ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Классификация двигателей и их систем. Компоновка силовой установки машины. Двс классификация


Классификация двигателей. Типы двигателей, их назначение, устройство и принцип работы

Классификация двигателей включает в себя несколько больших групп этих устройств. Стоит отметить, что каждая отдельная группа, в свою очередь, разделяется на еще несколько более мелких. Это обосновано тем, что на сегодняшний день человеком было изобретено огромное количество различного рода двигателей.

Способ приготовления смеси

Классификация двигателей внутреннего сгорания может также осуществляться по тому, каким способом было приготовлено топливо для их работы. К примеру, выделяют два основных вида - это с внешним смесеобразованием и с внутренним смесеобразованием. Под смесеобразованием понимают процесс, в результате которого получают топливо для работы двигателя. Под внешним смесеобразованием понимают процесс приготовления топлива для работы двигателя вне его пределов, то есть в карбюраторе или в смесителе. Естественно, что к этой группе относят те виды этих устройств, которые не способны производить смесь самостоятельно.

классификация двигателей

К внутреннему смесеобразованию относится тот случай, когда процесс производства смеси происходит непосредственно в самом цилиндре двигателя.

Жидкое топливо

Двигатели на жидком топливе относятся к типу ракетных двигателей, то есть используются для запуска ракет. Состоит такое устройство из следующих частей:

Устройства на жидком топливе

В классификации двигателей с жидким веществом в качестве топлива, их относят к группе ракетных устройств. Важно отметить, что в качестве рабочей жидкости можно использовать самое разное топливо. Тут необходимо понимать, что выбор смеси для запуска агрегата будет зависеть от характеристик, предназначения, мощности, а также от продолжительности работы самого двигателя.

классификация двигателей внутреннего сгорания

Среди всех требований, которые чаще всего предъявляются именно к этому классу устройств - это наименьший расход рабочей смеси или же, что то же самое, максимальная удельная тяга. Когда возникает необходимость в выборе смеси для работы двигателя на жидком топливе, обращают внимание на такие параметры, как: скорость воспламенения и горения, плотность, испаряемость, ядовитость, вязкость и еще несколько важных характеристик.

двигателя на жидком топливе

Агрегат с твердым топливом

Классификация двигателей включает в себя еще один вид устройств. Эти агрегаты работают на слегка непривычном, твердом топливе. Тут важно отметить, что сфера применения этих двигателей также ракетная. В качестве основного вещества, являющегося топливом для этого устройства, стал порох. Особенность работы заключается в том, что агрегат работает до тех пор, пока не израсходует весь запас до конца. Сам же порох помещается непосредственно в камеру сгорания двигателя. Такие устройства стали называть твердотопливными ракетными двигателями, или РДТТ.

типы двигателей характеристика

Тут важно отметить, что именно этот класс двигателей является одним из наиболее старых. К тому же именно этот тип устройств стал первым, который нашел свое практическое применение. Еще один важный факт заключается в том, что ранее в качестве топлива использовался дымный порох. С развитием технологий изменился и вид смеси. Людям удалось изобрести бездымный порох для применения в качестве топлива для ракетных двигателей.

твердотопливный ракетный двигатель

Бестопливный двигатель

Один из довольно интересных классов агрегата - это двигатель, не использующий для своей работы какую-либо топливную смесь. Чаще всего такие типы устройств используются, как приводы вращения. Состоит этот агрегат из таких частей, как: диск или маховик, который закрепляется на оси. На этой же детали имеется один или же несколько постоянных магнитов ротора.

Важным условием является то, что эти магниты, как и сам диск или маховик, должны быть установлены так, чтобы ничего не мешало их свободному вращению вокруг своей оси. Еще одна важнейшая деталь бестопливного двигателя - это цилиндрический постоянный магнит стопора, который неподвижно закреплен на штоке, установленном параллельно диску или маховику. Постоянный цилиндрический магнит может вместе со штоком перемещаться в ту зону, где в данный момент времени имеется магнитное поле, созданное магнитами ротора.

Принцип работы бестопливного агрегата

Принцип работы данного устройства заключен в том, что все его магниты повернуты одноименными полюсами в сторону друг друга. Так как одноименные магнитные полюса будут всегда отталкиваться друг от друга, то их движения заставит диск или маховик вращаться вокруг своей оси. Кроме этого типа двигателя, имеется еще один, который очень схож по своему принципу работы с бестопливным.

Таким устройством стал магнитный двигатель, который имеет статор в виде постоянного магнитного кольца, а также ротор (или его еще называют якорь). Этот элемент представляет собой стержневой постоянный магнит, который размещен внутри статора в одной плоскости.

бестопливный двигатель

Недостатком таких типов двигателей стало то, что они нуждаются в подводе электроэнергии для осуществления своей работы. При изобретении такого типа устройства ставилось несколько целей. Необходимо было добиться экологически чистого вида двигателя, который бы не имел вредных выхлопов в процессе своей работы, а также работал без потребления какого-либо вида топлива и без подвода электрической энергии из внешних источников. При этом он также не должен был загрязнять окружающую среду или атмосферный воздух.

Авиационные двигатели

Прежде чем приступить к описанию конкретного класса двигателей, лучше всего разобраться, по какому принципу их разделяют. В настоящее время эта группа классифицируется на два принципиально разных вида. Единственным отличительным признаком одной группы от другой стала возможность работы устройства вне пределов атмосферы. Другими словами, первая категория агрегатов требует для своей работы наличия атмосферы, вторая же не привязана к этому показателю и может эксплуатироваться вне ее пределов. Первая группа получила название атмосферных или воздушных, вторая же называется ракетной.

Стоит отметить, что условно эти типы устройств называют, как винтовыми воздушными двигателями и воздушными реактивными двигателями самолета.

Группа реактивных устройств

Вторая категория устройств, то есть реактивная, включает в себя такие агрегаты, как: турбореактивные воздушные двигатели, прямоточные воздушно-реактивные двигатели. Основное различие этих двух типов устройств заключается в том, что у прямоточных реактивных устройств, сжатие воздуха происходит за счет подвода механической энергии в тракт двигателя. Для работы этого агрегата необходимо создать повышенное статическое давление. Этого эффекта добиваются путем торможения, движущегося во входном устройстве воздухозаборника, воздуха.

реактивный двигатель самолета

Двухконтурные реактивные

Реактивный двигатель самолета этого типа - двухконтурный турбореактивный появился на свет из-за того, что людям требовалось создать устройство, которое бы имело повышенный тяговый коэффициент полезного действия. Добиться повышения этого показателя необходимо было на огромных дозвуковых скоростях. Принцип работы этого устройства выглядит примерно так.

На двигатель набегает воздушный поток, далее он попадает в воздухозаборник, где разделяется на несколько частей. Одна часть проходит через устройство высокого давления, расположенного в первом контуре. Вторая же часть забранного воздуха проходит через лопатки вентилятора во втором контуре. Тут стоит отметить, что принцип построения первого контура в двигателе ТРДД аналогичен тому, что использовался в контуре его предшественника ТРД, а потому и работает он соответственно. А вот действие вентилятора, расположенного во втором контуре движка, аналогично тому, как функционирует многолопастный воздушный винт, который вращается в кольцевом канале.

Можно добавить, что использовать двигатель ТРДД можно и на сверхзвуковых скоростях, но для этого необходимо предусмотреть наличие системы сжигания топлива в его втором контуре, чтобы повысить тягу устройства.

fb.ru

Классификация двигателей и их систем. Компоновка силовой установки машины

Двигатели могут быть классифицированы по различным признакам.

По назначению их подразделяют на стационарные и транспортные. К стационарным относятся двигатели генераторных, компрессорных, буровых и других установок. Они, как правило, работают в постоянном нагрузочном и скоростном режимах. К транспортным относятся двигатели автомобилей, тракторов, тепловозов, судов и других ТС.

По роду основного топлива для традиционных двигателей выделяют те, которые работают на тяжелом (дизельном) и легком (бензин, керосин) топливе, газовые, многотопливные и другие двигатели. Перспективным видом топлива для ТС в настоящее время считается водород.

По способу преобразования тепловой энергии в механическую различают двигатели внутреннего сгорания, у которых сгорание тогшивовоздушной смеси происходит внутри рабочего тела, и внешнего сгорания, у которых этот процесс осуществляется вне рабочего тела, и теплота передается через стенку.

По способу смесеобразования выделяют двигатели с внешним смесеобразованием (бензиновые карбюраторные и с впрыском топлива во впускной коллектор) и внутренним смесеобразованием (все дизели и бензиновые двигатели с непосредственным впрыском топлива в камеру сгорания).

По способу воспламенения рабочей жидкости различают двигатели с самовоспламенением и искровым зажиганием.

По способу осуществления рабочего цикла двигатели подразделяют на двух- и четырехтактные.

По способу регулирования мощности различают двигатели с количественным (изменяется количество смеси, поступающей в цилиндр), качественным (изменяется соотношение количества воздуха и топлива в смеси) и смешанным регулированием.

По конструкции традиционные двигатели подразделяют на поршневые, роторные, газотурбинные и другие, менее известные. На наземных ТС наиболее широкое распространение получили поршневые двигатели:

Различают двигатели без наддува и с наддувом, который может быть динамическим, с турбокомпрессором и приводным компрессором (нагнетателем), а также комбинированным.

В настоящее время на ТС применяют в основном дизели и бензиновые поршневые четырехтактные ДВС. Их отличают автономность, относительная экономичность и высокая удельная мощность. К недостаткам поршневых ДВС можно отнести неоптимальную скоростную, характеристику (изменение мощности и вращающего момента на коленчатом валу в зависимости от частоты его вращения), токсичность отработавших газов, трудность пуска при низких температурах, высокий уровень вибрации и шума.

На колесные и гусеничные тягачи, грузовые автомобили и другие ТС средней и большой грузоподъемности чаще всего устанавливают быстроходные рядные и V-образные дизели, поскольку они экономичнее по сравнению с бензиновыми двигателями, а используемое в них топливо более дешевое и менее пожароопасное. Кроме того, достоинством дизелей является возможность значительного увеличения их мощности за счет применения наддува. Вместе с тем следует отметить, что удельная мощность дизелей меньше, чем у бензиновых двигателей, их топливная аппаратура более сложная и дорогостоящая, а пусковые качества ниже.

Большинство легковых, а также некоторые грузовые автомобили малой и средней грузоподъемности имеют бензиновые двигатели, которые по сравнению с дизелями обладают облегченным пуском при низких температурах, большей компактностью, как правило, повышенной приемистостью и меньшей шумностью. Ранее применялись лишь карбюраторные бензиновые двигатели. В настоящее время наиболее широкое распространение получили двигатели с форсуночным (инжекторным) впрыском бензина.

Для некоторых тяжелых ТС перспективны газотурбинные двигатели. Их преимуществами являются высокая удельная мощность, многотопливность, малая токсичность отработавших газов, возможность выхода на режим максимальной мощности двигателя сразу после пуска, низкий расход смазочного масла, хорошие пусковые качества при низких температурах, автоматическое изменение вращающего момента на валу в довольно широких пределах, малая продолжительность обслуживания, более плавная работа, пониженный уровень вибрации и меньшая эксплуатационная стоимость. К основным недостаткам газотурбинного двигателя, которые ограничивают его использование, следует отнести относительно высокий расход топлива (особенно при малых нагрузках и на холостом ходу), значительный расход воздуха, невысокие динамические (разгонные) характеристики и низкую надежность, связанную с проблемой обеспечения прочности турбинного колеса, которое работает в очень тяжелых температурных условиях.

Агрегаты СУ, обслуживающие двигатель, входят в определенные системы. Различают системы питания топливом, питания воздухом, охлаждения, подогрева двигателя, пуска двигателя, выпуска отработавших газов и смазочную систему. Для бензиновых двигателей с внешним смесеобразованием обычно не разделяют системы питания топливом и воздухом, а говорят просто о системе питания.

Взаимное расположение двигателя и агрегатов его вспомогательных систем в силовом отделении ТС отличается многообразием. Наиболее существенное влияние на компоновку СУ оказывают расположение двигателя в машине, его связь с трансмиссией, тип системы охлаждения, размещение ее агрегатов, топливных и масляных баков.

Все виды компоновочных решений СУ подчиняются общим требованиям, основными из которых являются изоляция СУ от других отделений ТС, рациональное использование объема машины, обеспечение эффективной и надежной работы двигателя и обслуживающих его систем, удобство доступа к агрегатам СУ при обслуживании и ремонте, удобство установки и снятия двигателя и агрегатов его систем.

По взаимному расположению двигателя, кабины (салона, отделения управления) и грузовой платформы (кузова, десантного отделения) различают шесть схем компоновки СУ с двигателем, расположенным:

  1. перед кабиной
  2. под кабиной
  3. в кабине
  4. между кабиной и грузовым отделением
  5. в средней части машины, под грузовой платформой
  6. в задней части машины

На колесных машинах общетранспортного назначения чаще всего применяются первая и вторая схемы, реже — третья. Компоновка СУ с расположением двигателя за кабиной (четвертая схема) используется в основном на тяжелых колесных тягачах, гусеничных тягачах малой и средней грузоподъемности. Пятая схема компоновки (двигатель находится в средней части машины) характерна для специальных ТС, назначение которых не позволяет устанавливать двигатель в другом месте. Двигатель, размещенный в задней части ТС, имеют многие гусеничные машины, автобусы и некоторые колесные машины специального назначения.

Двигатель может устанавливаться как вдоль, так и поперек продольной оси ТС. При продольном расположении двигателя его связь с агрегатами трансмиссии, как правило, наиболее проста (в наибольшей мере это относится к полноприводным многоосным колесным машинам). Однако в этом случае силовое отделение часто имеет большую длину, а в трансмиссии обязательно при-меняются конические зубчатые колеса. При поперечном расположении двигателя значительно сокращается длина силового отделения, но в ряде случаев усложняется связь двигателя с трансмиссией.

В моторном отделении машины двигатель может располагаться вертикально (чаще всего), наклонно или горизонтально. Последний вариант осуществляется тогда, когда небольшая высота моторного отделения имеет решающее значение по компоновочным соображениям.

Все агрегаты систем СУ должны располагаться как можно ближе к двигателю с целью наиболее рационального использования объема силового отделения и сокращения длины соединительных трубопроводов. В случае применения коротких трубопроводов уменьшается вибрация, вызывающая поломки и нарушение герметичности соединений, и снижается гидравлическое сопротивление, что в конечном счете повышает надежность и КПД двигателя и его систем.

Агрегаты СУ, требующие в процессе эксплуатации ТС периодического обслуживания (топливные и масляные фильтры, воздухоочистители, насосы, краны и др.), следует размещать в доступных местах. Эта задача часто весьма сложна, особенно при плотной компоновке моторного отделения. В связи с этим стремятся создавать такие конструкции агрегатов, которые не требуют периодического обслуживания в течение гарантийного срока службы двигателя.

Топливные баки размещают на свободных местах после определения положения двигателя, трансмиссии и других крупных агрегатов.

Воздухоочистители необходимо располагать в верхней части моторного отделения, где запыленность воздуха минимальна, и как можно ближе к двигателю, что уменьшит сопротивление впускного трубопровода.

Особенности размещения в силовом отделении жидкостных и масляных радиаторов или теплообменников определяются типами системы охлаждения и вентилятора.

Основными оценочными параметрами СУ в целом являются масса и габаритные размеры двигателя, а также всех обслуживающих его агрегатов и систем.

У современных колесных и гусеничных ТС доля массы СУ в общей массе машины довольно велика (до 20… 30 %). Наиболее тяжелый агрегат — двигатель, однако суммарная масса вспомогательных агрегатов (топливные баки с горючим, радиаторы, воздухоочистители, топливные и масляные фильтры, пусковые устройства и др.) также значительна.

ustroistvo-avtomobilya.ru

Классификация двс сдм

Vitaliy Akimenkov Vitaliy Akimenkov 5 21 2002-08-11T11:03:00Z 2002-08-11T12:12:00Z 5 1989 11341 www 94 22 13927 9.2812

Двигатели внутреннего сгорания – это тепловые двигатели, в которых химическая энергия топлива, сгорающего внутри рабочей полости двигателя, преобразуется в механическую работу. Двигатели внутреннего сгорания делятся на две группы: дизели-двигатели с воспламенением от сжатия, работающие на дизельном топливе, и карбюраторные двигатели с принудительным зажиганием, работающие на бензине на стреловых кранах основным источником энергии являются дизели, а для их запуска – карбюраторные двигатели. Дизельный двигатель внутреннего сгорания состоит из основных углов: блока-картера, шатунно-кривошипного механизма, механизма газораспределения, системы питания, топливной аппаратуры и регулятора, системы смазки, системы охлаждения, пускового устройства.

image 661 Классификация ДВС СДМ

Схема 1. Классификация ДВС СДМ

ДВС СДМ разделяется на две основные группы: дизельные двигатели и карбюраторные двигатели.

Дизельные двигатели (дизели) используют как основные энергетические установки для создания тягового усилия базовой машины, перемещения её, гидравлического привода навесных и прицепных орудий, а также вспомогательных целей (управления тормозами, рулевым управлением, электроосвещения). Основным дизелем в процессе эксплуатации машины управляют в основном с рабочего места, из кабины машиниста.

Карбюраторные двигатели на тракторах и шасси применяют для запуска основного двигателя.

К отличительным особенностям дизельных двигателей относятся простота конструкции и надёжность в работе, экономичность, лёгкость запуска и управления, надёжность пуска в летнее время и в условиях холодного климата, устойчивость работы.

Двигатели хорошо воспринимают перегрузки в условиях резко переменных режимов работы бульдозеров, бульдозеров-рыхлителей, скреперов и грейдеров, могут работать в запылённых условиях, приспособлены к выполнению технического обслуживания и ремонта.

Двигатели внутреннего сгорания, устанавливаемые на тракторах и шасси, называют автотракторными.

Автотракторные двигатели внутреннего сгорания классифицируют по назначению, типу и способу воспламенения горючих смесей, роду сжигаемого топлива, способу образования горючей смеси, способу охлаждения, числу и расположению рабочих цилиндров.

По назначению эти двигатели можно разделить на основные и пусковые.

Основные двигатели работают постоянно во время выполнения рабочих циклов, передвижения тракторов и шасси с объекта на объект, выполнения вспомогательных операций. Пусковые двигатели включают только в момент запуска основного двигателя.

По типу и способу воспламенения горючей смеси различают дизельные и карбюраторные двигатели. Дизельные двигатели работают на воспламенении топлива в воздушной среде. Горючая смесь воспламеняется за счет повышения температуры воздуха при сжатии в цилиндрах и распыления топлива форсунками.

В карбюраторных двигателях горючую смесь приготавливают в карбюраторе и воспламеняют ее в цилиндрах электрической искрой.

По роду сжигаемого топлива различают двигатели внутреннего сгорания, работающие на тяжелом жидком топливе (например, дизельном, керосине) и работающие на легком топливе (бензине с различными октановыми числами) и газообразном (пропан бутановом).

Тяжелое дизельное топливо используют в дизелях, бензиновое и газообразное – в карбюраторных двигателях. Карбюраторные двигатели с более легким запуском используют как пусковые.

По способу образования горючей смеси используют двигатели с внутренним и внешним смесеобразованием. Внутреннее смесеобразование осуществляется в дизелях, воздух всасывается отдельно и насыщается распыленным дизельным топливом внутри цилиндров перед воспламенением.

Внешнее смесеобразование применяют при бензиновом и газовом топливах. Всасываемый двигателем воздух смешивается с бензином или газом в карбюраторе или смесителе до попадания горючей смеси в цилиндры.

По способу охлаждения известны двигатели с жидкостным и воздушным охлаждением.

Двигатели с жидкостным охлаждением обеспечивают более равномерный режим работы при колебании температуры наружного воздуха и их предпочитают на многих базовых машинах. В качестве охлаждающей жидкости применяют воду или антифризовые жидкости, которые замерзают при более низки

х температурах (до минус 40оС).

Двигатели с воздушным охлаждением обдуваются потоком воздуха, нагнетаемого вентилятором в обребренные поверхности цилиндров. Воздушные двигатели применяют только на гусеничном тракторе Т-330.

По числу и расположению рабочих цилиндров различают одно-, двух-, четырех-, шести-, восьмицилиндровые двигатели- по расположению рабочих цилиндров – вертикально-рядные, V- образные и горизонтально-рядные.

Одно- и двухцилиндровые вертикально-рядные агрегаты применяют на тракторах, пусковых двигателях для включения основного двигателя.

Основные дизели изготовляют в четырех-, шести-, восьмицилиндровом исполнении с вертикально-рядным или V- образным расположением рабочих цилиндров.

Дизельные двигатели обеспечивают по сравнению с карбюраторными больший КПД от 25 до 32%, меньший расход топлива от 25 до 30%, невысокую стоимость эксплуатации за счет более низкой цены тяжелого топлива, проще по конструкции из-за отсутствия системы зажигания

Двигатели внутреннего сгорания обеспечивают независимость базовых машин и агрегатируемых с ними навесных и прицепных дорожно-строительных машин от внешних источников питания, возможность работы их в отдаленных районах, использование в любое время суток, в различных климатических условиях и самостоятельный переход машин с одного строительного объекта на другой.

По принципу работы различают четырех- и двухтактные двигатели. На тракторах и шасси, агрегатируемых с землеройно-транспортными машинами, применяют основные и пусковые двигатели, работающие по четырехтактному циклу.

Схема и процессы, протекающие в одном простейшем рабочем цилиндре поршневого дизельного двигателя, поясняет рисунок 1.

image 664 Классификация ДВС СДМ

Такт — часть рабочего цикла, протекающего за время прохождения поршнем пути от одной мертвой точки до другой.

image 667 Классификация ДВС СДМТакт впуска. При помощи постороннего источника энергии, например электрического двигателя (электро­стартера), вращают коленчатый вал дизеля и поршень его начинает двигаться от в.м.т. к н.м.т. (рис. 1, а). Объем над поршнем увеличивается, вследствие чего дав­ление падает до 75…90 кПа. Одновременно с началом движения поршня клапан открывает впускной канал, по которому воздух, пройдя через воздухоочиститель, посту­пает в цилиндр с температурой в конце впуска 30…50 °С. Когда поршень доходит до н. м. т., впускной клапан за­крывает канал и подача воздуха прекращается.

Такт сжатия. При дальнейшем вращении коленчатого вала поршень начинает двигаться вверх (см. рис. 1, б) и сжимать воздух. Оба канала при этом закрыты клапана­ми. Давление воздуха в конце хода достигает 3,5… 4,0 МПа, а температура — 600…700 °С.

Рабочий ход (такт расширения). В конце такта сжа­тия при положении поршня, близком к в. м. т., в цилиндр через форсунку (рис. 1, в) впрыскивается мелкораспы­ленное топливо, которое, смешиваясь с сильно нагретым воздухом и газами, частично оставшимися в цилиндре после предыдущего процесса, воспламеняется и сгорает. Давление газов в цилиндре при этом повышается до 6,0…8,0 МПа, а температура — до 1800…2000 °С. Так как при этом оба канала остаются закрытыми, расширяю­щиеся газы давят на поршень, а он, перемещаясь вниз, через шатун поворачивает коленчатый вал.

Такт выпуска. Когда поршень подходит к н. м. т., вто­рой клапан открывает выпускной канал и газы из цилиндра выходят в атмосферу (см. рис. 1, г). При этом поршень под действием энергии, накопленной за рабочий ход маховиком, перемещается вверх и внутренняя по­лость цилиндра очищается от отработавших газов. Дав­ление газов в конце такта выпуска составляет 105… 120 кПа, а температура — 600…700 °С.

После такта выпуска рабочий процесс начинает повторяться, т. е. следующим тактом опять будет впуск, за­тем сжатие и т. д. в течение всей работы двигателя.

В карбюраторном четырехтактном двигателе процессы протекают аналогичным образом, в той же последовательности. Исключением является то, что горючая смесь приготавливается в карбюраторе сразу после воздухоочистителя. Вместо форсунки в камере сгорания установлена электрическая свеча, которая в конце сжатия горючей смеси образует искру. Искра поджигает смесь, и продукты сгорания под давлением воздействуют на поршень. Он опускается, выполняя рабочий цикл.

На тракторах в качестве пускового устройства дизеля применяют карбюраторные двигатели — небольш

ие по размерам и мощности двигатели внутреннего сгорания, работающие на бензине.

Устройство этих двигателей несколько отличается от устройства четырехтактных. У двухтактного двигателя отсутствуют клапаны, закрывающие каналы, по которым в цилиндр поступает свежий заряд и происходит выпуск отработавших газов. Роль клапанов выполняет поршень 7 (рис. 2, а), который в нужные моменты открывает и закрывает окна, соединенные с каналами, продувочное окно 1, выпускное окно 3 и впускное окно 5. Кроме того, картер двигателя сделан герметичным и образует криво­шипную камеру 6, где располагается коленчатый вал.

image 671 Классификация ДВС СДМ

Все процессы в таких двигателях происходят за один оборот коленчатого вала, т. е. за два такта, поэтому они и носят название двухтактных.

image 674 Классификация ДВС СДМСжатие — первый такт. При движении поршня вверх он перекрывает продувочное 1 и выпускное 3 окна и сжи­мает ранее поступившую в цилиндр топливовоздушную смесь. Одновременно с этим в кривошипной камере 6 создается разрежение, и в нее через открывшееся впуск­ное окно 5 поступает свежий заряд топливовоздушной смеси, приготовленной в карбюраторе 4.

Рабочий ход, выпуск и впуск — второй такт. Когда поршень, идущий вверх, не доходит до в. м. т. на 25… 27° (по углу поворота коленчатого вала), в свече 2 проскакивает искра, которая воспламеняет топливо. Горение топлива продолжается до прихода поршня в в.м.т. После этого нагретые газы, расширяясь, толкают поршень вниз и тем самым совершают рабочий ход (см. рис 2, б). Топливовоздушная смесь, находящаяся в это время в кривошипной камере 6, сжимается.

В конце рабочего хода поршень вначале открывает выпускное окно 3, через которое выходят отработавшие газы, затем продувочное окно 1 (рис 2, в), через которое из кривошипной камеры в цилиндр поступает свежий заряд топливовоздушной смеси. В дальнейшем все эти процессы повторяются в такой же последовательности.

Достоинства двухтактного двигателя заключаются в следующем. Так как рабочий ход при двухтактном про­цессе происходит за каждый оборот коленчатого вала, мощность двухтактного двигателя на 60…70 % превыша­ет мощность четырехтактного двигателя, имеющего такие же размеры и частоту вращения коленчатого вала. Устройство двигателя и его эксплуатация более простые.

Недостаток двухтактного двигателя — повышенный расход топлива и масла за счет потери топливовоздуш­ной смеси при продувке цилиндра.

Так как из четырех тактов только один является рабочим, одноцилиндровый четырехтактный двигатель работает очень неравномерно. Чтобы исключить это, применяют маховик, который устанавливают на выходе коленчатого вала.

Для повышения мощности двигателя и равномерности его хода применяют многоцилиндровые двигатели, состоящие из двух, четырех, шести или восьми элементарных цилиндров. В многоцилиндровом двигателе чаще повторяются рабочие такты, более равномерно вращается коленчатый вал, снижается масса маховика, вибрация при работе. Рабочие такты следуют один за другим через одинаковые промежутки времени в разных цилиндрах.

Последовательность рабочих тактов называют порядком работы цилиндров двигателя. Например, в четырехцилиндровом четырехтактном двигателе за два оборота коленчатого вала происходят последовательно рабочие такты во всех цилиндрах в разное время, в соответствии с установленным порядком работы. В двухтактном двигателе рабочие процессы всасывания горючей смеси, ее сжатие, рабочий ход и выхлоп производят за два такта работы. При подъеме поршня сначала цилиндр наполняется горючей смесью, затем происходит ее сжатие и воспламенение (от сжатия в дизеле или электрической искры в карбюраторном двигателе). Затем после взрыва и сгорания горючей смеси поршень опускается и в конце хода рабочая камера сообщается с атмосферой, выхлопные газы выходят наружу, а новая порция горючей смеси входит в цилиндр. Двухтактный цикл применяют в пусковых двигателях.

К основным показателям двигателей относятся эффективная мощность (кВт), частота вращения коленчатого вала (мин-1), крутящий момент (Н?м), часовой (кг/ч) и удельный (грамм/эффективный?Вт?ч) расходы, КПД.

Эффективная мощность – это мощность, развиваемая на коленчатом валу. Наиболее полно характеризует двигатель эксплуатационная максимальная мощность на маховике при самой высокой подаче топлива за вычетом всех внутренних потерь, ко

Объем цилиндра и площадь его поверхности

Как установить фото на рабочий стол?

remontscooter.ru

Классификация типов двигателей | Двигатель автомобиля

Двигателям внутреннего сгорания присваиваются различные буквенно-цифровые коды, в зависимости от особенностей их конструкции. Помимо четырех-тактных бензиновых двигателей внутреннего сгорания в автомобилях применяются также дизельные и роторные двигатели.

Дизельный двигатель

Дизельный двигатель широко применяется в автомобилях повышенной грузоподъемности и стационарных силовых установках, которые работают обычно на постоянной скорости. Дизельный двигатель обладает высоким термическим КПД, поэтому отличается высокой экономичностью. В выхлопных газах дизельного двигателя содержится низкий процент углеводородов и окислов углерода. Такие характеристики делают его хорошей альтернативой поршневому бензиновому двигателю в автомобилях. По конструкции оба двигателя очень похожи. Дизельный двигатель тяжелей и дороже бензинового. У этих двигателей принципиально разные топливные системы и системы зажигания. В дизельном двигателе в камеру сгорания всасывается только воздух. Он сжимается поршнем во время такта сжатия до такой степени, что нагревается при этом до температуры примерно 1000°Ф (540°С). Когда поршень доходит до верхней мертвой точки, в камеру сгорания через топливную форсунку впрыскивается под давлением топливо. Под действием высокотемпературного сжатого воздуха топливо воспламеняется. Давление рабочего газа, образующегося в результате сгорания топлива, толкает поршень вниз, и он совершает рабочий такт. Коленчатый вал продолжает вращаться и заставляет поршень снова двигаться вверх, вытесняя отработавшие газы из камеры сгорания через выпускной клапан. Использование дизельного двигателя в легковых автомобилях сдерживается двумя факторами: высокой стоимостью двигателя и сложностью достижения очень низкой нормы окислов азота в выхлопных газах, регламентированной стандартами.

Рабочий цикл четырехтактного дизельного двигателя

Рис. Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл двухтактного дизельного двигателя

Рис. Рабочий цикл двухтактного дизельного двигателя

Роторный двигатель

Вторым типом успешно реализованного альтернативного двигателя является роторный двигатель, называемый также по имени его изобретателя двигателем Ванкеля (Wankel). Единственный пример автомобиля с роторным двигателем, выпускаемого длительное время, — Mazda RX-7. Роторный двигатель обладает рядом преимуществ перед поршневым двигателем. Двигатель с вращающейся камерой сгорания работает ровно и обладает высокой удельной мощностью.

Поскольку конструкция двигателя обеспечивает большую охлаждающую поверхность камеры сгорания, он работает на низкооктановом бензине.

Принципиальной особенностью роторного двигателя является ротор, имеющий в поперечном сечении треугольную форму, который вращается в рабочей полости корпуса двигателя. Форма рабочей полости в плане представляет собой геометрическую фигуру, называемую двухлепестковой эпитрохоидой. Уплотнения на углах, или ребрах, ротора постоянно находятся в контакте с поверхностью полости, поэтому ротор должен совершать планетарное движение. Это означает, что центр ротора движется вокруг центра двигателя.

Рабочий цикл одной из камер сгорания роторного двигателя внутреннего сгорания

Рис. Рабочий цикл одной из камер сгорания роторного двигателя внутреннего сгорания

На рисунке показано планетарное движение ротора. При планетарном движении ротора между его гранями и стенками полости образуются расширяющиеся и сжимающиеся камеры. В расширяющуюся камеру через впускной канал засасывается топливно-воздушная смесь. На рисунке показан впускной канал в корпусе двигателя.

Роторный двигатель автомобиля Mazda

Рис. Роторный двигатель автомобиля Mazda (вид в разобранном состоянии)

Когда расширяющаяся камера достигает максимального объема, впускной канал отсекается от нее проходящим уплотнением ротора. Дальнейшее вращение ротора вызывает уменьшение объема камеры, в процессе которого происходит сжатие смеси. Искра свечи зажигания воспламеняет смесь. Высокое давление газов, образовавшихся при сгорании смеси, создает механический импульс, заставляющий ротор вращаться, расширяя камеру. Когда камера снова достигает максимального объема, одно из уплотнений на конце ротора минует выпускной канал, открывая его и позволяя отработавшим газам, находящимся под высоким давлением, покинуть камеру. Дальнейшее вращение ротора приводит к уменьшению объема камеры, в результате чего из нее выталкиваются остатки отработавших газов. На этом заканчивается рабочий цикл, аналогичный четырехтактному рабочему циклу поршневого двигателя. Ротор продолжает вращаться и рабочий цикл повторяется — начинается впуск новой порции смеси.

Помимо показанной на рисунке камеры сгорания, аналогичный рабочий цикл совершают еще две камеры сгорания, образуемые гранями ротора и стенкой рабочей камеры двигателя. В результате за один оборот ротора совершаются три последовательных рабочих цикла.

Энергия ротора заставляет вращаться эксцентриковый вал. Механизм действия этой кинематической схемы аналогичен механизму работы шатуна и коленчатого вала. За один оборот ротора эксцентриковый вал совершает три оборота. Таким образом, эксцентрик неизменно занимает правильную позицию, необходимую для восприятия каждого последующего импульсного момента вращения. Зубчатое колесо внутреннего зацепления, закрепленное на роторе, находится в зацеплении с зубчатым колесом внешнего зацепления, установленным на одном из торцов рабочей камеры двигателя. Назначение этой зубчатой передачи — поддерживать правильную синхронизацию ротора по отношению к эксцентрику и рабочей камере. Эти шестерни не участвуют в передаче крутящего момента (не испытывают нагрузки, создаваемой крутящим моментом).

Впускной и выпускной каналы в одних конструкциях двигателя проходят в стенке рабочей камеры, соприкасающейся с уплотнениями ротора, а в других — в ее торцевых стенках. Выемки в гранях ротора формируют камеры сгорания. Поскольку камера сгорания имеет достаточно большую длину, в некоторых конструкциях для быстрого, полного сгорания смеси используются две свечи зажигания. В этом случае требуются две отдельных системы зажигания.

Геометрическая форма рабочей камеры роторного двигателя

Рис. При снятом роторе видна геометрическая форма рабочей камеры роторного двигателя (так называемая эпитрохоида). Плавность обводов рабочей камеры — свидетельство высокого класса технологии

Ротор со снятым уплотнением ребер

Рис. Ротор со снятым уплотнением ребер

ustroistvo-avtomobilya.ru

Классификация двигателей внутреннего сгорания - Технический

Рост и развитие всех отраслей народного хозяйства, требует перемещения большого количества грузов, а также и пассажирских перевозок в нашей стране. Основным видом транспорта, который     больше всего подходит для выполнения этих перевозок является, — автомобиль, который принципиально не изменился за последний век. Он как и раньше оснащен двигателем внутреннего сгорания. Трансмиссией, механизмами управления. Кузовом и колесами. Однако все узлы, агрегаты, механизмы и системы автомобиля значительно усложнились за последние годы, благодаря чему резко выросла экономичность автотранспорта, скорость перевозок, комфортабельность автомобилей, улучшился их дизайн, увеличилась их мощность и надежность, а также в системы управления автомобилей введенные элементы автоматизации, а большинство иностранного автотранспорта оборудуют компьютерами. Как и раньше автомобиль — это транспортная безрельсовая машина на колесном, или полугусеничному ходу, который привозится в движение собственным двигателем и предназначается для перевозки грузов, людей и выполнения специальных заданий.

Любой автомобиль состоит из трех основных частей: двигателя, шасси и кузова. Двигатель превращает тепловую энергию, которая выделяется во время сгорания топлива, на механическую работу.

Двигатели внутреннего сгорания бывают: поршневыми, в которых весь рабочий процесс осуществляется в воздушном компрессоре, камере сгорания и газовой турбине.

На большинстве современных автомобилей устанавливают поршневые двигатели внутреннего сгорания.

По способу смесеобразования и зажигания топлива автомобильные поршневые двигатели разделяются на две группы:

ДВС состоят из таких механизмов и систем :

Кривошипно-шатунного механизма, который служит для превращения возвратно-поступательного движения поршня на вращательное движение коленей вала.

Механизм газораспределения обеспечивает своевременное заполнение горючей смеси в цилиндрах (или воздухом) и удаления из них отработанных газов.

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя.

Система смазывания обеспечивает смазку трущихся поверхностей двигателя, подачу к ним оливы, частичное охлаждение их, удаление продуктов отработки и очистка оливы.

Система питания карбюраторного двигателя служит для очистки топлива и воздуха. Приготовление горючей смеси, представления ее в цилиндры и удаления продуктов сгорания.

Система зажигания обеспечивает воспламенение горючей смеси в цилиндрах карбюраторного двигателя и содержит источник энергии и преобразователя низкого напряжения системы электрообеспечения автомобиля на высокое напряжение свечи зажигания. Искра от которого зажигает горючую смесь в цилиндре двигатель в нужный момент.

Поршневой двигатель состоит из цилиндра, картера, который снизу закрыт поддоном.

В середине цилиндра перемещается поршень с компрессионными кольцами. Поршень через поршневой палец и шатун связан с коленчатым валом, о вращается в коренных подшипниках расположенных в картере.

Коленей вал состоит из коренных моек, щек и шатунных шеек. Цилиндр, поршень, шатун и коленей вал образуют кривошипно-шатунный механизм, который превращает возвратно-поступательное движение поршня во вращательное движение коленей вала. Сверну цилиндр накрытый головкой с клапанами: впускного и выпускного, которые точно согласуются с вращением коленей вала, а следовательно с перемещением поршня. Верхнее крайнее положение поршня в цилиндре, в котором его скорость равняется нулю, называется Верхней Мертвой Точкой, нижнее крайнее положение — Нижней Мертвой Точкой. Расстояние, что ее проходит поршень от одной мертвой точки к другой называется ходом поршня, а расстояние между осями коренных и шатунных шеек — радиусом кривошипа.

Объем, который высвобождается поршнем когда тот перемещается от верхней мертвой точки к нижней мертвой точке, — представляет рабочий объем цилиндра.

Рабочие циклы в большинстве автомобильных двигателях осуществляется за четыре ходы поршня (впуск, сжимание. Рабочий ход, выпуск), потому эти двигатели называются четырёхтактными.

Так, как двигатель автомобиля является одним из наиболее сложных агрегатов, для этого нужно своевременно контролировать его техническое состояние и выполнять все необходимы регулировки, для того о продолжить срок службы без разработки.

Основными показателями двигателя является мощность расход топлива и оливы.

Мощность двигателя можно проверить на стенде с беговыми барабанами, куда автомобиль можно поставить задними колесами. Здесь еще контролируют расход топлива, дымность выхлопа, работу электрооборудования и системы зажигания под нагрузкой, действую трансмиссию и вторую.

Техническое состояние кривошипно-шатунного механизма определяют проверкой давления в каждом цилиндре в цилиндре такта Сжимания. Измерением потери воздуха в каждом цилиндре, при наличии дыма из оливо заливной горловины, повышенной растрате оливы, прослушиваниям.

В газораспределительном механизме зазоры между клапанами и коромыслами необходимо систематически проверять и при необходимости регулировать, так я к увеличение или уменьшение зазоров снижает мощность двигателя и приводит к поломке деталей газораспределительного механизма.

В системе охлаждения двигателя температуру охлаждаемой жидкости необходимо поддерживать в границах 80о-90о С с помощью термостата. Это обеспечит наименьшую выработку деталей двигателя при минимальном расходе горючего.

В обслуживание системы смазывания входит ежедневное контролирование уровня оливы в поддоне двигателя, периодическую его замену, очистку, промывку и замену фильтров тонкой очистки и контроль герметичности соединений при отсутствии протекания оливы.

Система питания карбюраторных двигателей необходимо проводить как при неработающем так и при работающем двигателе.

При неработающем двигателе проверяют крепление всех узлов и герметичность соединения деталей, а при работающем — отсутствие подтеканий горючего из бака, через соединение топливопроводов к карбюратору, а также состояние прокладок впускного и выпускного трубопроводов и отстойников топлива.

Для нормальной работы дизельного четырёхтактного двигателя необходима высокая частота топлива и герметичность магистралей.

Детали топливного насоса высокого давления и форсунки изготовляют с большой точность, после индивидуальной притирки зазоров в паре плунжера не превышает 0,005 мм

Для достижения исправности двигателя, который развивает полную мощность, работает без перебоев при полных нагрузках и холостом ходе, не перегревается, не дымит и не пропускает оливу и охладительную жидкость сквозь уплотнение. Неисправности можно обнаружить с помощью диагностирования и по внешним признакам.

В СТО — входит очистка двигателя от грязи и проверка его состояния. Двигатель очищают от грязи скребками, моют щеткой, смоченной у раствора соды, или стирального порошка, а потом досуха вытирают. Состояние двигателя проверяют внешним обзором и прослушиванием его работы на разных режимах.

При ТО-1 проверяют крепление опор двигателя, а также герметичность соединения головки цилиндров, подданная картера, сальника коленчатого вала. О неплотности прилегания головки можно судить о подмоклыми местах на стенках блока цилиндров. Неплотность прилегания поддона картера и сальника коленчатого вала обнаруживают за подтоками оливы. Проверяя крепление опор двигателя, гайки надо расшплинтовать, подтянуть до упора и опять зашплинтовать.

В ТО-2 входит подтянуть гайки крепления головки цилиндров (на холодном двигателе с помощью динамометрического или обычного ключа из комплекта инструмента водителя). Усилие во время затягивания должен представлять 73.78Н. Подтягивать резьбовые соединения следует равномерно, без рывков, в точно определенном порядке для каждого типа двигателя. Затягивать гайки крепления головки блока надо от центра. Постепенно перемещаясь к краям. На V — подобных двигателях, прежде чем подтягивать крепление головок цилиндров, следует злить воду из системы охлаждения и ослабить гайки крепления впускного трубопровода. После подтягивания гаек головки цилиндров надо опять затянуть гайки впускного трубопровода и отрегулировать зазоры между клапанами и коромыслами.

Крепления поддона картера выполняют на обзорной канаве. При этом автомобиль надо затормозить ручным тормозом, включить самую низкую передачу, выключить зажигание а под колеса подложить колодки. Проверить зазор между стержнем клапана и носком коромысла и, если надо, отрегулировать его.

СТО проводится дважды на год, и при этом проверяется состояние цилиндропоршневой группы двигателя, системы охлаждения и наличие охладительной жидкости, а также нет ли подтёков в системе смазывания, изменение сорта оливы, в зависимости от времени года, а также разборки, очистки и регулирования карбюратора, редукторов, фильтров, электромагнитных, запорных клапанов.

В дизельных двигателях проводится регулирование топливной аппаратуры, при необходимости ее замены, а также замена фильтров очистки топлива.

При капитальном ремонте выполняется полный объем работ, которые включают все ТО, включая замену изношенных деталей, как двигателя так и всех основных систем автомобиля.

Все водители и техническая обслуга обязательно должны знать и выполнять правила техники безопасности и правила технической безопасности. Существуют четыре вида инструктажа : вводной инструктаж при принятии на работу; инструктаж на рабочем месте;

Повторный инструктаж на рабочую месте, дополнительный (внеплановый) инструктаж.

В результате вводного инструктажа водитель должен знать основные положения законодательства Украины по технике безопасности и конкретной инструкции.

Инструктаж на рабочем месте проводит начальник колонны. Или инженер по технике безопасности, проводя его практическим показом правильных и безопасных приемов работы.

В результате инструктаж на рабочем месте водитель должен знать конструктивные особенности закрепленного за ним автотранспорта, порядок подготовки его к работе, методы безопасной работы и пробирки исправности узлов и агрегатов.

Повторный инструктаж проводится не реже однажды в шесть месяцев.

Дополнительный инструктаж еще проводится при изменении типа работ, или подвижного состава и виды условий работы например: во время интенсивных перевозок сельскохозяйственной продукции в осенний период.

Водители, которые виноваты в нарушении правил техники безопасности. Подлежат дисциплинарному, или административному наказанию, или могут быть привлечены и к судебной ответственности.

Все способы сварки можно классифицировать по двум основным назначениям:

а) по состоянию металла в сварочной зоне — на сварку плавлением и сварки с помощью давления;

б) по виду энергии для нагревания металла — на прессовую (холодную) сварку, механическую (трением), химическую (кузнечную, газовую, термическую, срывом), электрическую (дуговую), электрошлаковую, контактную, сжатой дугой, электро лучом).

Способы сварки плавлением:

При сварке плавлением кромки сварочных деталей и пересадочные материалы расплавляется теплотой сварочной дуги или газовым пламенем, образовывая сварочную ванну.

По мере перемещения источника нагрева металл сварочной ванны кристаллизующийся. Образовывая сварной шов, который и соединяет детали, которые свариваются.

К сварке плавлением относятся: дуговая, электрошлаковая, газовая, электронно лучевая, плазменная, термитная, дуговая сварка под флюсом, сварка в защитных газах.

Виды и способы сварки с перемещением давления.

Сварка с помощью давления осуществляется пластическим деформированием металла в месте соединения под действием сжимающих усилий. В результате разные загрязнения и окиси на сварочных поверхностях вытесняются на верх, а чистые поверхности приближаются по всему разрезу расстояние атомного сцепления.

Сварка с помощью давления выполняется как с местным нагревом к пластичному состоянию (контактная, индукционная, термитно-прессовая, газопрессовая, диффузионная) так и без нагрева металла внешним источником тепла (ультразвуковая, холодная, трением, срывом и др.).

hron.com.ua

Классификация двигателей автомобиля и их маркировка

Двигатели классифицируется по ряду характеристик:

Четырех-, пяти- и шестицилиндровые двигатели, как правило, по конструкции — рядные двигатели.

У V образных двигателей, например V-6 или V-8, цилиндры попарно установлены под углом друг к другу в два ряда, напоминая букву V.

Варианты расположения цилиндров в автомобильном двигателе

Рис. Варианты расположения цилиндров в автомобильном двигателе

Типичная схема компоновки ходовой части заднеприводного автомобиля с передним расположением двигателя

Рис. Типичная схема компоновки ходовой части заднеприводного автомобиля с передним расположением двигателя

Два варианта расположения двигателя в переднеприводном автомобиле

Рис. Два варианта расположения двигателя в переднеприводном автомобиле

V-образный шестицилиндровый двигатель, установленный в моторном отсеке переднеприводного автомобиля с продольным расположением двигателя

Рис. V-образный шестицилиндровый двигатель, установленный в моторном отсеке переднеприводного автомобиля с продольным расположением двигателя

ПРИМЕЧАНИЕ

Хотя, может быть, и можно смонтировать один и тот же двигатель в разных моделях автомобилей, как с продольным, так и с поперечным расположением, однако комплектующие в обоих случаях могут оказаться не взаимозаменяемыми. Разными могут быть не только блоки цилиндров и коленчатые валы, но и водяные насосы.

Разрез двигателя с верхним расположением клапанов

Рис. Разрез двигателя с верхним расположением клапанов и нижним расположением распределительного вала, на котором видны поршень, клапан, пружина клапана, клапанное коромысло и штанга толкателя клапана

Варианты размещения распределительного вала

Рис. Варианты размещения распределительного вала

Внешний вид V образного шестицилиндрового двигателя

Рис. Внешний вид V образного шестицилиндрового двигателя, оснащенного клапанным механизмом с двумя верхними распределительными валами, со снятыми крышками головок блока цилиндров и зубчатым ремнем привода распределительных валов

ПРИМЕЧАНИЕ

В V-образном двигателе цилиндры расположены в два ряда. Таким образом, в двигателе схемы SOHC (с одним верхним распределительным валом) используется два распределительных вала — по одному в каждом ряду цилиндров. В двигателе схемы DOHC (с двумя верхними распределительными валами) используется четыре распределительных вала — по два в каждом ряду цилиндров.

Точно установить год выпуска автомобиля бывает непросто. Выпуск новой модели, объявленной в продажу на будущий год, может начаться уже в январе предшествующего ему года. Обычно, но не всегда, выпуск моделей нового года начинается в сентябре-октябре текущего года. Вот почему идентификационный номер (VIN), которым маркируются автомобили, столь важен. Пример идентификационного номера показан на рисунке.

Фотография внешнего вида идентификационного номера автомобиля (VIN), который виден через ветровое стекло автомобиля

Рис. Фотография внешнего вида идентификационного номера автомобиля (VIN), который виден через ветровое стекло автомобиля

Начиная с 1981 г. все производители автомобилей маркируют автомобили этим 17-значным номером. Хотя часть из семнадцати позиций номера кодируется каждым производителем по собственному усмотрению, но есть позиции, правила кодирования которых жестко регламентированы. Например:

Таблица кодировки года выпуска

Что такое Юлианское представление даты?

Изменения в конструкцию и комплектацию двигателя вносятся постоянно. Для технических специалистов информация о том, с какого момента вступило в силу то или иное изменение, сообщается в сервисных бюллетенях, руководствах по техническому обслуживанию и каталогах комплектующих — как правило, либо в виде граничного номера автомобиля, либо в виде Юлианской даты. Юлианская дата представляет собой просто порядковый номер дня года. Например, первое января в Юлианском представлении — это день 001, а 31 декабря, обычно, — день 365. Юлианское представление даты широко используется в промышленности. Само название связано с Юлием Цезарем, который впервые ввел календарь, в котором продолжительность года составляла 365 дней, а раз в четыре года — 366 дней. Выпускаются календари, в которых указаны Юлианские даты всех дней в году, что упрощает использование этой формы представления даты.

ustroistvo-avtomobilya.ru


Смотрите также