям постоянного тока требуется датчик для определения ориентации магнитных полюсов ротора *2 и схема привода для подачи соответствующего тока.

  • *1

    Щетка: Деталь, используемая вместе с коллектором.

  • *2

    Ротор: часть двигателя, которая вращается. Вал двигателя является частью ротора.

Двигатели переменного тока

Это двигатели, приводимые в действие источником переменного тока. Они сгруппированы в зависимости от того, является ли источник питания однофазным *1 или трехфазным *2 .
Однофазные двигатели далее сгруппированы в конденсаторные двигатели, в которых используется конденсатор *3 для создания крутящего момента, и двигатели с расщепленными полюсами, которые имеют дополнительную катушку (обмотку), называемую экранирующей катушкой *4 .

  • *1

    Однофазный: Обычный источник питания переменного тока, обычно доступный в домах.

  • *2

    Трехфазный: тип источника питания переменного тока, используемый в основном в промышленности.

  • *3

    Конденсатор: электронный компонент, хранящий электрическую энергию.

  • *4

    Затеняющая катушка: катушка с замкнутой цепью, намотанная вокруг части сердечника статора.

Шаговые двигатели

Это двигатели, которые вращаются на фиксированный шаг (угол) каждый раз, когда вводится импульс *1 .
Шаговые двигатели можно сгруппировать по структуре их ротора. Двигатели с постоянными магнитами (PM) *2 имеют магнит в роторе *3 , двигатели с переменным сопротивлением (VR) *4 имеют железный сердечник, а гибридные двигатели имеют и то, и другое.

  • *1

    Импульс: Короткий всплеск электричества, производимый включением и выключением источника питания.

  • *2

    Ротор: часть двигателя, которая вращается. Вал двигателя является частью ротора.

  • *3

    Двигатель с постоянными магнитами: Двигатель с постоянным магнитом

    .

  • *4

    Двигатель

    VR: двигатель с переменным магнитным сопротивлением, в котором сердечники расположены подобно зубьям шестерни, при этом такое расположение определяет угол шага.

Обзор типов электродвигателей

В таблице ниже перечислены основные характеристики трех различных типов двигателей.

В дополнение к перечисленным выше существует множество других типов электродвигателей.

Тип Характеристики
Линейный двигатель Двигатель, скользящий в линейном направлении
Ультразвуковой двигатель Двигатель, приводимый в движение ультразвуковыми колебаниями
Двигатель без сердечника Коллекторный двигатель постоянного тока с ротором без железного сердечника или бесщеточный двигатель со статором без железного сердечника
Универсальный двигатель Двигатель с фазным ротором и фазным статором, работающий как на переменном, так и на постоянном токе
Двигатель с гистерезисом Двигатель переменного тока, в роторе которого используется материал, обладающий гистерезисом и вращающийся за счет гистерезисного крутящего момента
Двигатель SR Шаговый двигатель VR, который также имеет функцию определения положения ротора, что позволяет избежать потери синхронизации

Применение двигателей

Хотя электродвигатели используются по-разному, ниже перечислены общие области применения бесщеточных двигателей постоянного тока и шаговых двигателей, поставляемых ASPINA.

Области применения бесщеточных двигателей постоянного тока

Благодаря небольшим размерам, высокой мощности, низкому уровню шума и вибрации, а также длительному сроку службы бесщеточные двигатели постоянного тока находят широкое применение в таких приложениях, как системы вентиляции (очистители воздуха и другие виды кондиционер), бытовая техника, холодильники, водонагреватели, торговые автоматы, копировальные аппараты, принтеры, проекторы, оргтехника, контрольно-измерительные приборы, транспортные средства и медицинские приборы.

  • Кондиционеры
  • Финансовые терминалы (банкоматы), разменные автоматы, автоматы по обмену валюты, автоматы по продаже билетов
  • Бытовая техника
  • Чистые помещения
  • Водонагреватели и горелки
  • Оптические изделия
  • Торговые автоматы
  • Принтеры
  • Морозильные и холодильные витрины
  • Копировальные аппараты
  • Медицинское оборудование
  • Офисное оборудование
  • Системы лабораторного анализа

Области применения шаговых двигателей

Превосходная точность остановки, высокий крутящий момент на средних и низких скоростях и превосходная чувствительность шаговых двигателей означают, что они могут использоваться в самых разных приводных устройствах, требующих точного управления.

  • Производственное оборудование
  • Приводы оптических дисков (приводы Blu-ray, DVD и т. д.)
  • Медицинское оборудование
  • Лазерные принтеры
  • Лабораторные аналитические приборы
  • цифровых фотоаппаратов
  • Банкоматы
  • Жалюзи кондиционера
  • Торговые автоматы
  • Развлекательные автоматы
  • Автоматы по продаже билетов
  • Копировальные аппараты
  • Роботы

Решение проблем с электродвигателями

ASPINA поставляет не только автономные шаговые двигатели, но и системные продукты, включающие системы привода и управления, а также механические конструкции. Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, которые требуются для различных отраслей промышленности, областей применения и продукции заказчика, а также для ваших конкретных производственных схем.