ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Фазы и механизм газораспределения - как это работает и на что влияет. Фазовращатель двс


Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

Эффективность двигателя внутреннего сгорания зачастую зависит от процесса газообмена, то есть наполнения воздушно-топливной смеси и отвода уже отработанных газов. Как мы уже с вами знаем, этим занимается ГРМ (газораспределительный механизм), если правильно и «тонко» настроить его под определенные обороты, можно добиться очень не плохих результатов в КПД. Инженеры давно бьются над этой проблемой, решать ее можно различными способами, например воздействием на сами клапана или же поворотом распределительных валов …

Фазовращатель в ДВС

СОДЕРЖАНИЕ СТАТЬИ

Чтобы клапана ДВС работали всегда правильно и не были подвержены износу, вначале появились просто «толкатели», затем гидрокомпенсаторы, но этого оказалось мало, поэтому производители начали внедрение так называемых «фазовращателей» на распределительные валы.

Зачем вообще нужны фазовращатели?

Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала полезную информацию. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».

Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики. Именно здесь идеально применять «узкие» фазы, а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание. Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).

Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов. Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими».

Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он выделяется, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.

Широкие и узкие фазы

НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью. Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет. «Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не буде нормально работать на малых оборотах.

Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПОПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.

Принцип работы

Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с ремнем или цепью ГРМ.

Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию. Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ, а с другой стороны с валами. Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.

вращатели

Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.

Как обычно процессом руководит ЭБУ, которая собирает данные с различных датчиков двигателя, таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.

Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).

VVT (Variable Valve Timing), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC)

Одними из первых предложили поворачивать коленвал (относительно начального положения), компания Volkswagen, со своей системой VVT (на ее основе построили свои системы много других производителей)

Что в нее входит:

Фазовращатели (гидравлические), установлены на впускном и выпускном валу. Они подключены к системе смазки мотора (собственно это масло и закачивается в них).

Если разобрать муфту то внутри есть специальная звездочка наружного корпуса, которая неподвижно соединена с валом ротора. Корпус и ротор при накачивании масла могут смещаться относительно друг друга.

муфта

Механизм закрепляется в головке блока, в ней есть каналы для подводки масла к обеим муфтам, контролируются потоки двумя электрогидравлическими распределителями. Они кстати также закрепляются на корпусе головки блока.

Помимо этих распределителей в системе много датчиков – частоты коленчатого вала, нагрузки на двигатель, температуре охлаждающей жидкости, положения распред и колен валов. Когда нужно повернуть откорректировать фазы (например — высокие или низкие обороты), ЭБУ считывая данные дает приказания распределителям подавать масла в муфты, они открываются и давление масла начинает накачивать фазовращатели (тем самым они поворачиваются в нужную сторону).

Устройство

Холостой ход – поворачивание происходит таким образом, чтобы «впускной» распредвал обеспечил более позднее открытие и позднее закрытие клапанов, а «выпускной» разворачивается так  — чтобы клапан закрывался намного раньше до подхода поршня в верхнюю мертвую точку.

Получается, что количество отработанной смеси снижается почти до минимума, причем она практически не мешает на такте впуска, это благоприятно сказывается на работе мотора на холостых оборотах, его стабильности и равномерности.

Схема работы

Средние и высокие обороты – здесь задача выдать максимальную мощность, поэтому «поворачивание» происходит таким образом, чтобы задержать открытие выпускных клапанов. Таким образом, остается давление газов на такте рабочего хода. Впускные в свою очередь открываются после достижение поршня верхней мертвой точки (ВМТ), и закрываются после НМТ. Таким образом, мы как бы получаем динамический эффект «дозарядки» цилиндров двигателя, что несет за собой увеличение мощности.

Максимальный крутящий момент – как становится понятно, нам нужно как можно больше наполнять цилиндры. Для этого нужно намного раньше открывать и соответственно намного позже закрывать впускные клапана, сберечь смесь внутри и не допустить ее выхода обратно в впускной коллектор. «Выпускные» же в свою очередь, закрываются с некоторым опережением до ВМТ, чтобы оставить небольшое давление в цилиндре. Думаю это понятно.

Таким образом, сейчас работает много похожих систем, из них самые распространенные Renault (VCP), BMW (VANOS/Double VANOS), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC).

Фазовращатели на обоих валах

НО и эти не идеальные, они могут только смещать фазы в одну или другую сторону, но не могут реально «сузить» или «расширить» их. Поэтому сейчас начинают появляться более совершенные системы.

Honda (VTEC),  Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL)

Чтобы дополнительно регулировать поднятие клапана, были созданы еще более продвинутые системы, но родоначальницей была компания HONDA, со своим мотором VTEC (Variable Valve Timing and Lift Electronic Control). Суть в том, что кроме изменения фаз, эта система может больше поднимать клапана, тем самым улучшая наполнение цилиндров или отвод отработанных газов. У HONDA сейчас используется уже третье поколение таких моторов, которые впитали в себя сразу обе системы VTC (фазовращатели) и VTEC (поднятие клапана), и сейчас она называется – DOHC i-VTEC.

VTEC

Система еще более сложная, она имеет продвинутые распредвалы в которых есть совмещенные кулачки. Два обычных по краям, которые нажимают на коромысла в обычном режиме и средний более выдвинутый кулачок (высокопрофильный), который включается и нажимает клапана скажем после 5500 оборотов. Эта конструкция имеется на каждую пару клапанов и коромысел.

Как же работает VTEC? Примерно до 5500 об/мин мотор работает в штатном режиме, используя только систему VTC (то есть крутит фазовращатели). Средний кулачок как бы не замкнут с двумя другими по краям, он просто вращается в пустую. И вот при достижении высоких оборотов, ЭБУ дает приказание на включение системы VTEC, начинает закачиваться масло и специальный штифт выталкивается вперед, это позволяет замкнуть все три «кулачка» сразу, начинает работать самый высокий профиль – теперь именно он давит пару клапанов, на которые рассчитана группа. Таким образом, клапан опускается намного больше, что позволяет дополнительно наполнить цилиндры новой рабочей смесью и отвести больший объем «отработки».

vtec2

Стоит отметить, что VTEC стоит и на впускном и выпускном валах, это дает реальное преимущество и прирост мощности на высоких оборотах. Прирост примерно в 5 – 7%, это очень хороший показатель.

Стоит отметить, хотя ХОНДА была первой, сейчас похожие системы используются на многих автомобилях, например Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL). Иногда как например в моторах Kia G4NA, используется лифт клапанов только на одном распредвалу (здесь только на впускном).

НО и у этой конструкции есть свои недостатки, и самый главный это ступенчатое включение в работу, то есть едите до 5000 – 5500 и дальше чувствуете (пятой точкой) включение, иногда как толчок, то есть нет плавности, а хотелось бы!

Плавное включение или Fiat (MultiAir), BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic)

Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.

«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).

Система от FIAT

Принцип работы. Как я сказал, здесь есть один вал, и он руководит и впускными и выпускными клапанами. ОДНАКО если на «выпускные» он воздействует механически (то есть банально через кулачки), то вот на впускные воздействие передается через специальную электро-гидравлическую систему. На валу (для впуска) есть что-то типа «кулачков», которые нажимают не на сами клапана, а на поршни, а те передают приказания через электромагнитный клапан на рабочие гидроцилиндры открывать или закрывать. Таким образом, можно добиться нужного открытия в определенный период времени и оборотов. При малых оборотах, узкие фазы, при высоких – широкие, и клапан выдвигается на нужную высоту ведь здесь все управляется гидравликой или электрическими сигналами.

без вала

Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic). Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.

FreeValve

Отказ полностью от валов, дросселя и привода ГРМ (цепь или ремень) выносят многие производители, но первыми сделали это Шведы в своем суперкаре Koenigsegg, который кстати развивает аж 1500 л.с.

Как это устроено? Вместо валов здесь находятся специальные электромагнитные актуаторы, в которых встроены пневматические пружины. ЭБУ контролирует каждый такой клапан и способна открывать и закрывать его очень быстро (до 100 раз в секунду) и на любое расстояние которое нужно. Это позволяет регулировать фазы на любое заданное значение! И ЭТО РЕАЛЬНО ОЧЕНЬ КРУТО.

freevalve

Испытания показали, что такой мотор до 30% мощнее и эффективнее чем аналоги с распределительной системой, а также он экономичен на эти же 30%. Плавность хода здесь на высоте.

Минусом пока является что такой мотор, шумный, такое количество электромагнитных клапанов создает щелканье при открытие, причем оно нарастает при повышении оборотов. Также стоимость агрегата пока очень высока, но если его запустить в серию цена может значительно упасть.

Что же вот мы с вами и рассмотрели основные виды фазовращателей и просто систем газораспределения без них. Кто не особо понял посмотрите видео версию, там я постараюсь рассказать все просто и на пальцах.

НА этом заканчиваю, думаю, моя статья была для вас полезна, подписывайтесь на наш сайт и канал YOUTUBE, искренне ваш АВТОБЛОГГЕР.

avto-blogger.ru

Зачем менять фазы газораспределения — ДРАЙВ

Виталий Кабышев, 11 июля 2007.

Задача механизма газораспределения — обеспечить наивысшую эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность мотора, мощность и развиваемый момент.

Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов. В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.

В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.

Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.

Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.

Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.

При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.

Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).

Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!

Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.

Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.

А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.

Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.

Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.

Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).

Аналогичная система от немецкой компании Mahle.

Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.

Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.

Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.

Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.

Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.

Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.

В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?

А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.

Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.

Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.

www.drive.ru

Сдвиг по фазе: двигатель | Журнал Популярная Механика

Как работает система электронного управления фазами газораспределения

Тема: ГРМ Пример: Mitsubishi Outlander XL

Прав был Козьма Прутков, когда говорил: «Специалист подобен флюсу: полнота его одностороння»! Конечно, узкая специализация в автомобильном мире неизбежна, но ведь далеко не все могут себе позволить иметь несколько автомобилей для различных задач. Приходится идти на компромиссы, подыскивая универсальные решения в виде идеального автомобиля — с двигателем небольшого объема, но мощным, с высоким крутящим моментом, но не слишком прожорливым, экологичным, но эластичным. И несмотря на то что эти требования противоречат друг другу, такое вполне возможно. Для примирения противоречивых характеристик двигатели оснащают системами управления фазами газораспределения.

Фазовращатель

Как устроен ГРМ

Напомним, как устроен газораспределительный механизм (ГРМ) в традиционном двигателе с двумя верхними распредвалами (DOHC, Dual Overhead Camshafts) без каких-либо систем коррекции. Задача ГРМ — в нужные моменты впускать в цилиндры двигателя горючую смесь и выпускать отработавшие газы. Для этого открывают и закрывают соответствующие впускные и выпускные клапаны, приводимые от распределительного вала с расположенными на нем кулачками. Вращение распредвала жестко синхронизировано с вращением коленчатого вала с помощью цепной, зубчатой или зубчатоременной передачи. Такой двигатель оптимизирован для работы в определенном диапазоне оборотов: для городских машин это обычно область низких и средних оборотов, для спортивных — высоких.

Оптимальные фазы газораспределения

Фазовращение

Описанный выше двигатель не имеет гибкости в выборе моментов впуска и выпуска. Можно, конечно, заняться тюнингом и поменять распредвалы, но это приведет к улучшению одних характеристик в ущерб другим, ведь для каждого режима работы двигателя оптимальные фазы открытия и закрытия впускных клапанов различны. Над тем, как изменять фазы газораспределения в нужную сторону, автоинженеры начали думать еще в 1960-х. А в начале 1990-х такие системы стали ставить в массовые автомобили. Рассмотрим разработанную конструкторами Mitsubishi систему электронного управления фазами газораспределения MIVEC (Mitsubishi Innovative Valve timing Electronic Control system).

Фазы впуска и выпуска

Выбрать момент

Распредвалы двигателя с системой MIVEC оснащены не обычными шестернями ГРМ, а фазовращателями. Это муфты, способные «подкручивать» распредвал относительно его начального положения в ту или иную сторону в небольших пределах. В зависимости от оборотов и нагрузок на двигатель электронная система дает команду электромагнитному клапану гидравлической системы, и давлением масла внутренняя часть фазовращателя регулирует угол опережения или запаздывания открытия и закрытия клапанов.

От первого лица: Дмитрий Мамонтов, редактор

XL — это eXtra Large, то есть очень большой размер. Mitsubishi Outlander XL вполне оправдывает это наименование. Честно говоря, когда мы брали эту машину на тест-драйв, я все еще думал, что эти буквы производитель приписал для красного словца. Однако оказалось, что это действительно большая машина. И хотя это кроссовер, он «косит» под настоящий джип — с раздельной дверью багажника, нижняя половинка которой откидывается, образуя горизонтально платформу. Двигатель с системой MIVEC и вариатор обеспечивают плавный, но не слишком быстрый разгон — мощности не хватает для такой массы. А вот ходовые качества меня разочаровали: я не успел проверить машину на бездорожье, но в городе жесткая и довольно громкая подвеска дает о себе знать даже на ямах, а просто на чуть неровном асфальте.

На холостом ходу такая система старается минимизировать перекрытие фаз (то есть время, когда впускные и выпускные клапаны открыты одновременно), иначе выхлопные газы попадут во впускной коллектор, а часть горючей смеси — в выпускной. А вот чтобы добиться на низких оборотах достаточного крутящего момента, нужно закрывать впускные клапаны с опережением, а выпускные открывать с запаздыванием для увеличения степени расширения (и тем самым эффективности цикла). Для улучшения продувки цилиндров перекрытие фаз нужно увеличивать по мере повышения оборотов. Применение такой системы дает возможность не только увеличить момент и мощность на низких оборотах, но и уменьшить потребление топлива, выбросы выхлопных газов, а также минимизировать шум и вибрацию двигателя.

Статья опубликована в журнале «Популярная механика» (№6, Июнь 2011).

www.popmech.ru

Что такое система изменения фаз газораспределения

Изменение фаз газораспределения

Эффективность работы любого ДВС, КПД двигателя, показатель мощности, моментная характеристика и топливная экономичность напрямую зависят от ряда факторов. Одной из важных составляющих в списке являются фазы газораспределения. Ответить на вопрос, что такое фазы газораспределения двигателя, можно следующим образом. Под такими фазами стоит понимать своевременное открытие и закрытие впускных и выпускных клапанов.

Большинство современных ДВС все более активно получают систему изменения фаз газораспределения, хотя еще около 20 лет назад массово доступный четырехтактный двигатель данной системы не имел. В обычном моторе клапаны открываются благодаря воздействию на них кулачков распределительного вала. Форма профиля кулачка распредвала определяет момент и продолжительность открытия клапана.

Указанные параметры составляют так называемую ширину фазы газораспределения.  Дополнительным параметром также является величина хода клапана (высота его подъема). Стоит учитывать, что топливно-воздушная смесь и отработавшие газы во впуске, в цилиндре ДВС и на выпуске ведут себя не одинаково, что зависит от различных режимов его работы. Скорость течения динамично изменяется, появляются колебания газовых сред, которые приводят к резонансам или застою. Все это влияет на эффективность наполнения цилиндров и их продувки на разных режимах работы силового агрегата.

Фиксированные фазы газораспределения заставляют конструкторов ДВС проектировать мотор так, чтобы присутствовала уверенная тяга в диапазоне низких и средних оборотов, но при этом оставался запас мощности для поддержания набранной скорости и дальнейшего ускорения автомобиля при выходе ДВС на режимы около зоны максимальных оборотов. Дополнительно необходимо обеспечить устойчивую работу силового агрегата на холостом ходу, эластичность на переходных режимах, а также экономичность и экологичность силовой установки. Если фазы газораспределения фиксированы, то улучшение одних параметров закономерно повлечет ухудшение других. Для решения этой задачи была разработана система изменения фаз газораспределения, которая гибко и динамично изменяет основные параметры работы ГРМ зависимо от того режима, в котором работает двигатель в определенный момент.

Система изменения фаз газораспределения VVT (англ. Variable Valve Timing) создана для динамичной корректировки рабочих параметров механизма газораспределения. Данное управление осуществляется с учетом различных режимов работы силового агрегата. Использование указанной системы регулировки фаз газораспределения позволяет добиться повышения мощности мотора и моментной характеристики. Система VVT обеспечивает экономию горючего, а также снижает токсичность выхлопных газов в процессе работы двигателя.

Система изменения фаз газораспределения влияет на основные параметры работы газораспределительного механизма. К таким параметрам относят моменты открытия и закрытия впускных и выпускных клапанов, длительность времени открытия клапана и высоту его подъема. Указанные параметры представляют собой в итоге фазы газораспределения, так как от них зависит продолжительность такта впуска и выпуска, что выражается тем углом, на который повернут коленчатый вал двигателя по отношению к мертвым точкам (ВМТ и НМТ) во время движения поршня в цилиндре. Форма кулачка распределительного вала определяет фазу газораспределения, так как указанный кулачок оказывает прямое воздействие на впускной или выпускной клапан ГРМ.

Читайте в этой статье

Для чего необходима система изменения фаз газораспределения

350px-Фазы_газораспределения_33

Для достижения наибольшей эффективности применительно к динамично изменяющимся режимам работы ДВС необходима различная величина фаз газораспределения. В режиме холостого хода наиболее рациональными становятся «узкие» фазы газораспределения, под которыми понимается позднее открытие и ранее закрытие клапанов. При этом исключается перекрытие фаз, под которым понимается время одновременного открытия впускного и выпускного клапана. Это необходимо для того, чтобы исключить попадание выхлопных газов во впуск и выброс топливно-воздушной смеси в выпускной коллектор.

Выход мотора на режим максимальной мощности означает повышение оборотов, так как распредвал крутится быстрее и время открытия клапанов сокращается. Для того чтобы не терялась мощность и крутящий момент на высоких оборотах сохранялся, в двигатель должно поступать намного больше топливно-воздушной смеси, а выпуск отработавших газов должен быть реализован максимально эффективно. Задача решается путем раннего открытия клапанов и увеличения времени их открытия, делая фазу «широкой». Фаза перекрытия также расширяется до максимума с ростом оборотов, что необходимо для качественной продувки цилиндров.

Если мотор работает на низких оборотах, нужны максимально короткие фазы газораспределения. Это означает, что время открытия клапанов должно быть минимальным по продолжительности, обеспечивая так называемые «узкие» фазы. Высокие обороты двигателя требуют полной противоположности в виде «широких» фаз газораспределения. Время открытия клапана должно быть увеличено до максимума, параллельно обеспечивая такты впуска и выпуска, а также эффективное перекрытие.

Сам кулачок распредвала имеет форму, которая способна обеспечить как реализацию узкой, так и широкой фазы. Проблема заключается в том, что фиксированная форма кулачка не позволяет одновременно добиться узких и широких фаз газораспределения. Получается, форма кулачка подобрана с расчетом на возможный оптимальный баланс между высоким показателем крутящего момента на низких оборотах ДВС и максимальной мощностью агрегата в режиме высокой частоты вращения коленчатого вала. Система изменения фаз газораспределения позволяет намного более гибко изменять эти параметры, буквально «подстраивая» ГРМ  под конкретный режим работы двигателя для достижения лучшей отдачи от мотора и топливной экономичности.

Системы изменения фаз газораспределения представлены несколькими видами. Главные отличия заключаются в тех и или иных параметрах регулировки ГРМ в процессе его работы.  Сегодня используются следующие решения для управления фазами газораспределения:

Читайте также

Система на основе гидроуправляемой муфты

Муфта гидроуправляемая

Широкое распространение получили системы изменения фаз газораспределения, принцип работы которых основан на осуществлении поворота распредвала. К таким схемам управления фазами газораспределения относят: японскую систему VVT-i, Dual VVT-i, решение немецкого концерна BMW под названием VANOS, Double VANOS, схему VVT от Volkswagen, управление фазами газораспределения VTEC от Honda, систему CVVT брендов Hyundai, Kia и концерна GM, регулировку фаз VCP от Renault и т.д.

Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением. Данный тип систем изменения фаз газораспределения конструктивно состоит из специальной муфты, которая управляется гидравлическим способом, а также дополнительной системы управления указанной муфтой. Гидроуправляемая муфта среди автомехаников получила название фазовращатель.

Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.

Получается, гидроуправляемая муфта реализует поворот распредвала ГРМ. Данная муфта конструктивно включает в себя:

В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.

Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет  шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.

Фазовращатели ГРМ

Электронное управление автоматически регулирует работу гидроуправляемой муфты. Система такого управления включает в себя:

Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы  и другие датчики, которые используются ЭБУ для управления работой всего двигателя.

К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на  специальное управляющее (исполнительное) устройство.

Таким устройством, на которое воздействует электронный блок управления двигателем, является электромагнитный клапан (электрогидравлический распределитель). Клапан представляет собой распределитель, который при необходимости открывает доступ потоку моторного масла к гидроуправляемой муфте, а также реализует отвод масла от фазовращателя. Это зависит от того, в каком режиме работает силовой агрегат.

Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.

Система ступенчатого изменения фаз газораспределения

Эволюция систем изменения фаз газораспределения позволила инженерам не только осуществлять сдвиг фаз, но и эффективно выполнять их расширение и сужение. Следующим типом систем изменения фаз газораспределения являются решения, основанные на использовании кулачков  распредвала разной формы. Благодаря такому способу удается достичь ступенчатого изменения момента времени, на который открывается клапан, а также изменить саму высоту подъема клапанов. В списке подобных систем находится VVTL-i от автогиганта Toyotа, VTEC японской Honda и MIVEC от Mitsubishi, решение от Audi под названием Valvelift System и другие.

Указанные системы похожи друг на друга как конструктивно, так и по принципу действия. Немного отличается только немецкая Valvelift System. Наибольшую известность получила системаVVTL-i, VTEC и MIVEC. В основе таких систем изменения фаз газораспределения находятся кулачки с различным профилем, а также система управления. Распределительный вал в таких системах управления фазами газораспределения выполнен так, что имеет сразу два кулачка малого размера, а также один кулачок большего размера. Меньшие кулачки при помощи специального рокера (коромысла) соединяются с впускными клапанами. Большой кулачок отвечает за перемещение одного незадействованного коромысла.

Трехступенчатое регулирование фаз газораспределения

Такая система изменения фаз газораспределения позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.

Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения  в таком режиме имеют небольшую продолжительность (узкая фаза).

Если двигатель раскручивается до определенных оборотов, система управления активирует механизм блокировки. В результате происходит соединение коромысел малых и большого кулачков, что обеспечивает жесткость конструкции. Соединение происходит при помощи особого стопорного штифта, а усилие на впускные клапаны начинает поступать от единственного большого кулачка. Малые кулачки распредвала на высоких оборотах двигателя становятся неактивными.

Существующие разновидности систем VTEC могут иметь сразу три режима регулирования ГРМ. В данной модификации на низких оборотах ДВС работает один малый кулачок распредвала, который осуществляет открытие только одного впускного клапана. Два маленьких кулачка задействуются в режиме средних нагрузок и оборотов двигателя, обеспечивая открытие двух впускных клапанов. Большой кулачок вступает в действие при выходе силовой установки на режим оборотов, приближенных к максимальным.

Система изменения фаз газораспределения I-VTEC, которая представлена производителем Honda, объединила в себе главные преимущества решений как VTC, так и VTEC. Регулирование по трем ступеням обеспечивает существенную экономию топлива. При низкой частоте вращения половина впускных клапанов практически не имеет активности. Увеличение частоты вращения до уровня средних оборотов подключает дезактивированные клапаны, но высота их подъема не подразумевает полного открытия.

Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.

Если рассмотреть пример с системой VVTL-i от Toyota, то после выхода мотора с таким решением на обороты около 6000 об/мин стандартный кулачек распредвала исключается из работы и замещается кулачком с измененным профилем. Указанный кулачек обеспечивает дугой алгоритм работы клапана, сдвигает (расширяет) фазу и увеличивает высоту его подъема. На практике это будет означать, что при выходе мотора на режим высоких оборотов у двигателя появится резкий прирост тяги, необходимый для обеспечения дальнейшего уверенного разгона.

Схема работы системы VVTL-i строится на следующем алгоритме. Время открытия и высота подъема впускных клапанов регулируется аналогично другим решениям. Когда мотор работает в режиме оборотов до 6000 об/мин, тогда воздействие на клапан осуществляет меньший кулачок распредвала, который оказывает нажатие на рокер и таким образом открывает клапана. После набора оборотов выше заданной отметки управлять открытием клапанов начинает высокий кулачок с особым профилем. Для его активации специальный сухарь под давлением масла перемещается.

За своевременную подачу моторного масла по специальной магистрали в точно необходимый момент отвечает система управления. Давление масла и перемещение сухаря позволяет кулачку распредвала через специальный шток, который до этого находился в свободном положении, начать воздействовать на клапан посредством коромысла.

Система регулирования высоты подъема клапана

Дальнейшее развитие систем изменения фаз газораспределения привело к появлению сложных решений, которые основаны на управлении высотой подъема клапанов. Новатором в данной области стала компания BMW, представившая систему под названием Valvetronic на своих моторах в 2001 году.

Регулирование высоты подъема клапана дополнительно позволило исключить из схемы дроссельную заслонку применительно к основным режимам работы ДВС. Наличие заслонки заметно снижает эффективность наполнения цилиндров топливно-воздушной смесью в режиме низких и средних оборотов. Причина кроется в том, что во впускном коллекторе (в области дросселя) в процессе работы ДВС возникает разрежение. Топливно-воздушная смесь в таких условиях разрежения становится инертной, цилиндры наполняются менее эффективно, реакция на нажатие педали газа теряет остроту и становится замедленной.

Лучшим решением данной проблемы становится механическое открытие впускного клапана на такой момент времени, который необходим для эффективного наполнения цилиндра рабочей топливно-воздушной горючей смесью. Продолжительность фазы впуска (впускной фазы) в системах регулирования высоты подъема клапана изменяется зависимо от того, как сильно была нажата педаль газа. Система бездроссельного управления позволяет заметно экономить топливо (до 15% сравнительно с другими решениями), а также повышает мощностную характеристику на 10 % и более.

Конструктивно ГРМ в таких системах способен управлять работой силовой установки на разных режимах. На похожем принципе основываются также решения Valvematic от Toyota, решение VEL компании Nissan, VTI от Peugeot и другие. Что касается системы изменения высоты подъема клапана Valvetronic, возможность управления данным параметром реализована благодаря специальной кинематической схеме. Решение Valvetronic ставится на впускные клапаны. Традиционная конструкция, которая включает в себя кулачок распредвала, рокер (коромысло) и клапан, получила развитие в виде установки дополнительных элементов.

 

Система управления высотой подъема клапанаСистема имеет эксцентриковый вал, а также промежуточный рычаг. Указанный эксцентриковый вал начинает вращаться при помощи усилия, которое создает электродвигатель посредством червячной передачи.

Такое вращение эксцентрикового вала оказывает воздействие на промежуточный рычаг, в результате чего изменяется его положение (происходит смещение точки опоры). Смена положения заставляет коромысло двигаться так, чтобы переместить (открыть) клапан точно на необходимую величину.

Система изменения высоты подъема клапана работает постоянно, а высота подъема клапанов напрямую зависит от того или иного режима работы силового агрегата. Клапана могут подниматься в переделах от 0,2 до 12 мм. Система VEL от компании Ниссан обеспечивает высоту подъема клапана в рамках от 0,5 до 2 мм.

Электромагнитный привод клапана

Электромагнитный привод ГРМ

Сегодня конструкторы ДВС практически полностью используют потенциал ГРМ. Проектируется максимально возможное количество клапанов на цилиндр, а сами размеры клапана достигли своего предела. Но эволюция двигателя на данном этапе продолжается. Улучшить наполняемость и продувку цилиндров двигателя можно также за счет скорости, с которой возможно реализовать открытие и закрытие клапанов. Речь идет о ГРМ, в котором клапана имеют электромагнитный (электромеханический) привод, который заменяет механический с электронным управлением. Более того, распределительный вал в таком ГРМ полностью отсутствует.

Электромагнитный привод ГРМ получил название EVA (англ. Electromagne­tic Valve Actuator) и позволяет изменять фазы газораспределения максимально широко. Система с электромагнитным приводом может открывать только нужные клапана (что аналогично управляемому отключению цилиндров), причем делать это в точно определенный момент зависимо от режима работы ДВС. Решение способно экономить топливо на холостом ходу, в момент торможения двигателем и т.п. Количество попадающего в цилиндр двигателя воздуха регулируется временем открытия впускного клапана.

 

Электромагнитный привод Сама длина хода клапана не является регулируемым параметром. Клапан крепится за счет пружины, а также имеет якорь. Такой якорь электромагнитного клапана размещен между двумя электромагнитами определенной мощности. Задачей таких электромагнитов становится удержание клапана в том или ином крайнем положении.

Точность положения, в котором необходимо осуществить фиксацию клапана, определяется предназначенным для этого отдельным датчиком. Снижение  разрушительных нагрузок на электромагнитный ГРМ в момент приближения клапана к его крайней точке (особенно в момент посадки клапана в седло) осуществляется благодаря «торможению» клапана.

Читайте также

krutimotor.ru

Фазы и механизм газораспределения двигателя

Газораспределительный механизм

Термин «фаза» означает часть, этап или ступень какого-то процесса. Поэтому впускная и выпускная фазы газораспределения – часть полного цикла работы двигателя внутреннего сгорания. Прочитав статью, вы узнаете, что происходит во время фаз, каким образом двигатель регулирует их и на что влияют фазы газораспределения.

Как работает двигатель внутреннего сгорания

Принцип работы двигателя внутреннего сгорания

Воспламенение топливовоздушной смеси в цилиндре двигателя приводит к выделению выхлопных газов и увеличению температуры. Во время такта сжатия поршень движется к верхней мертвой точке (ВМТ) сжимая топливовоздушную смесь или воздух (дизельный двигатель).

Воспламенение происходит незадолго до ВМТ. В бензиновом двигателе топливовоздушную смесь воспламеняет искра свечи зажигания. В дизельном моторе в раскаленный от сжатия воздух впрыскивают распыленное топливо. Когда поршень приближается к нижней мертвой точке (НМТ), наступает выпускная фаза газораспределения. Выпускной клапан открывается и поднимающийся к ВМТ поршень выдавливает из цилиндра продукты горения топливовоздушной смеси. Когда поршень подходит к ВМТ заканчивается фаза выпуска и начинается фаза впуска. Поршень движется в ВМТ, в цилиндре возникает разряжение, благодаря которому воздух засасывает внутрь камеры сгорания. После достижения ВМТ фаза впуска завершается и начинается такт сжатия.

Устройство механизма газораспределения

Газораспределительный механизм (ГРМ) состоит из:

Механизм газораспределения автомобильного двиагателя

Число зубьев шестерни распределительного вала всегда в 2 раза больше, чем у шестерни коленчатого вала.

Благодаря этому за два оборота коленчатого вала происходит лишь один оборот распределительного вала. Это позволяет открывать и закрывать клапаны головки блока цилиндров (ГБЦ) в зависимости от такта двигателя. Фазы газораспределения зависят от расположения кулачков распределительного вала. Поэтому на одновальных двигателях возможна только одновременная регулировка фаз впуска и выпуска. На двухвальных двигателях возможна раздельная регулировка фазы впуска и фазы выпуска. Это позволяет оптимизировать работу двигателя под различные режимы.

Когда кулачок распределительного вала доходит до клапана, то начинает давить на него до тех пор, пока клапан полностью не откроется. Затем кулачок проходит дальше и пружина начинает выдавливать клапан, стремясь закрыть его. Как только давление со стороны распределительного вала исчезает, пружина полностью закрывает клапан. Угол поворота распределительного вала, в течение которого впускные или выпускные клапаны одного цилиндра открыты и называется фазой газораспределения.

На что влияют фазы ГРМ

Фазы газораспределения

В двигателях современных бюджетных автомобилей не предусмотрена автоматическая регулировка фаз газораспределения, поэтому они настроены на средний режим работы. Форма кулачков распределительных валов таких двигателей рассчитана на максимальное наполнение и освобождение цилиндров при скорости вращения, близкой к максимальному крутящему моменту. Обычно он расположен между 2/3 и 3/4 от максимальных оборотов. Поэтому такой двигатель «плохо тянет» на оборотах ниже половины от максимальных.

Почему так происходит? Чем выше обороты двигателя, тем быстрей движутся поршни. В результате давление внутри цилиндра во время фазы выпуска возрастает, но пропускная способность выпускного клапана не меняется. Во время фазы впуска поршень движется быстрей, чем на холостых оборотах, но пропускная способность клапана не меняется. Поэтому чем выше обороты двигателя, тем хуже наполнение цилиндров. Поэтому нередко фазы выпуска и выпуска пересекаются. В то время когда выпускной клапан закрывается, но еще открыт, начинает открываться впускной клапан.

На холостых и низких оборотах часть топлива, которая поступает в двигатель, уходит в выхлопную трубу. Это снижает мощность и экономичность двигателя. По мере роста оборотов влияние этого эффекта слабеет. Поэтому чем выше обороты двигателя, тем длинней должны быть фазы газораспределения. Это позволит избежать снижения мощности мотора.

Если сдвинуть фазы газораспределения от оптимальной точки, то произойдет резкое падение мощности мотора. Ведь цилиндры будут или не до конца освобождаться от выхлопных газов или не до конца наполняться топливовоздушной смесью. Однако оптимальная точка начала фазы и ее продолжительность зависят от нагрузки на мотор и оборотов двигателя. Поэтому тюнинговые мастерские и умелые автомобилисты устанавливают вместо штатной шестерни распределительного вала разрезную шестерню, с помощью которой можно сдвигать фазу на угол до 10 градусов. Также используют тюнинговые распределительные валы, рассчитанные на различные режимы и нагрузки. Те, кто предпочитает ездить на максимальной скорости, устанавливают валы с максимальными фазами впуска и выпуска. Те же, кто ездит на средних оборотах двигателя, избегая резких стартов и больших скоростей, ставят валы с чуть уменьшенными фазами.

Регулятор фаз газораспределения

Гидравлический регулятор фаз газораспределения

Существует большое количество моделей фазорегуляторов, которые работают по различным алгоритмам. Однако, общий принцип неизменен. Когда двигатель работает на низких оборотах, фазорегулятор сокращает впускную и выпускную фазы. Это позволяет сократить расход топлива.

Когда двигатель начинает работать на высоких оборотах или под нагрузкой, регулятор увеличивает продолжительность фаз, а нередко и точку их начала. Это позволяет не только увеличить мощность и крутящий момент, но и снижает расход топлива. Наиболее популярны модели фазорегуляторов, которые работают на основе центробежного принципа. Чем выше обороты двигателя, тем сильней они натягивают цепь или ремень привода ГРМ, тем самым сдвигая и фазы газораспределения. Благодаря тому, что эти устройства регулируют натяжение ремня или цепи со стороны обоих распределительных валов, они эффективно сдвигают обе фазы. Такие фазорегуляторы не требуют настройки, однако после пробега в 40-70 тысяч километров необходимо менять уплотнительные кольца гидроцилиндров.

Более сложные регуляторы представляют собой систему из датчиков, контроллера двигателя и исполнительных устройств. Однако, принцип их работы точно такой же, как у центробежных. Исполнительное устройство увеличивает или ослабляет натяжение цепи со стороны впускного и выпускного валов. Благодаря этому каждая фаза регулируется отдельно. Такие системы требуют настройки и регулярной проверки. Благодаря тому, что исполнительные механизмы работают от электричества, нет необходимости в регулярной замене уплотнительных колец. Существуют также системы, в которых электронное управление совмещено с гидравлическим приводом. В таких системах регулировка происходит не за счет натяжения цепи, а с помощью увеличения давления внутри шестерни распределительного вала.

Чем выше давление, тем дальше гидропривод проворачивает распределительный вал относительно положения шестеренки.

Как установить фазы газораспределения

Газораспределительный механизм (ГРМ)

На большинстве современных автомобилей, оснащенных механическим ГРМ, фазы газораспределения выставляют одинаково. По ВМТ первого цилиндра. Для этого на корпусе блока цилиндров и ГБЦ, а также на шестернях распределительного и коленчатого валов нанесены специальные метки. В первую очередь совмещают метки коленчатого вала. Затем совмещают метки распределительного (распределительных) валов. После этого надевают и натягивают цепь или ремень, затем проверяют метки. Если метки на месте, коленчатый вал прокручивают 2 или 4 раза и снова проверяют метки. Если метки шестерней распределительного и коленчатого валов совпадают с метками на блоке цилиндров и ГБЦ, то фазы выставлены правильно. Если отличаются, необходимо снять цепь или ремень и повторить все операции. 

vipwash.ru

Регулирование фаз газораспределения ДВС - Avtonov

В теории для наполнения цилиндра горючей смесью и выпуска отработанных газов клапаны должны открываться точно в верхней или нижней мертвых точках. На практике же это приходится делать заблаговременно. Причем на разных оборотах двигателя время открытого состояния должно быть разным. Но время и высота подъема клапанов раз и навсегда заданы формой кулачков распредвала, представляя собой компромисс между высоким крутящим моментом на низких оборотах и высокой мощностью на высоких оборотах. Чтобы оптимизировать наполнение и очистку цилиндров двигателя в разных режимах работы были созданы системы изменения фаз газораспределения.

Как двигают фазы

У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое. Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных. В настоящее время используется три способа изменения фаз газораспределения.

Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.

В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана. Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна. Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана. Главный узел – именно клапан, регулирующий давление в системе. Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается. Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%. Максимальная ширина фазы определяется профилем впускного кулачка распредвала.

А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.

Системы регулирования фаз

Система регулирования фаз VTEC от Honda.Система регулирования фаз VTEC от Honda.Система регулирования фаз MultiAir от FIATСистема регулирования фаз MultiAir от FIATСистема регулирования фаз VVT от Volkswagen.Система регулирования фаз VVT от Volkswagen.

avtonov.info


Смотрите также