ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Процесс сгорания в карбюраторном двигателе. Температура сгорания бензина в двс


Сгорание - бензин - Большая Энциклопедия Нефти и Газа, статья, страница 1

Сгорание - бензин

Cтраница 1

Сгорание бензина с детонацией сопровождается появлением резких металлических стуков, черного дыма на выхлопе, увеличением расхода бензина, снижением мощности двигателя и другими отрицательными явлениями.  [1]

Сгорание бензина в двигателе зависит и от коэффициента избытка воздуха. При значениях а 0 9 - j - 1 1 скорость протекания пред-пламенных процессов окисления в рабочей смеси наибольшая. Поэтому при этих значениях а создаются наиболее благоприятные условия для возникновения детонации.  [2]

После сгорания бензина общая масса таких загрязнителей значительно увеличивалась вместе с общим перераспределением их количеств. Процентное содержание бензола в конденсате автомобильных выхлопных газов примерно в 1 7 раза превышало его содержание в бензине; содержание толуола было в 3 раза больше, а ксилола - в 30 раз больше. Известно, что при этом образуются кислородные соединения, а также резко возрастает число ионов - характерных для более тяжелых ненасыщенных соединений олефино-вого или циклопарафинового рядов и ацетиленового или диенового рядов, особенно последнего. Вообще говоря, изменения, происходившие в камере Haagen-Smit, напоминали изменения, необходимые для того, чтобы придать составу типичных проб выхлопного газа автомобилей сходство с характерными пробами смога в Лос-Анжелосе.  [3]

Теплота сгорания бензина зависит от его химического состава. Поэтому углеводороды, богатые водородом ( например, парафиновые), имеют большую массовую теплоту сгорания.  [4]

Продукты сгорания бензина расширяются в ДВС по политропе п1 27 от 30 до 3 ат. Начальная температура газов 2100 С; массовый состав продуктов сгорания 1 кг бензина следующий: СО23 135 кг, Н2 1 305 кг, О20 34 кг, N2 12 61 кг. Определить работу расширения этих газов, если одновременно подается в цилиндр 2 г бензина.  [5]

При сгорании бензина с ТЭС образуется нагар, содержащий окись свинца.  [7]

При сгорании бензинов в поршневых двигателях внутреннего сгорания почти все образующиеся продукты выносятся с отработанными газами. Лишь сравнительно небольшая часть продуктов неполного сгорания топлива и масла, небольшое количество неорганических соединений, образовавшихся из элементов, вносимых с топливом, воздухом и маслом, осаждаются в виде нагара.  [8]

При сгорании бензина с тетраэтилсвинцом, по-видимому, образуется окись свинца, которая плавится только при температуре 900 С и может испариться при очень высокой температуре, превышающей среднюю температуру в цилиндре двигателя. Для предотвращения отложения окиси свинца в двигателе в этиловую жидкость вводят специальные вещества - выноси-тели. Выносителями служат галоидопроизводные углеводородов. Обычно это соединения, содержащие бром и хлор, которые тоже сгорают и связывают свинец в новых бромистых и хлористых соединениях.  [9]

При сгорании бензина с ТЭС образуется нагар, содержащий окись свинца.  [11]

При сгорании бензина, содержащего чистый ТЭС, в моторе отлагается налет свинцовых соединений. Состав этиловой жидкости марки Р-9 ( по весу): тетраэтилсвинца 54 0 %, бромэтана 33 0 %, монохлорнафталина 6 8 0 5 %, наполнителя - авиационного - бензина - до 100 %; красителя темно-красного 1 г на 1 кг смеси.  [12]

При сгорании бензина, содержащего ТЭС, в двигателе образуется окись свища, имеющая низкую летучесть; так как температура плавления окиси свинца довольно высока ( 888), часть ее ( около 10 %, считая на свинец, введенный с бензином [28]) отлагается в виде твердого осадка на стенках камеры сгорания, свечах и клапанах, что приводит к быстрому выходу двигателя из строя.  [13]

При сгорании бензина в двигателе автомобиля также образуются меньшие молекулы и происходит распределение выделяемой энергии в большем объеме.  [14]

Раскаленные от сгорания бензина газы обтекают теплообменник 8 ( внутри со стороны камеры сгорания и далее, через окна 5 снаружи, проходя по камере отработавших газов 6) и нагревают воздух в канале теплообменника. Далее горячие отработавшие газы по выпускной трубе 7 подаются под поддон картера двигателя и подогревают двигатель снаружи, а горячий воздух из теплообменника подается через сапун в картер двигателя и подогревает двигатель изнутри. Через 1 5 - 2 мин после начала подогрева свеча накаливания выключается и горение в подогревателе продолжается без ее участия. Спустя 7 - 13 мин с момента получения импульса на пуск двигателя, масло в картере прогревается до температуры 30 С ( при температуре окружающей среды до - 25 С) и начинается подача импульсов пуска агрегата, после осуществления которого подогреватель выключается.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Воспламенение и сгорание топлива в двигателе

    Одной из важных характеристик топлива, позволяющих судить о его пусковых свойствах и о стабильности процесса горения, является температура самовоспламенения паров топлива, т. е. такая температура, при которой происходит самовоспламенение горючей смеси без контакта с открытым пламенем. Процесс самовоспламенения горючей смеси встречается во всех двигателях внутреннего сгорания. Дизельные двигатели работают на основе этого процесса. В двигателях с воспламенением от искры самовоспламенение горючей смеси является крайне нежелательным и даже вредным явлением, так как нарушает нормальный процесс сгорания. В турбореактивных двигателях самовоспламенение горючей смеси — явление положительное, способствующее более устойчивому процессу сгорания. [c.76]     В двигателях, работающих на жидком топливе, стадии воспламенения и сгорания топлива предшествует стадия распыления и испарения. В распыленном (капельном) состоянии находится часть моторного масла в картере работающего поршневого двигателя. Продолжительность нахождения топлива или масла в капельном состоянии невелика, исчисляется долями секунды. Поэтому долгое время считалось, что какого-либо изменения качества топлива или масла за время его пребывания в капельном состоянии не происходит. Однако целый ряд экспериментальных данных (например, излом температурной зависимости периода задержки самовоспламенения распыленных жидких топлив) косвенно свидетельствовал о весьма значительном окислении топлив (масел) за время их нахождения в капельном состоянии. В связи с этим потребовалось провести специальные исследования окисляемости углеводородов в капельном состоянии [c.37]

    В связи с этим воздух, поступающий в камеру сгорания газотурбинного двигателя, обычно делят на три потока. Первый поток поступает в камеру сгорания, имеющую завихритель (рис. 3.27), через кольцевой зазор между корпусом форсунки и внутренним кольцом завихрителя, чем обеспечивается охлаждение форсунки. В этой зоне топливо распыляется, частично испаряется и воспламеняется а составляет 0,2—0,5 [166]. Второй поток воздуха вводят в зону горения через завихритель и через первые ряды отверстий диаметром 12—30 мм в жаровой трубе. Этот воздух обеспечивает сгорание смеси при температуре во фронте пламени, равной 2300—2500 К, и последующее снижение температуры газов до 2000 К- Коэффициент избытка воздуха при этом возрастает до 1,2—1,7. Роль завихрителя заключается в закручивании потока воздуха и создании воздушного вихря, вращающегося вокруг оси жаровой трубы. При этом в центральной части трубы создается зона пониженного давления, куда устремляется поток из средней части камеры сгорания. Продукты сгорания, движущиеся противотоком к основному потоку распыленного топлива, ускоряют испарение и обеспечивают нагревание топливо-воздушной смеси до температуры воспламенения. Турбулизация газо-воздушного. потока приводит к увеличению скорости распространения пламени, а уменьшение осевой скорости воздуха вблизи границы зоны обратных токов удерживает факел в определенной области. Третий поток воздуха поступает через задние ряды боковых отверстий в зону смешения. Этот воздух снижает температуру газов до значения, допустимого по условию прочности лопаток турбины. [c.164]

    Энергия в дизельных двигателях (двигателях с воспламенением от сжатия) вырабатывается за счет использования тепла, получаемого при сгорании топлива, впрыскиваемого в сжатый воздух. Температура воздуха, сжатого до одной десятой первоначального объема, повышается с 15 до 440° С, а при сжатии до одной пятнадцатой — до 565° С при столь высоких температурах топливо самовоспламеняется. В идеальном цикле Дизеля — цикле постоянного давления — топливо впрыскивается и сгорает при определенном угле поворота коленчатого вала, давление в момент совершения поршнем рабочего хода не изменяется. На практике такой идеальный случай никогда не имеет места, и при горении топлива давление повышается. [c.435]

    Если период задержки воспламенения велик, то топливо накапливается в камере сгорания и дает взрывное сгорание, сопровождающееся жесткой работой двигателя и стуками. Детонационные явления и нормальное сгорание подробно описаны в литературе [323, 324]. При жесткой работе дизеля происходит снижение к. п. д., вместе с выхлопными газами выделяется дым, наблюдается разжижение картерного масла и образование углеродистых отложений в пазах поршневых колец. Любые факторы, ускоряющие процессы окисления (предварительный подогрев, улучшение распределения топлива, повышение степени сжатия), способствуют снижению детонации и уменьшению периода задержки воспламенения в дизельных двигателях. Когда двигатель эксплуатируется при повышенных нагрузках, его температура повышается и в результате этого также уменьшается период задержки воспламенения и ослабляется детонация [325, 326]. Если же, напротив, нагрузки двигателя невысоки, то имеет место неполное сгорание топлива и отложение лакообразного нагара в двигателе [327 ]. С увеличением периода задержки воспламенения детонация усиливается [328]. [c.438]

    Процессы, происходящие в бензиновом двигателе и дизеле, резко отличаются друг от друга, поэтому отличаются друг от друга и типы топлива, применяемого в этих двигателях. Для двигателей внутреннего сгорания (бензиновых) требуются низкокипящие, равномерно сгорающие углеводороды с относительно высокой температурой самовоспламенения [329, 330]. Топливо для дизельного двигателя, напротив, должно иметь низкую температуру воспламенения, и поэтому низкокипящие соединения для этой цели непригодны. К моменту воспламенения в дизельных двигателях находится не весь объем топлпва, как в бензиновых, а только часть топливо добавляется в течение всего времени поворота кривошипа, начиная с момента, когда кривошип не доходит на угол 15—20° до верхней мертвой точки, причем горение топлива происходит в полном объеме. [c.438]

    Склонность бензина к калильному зажиганию от нагретой металлической поверхности определяется на двигателе, в камеры сгорания которого вставляется спираль, нагреваемая электрическим током. В качестве критериев оценки принимают температуру спирали, при которой появляется калильное зажигание на рабочем режиме или безразмерный коэффициент — частное от деления температуры калильного воспламенения испытуемого топлива на температуру калильного воспламенения эталонного топлива. [c.41]

    По развернутой индикаторной диаграмме рабочего процесса, представляющей собой графическую зависимость давлений в цилиндре двигателя от угла поворота коленчатого вала (рис. 41) рассчитывают следующие показатели период задержки воспламенения топлива т,-, максимальное давление цикла давление в конце сжатия Р , максимальную скорость нарастания давления газов в цилиндре ИЦа + Ь) = АР/Аф, степень повыщения давления при сгорании топлива в цилиндре Рг/Рс = [c.94]

    Воспламенение подготовленной к сгоранию топливо-воздушной смеси в камере сгорания ГТД перед началом его работы происходит от электрической искры или от специальных воспламенителей. При работе двигателя непрерывно поступающая смесь воспламеняется от образовавшегося факела. [c.124]

    В настоящее время выдано несколько патентов на двигатели с непосредственным впрыском, воспламенением от искры и послойным сгоранием топлива в завихренном воздухе, которые могут использовать как бензин, так и более тяжелые виды топлив [1—51. [c.33]

    Полнота сгорания в двигателях с воспламенением от сжатия достигается как за счет тонкого распыливания топлива, так и за счел большого избытка воздуха. Если в двигателе с искровым зажиганием максимально возможный предел обеднения смеси составляет а =1,2—1,3, то в двигателях с воспламенением от сжатия коэффициент избытка воздуха для номинального режима может достигать а= 1,5—1,8 и выше. Для этих двигателей [c.23]

    ВОСПЛАМЕНЕНИЕ И СГОРАНИЕ ТОПЛИВА В ДВИГАТЕЛЕ [c.36]

    Процессы сгорания в двигателях с воспламенением от сжатия более сложны и менее исследованы, чем процессы сгорания в двигателях с зажиганием искры. Вопрос этот значительно осложняется тем, что воспламенение дизельного топлива начинается не в одной, заранее известной определенной точке, а там, где температура и содержание кислорода наиболее благоприятны для протекания физико-химических процессов подготовки топлива перед его самовоспламенением. [c.36]

    Воспламенение и сгорание топлива в двигателе зависят от ряда факторов, важнейшими из которых являются химическая природа и физические свойства топлива, конструктивные особенности двигателя и условия его эксплуатации. [c.38]

    Воспламенение и сгорание в двигателе зависят также от тонкости и однородности распыливания топлива. Известно, что при уменьшении размера капель отношение поверхности к объему жидкости увеличивается, так как поверхность шара пропорциональна квадрату, а объем пропорционален кубу диаметра. Повышение давления впрыска, обеспечивающее более мелкое и однородное распыливание топлива, увеличивает удельную поверхность (см /см ) испарения и контакта топлива с воздухом и улучшает условия его воспламенения и сгорания. [c.42]

    Влияние материала поршня на процесс воспламенения и сгорания топлива зависит от теплопроводности металла, из которого сделан поршень. Чем выше теплопроводность металла, тем ниже температура поршня и воздуха в конце сжатия и тем больше период задержки воспламенения топлива. В двигателе с поршнями из алюминиевого сплава период задержки воспламенения, скорость нарастания давления (жесткость) и максимальное давление вспышки будут выше, чем в двигателе с чугунными поршнями. [c.43]

    Скорость воспламенения и сгорания топлива в двигателе зависит также от условий на всасывании, которые определяются температурой и давлением окружающего воздуха, величиной наддува и содержанием кислорода в воздухе. [c.43]

    Совершенно естественно, что дросселирование воздуха на всасывании или разбавление его остаточными газами будет снижать давление в конце сжатия, понижать концентрацию кислорода и замедлять процессы воспламенения и сгорания топлива. При этом мощность, плавность работы и экономичность двигателя будут уменьшаться. [c.44]

    При увеличении числа оборотов повышается расход топлива н растет мощность двигателя. В этих условиях общее тепловыделение в цилиндрах двигателя увеличивается и температура деталей повышается. Все это благоприятно влияет на процессы предварительного окисления топлива и сокращает период задержки воспламенения и период сгорания. Благоприятно также сказывается увеличение вихревых движений и давления впрыска, вызываемых повышенным числом оборотов двигателя. Теоретически закономерная и экспериментально доказанная повышенная скорость сгорания топлива при увеличении числа оборотов двигателя явилась основной предпосылкой к созданию бескомпрессорных быстроходных двигателей с воспламенением от сжатия. [c.44]

    Время, необходимое для образования очагов пламени и достижения определенной скорости сгорания топлива, характеризуемой резким нарастанием давления газов в цилиндре двигателя, называется периодом задержки воспламенения. Период этот для разных топлив и разных двигателей различен и может колебаться от сотых до тысячных долей секунды. [c.67]

    Выше уже отмечалось, что при известных условиях в двигателях с воспламенением от сжатия наблюдается жесткая работа, внешне схожая с детонацией в карбюраторном двигателе. Стуки в тех и других двигателях имеют между собой то общее, что они возникают как результат высокой скорости сгорания топлива и резкого нарастания давления в цилиндре. [c.71]

    Двигатели, работающие на газе высокого давления, с факельным зажиганием, действуют по принципу газодизеля, когда заряд вспомогательного топлива (обычно дистиллятного, около 5% общего количества топлива) впрыскивается через топливный клапан непосредственно перед ВМТ и инициирует процесс сгорания. Затем в цилиндр под высоким давлением (например, 250 бар) подается остальной заряд (обычно природный газ). Газ воспламеняется по мере поступления в цилиндр, что обеспечивает полноту сгорания без детонации и преждевременного воспламенения. В этих двигателях около 5-7% эффективной мощности затрачивается на сжатие газового заряда. При прекращении подачи газа они могут переводиться на работу на дистиллятном топливе. [c.129]

    Обш ность стуков (жесткой работы) в двигателях Дизеля и детонации в бензиновых двигателях заключается в том, что они возникают в результате очень большой скорости нарастания давления. Основное различие между стуками в дизелях и детонацией в бензиновых двигателях заключается в том, что детонация возникает при сгорании последней порции топливного заряда Б то время, как стуки в дизелях вызываются запаздыванием воспламенения и взрывным сгоранием первой порции топливного заряда. Опыт показывает, что, когда период запаздывания воспламенения у топлива мал, топливо воспламеняется сразу же при входе в камеру сгорания. В этом случае давление в цилиндре нарастает плавно, и двигатель работает мягко , без стуков. Когда период воспламенения получается большим, то в камере сгорания накапливается топливо и дает взрывное сгорание. В этом случае давление нарастает скачкообразно и двигатель работает жестко , со стуками. [c.645]

    В. ИЗУЧЕНИЕ НА ДВИГАТЕЛЕ ИТ9-3 СГОРАНИЯ ТОПЛИВА ПРИ ВОСПЛАМЕНЕНИИ ОТ СЖАТИЯ [c.650]

    Следует отметить метод для оценки качества сгорания топлива, осуществляемый на однокамерной установке [13, с. 60—66], [19]. Установка представляет собой реальную камеру сгорания двигателя и снабжена аппаратурой для подачи, замера и зажигания- топлива и подогрева воздуха. На такой установке оценивают пусковые свойства топлива, полноту его сгорания, склонность к образованию нагаров и пределы устойчивого горения. Эти характеристики определяют, сравнивая их с аналогичными характеристиками эталона — топлива Т-1 из бакинских нефтей. Испытание проводят при следующем режиме расход воздуха 0,25 м /с, температура воздуха 60°С, давление воздуха 0,1 МПа, температура топлива 15—20 °С. Пусковые свойства топлива оценивают по коэффициенту избытка воздуха, при котором наступает воспламенение топливо-воздушной смеси пределы устойчивого горения определяют по коэффициенту избытка воздуха между моментами срыва пламени (смесь обеднена) и появления пламени на выходе из камеры (при обогащении смеси) полноту сгорания топлива определяют по коэффициенту выделения тепла, склонность к образованию нагара —по привесу жаровой трубы камеры сгорания до и после испытания. [c.64]

    Высокие антидетонационные свойства метанола в сочетании с возможностью его производства из ненефтяного сырья позволяют рассматривать этот продукт в качестве перспективного высокооктанового компонента автомобильных бензинов, получивших название бензино-метанольных смесей. Оптимальная добавка метанола—от 5 до 20% при таких концентрациях бензино-спиртовая смесь характеризуется удовлетворительными эксплуатационными свойствами и дает заметный экономический эффект. Добавка метанола к бензину снижает теплоту сгорания топлива и стехиометрический коэффициент при незначительных изменениях теплоты сгорания топливовоздушной смеси. Вследствие изменения стехиометрических характеристик использование 15%-й добавки метанола (смесь М15) в стандартной системе питания ведет к обеднению топливовоздушной смеси примерно на 7%. В то же время при введении метанола повышается октановое число топлива (в среднем па 3—8 единиц для 15%-й добавки), что позволяет компенсировать ухудшение энергетических показателей за счет повышения степени сжатия. Одновременно метанол улучшает процесс сгорания топлива благодаря образованию радикалов, активизирующих цепные реакции окисления. Исследования горения бензино-метанольных смесей в одноцилиндровых двигателях со стандартной и послойной системами смесеобразования показали, что добавка метанола сокращает период задержки воспламенения и продолжительность сгорания топлива. При этом теплоотвод из зоны реакции снижается, а предел обеднения смеси расширяется и становится максимальным для чистого метанола. [c.155]

    Детонацией называется особый ненормальный характер сгорания топлива в двигателе, при этом только часть рабочей смеси после воспламенения от искры сгорает нормально с обычной скоростью. Последняя порция топливного заряда (до 15—20%), находящаяся перед фронтом пламени, мгновенно самовоспламеняется, в результате скорость распространения пламени возрастает до 1500—2500 м/с, а давление нарастает не плавно, а резкими скачками. Этот резкий перепад давления создает ударную детонационную волну. Удар такой волны о стенки цилиндра и ее многократное отражение от них приводят к вибрации и вызывают характерный металлический стук, являющийся главным внешним признаком детонационного сгорания. Другие внешние признаки детонации появление в выхлопных газах клубов черного дыма, а также резкое повышение температуры стенок цилиндра. Детонация — явление очень вредное. На детонационных режимах мощность двигателя падает, удельный расход топлива возрастает, работа двигателя становится жесткой и неровной. Кроме того, детонация вызывает прогорание и коробление поршней и выхлопных клапанов, перегрев и выход из строя электрических свечей и другие неполадки. Износ двигателя ускоряется, а межремонтные сроки укорачиваются. При длительной работе на режиме интенсивной детонации возможны и аварийные последствия. Особенно опасна детонация в авиационных двигателях. [c.84]

    В ДВС с воспламенением от искры процесс смесеобразования происходит, как правило, в специальном приборе — карбюраторе, который служит для дозирования, распыливания, частичного испарения и смещения топлива с воздухом. Однако за последнее десятилетие все большее распространение получают так называемые двигатели с непосредственным впрыском, в которых топливо подается в цилиндры двигателя раздельно от воздуха в тактах впуска или сжатия через форсунки, установленные у впускных клапанов или непосредственно в каждом цилиндре в камере сгорания. В двигателях с непосредственным впрыском обеспечиваются более равномерное распределение топлива по каждому цилиндру и более точное соотношение топливо/воздух, а следовательно, возрастает полнота сгорания топлива, повышается экономичность двигателя, снижается токсичность отработавших газов. [c.11]

    Действительно, для топочных устройств, рассчитанных на длительное непрерывное горение факела в пространстве, окруженном раскаленными стенками, первоначальное зажигание и его надежность играют второстепенное значение. Однако роль и значение первоначального воспламенения неизмеримо возрастают для топок, режим работы которых требует частых остановок, а процесс горения протекает в полностью экранированном объеме, температура стенок которого и их аккумулирующая способность не могут обеспечить самовоспламенение топлива, попадающего на них. К таким топочным устройствам относятся камеры сгорания газотурбинных двигателей, особенно транспортного типа, топки автоматизированных отопительных установок сравнительно небольшой мощности, технологические печи и др. В последнее время даже на мощных топках стали устанавливать небольшие постоян-но-действующие горелки, форсунки или специальные электриче- [c.74]

    Главные эксплуатац. св-ва Д. т.-быстрое воспламенение и плавное сгорание Эти св-ва характеризуются т наз метановым числом (Ц ч.). Наиб легко воспламеняются парафиновые углеводороды нормального строения и олефины (Ц. ч, соотв 56-103 и 40-90), наиб трудно - ароматич углеводороды (5-30) Оптимальную работу двигателей обеспечивает топливо с Ц. ч 45-60 При Ц ч менее 45 резко увеличиваются период задержки воспламенения (время между началом вспрыска и воспламенением топлива) и скорость нарастания давления в камере сгорания двигателя, усиливается износ узлов трения При Ц. ч более 60 снижается полнота сгорания топлива, возрастают дымность выпускных газов и нагарообразование в камере сгорания, повышается расход топлива. С увеличением мол массы углеводородов в гомологич. ряду Ц. ч. возрастает. [c.55]

    Сгорание топлива в двигателях, теплосиловых установках, генераторах, топках котлов и др. происходит за счет воспламенения и самовоспламенения. Температурой воспламенения называют [c.13]

    Детонацией называют особый режим сгорания топлива в двигателе. Она появляется в тех случаях, когда после воспламенения топливно-воздушной смеси сгорает только часть топлива. Остаток (до 20 %) топливного заряда мгновенно самовоспламеняется при этом скорость распространения пламени достигает 1500-2500 м/с вместо 20-30 м/с, а давление нарастает скачками. Резкий перепад давления приводит к образованию детонационной волны, которая ударяется о стенки цилиндра двигателя. [c.102]

    В двигателях этого типа воспламенение смеси топлива и воздуха осуществляется от внешнего источника — электрической искр1>1 (свечи), а процесс смесеобразования происходит вне цилин — дра в специальном устройстве — карбюраторе (либо во впускном трубопроводе или камере сгорания, куда бензин впрыскивается с помосцью форсунки). Непосредствегни ш впрыск применяется в [c.100]

    Дизельное топливо — керосин, газойль, соляровый дистиллят— используется для поршневых двигателей внутреннего сгорания с воспламенением от сжатия. Экономичность работы дизельных двигателей зависит от фракционного состава и цетанового числа дизельного топлива. Цетановое число характеризует способность топлива давать воспламенение в цилиндре двигателя. Оно определяется сравнением поведения дизельного топлива при использовании его в двигателе с поведением эталонной смеси, состоящей из цетана С бНз4, цетановое число которого принято за 100, и а-метилнафталина С10Н7СН3 с цетановым числом 0. [c.57]

    Детонация вызывает резкое уменьшение мощности и экономичности двигателя и действует разрушительно на ряд основных деталей. Борьба с детонацией прежде всего является борьбой за рациональную организацию сгорания топлива, в которой проблема подбора топлива играет решающую роль в качестве одного из наиболее эффективных методов уменьшения склонности двигателя к детонации. Чрезвычайная сложность явления детонации обусловила то, что, несмотря на огромное число исследований, посвященных этому явлению, природа его до сих пор еще не вполне установлена, как равно еще недостаточно учтена степень влияния па детонацию различных факторов. Несомненно, что детонация представляет собою особый характер протекания сгорания в двигателе, сопровождающегося очень быстрым воспламенением горючей смеси и связанной с этим большой скоростью выделения тепловой энергии. Переход нормального сгорания в детонацию может быть связан не только с громадным увеличением скорости протекания реакций, но также и с изменением характера реакций сгорания. Процесс детонации включает одновременно достаточно быстрое протекание реакций, обусловливающих бурное выделение анергии, и связанные с этим физические явления, влияющие как на состояние рабочего тела, так и на протекание самих исходных реакций. Явленпе детонации, обусловленное процессами, происходящими в газах, записпт почти от всех параметров работы двигателя, так как они отражаются на характере этих процессов, воздействуя или непосредственно на химический состав горючей смеси, или на ее термическое [c.353]

    Детонационная стойкость. Детонацией называется особый режим сгорания топлива в двигателе. Она появляется в тех случаях, когда после воспламенения топливно-воздушной смеси сгорает только часть топлива. Остаток (до 20%) топливного заряда мгновенно самовоспламеняется при этои скорость распространения пламени достигает 1500—2500 вместо 20—30 м/с, а давление нарастает скачками. Резкий перепад давления приводит к образованию детонационной волны, которая ударяется о стенки цилиндра двигателя. Характерные признаки детонации металлический стук, вызываемый многократным отражением детонационных волн от стенок цилиндра, появление в выхлопных газах клубов черного дыма, резкое повышение температуры стенок цилиндра. Детонационное сгорание топлива приводит к повышению удельного расхода топлива, уменьшению мощностг и перегреву двигателя, прогару поршней и выхлопных клапаноп, а в конечном счете к быстрому выводу двигателя из строя. [c.338]

    Большинство летательных аппаратов в настоящее время оснащено газотурбинными — турбовинтовыми (ТВД) и турбореактивными (ТРД) —двигателями. В газотурбинных двигателях процесс сгорания топлива происходит в камерах сгорания, куда подается сжатый турбокомпрессором во 5дух и впрыскивается жидкое топливо. Воспламенение топлива производится электрической искрой. Подача воздуха и топлива, сгорание топлива и образование горячей струи газов происходят в газотур( )инных двигателях одновременно и непрерывно, в едином потоке. Образовавшиеся газы в ТВД и ТРД исиользуются по-разному. В ТВД они расширяются в турбине, вращающей компрессор ,ля сжатия воздуха и воздушный винт, который создает основную тягу окончательное расширение газов осуществляется в реактивном сопле, причем струей газов, вытекающих из сопла, создается дополнительная (8—12% от общей) тяг а. В ТРД газы сгорания расширяются в турбине, вращающей компрессор, а затем в реактмвном сопле тяга создается в результате нстечепия газов из сопла. В современных ТРД газы после турбины направляются в форса кную камеру, в которой до- [c.342]

    Влияние топлива на процессы воспламенения и сгорания в двигателе (основная тема данной работы) более подробно будет рассмотрено в последуюших главах. В данном разделе укажем лишь, что значение химической структуры топлива и его физических характеристик для скорости воспламенения н последующего сгорания чрезвычайно велико. Дизельное топливо должно обладать склонностью к быстрому распаду молекул и окислению их кислородом воздуха. В этом отношении лучшими качествами обладают углеводороды алифатического ряда с прямой открытой цепью. Углеводороды циклической структуры, цикланы, в особенности ароматические, обладают более высокой [c.38]

    Тихоходные двигатели, будучи первыми из класса двигателей, работающих с воспламенением от сжатия, отличаются исключительным разнообразием по своей конструкции и областяд[ применения. В то же время по своим требованиям к качеству дизельных топлив они не столь различны, как быстроходные. Невысокое число оборотов, обеспечивающее достаточно большой период времени на процесс смесеобразования и сгорания, использование двигателя в стационарных и полустационарных условиях, обеспечивающих возможность использования компрессорного распыливания и подогрева топлива, позволяют применять в качестве топлива для них достаточно тяжелые нефтяные остатки. [c.163]

    Опытные образцы водородных дизелей созданы в лаборатории института Мусащи (Япония) [172]. Для организации рабочего процесса дизеля водород непосредственно впрыскивается в камеру сгорания в конце такта сжатия под давлением 8 МПа с помощью специальной форсунки с гидравлическим приводом от штатного топливного насоса высокого давления. Для воспламенения смеси служит керамическая калильная свеча с встроенным вольфрамовым электронагревателем. Электронагреватель включается на режимах пуска и прогрева двигателя, на остальных режимах свеча обеспечивает температуру 1170—1270 К за счет выделяющегося при сгорании топлива тепла. Благодаря комплексу конструктивных мероприятий прн работе на водороде сохранена мощность двигателя на уровне базового дизеля при относительно высоких показателях энергетической эффективности (рис. 4.25). [c.178]

    В двигателях внутреннего сгорания с воспламенением от сжатия, называемых дизелями, четырехтактный рабочий процесс протекает несколько иначе, чем в двигателях с зажиганием от искры. В дизельном двигателе в первых двух тактах засасывается и сжимается чистый воздух. Температура воздуха в конце хода сжатия достигает 550—650 °С, а давление возрастает до 4 МПа. В конце хода сжатия в сжатый и нагретый воздух шрыскивается в течение определенного времени под большим давлением порция топлива. Мельчайшие капельки топлива переходят в парообразное состояние и распределяются в воздухе. Через определенный весьма незначительный момент времени топливо самовоспламеняется и полностью сгорает. Время между началом впрыска и воспламенением топлива называется периодом задерокки самовоспламенения. В современных быстроходных двигателях этот период не более 0,002 с. В результате сгорания топлива давление газа достигает 6—10 МПа. Весьма важным для обеспечения плавной, нормальной работы двигателя является скорость нарастания давления газов. Из практики известно, что эта скорость не должна превышать 0,5 МПа на 1° угла поворота коленчатого вала. В противном случае двигатель начинает стучать, работа его становится жесткой , а нагрузка на подшипники чрезмерной. Появление стуков и жесткая работа двигателя тесно связаны с длительностью периода задержки самовоспламенения. Чем продолжительнее этот период, тем большее количество топлива успеет поступить в цилиндр двигателя. В результате — одновременное поопламенение повышенного количества топлива приводит к взрывному характеру сгорания, и давление газов будет нарастать скачкообразно. В двух последующих тактах рабочий ход и выхлоп — происходит рабочее расширение газов и освобождение цилиндра двигателя от продуктов сгорания.  [c.93]

    Переменным параметром двигателя испытательной установки является степень сжатия, которая может изменяться в интервале от 7 до 23. Напомним, что, в отличие от поведения топлива в двигателях с зажиганием от искры, в двигателях с самовоспламенением повышение степени сжатия улучшает условия воспламенения и сгорания топлива. Изменяя степень сжатия, можно регулировать и поддерживать стандартный период задержки восплажнения, который в данном методе выбран равным 13° поворота коленчатого вала двигателя. Сущность определения цетановых чисел, таким образом, заключается в сравнении испытуемого топлива с эталонным при работе двигателя на стандартном режиме и при определенном периоде задержки воспламенения. При этом подбирают для сравнения такие две эталонные смеси, из которых одна будет иметь стандартный период задержки воспламенения при большей степени сжатия, чем найдено для испытуемого топлива, а другая при меньшей. [c.172]

    Некоторые перекиси альдегидов и кетонов наюли применение (или. по крайней мере, были предложены) в качестве добавок к дизельному топливу для понижения запаздыпапия его воспламенения. Слел ет иметь, однако, в виду, что хотя такие добавки и повышают цетеновое число, во не увеличивают эффекитности Двигателя и 116 ускоряют сгорания топлива. Их ро.гть сладится почти исключительно к облегчению зап ска двигателя, особенно на морозе.  [c.361]

    Сильный стук двигателя вызывается или иреждевремеиныы воспламенением плп детонацией. Под преждевременным воспламенением понимают неожиданную вспышку смесп воздуха с горючпм в камере сгорания пз-за наличия сильно нагретых участков камеры, прежде чем смесь могла воспламениться от пскры свечи. Поэтому преждевременное воспламенение может вызвать сгорание топлива раньше, чем поршень достигнет верхнего положения Б ходе сжатия, нарушая этны самым нормальный рабочий цикл и создавая огромные ударные нагрузки на поршень, кольца, клапаны и подшипнпки. Детонацией называют мгновенную вспышку части смеси топлпва с воздухом в камере сгорания вместо постепенного, равномерного сгорания, которое должно нормальном протекать во время рабочего хода поршня. Эти мгновенные взрывы также создают большую ударную нагрузку, так называемые удары молота , на поршни и кольца. Часто трудно отличить преждевременное зажигание от детонации, так как оба явления вызывают одинаковые на слух звуки и шумы. В некоторых случаях хронические явления преждевременного воспламенения могут быть установлены переводом хорошо разогретого двигателя на холостой ход и последуюш,им выключением зажигания. Если мотор продолжает работать в течение многих оборотов с ударами или стуком, явление преждевременного воспламенения можно считать установленным. Причиной возникновения детонации может быть работа мотора с полной или почти полной нагрузкой ири прикрытом дросселе. [c.455]

chem21.info

Сгорание топлива в цилиндре судового двигателя

Если замерить изменение давления в цилиндре дизеля по времени (или углу поворота коленчатого вала), то можно получить так называемую «развернутую индикаторную диаграмму». На рисунке ниже дан примерный вид такой диаграммы с нанесенными характерными точками:

Рис. 1 Развернутая индикаторная диаграмма

В соответствии с характерными точками, процесс воспламенения и сгорания топлива можно условно разбить на 4 фазы:

I фаза — от начала впрыска до начала воспламенения топлива — носит название “период задержки самовоспламенения”:

Ti=φi/6n

Эта фаза определяется необходимостью физико-химической подготовки топлива к воспламенению и сгоранию (прогрев, испарение, предпламенные реакции). Она оказывает значительное влияние на развитие всего последующего процесса сгорания. Фаза должна быть возможно меньшей. Обычно τi лежит в пределах: τi=1-5 мсек (большие значения — в малооборотных дизелях) или по углу поворота коленчатого вала φi=3-50°пкв (большие значения — в высокооборотных двигателях).

II фаза — от начала сгорания (точка у) до достижения давления Pz (т.Z1) — называется периодом резкого нарастания давления в цилиндре. Практически все топливо, поступившее в цилиндр до точки Z1, вовлекается в горение. В качестве критерия, оценивающего интенсивность горения за фазу, принимается скорость нарастания давления W (или “жесткость индикаторного процесса”):

W=(dp)/(dφ)

Величина средней скорости нарастания давления обычно принимается равной:

Wcp≈△P/△φ≈(Pz-Pc)/(φz1-φy)

Этот параметр характеризует плавность (мягкость) индикаторного процесса. При больших ΔP / Δφ двигатель работает со стуками, жестко. Такая работа недопустима. Обычно ΔP / Δφ = 1 — 6 кг/см2 / 0пкв.

III фаза — кривая z1z — сгорание при примерно постоянном давлении. В районе точки z обычно заканчивается подача топлива, а температура в цилиндре достигает максимального значения. Задержка воспламенения топлива, подаваемого в этот период, минимальна (так как высоки давление и температура в цилиндре), однако к концу фазы сгорание может замедлиться — уменьшается количество кислорода. Давление сгорания за III фазу чаще всего незначительно увеличивается, но может и уменьшиться — все зависит от работы топливной аппаратуры и от относительного положения точки z и ВМТ. Чем дальше т. z от ВМТ, тем меньше давление в этой точке при той же цикловой подаче топлива. В качестве параметров, оценивающих III фазу горения, могут быть приняты максимальное давление Pz и угол поворота коленчатого вала φpz, при котором это давление достигается. Угол φpz косвенно характеризует экономичность рабочего процесса — чем ближе сгорание к ВМТ (меньше φpz) — тем меньше догорание, более эффективно используется энергия газов в цилиндре. II-я и II-я фазы носят название “видимого процесса сгорания”.

IV-я фаза — кривая zz‘ — носит название “догорание топлива” и наблюдается в большей или меньшей степени у всех дизелей. У малооборотных дизелей эта фаза меньше; у высокооборотных двигателей на номинальной нагрузке эта фаза может наблюдаться на всем ходе расширения. На долевых нагрузках догорание сокращается. Догорание на линии расширения увеличивает температуру газа в точке b цикла и температуру отработавших газов, повышает потери тепла в охлаждающую воду. Все это понижает термический КПД цикла.

Приведенный выше анализ с делением процесса сгорания на фазы является в какой-то степени условным. Однако он нагляден, часто используется при экспериментальных исследованиях ДВС и при анализе работы двигателя в эксплуатационных условиях.

Смотрите также:

а) Общая схема физических явлений при сгорании топлива

в) Факторы, влияющие на фазы процесса сгорания

г) Критерии оценки характера сгорания

Март, 02, 2015 1305 0

Поделитесь с друзьями:

sea-man.org

Процесс сгорания в карбюраторном двигателе

О полноте, скорости и своевременности сгорания можно судить по развернутой индикаторной диаграмме, в которой условно выделяют три фазы.

Первая фаза сгорания (01) начинается в момент зажигания смеси. Она формирует фронт пламени. Заканчивается первая фаза, когда давление в цилиндре в результате выделения теплоты становится выше, чем при сжатии смеси до ВМТ без сгорания.

Для своевременного выделения теплоты при наивыгодных условиях электрический разряд на электроды свечи подается в конце хода сжатия за 20—55° поворота коленчатого вала до прихода поршня в ВМТ. Этот угол поворота коленчатого вала называется углом опережения зажигания (Фоз). Температура искры может составлять до 10 000 К. В течение первой фазы сгорает около 2—3 % топлива, поданного в цилиндр. Продолжительность первой фазы 0,5—1 мс, что соответствует 10—30° поворота коленчатого вала.

Развернутая индикаторная диаграмма и зависимость изменения температуры газов от угла поворота коленчатого вала в двигателе с искровым зажиганием

Рис. Развернутая индикаторная диаграмма и зависимость изменения температуры газов от угла поворота коленчатого вала в двигателе с искровым зажиганием

Вторая фаза сгорания (02) — основная, во время этой фазы происходит распространение пламени по объему камеры сгорания. Начинается данная фаза с окончанием первой фазы и заканчивается в момент достижения максимального давления в цикле. Продолжительность второй фазы 1 — 1,2 мс, т. е. 25-30° поворота коленчатого вала. За это время выделяется примерно 75-85 % теплоты. Температура рабочего тела в конце этой фазы повышается до 2300 К, а давление достигает 3,5—5 МПа. К моменту окончания второй фазы сгорание не заканчивается, поэтому средняя температура газов продолжает расти.

Третья фаза сгорания (03) — догорание смеси, начинается в момент достижения максимального давления никла. Эта фаза характеризуется замедлением горения, так как у стенок камеры сгорания усиливается теплоотвод, ослабляется турбулентность и догорание обычно происходит в условиях недостатка кислорода. Вследствие замедления конечных процессов горения третья фаза не имеет четко выраженного окончания. Ориентировочно можно считать, что ее продолжительность составляет 1 — 1,5 мс, т. е. 20—35° угла поворота коленчатого вала.

В третьей фазе выделяется еще 10—15 % теплоты. В итоге общее тепловыделение за весь процесс сгорания составляет 80—91 %. Остальные 9—20 % теплоты теряются на теплопередачу через стенки цилиндра и на неполноту сгорания.

Максимальная температура в третьей фазе сгорания 2300-2600 К.

ustroistvo-avtomobilya.ru

Процесс сгорания топлива в цилиндре двигателя

Общая схема физических явлений при сгорании топлива

Процессы самовоспламенения и сгорания менее всего изучены в дизелях. Первоначально предполагалось, что топливо горит в рабочем цилиндре в жидкой фазе. Однако последующие исследования показали, что самовоспламенению предшествует испарение топлива.

Наибольшее распространение сегодня получили цепочно-тепловые представления о природе физических явлений, протекающих при воспламенении топлива. Цепочно-тепловая теория горения разработана отечественными исследователями во глазе с академиком Н.Н. Семеновым.

Физико-химические процессы самовоспламенения могут быть представлены следующим образом. После впрыска топлива, прогрева капель, их испарения в цилиндре происходит большое количество столкновений молекул паров топлива и кислорода воздуха. Однако к химическому взаимодействию и экзотермической реакции приводит лишь небольшое число столкновений «активных» молекул, у которых энергия выше средней. Этот избыток энергии назван «энергией активации».

Камера сгорания дизельного двигателя

В результате химического взаимодействия активных молекул образуются промежуточные соединения — первичные продукты окисления (перекиси), свободные атомы кислорода, водорода и радикалы. Если образовавшиеся новые активные молекулы взаимодействуют далее, то начинается цепная реакция. Возникает «холодное пламя» — результат низкотемпературного окисления.Поскольку цепная реакция идет с разветвлением цепей, то выделяющееся тепло наряду с увеличением температуры от сжатия воздушного заряда приводит к тому, что количество подводимого тепла превосходит отводимое тепло через стенки цилиндра в окружающую среду.

Начинается прогрессирующий саморазогрев в результате ускорения экзотермической реакции. Наконец, температура топлива и воздуха достигает такой величины, когда саморазогрев возможен уже не от разветвления цепей, а от самой температуры. Происходит тепловой взрыв (или самовоспламенение) в одной или нескольких точках камеры сгорания. От образовавшихся очагов пламени фронт сгорания распространяется с большой скоростью (10-25 м/сек) на весь объем горючей смеси. Дальнейшее воспламенение новых порций топлива, подаваемого в цилиндр, осуществляется от имеющегося открытого очага пламени.

Смотрите также:

б) Характеристика процесса сгорания по индикаторной диаграмме

в) Факторы, влияющие на фазы процесса сгорания

г) Критерии оценки характера сгорания

sea-man.org


Смотрите также