Содержание

конструкция, принцип работы, классификация, характеристики

Постоянное совершенствование технологий и развитие точного электрооборудования приводит к созданию новых и преобразованию старых устройств. Такому совершенствованию подвергаются и электрические машины, которые неоднократно преобразовывались для получения точного позиционирования. При массовом внедрении полупроводниковых приборов появилась возможность заменить классические щетки на p-n переходы, в результате чего был создан  вентильный двигатель.

Конструкция и принцип работы

Конструктивно вентильный агрегат представляет собой разновидность синхронного двигателя.

В его состав входят:

  • Ротор, как правило, из магнитного материала, реагирующий на воздействие электромагнитного поля. 
  • Статор, включающий в себя фазы обмоток, намотанные в катушки станину и диэлектрическую прокладку.
  • Измерительные датчики (чаще всего Холла), позволяющие определить положение вращения вала.
  • Микропроцессорный блок, формирующий импульсы, их форму, задающие частоту вращения ротора, сравнивающий показания датчиков и подаваемого переменного тока на фазные обмотки.

Пример конструкции вентильного двигателя приведен на рисунке ниже:

Рис. 1. Конструкция вентильного двигателя

Принцип работы вентильного двигателя заключается в четком позиционировании постоянных магнитов на роторе по отношению к формируемому пику электромагнитного импульса на фазных электрических обмотках. При движении магнитов датчики воспринимают информацию об их положении в пространстве и меняют пропускную способность реактивных вентильных преобразователей, что позволяет валу вращаться дальше. Таким образом, управление вращением осуществляется без использования скользящего контакта, поэтому данная категория электрических машин относится к категории бесколлекторных электродвигателей.

Статор

Рис. 2. Конструкция статора вентильного двигателя

Конструктивно статор мало чем отличается от классических моделей синхронных и асинхронных двигателей. Это металлический цельнолитой или наборной магнитопровод, в пазах которого укладываются фазные провода. Количество обмоток якоря определяется числом подключаемых фаз и периодичностью их чередования. Чем чаще уложены обмотки статора, тем точнее контролируется вращение вентильного электродвигателя.

Полюса статора также могут характеризоваться смещением на строго определенный угол, как и его обмотки. По количеству фаз коммутации вентильные двигатели бывают двух-, трех-, четырех- и шестифазными.

Ротор

В зависимости от конструкции ротора бесконтактные двигатели могут иметь внутрироторное и внешнероторное исполнение.

Рис. 3. Внешнероторные и внутрироторные модели

Количество пар полюсов также может отличаться, но уже без каких-либо привязок к обмоткам, как правило, этот параметр варьируется от двух до шестнадцати с парным шагом.

В более старых моделях для бесколлекторных двигателей использовались постоянные магниты из ферритовых сплавов. Которые отличались доступностью и относительно более низкой себестоимостью, но имели слишком низкие показатели индукции. Однако с постепенным развитием технологий, на смену им пришли магнитные элементы из редкоземельных металлов. Этот вариант обладает более точным позиционированием, но и стоит он дороже.

Рис. 4. Вентильный двигатель с внешним ротором

Датчик положения ротора

В синхронных электродвигателях датчик необходим для осуществления обратной связи с положением вала механического устройства. В зависимости от принципа действия могут применяться датчики:

  • Фотоэлектрического принципа действия;
  • Трансформаторного;
  • Индуктивного;
  • На эффекте Холла.

Рис. 5. Датчик положения ротора

Наиболее распространенными вариантами для практической реализации стали фотоэлектрические датчики и датчики с эффектом Холла. Они обладают большей точностью и меньше запаздывают при передаче данных в канале связи. Датчики привязываются к определенным маркерам на валу и реагируют на их прохождение.

Система управления

В состав блока управления, как правило, входит микроконтроллер и электронный ключ для подключения к двух- или трехфазным обмоткам двигателя. Микроконтроллер или микропроцессор необходим для обработки получаемых с датчиков сигналов и последующего преобразования синусоидальной коммутации в более удобную форму сигнала. Электрические преобразователи выполняется на базе полупроводниковых транзисторов, соединенных по мостовой схеме. Они производят широтно-импульсную модуляцию питающего напряжения в соответствии с заданным режимом работы.

Рис. 6. Электронный ключ вентильного двигателя

Классификация

По типу питания вентильные  электрические машины подразделяются на электродвигатели постоянного и переменного тока.

По способу взаимодействия магнитного поля статора и ротора встречаются синхронные, асинхронные и индукторные аппараты.

Помимо этого, в зависимости от числа задействованных фаз они разделяются на:

  • Однофазные – представляю собой наиболее простой вариант, где используется минимум линий передачи питающего напряжения от блока управления к его обмоткам. Однако в некоторых позиция существует трудность пуска такого вентильного двигателя под нагрузкой.
  • Двухфазные – обладают хорошей связью между обмоткой и статором. Но выдают довольно сильные пульсации, которые могут привести к негативным последствиям в работе.
  • Трехфазные – наиболее распространенные варианты, способные выдать плавный пуск и нормальный режим работы вентильного двигателя. Характеризуется четным количеством обмоток и хорошими тяговыми характеристиками. К его недостаткам относят лишь чрезмерный шум во время работы.
  • Четырехфазные – характеризуются минимальными пульсациями низким пусковым моментом. Но, в сравнении с другими моделями, они имеют высокую себестоимость, из-за чего применяются редко.

Рис. 7. Четырехфазный вентильный двигатель

Технические характеристики

При выборе конкретной модели важно определить ее соответствие месту установки, поэтому важно обращать внимание на следующие характеристики вентильных двигателей:

  • номинальное напряжение – определяет питающую величину, которая должна подаваться на вентильный двигатель для получения номинального усилия;
  • потребляемая мощность – характеристика электродвигателя, показывающая величину мощности, расходуемую на работу устройства;
  • КПД – показывает соотношение полезной работы, совершаемой вентильным двигателем к израсходованной мощности;
  • мощность на валу – полезная работа электрической машины, совершаемая за счет тягового усилия;
  • номинальная частота – определяет количество оборотов в минуту, которые вентильный двигатель может совершать в номинальном режиме работы;
  • диапазон регулировки частоты – показывает, в каких пределах можно изменять частоту оборотов вала для конкретной модели;
  • номинальный крутящий момент – определяет усилие, создаваемое на валу вентильного двигателя при оптимальных параметрах работы, также в параметрах может регламентироваться пусковой и максимальный момент;
  • коэффициент нагрузки – показывает, насколько снижается эффективность электрической машины, в зависимости от подъема над уровнем моря;
  • габаритные размеры и масса вентильного двигателя.

Преимущества и недостатки

В сравнении с другими типами электрических машин, вентильный двигатель имеет ряд качественных отличий, дающих ему как выгодное, превосходство, так и определенные недостатки.

К преимуществам вентильных двигателей относят:

  • Относительно небольшая величина магнитных потерь из-за отсутствия постоянно действующего поля, как в классических синхронных и асинхронных электродвигателях.
  • Обеспечивает безопасное вращение даже с максимальной нагрузкой, в отличии от коллекторных электродвигателей.
  • За счет встроенного преобразователя частоты коммутация вентильного преобразователя обеспечивает широкий спектр скоростей вращения, которые отличаются плавным переходом от одной к последующей.
  • Хорошая динамика  работы и точность позиционирования, способная создать конкуренцию шаговым двигателям.
  • Относительно большая степень надежности и длительный срок эксплуатации без обслуживания за счет отсутствия скользящего контакта, в отличии от коллекторных двигателей.
  • Может применяться во взрывоопасной среде, в отличии от электродвигателей постоянного и переменного тока со щетками.

К недостаткам вентильных агрегатов следует отнести их высокую себестоимость, наличие дополнительных элементов, усложняющих последующую эксплуатацию. Также существенным минусом считается  сложность управления и задания логики перемещения рабочих органов трехфазных бесколлекторных двигателей в соответствии с меняющимися факторами производственного процесса.

Применение

Вентильные двигатели применяются во всех сферах, где требуется регулировать скорость вращения рабочего элемента. Такие синхронные приводы имеют точное позиционирование и применяются для компьютерной техники, устройств привода, винчестера, куллеров обдува и т.д.

Рис. 8. Вентильный двигатель в компьютере

Помимо этого он используется в робототехнике, строительстве спутников, летательных аппаратов. Для бытовой техники, в устройствах автомобилестроения, в медицинской сфере.  Также нашел широкое применение в станочном оборудовании, горнодобывающих машинах, используется в компрессорных установках и насосных станциях.

конструктивные особенности и принцип действия, преимущества и недостатки, количество фаз

Работа прецизионных систем требует серьёзного контроля. Для выполнения контролирующих функций в таких системах принято использовать вентильный двигатель (ВД), позволяющий повысить вычислительные возможности микроэлектронного оборудования. Он же улучшает свойства электродвигателей постоянного тока, обеспечивая высокую плотность длительного момента.

  • Конструктивные особенности
  • Принцип действия
  • Преимущества и недостатки
  • Количество фаз

Конструктивные особенности

Этот тип электромотора имеет стандартную конструкцию. Она состоит из ротора, роль которого выполняет магнитный диск, статоров и подшипников. Все детали заключены в прочный корпус. Статор ВД аналогичен тому, что используется в асинхронных приборах. Основным его элементом выступает стальной сердечник, по периметру которого располагается обмотка из меди. От количества обмоток зависит, к какому типу будет относиться вентильный электродвигатель (однофазному, двухфазному, трёхфазному).

В зависимости от того, как витки обмотки располагаются в статоре, форма его электродвижущей силы может быть:

  1. Трапецеидальной (BLDC).
  2. Синусоидальной (PMSM).

Форма обмотки оказывает прямое влияние на способ питания двигателей. Изменение электрического тока также может происходить синусоидально либо трапецеидально.

Ротор представляет собой несколько магнитов с постоянным полем. Ранее для его производства применялись магниты из феррита. Но уровень их магнитной индукции достаточно мал, поэтому они были заменены на изделия из сплавов редкоземельных элементов, позволяющих достичь необходимого уровня индукции и одновременно сделать ротор более компактным.

Неотъемлемой частью любого вентильного двигателя является датчик положения ротора. В основе его работы может быть заложен:

  1. фотоэлектрический принцип;
  2. индуктивный принцип;
  3. эффект Холла и другие явления.

Фотоэлектрический датчик положения состоит из трёх стационарных фотоприемников, которые поочерёдно закрываются вращающейся шторкой. Её движение синхронно движению ротора. Благодаря двоичному коду, поступающему с датчика, ротор может фиксироваться в шести разных положениях. Преобразуясь в комбинацию управляющих напряжений, сигналы регулируют силовые ключи по особой схеме. Каждая фаза работы электродвигателя задействует два ключа, а подключёнными к сети являются две из трёх обмоток.

Датчик положения фотоэлектрического типа относится к категории самых распространённых, поскольку является практически безынерционным. Также он позволяет исключить запаздывание в канале обратной связи.

Принцип действия

В зависимости от особенностей конструкции и технических характеристик выделяют асинхронный, синхронный и индуктивный вентильный двигатель. Принцип работы каждого из них основывается на индуцировании непостоянных магнитных полюсов на роторе. При подаче напряжения начинается его вращение в соответствии с полюсами статора, вследствие чего сопротивление магнитного поля сводится к минимуму.

Сведения о состоянии ротора используются в качестве инструмента управления фазой подачи напряжения. Наложение сигналов на угловую ненасыщенную фазу индуктивности осуществляется таким образом, что её максимальное значение совпадает с минимальным сопротивлением полюса.

Чтобы высокие вольт-секунды не оказывали негативного действия на работающую электронику, следует предусмотреть ограничение фазного тока на невысоких скоростях двигателя. Роль ограничителей в этом случае выполняют датчики. При высоких скоростях необходимость в ограничении тока отпадает.

Выровненный угол управляющего напряжения одиночного импульса позволяет оптимизировать производительность оборудования. Процесс её преобразования наглядно демонстрируется в виде траектории реактивной энергии. Преобразованное в механическую энергию питание отвечает за мощностную область. Отключение электроэнергии приводит к тому, что избыточная либо остаточная энергия переходит к статору. Влияние магнитного поля на работающий вентильный электродвигатель является минимальным. Это отличает ВД от других аналогичных устройств.

Преимущества и недостатки

Электродвигатели такого типа нашли широкое применение в производственной и промышленной сфере. Это обуславливается следующими достоинствами ВД:

  1. широким интервалом для модифицирования частоты вращения;
  2. максимально точным позиционированием;
  3. быстродействием и высокой динамикой;
  4. экономически выгодным техобслуживанием;
  5. достаточной защищенностью от взрывов;
  6. устойчивостью к большим нагрузкам при вращении;
  7. мягким переключением скоростей;
  8. хорошим КПД, превышающим 90%;
  9. большим рабочим ресурсом и сроком службы.

При длительной работе вентильного двигателя не происходит опасного перегрева основных элементов, что делает процесс его эксплуатации более эффективным и безопасным.

Эта разновидность электродвигателя обладает определёнными недостатками. Они выражаются в сложной системе управления и высоком уровне шума в процессе работы. Также к очевидным минусам следует отнести высокую цену, обусловленную применением дорогостоящих постоянных магнитов, используемых при изготовлении ротора.

Количество фаз

Вентильный электродвигатель, как и другие виды устройств, может функционировать от постоянного и переменного тока. Встречаются двигатели, рассчитанные на разное число фаз.

Однофазный относится к категории самых простых, имеющих минимальное количество связей с электроникой. Характеризуется наличием пульсаций, высоким крутящим моментом. Однофазный прибор не может запускаться на всех угловых позициях, используется в установках, где важна высокая скорость.

Двухфазный мотор активирует воздушный зазор, а при дополнительном настраивании в полюсах ротора создаётся асимметрия. Имеет высокий крутящий момент, который может спровоцировать негативные последствия во время эксплуатации.

Трехфазное устройство показывает эффективность при запуске и создании крутящего момента без задействования большого числа фаз. При наличии чётного количества полюсов оптимально подходит для техники, в которой важную роль играет высокая мощность при небольшой скорости работы (к примеру, для насосов). В процессе работы создаётся высокий крутящий момент и большой уровень шума.

Четырехфазный двигатель лишён недостатков из-за завышенного крутящего момента и наличия пульсаций. Однако характерная для него высокая мощность и стоимость не позволяет широко использовать такой мотор в различном оборудовании.

Вентильный двигатель: принцип работы агрегата

Для того чтобы решать задачи по контролю современных прецизионных систем, все чаще используется вентильный двигатель. Это характеризуется большим преимуществом таких приборов, а также активным формированием вычислительных возможностей микроэлектроники. Как известно, они могут обеспечить высокую плотность длительного момента и энергоэффективности по сравнению с другими видами двигателей.

Схема вентильного двигателя

Двигатель состоит из следующих деталей:

1. Задняя часть корпуса.
2. Статор.
3. Подшипник.
4. Магнитный диск (ротор).
5. Подшипник.
6. Статор с обмоткой.
7. Передняя часть корпуса.

У вентильного двигателя имеется взаимосвязь между многофазной обмоткой статора и ротора. У них присутствуют постоянные магниты и встроенный датчик положения. Коммутация прибора реализовывается при помощи вентильного преобразователя, вследствие чего он и получил такое название.

Схема вентильного двигателя состоит из задней крышки и печатной платы датчиков, втулки подшипника, вала и самого подшипника, магнитов ротора, изолирующего кольца, обмотки, трельчатой пружины, промежуточной втулки, датчика Холла, изоляции, корпуса и проводов.

В случае соединения обмоток «звездой» устройство имеет большие постоянные моменты, поэтому такую сборку применяют для управления осями. В случае скрепления обмоток «треугольником» их можно использовать для работы с большими скоростями. Чаще всего количество пар полюсов вычисляется численностью магнитов ротора, которые помогают определить соотношение электрических и механических оборотов.

Статор может быть изготовлен с безжелезным или железным сердечником. Используя такие конструкции с первым вариантом, можно обеспечить отсутствие притяжения магнитов ротора, но и в это же мгновение снижается на 20% эффективность двигателя из-за уменьшения значения постоянного момента.

Со схемы видно, что в статоре ток образуется в обмотках, а в роторе создается при помощи высокоэнергетических постоянных магнитов.
Условные обозначения:
— VT1-VT7 — транзисторные коммуникаторы;
— A, B, C – фазы обмоток;
— M – момент двигателя;
— DR – датчик положения ротора;
— U – регулятор напряжения питания двигателя;
— S (south), N (north) – направление магнита;
— UZ – частотный преобразователь;
— BR – датчик частоты вращения;
— VD – стабилитрон;
— L – катушка индуктивности.

Схема двигателя показывает, что одним из основных преимуществ ротора, в котором установлены постоянные магниты, является уменьшение его диаметра и, как следствие, сокращение момента инерции. Такие приспособления могут быть встроенными в сам прибор или расположенными на его поверхности. Понижение этого показателя очень часто приводит к небольшим значениям баланса момента инерции самого двигателя и приведенного к его валу нагрузки, который и усложняет работу привода. По этой причине производители могут предложить стандартный и повышенный в 2-4 раза момент инерции.

Принципы работы

На сегодняшний день становится очень популярным вентильный двигатель, принцип работы которого основан на том, что контролер устройства начинает коммутировать обмотки статора. Благодаря этому вектор магнитного поля остается всегда сдвинутым на угол, приближающийся к 900 (-900) относительно ротора. Контролер рассчитан на управление током, который движется через обмотки двигателя, в том числе и величиной магнитного поля статора. Следовательно, можно регулировать момент, который воздействует на прибор. Показатель угла между векторами может определить направление вращения, которое действует на него.

Нужно учитывать, что речь идет об электрических градусах (они значительно меньше геометрических). Для примера приведем расчет вентильного двигателя с ротором, который в себе имеет 3 пары полюсов. Тогда оптимальным его углом будет 900 /3=300. Эти пары предусматривают 6 фаз обмоток коммутации, тогда получается, что вектор статора может перемещаться скачками по 600. Из этого видно, что настоящий угол между векторами обязательно будет варьироваться в пределах от 600 до 1200, начиная с вращения ротора.

Вентильный двигатель, принцип работы которого основывается на обороте фаз коммутации, из-за которых поток возбуждения поддерживается относительно постоянным движением якоря, после их взаимодействия начинает формировать вращающийся момент. Он устремляется повернуть ротор таким способом, чтобы все потоки возбуждения и якоря совпали воедино. Но во время его разворота датчик начинает переключать обмотки, и поток перемещается на следующий шаг. В этот момент результирующий вектор сдвинется, но останется полностью неподвижным сравнительно с потоком ротора, что в итоге и создаст вращающий момент вала.

Преимущества

Применяя вентильный двигатель в работе, можно отметить такие его достоинства:

— возможность применения широкого диапазона для модифицирования частоты вращения;

— высокая динамика и быстродействие;

— максимальная точность позиционирования;

— небольшие затраты на техническое обслуживание;

— устройство можно отнести к взрывозащищенным объектам;

— имеет способность переносить большие перегрузки в момент вращения;

— высокий КПД, который составляет более 90%;

— имеются скользящие электронные контакты, которые существенно увеличивают рабочий ресурс и срок службы;

— при длительной работе нет перегрева электродвигателя.

Недостатки

Несмотря на огромное количество достоинств, вентильный двигатель также имеет и недостатки в эксплуатации:
— довольно сложное управление электродвигателем;
— относительно высокая цена устройства из-за применения в его конструкции ротора, который имеет дорогостоящие постоянные магниты.

Вентильный индукторный двигатель

Вентильно-индукторный двигатель – это устройство, в котором предусмотрено переключающееся магнитное сопротивление. В нем преобразование энергии происходит за счет изменения индуктивности обмоток, которые располагаются на явно выраженных зубцах статора при передвижении зубчатого магнитного ротора. Питание устройство получает от электрического преобразователя, поочередно переключающего обмотки двигателя в строгости по перемещению ротора.

Вентильно-индукторный двигатель представляет собой комплексную сложную систему, в которой работают совместно разнообразные по своей физической природе компоненты. Для удачного проектирования таких устройств необходимы углубленные знания в области конструирования машин и механики, а также электроники, электромеханики и микропроцессорной техники.

Современное устройство выступает как электродвигатель, действующий совместно с электронным преобразователем, который изготавливается по интегральной технологии с использованием микропроцессора. Он позволяет осуществить качественное управление двигателем с наилучшими показателями переработки энергии.

Свойства двигателя

Такие устройства обладают высокой динамикой, большой перегрузочной способностью и точным позиционированием. Благодаря тому что в них отсутствуют движущие части, их использование возможно во взрывоопасной агрессивной среде. Такие моторы также называют и бесколлекторными, их основным преимуществом, по сравнению с коллекторными, является скорость, которая зависит от напряжения питания нагружающего момента. Также еще одним немаловажным свойством считается отсутствие истираемых и трущихся элементов, которые переключают контакты, благодаря чему вырастает ресурс пользования аппаратом.

Вентильные двигатели постоянного тока

Все двигатели постоянного тока можно назвать бесколлекторными. Они работают от сети с постоянным током. Щеточный узел предусмотрен для электрического объединения цепей ротора и статора. Такая деталь является самой уязвимой и достаточно сложной в обслуживании и ремонте.

Вентильный двигатель постоянного тока работает по тому же принципу, что и все синхронные устройства такого типа. Он представляет собой замкнутую систему, включающую силовой полупроводниковый преобразователь, датчик положения ротора и координатор.

Вентильные двигатели переменного тока

Такие устройства получают свое питание от сетей переменного тока. Скорость вращения ротора и движения первой гармоники магнитной силы статора полностью совпадают. Данный подтип двигателей можно использовать при высоких мощностях. К этой группе относятся шаговые и реактивные вентильные аппараты. Отличительной особенностью шаговых устройств является дискретное угловое смещение ротора при его работе. Питание обмоток формируется при помощи полупроводниковых компонентов. Управление вентильным двигателем осуществляется при последовательном смещении ротора, которое и создает переключение его питания с одних обмоток на другие. Это устройство можно разделить на одно-, трех- и многофазные, первые из которых могут содержать пусковую обмотку или фазосдвигающую цепь, а также запускаться вручную.

Принцип работы синхронного двигателя

Вентильный синхронный двигатель работает на основе взаимодействия магнитных полей ротора и статора. Схематически магнитное поле при вращении можно изобразить плюсами этих же магнитов, которые движутся со скоростью магнитного поля статора. Поле ротора также возможно изобразить как постоянный магнит, который делает обороты синхронно с полем статора. В случае отсутствия внешнего вращающего момента, который прикладывается к валу аппарата, оси полностью совпадают. Воздействующие силы притяжения проходят вдоль всей оси полюсов и могут компенсировать друг друга. Угол между ними приравнивается к нулю.

В случае если на вал машины будет воздействовать тормозной момент, то ротор перемещается в сторону с запаздыванием. Благодаря этому силы притяжения разбиваются на составляющие, которые направляются вдоль оси плюсовых показателей и перпендикулярно к оси полюсов. Если будет прикладываться внешний момент, который создает ускорение, то есть начинает действовать по направлению вращения вала, картинка по взаимодействию полей полностью изменится на обратную. Направленность углового смещения начинает трансформироваться на противоположное, и в связи с этим меняется направление тангенциальных сил и воздействие электромагнитного момента. При таком раскладе двигатель становится тормозным, а аппарат работает как генератор, который подводимую к валу механическую энергию преобразует в электрическую. Далее она перенаправляется в сеть, питающую статор.

Когда будет отсутствовать внешний, явнополюсный момент начнет принимать положение, при котором ось полюсов магнитного поля статора будет совпадать с продольной. Это размещение станет соответствовать минимальному сопротивлению потока в статоре.

В случае воздействия на вал машины тормозного момента ротор отклонится, при этом магнитное поле статора будет деформированным, так как поток стремится замкнуться по наименьшему сопротивлению. Для его определения необходимы силовые линии, направленность которых в каждой из точек будет соответствовать движению действия силы, поэтому изменение поля приведет к появлению тангенциального взаимодействия.

Рассмотрев все эти процессы в синхронных двигателях, можно выявить демонстративный принцип обратимости разнообразных машин, то есть возможность любого электрического аппарата изменить направленность преобразованной энергии на противоположную.

Бесколлекторные двигатели с постоянными магнитами

Вентильный двигатель с постоянными магнитами используется для решения серьезных оборонных и промышленных задач, так как такое устройство имеет большой запас мощности и эффективности.

Эти приборы чаще всего применяются в отраслях, где необходимы сравнительно низкие потребляющие мощности и небольшие габариты. Они могут иметь самые разные габариты, без технологических ограничений. В то же время большие аппараты не являются совершенно новыми, их чаще всего производят компании, которые стремятся преодолеть экономические трудности, ограничивающие ассортимент этих приборов. У них есть свои преимущества, среди которых можно отметить высокую эффективность из-за потерь в роторе и большую плотность мощности. Для управления бесколлекторными двигателями нужен частотно-регулируемый привод.

Анализ по затратам и результатам показывает, что устройства с постоянными магнитами намного предпочтительнее, по сравнению с другими, альтернативными технологиями. Чаще всего они используются для отраслей промышленности с достаточно тяжелым распорядком работы судовых двигателей, в военной и оборонной отрасли и других подразделениях, число которых непрерывно возрастает.

Реактивный двигатель

Вентильно-реактивный двигатель работает с использованием двухфазных обмоток, которые установлены вокруг диаметрально противоположных полюсов статора. Подача питания продвигается к ротору в соответствии с полюсами. Таким образом, его противодействие полностью сводится к минимуму.

Вентильный двигатель, своими руками созданный, обеспечивает высокоэффективную скорость привода при оптимизированном магнетизме для работы с реверсом. Информация о месторасположении ротора используется для того, чтобы управлять фазами подачи напряжения, так как это является оптимальным для достижения непрерывного и плавного крутящего момента и высокой эффективности.

Сигналы, которые выдает реактивный двигатель, накладываются на угловую ненасыщенную фазу индуктивности. Минимальное сопротивление полюса полностью соответствует максимальной индуктивности устройства.

Положительный момент можно получить только при углах, когда показатели позитивные. На небольших скоростях фазный ток обязательно должен быть ограниченным, чтобы произвести защиту электроники от высоких вольт-секунд.
Механизм преобразования можно иллюстрировать линией реактивной энергии. Мощностная сфера характеризует собой питание, которое преобразовывается в механическую энергию. В случае его резкого отключения избыточная или остаточная сила возвращается к статору. Минимальные показатели влияния магнитного поля на производительность устройства являются основным его отличием от похожих устройств.

Что такое бесщеточный двигатель постоянного тока (BLDC)? Строительство и работа

Бесколлекторные двигатели постоянного тока (BLDC) были в центре внимания многих производителей двигателей, поскольку эти двигатели все чаще используются во многих приложениях, особенно в области технологий управления двигателями. Двигатели BLDC превосходят щеточные двигатели постоянного тока во многих отношениях, таких как способность работать на высоких скоростях, высокий КПД и лучшее рассеивание тепла.

Они являются неотъемлемой частью современной приводной техники, чаще всего используемой для приводов, станков, электрических двигателей, робототехники, компьютерной периферии, а также для производства электроэнергии. С развитием бездатчиковой технологии, помимо цифрового управления, эти двигатели стали настолько эффективными с точки зрения общей стоимости системы, размеров и надежности.

  • Связанная запись: Разница между щеточным и бесщеточным двигателем
  • По теме: Что такое шаговый двигатель? Типы, конструкция, эксплуатация и применение

Содержание

Что такое бесщеточный двигатель постоянного тока (BLDC)?

Бесщеточный двигатель постоянного тока (известный как BLDC) представляет собой синхронный электродвигатель с постоянными магнитами , который приводится в действие электричеством постоянного тока (DC) и реализует систему коммутации с электронным управлением (коммутация — это процесс создания крутящего момента в двигателе). путем изменения фазных токов через него в соответствующие моменты времени) вместо системы механической коммутации. Двигатели BLDC также называют двигателями с трапециевидными постоянными магнитами.

В отличие от обычного двигателя постоянного тока щеточного типа, в котором щетки механически контактируют с коллектором на роторе, образуя электрический путь между источником постоянного тока и обмотками якоря ротора, в двигателе BLDC используется электрическая коммутация с ротором на постоянных магнитах и ​​статором. с последовательностью витков. В этом двигателе вращается постоянный магнит (или полюса поля) и закреплены проводники с током.

Катушки якоря переключаются электронным способом с помощью транзисторов или кремниевых выпрямителей при правильном положении ротора таким образом, что поле якоря находится в пространственной квадратуре с полюсами поля ротора. Следовательно, сила, действующая на ротор, заставляет его вращаться. 9Датчики Холла 0004 или энкодеры чаще всего используются для определения положения ротора и располагаются вокруг статора. Обратная связь о положении ротора от датчика помогает определить, когда следует переключать ток якоря.

В этом электронном коммутационном устройстве отпадает необходимость в коллекторном устройстве и щетках в двигателе постоянного тока, что обеспечивает более надежную и менее шумную работу. Благодаря отсутствию щеток двигатели BLDC способны работать на высоких скоростях. КПД двигателей BLDC обычно составляет от 85 до 9.0 процентов, тогда как двигатели постоянного тока коллекторного типа имеют КПД от 75 до 80 процентов. Доступны самые разные двигатели BLDC, начиная от малого диапазона мощности и заканчивая дробной мощностью, интегральной мощностью и большими диапазонами мощности.

  • Связанный пост: Серводвигатель — типы, конструкция, работа и применение

Конструкция двигателя BLDC

Двигатели BLDC могут иметь различные физические конфигурации. В зависимости от обмоток статора они могут быть сконфигурированы как однофазные, двухфазные или трехфазные двигатели. Однако чаще всего используются трехфазные двигатели BLDC с ротором на постоянных магнитах.

Конструкция этого двигателя во многом похожа на трехфазный асинхронный двигатель, а также на обычный двигатель постоянного тока. Этот двигатель имеет части статора и ротора, как и все другие двигатели.

  • Связанный пост Расчет размера кабеля для двигателей LT и HT

Статор электродвигателя постоянного тока, состоящий из стальных пластин, несущих обмотки. Эти обмотки размещены в пазах, прорезанных в осевом направлении по внутренней периферии статора. Эти обмотки могут быть расположены либо звездой, либо треугольником. Однако большинство двигателей BLDC имеют трехфазный статор, соединенный звездой.

Каждая обмотка состоит из множества соединенных между собой катушек, при этом одна или несколько катушек размещаются в каждом слоте. Для образования четного числа полюсов каждая из этих обмоток распределяется по периферии статора.

Статор должен быть выбран с правильным номинальным напряжением в зависимости от мощности источника питания. Для робототехники, автомобилей и небольших исполнительных механизмов предпочтительны двигатели BLDC с напряжением 48 В или менее. Для промышленных применений и систем автоматизации используются двигатели с номинальным напряжением 100 В и выше.

  • Вы также можете прочитать: Что такое соленоид и магнитное поле соленоида

Ротор

Двигатель BLDC включает в себя постоянный магнит в роторе. Количество полюсов в роторе может варьироваться от 2 до 8 пар полюсов с чередованием южных и северных полюсов в зависимости от требований применения. Для достижения максимального крутящего момента в двигателе плотность потока материала должна быть высокой. Для создания необходимой плотности магнитного поля необходим соответствующий магнитный материал для ротора.

Ферритовые магниты недороги, однако они имеют низкую магнитную индукцию для данного объема. Магниты из редкоземельных сплавов обычно используются для новых конструкций. Некоторыми из этих сплавов являются самарий-кобальт (SmCo), неодим (Nd) и феррит и бор (NdFeB). Ротор может иметь различные конфигурации сердечника, такие как круглый сердечник с постоянным магнитом на периферии, круглый сердечник с прямоугольными магнитами и т. д.

  • Связанный пост: Что такое КПД двигателя и как его повысить?

Датчики Холла

Датчик Холла предоставляет информацию для синхронизации возбуждения якоря статора с положением ротора. Поскольку коммутация двигателя BLDC управляется электронным способом, обмотки статора должны быть запитаны последовательно, чтобы двигатель вращался. Перед включением определенной обмотки статора необходимо подтвердить положение ротора. Таким образом, датчик Холла, встроенный в статор, определяет положение ротора.

Большинство двигателей BLDC оснащены тремя датчиками Холла, встроенными в статор. Каждый датчик генерирует сигналы Low и High всякий раз, когда полюса ротора проходят рядом с ним. Точная последовательность коммутации обмотки статора может быть определена на основе комбинации отклика этих трех датчиков.

  • Связанный пост Почему мощность электродвигателей указана в кВт, а не в кВА?

Принцип работы и принцип действия бесконтактного двигателя постоянного тока

Принцип работы бесконтактного двигателя постоянного тока аналогичен принципу работы обычного двигателя постоянного тока, т. е. действует закон силы Лоренца, согласно которому всякий раз, когда проводник с током помещается в магнитное поле, он испытывает сила. Вследствие силы реакции магнит будет испытывать равную и противоположную силу. В случае двигателя BLDC проводник с током неподвижен, а постоянный магнит движется.

При электрическом переключении катушек статора источником питания он становится электромагнитом и начинает создавать однородное поле в воздушном зазоре. Хотя источником питания является постоянный ток, коммутация заставляет генерировать сигнал переменного напряжения трапециевидной формы. За счет силы взаимодействия статора электромагнита и ротора с постоянными магнитами ротор продолжает вращаться.

Рассмотрим рисунок ниже, на котором статор двигателя возбуждается в зависимости от различных состояний переключения. При переключении обмоток как высокого и низкого сигналов соответствующие обмотки запитываются как северный и южный полюса. Ротор с постоянными магнитами с северным и южным полюсами совпадает с полюсами статора, заставляя двигатель вращаться.

Обратите внимание, что двигатель создает крутящий момент из-за развития сил притяжения (при выравнивании север-юг или юг-север) и сил отталкивания (при выравнивании север-север или юг-юг). Таким образом, двигатель движется по часовой стрелке.

Здесь может возникнуть вопрос, откуда мы знаем, какая катушка статора должна быть под напряжением и когда это делать. Это потому что; непрерывное вращение двигателя зависит от последовательности переключения катушек. Как обсуждалось выше, датчики Холла передают информацию о положении вала в электронный блок управления.

На основании этого сигнала от датчика контроллер принимает решение о включении определенных катушек. Датчики Холла генерируют сигналы низкого и высокого уровня всякий раз, когда полюса ротора проходят рядом с ним. Эти сигналы определяют положение вала.

  • Вы также можете прочитать: Термины и определения, относящиеся к управлению и защите двигателя

Бесщеточный двигатель постоянного тока

Как описано выше, схема электронного контроллера подает питание на соответствующую обмотку двигателя, поворачивая транзистор или другие полупроводниковые переключатели для непрерывного вращения двигателя. На рисунке ниже показаны простая схема привода двигателя BLDC , которая состоит из моста MOSFET (также называемого инверторным мостом), электронного контроллера, датчика Холла и двигателя BLDC.

Здесь датчики Холла используются для обратной связи по положению и скорости. Электронный контроллер может быть блоком микроконтроллера или микропроцессором, или процессором DSP, или блоком FPGA, или любым другим контроллером. Этот контроллер получает эти сигналы, обрабатывает их и отправляет управляющие сигналы в схему драйвера MOSFET.

В дополнение к переключению на номинальную скорость двигателя дополнительная электронная схема изменяет скорость двигателя в зависимости от требуемого применения. Эти блоки управления скоростью обычно реализуются с ПИД-контроллерами для точного управления. Также можно обеспечить работу двигателя в четырех квадрантах, сохраняя при этом хороший КПД при изменении скорости с использованием современных приводов.

Сопутствующие электрические приводы Статьи

  • Приводы постоянного тока – Конструкция, работа и классификация электрических приводов постоянного тока
  • Электрические приводы и – Классификация приводов переменного тока и ЧРП

Преимущества двигателя BLDC

Двигатель BLDC имеет несколько преимуществ по сравнению с обычными двигателями постоянного тока, некоторые из них:

  • У него нет механического коммутатора и связанных с этим проблем
  • Высокая эффективность благодаря использованию ротора с постоянными магнитами
  • Высокая скорость работы даже в нагруженном и ненагруженном состоянии за счет отсутствия ограничивающих скорость щеток
  • Меньшая геометрия двигателя и меньший вес, чем у щеточных двигателей постоянного тока и асинхронных двигателей переменного тока
  • Долгий срок службы, поскольку коллекторная система не требует осмотра и технического обслуживания
  • Более высокая динамическая характеристика благодаря малой инерции и несущим обмоткам в статоре
  • Меньше электромагнитных помех
  • Тихая работа (или низкий уровень шума) из-за отсутствия щеток

Недостатки бесщеточного двигателя

  • Эти двигатели дорогие
  • Электронный контроллер требует управления, этот двигатель стоит дорого
  • Недостаточно многих интегрированных электронных решений для управления, особенно для крошечных двигателей BLDC
  • Требуется сложная схема привода
  • Необходимость дополнительных датчиков

Вы также можете прочитать: Подключение трехфазного двигателя звезда/треугольник (Y-Δ) назад/вперед с таймером питания и схема управления

Применение бесщеточных двигателей постоянного тока (BLDC)

Бесколлекторные двигатели постоянного тока (BLDC) используются для широкого спектра приложений, таких как переменные нагрузки, постоянные нагрузки и позиционирование в областях промышленного управления, автомобилестроения, авиации, систем автоматизации, медицинского оборудования и т. д.

  • Компьютерные жесткие диски и проигрыватели DVD/CD
  • Электромобили, гибридные автомобили и электрические велосипеды
  • Промышленные роботы, станки с ЧПУ и простые системы с ременным приводом
  • Стиральные машины, компрессоры и сушилки
  • Вентиляторы, насосы и воздуходувки

Related Posts

  • Однофазный асинхронный двигатель – конструкция, работа, типы и применение
  • Трехфазный асинхронный двигатель – конструкция, работа, типы и применение
  • Разница между однофазным и трехфазным асинхронным двигателем
  • Схемы подключения питания и управления трехфазным двигателем

Показать полную статью

Связанные статьи

Кнопка «Вернуться к началу»

Как работают бесщеточный двигатель и ESC

В этом уроке мы узнаем, как работают бесщеточный двигатель и ESC. Эта статья является первой частью следующего видео, где мы изучим принцип работы бесколлекторного двигателя постоянного тока и ESC (электронного регулятора скорости), а во второй части мы узнаем, как управлять бесщеточным двигателем постоянного тока с помощью Arduino.

Вы можете посмотреть следующее видео или прочитать письменный учебник ниже.

Как это работает

BLDC двигатель состоит из двух основных частей, статора и ротора. Для этой иллюстрации ротор представляет собой постоянный магнит с двумя полюсами, а статор состоит из катушек, расположенных, как показано на рисунке ниже.

Все мы знаем, что если подать ток через катушку, она создаст магнитное поле, а линии или полюса магнитного поля зависят от направления тока.

Итак, если мы применим соответствующий ток, катушка создаст магнитное поле, которое будет притягивать постоянный магнит ротора. Теперь, если мы будем активировать каждую катушку одну за другой, ротор будет продолжать вращаться из-за силового взаимодействия между перманентом и электромагнитом.

Чтобы повысить эффективность двигателя, мы можем намотать две противоположные катушки как одну катушку таким образом, чтобы полюса были противоположны полюсам ротора, таким образом, мы получим двойную силу притяжения.

С этой конфигурацией мы можем создать шесть полюсов на статоре всего с тремя катушками или фазой. Мы можем еще больше повысить эффективность, подав питание на две катушки одновременно. Таким образом, одна катушка будет притягивать, а другая — отталкивать ротор.

Для того, чтобы ротор совершил полный цикл на 360 градусов, необходимо шесть шагов или интервалов.

Если мы посмотрим на форму волны тока, то увидим, что в каждом интервале есть одна фаза с положительным током, одна фаза с отрицательным током, а третья фаза отключена. Это дает представление о том, что мы можем соединить свободные конечные точки каждой из трех фаз вместе и, таким образом, мы можем разделить ток между ними или использовать один ток для питания двух фаз одновременно.

Вот пример. Если мы подтянем фазу A High или подключим ее к положительному напряжению постоянного тока с помощью какого-либо переключателя, например MOSFET, а с другой стороны соединим фазу B с землей, то ток будет течь от VCC через фазу А, нейтральную точку и фазу В, на землю. Итак, с помощью всего лишь одного потока тока мы создали четыре разных полюса, которые заставляют ротор двигаться.

В этой конфигурации у нас фактически есть соединение фаз двигателя звездой, где нейтральная точка соединена внутри, а остальные три конца фаз выходят из двигателя, поэтому из бесщеточного двигателя выходят три провода.

Итак, для того, чтобы ротор прошел полный цикл, нам просто нужно активировать правильные два МОП-транзистора в каждом из 6 интервалов, и это то, для чего на самом деле предназначены ESC.

Как работает ESC (электронный регулятор скорости)

ESC или электронный регулятор скорости управляет движением или скоростью бесщеточного двигателя, активируя соответствующие полевые МОП-транзисторы для создания вращающегося магнитного поля, чтобы двигатель вращался. Чем выше частота или чем быстрее ESC проходит через 6 интервалов, тем выше будет скорость двигателя.

Однако возникает важный вопрос: как узнать, когда какую фазу активировать. Ответ заключается в том, что нам нужно знать положение ротора, и есть два распространенных метода, используемых для определения положения ротора.

Первый распространенный метод заключается в использовании встроенных в статор датчиков Холла, расположенных под углом 120 или 60 градусов друг к другу.

Когда постоянные магниты ротора вращаются, датчики Холла воспринимают магнитное поле и генерируют логический «высокий» для одного магнитного полюса или логический «низкий» для противоположного полюса. В соответствии с этой информацией ESC знает, когда активировать следующую коммутационную последовательность или интервал.

Второй распространенный метод, используемый для определения положения ротора, заключается в измерении обратной электродвижущей силы или обратной ЭДС. Обратная ЭДС возникает в результате прямо противоположного процесса генерации магнитного поля или когда движущееся или изменяющееся магнитное поле проходит через катушку, оно индуцирует ток в катушке.

Таким образом, когда движущееся магнитное поле ротора проходит через свободную катушку или ту, которая не активна, оно индуцирует ток в катушке, и в результате в этой катушке возникает падение напряжения. ESC фиксирует эти падения напряжения по мере их возникновения и на их основе прогнозирует или рассчитывает, когда должен произойти следующий интервал.

Таков основной принцип работы бесколлекторных двигателей постоянного тока и регуляторов скорости, и он останется тем же, даже если мы увеличим количество полюсов как ротора, так и статора. У нас по-прежнему будет трехфазный двигатель, только количество интервалов увеличится, чтобы совершить полный цикл.

Здесь мы также можем упомянуть, что двигатели BLDC могут быть инраннерами или аутраннерами. Бесщеточный двигатель с внутренним ротором имеет постоянные магниты внутри электромагнитов, и наоборот, двигатель с наружным ротором имеет постоянные магниты снаружи электромагнитов. Опять же, они используют один и тот же принцип работы, и каждый из них имеет свои сильные и слабые стороны.

Хорошо, хватит теории, а теперь давайте продемонстрируем и посмотрим в реальной жизни то, что мы объяснили выше. Для этого мы подключим три фазы бесщеточного двигателя к осциллографу. Я подключил 3 резистора в одной точке, чтобы создать виртуальную нейтральную точку, а с другой стороны я подключил их к трем фазам двигателя BLDC.

Первое, что мы можем заметить, это три синусоидальные волны. Эти синусоидальные волны на самом деле являются обратными EFM, генерируемыми в фазах, когда они не активны.

Мы видим, что при изменении оборотов двигателя частота синусоидальных волн меняется, а также их амплитуда. Чем выше число оборотов, тем выше частота и амплитуда синусоидальных волн противоЭДС. Однако то, что приводит в движение двигатель, на самом деле эти пики, которые являются активными фазами, которые генерируют изменяющееся магнитное поле.

Мы можем заметить, что на каждом интервале есть две активные и одна неактивная фаза. Например, здесь у нас активны фазы A и B, а фаза C неактивна. Затем у нас активны фазы A и C, а фаза B неактивна и так далее.

Здесь я хотел бы поблагодарить Banggood.com за предоставление мне этого осциллографа. Это Rigol DS1054Z, и это один из лучших осциллографов начального уровня в своей ценовой категории. Он имеет четыре входных канала, полосу пропускания 50 МГц, которая может быть изменена до 100 МГц, частоту дискретизации 1 Гвыб/с и относительно большую глубину памяти 24 Мб.

Дисплей 7 дюймов, очень красивый и яркий. Он имеет различные математические функции, фильтры нижних и верхних частот, декодирование SPI и I2C и многое другое. Итак, еще раз большое спасибо Banggood.com и убедитесь, что вы проверили этот осциллограф в их магазине.

Тем не менее, это основной принцип работы бесколлекторного двигателя. Если вам нужны еще реальные живые примеры и вы научились управлять бесколлекторными двигателями с помощью Arduino, вам следует ознакомиться со второй частью этого руководства.

Надеюсь, вам понравился этот урок и вы узнали что-то новое. Не стесняйтесь задавать любые вопросы в разделе комментариев ниже и не забудьте проверить мою коллекцию проектов Arduino.

Основы бесщеточных двигателей постоянного тока (BLDC Motors)

В этом руководстве мы узнаем о бесщеточных двигателях, также известных как бесщеточные двигатели постоянного тока или двигатели BLDC. Мы увидим, что такое двигатель BLDC, принцип его работы, как правильно управлять бесколлекторным двигателем постоянного тока, а также несколько приложений.

[адсенс1]

Краткое описание

Введение

Бесколлекторные двигатели постоянного тока или бесщеточные двигатели постоянного тока внесли значительный вклад в развитие современной приводной техники. Их быстрый рост популярности привел к расширению спектра применения в области бытовой техники, автомобильной промышленности, промышленной автоматизации, химической и медицинской, аэрокосмической и приборостроительной промышленности.

Несмотря на то, что они долгое время использовались для приводов и производства электроэнергии, субкиловаттный диапазон, в котором преобладали щеточные двигатели постоянного тока, всегда был серой зоной. Но современная силовая электроника и микропроцессорная технология позволили небольшим бесколлекторным двигателям постоянного тока процветать как с точки зрения цены, так и с точки зрения производительности.

[адсенс2]

Что такое двигатель BLDC?

Бесщеточный двигатель постоянного тока аналогичен щеточному двигателю постоянного тока, но, как следует из названия, в бесщеточном двигателе постоянного тока не используются щетки для коммутации, а они коммутируются электронным способом. В обычных щеточных двигателях постоянного тока щетки используются для передачи мощности на ротор, когда они вращаются в фиксированном магнитном поле.

Как упоминалось ранее, в бесщеточном двигателе постоянного тока использовалась электронная коммутация, что позволило отказаться от механически рвущихся щеток.

Конструкция бесщеточного двигателя постоянного тока

Основное конструктивное различие между щеточными и бесщеточными двигателями заключается в замене механического коммутатора электрической схемой переключения. Имея это в виду, двигатель BLDC является типом синхронного двигателя в том смысле, что магнитное поле, создаваемое статором и ротором, вращается с одинаковой частотой.

Бесщеточные двигатели доступны в трех конфигурациях: однофазные, двухфазные и трехфазные. Из них трехфазный BLDC является наиболее распространенным.

На следующем изображении показано поперечное сечение двигателя BLDC.

Как вы можете видеть на изображении, BLDC Motor состоит из двух основных частей: статора и ротора.

Статор

Структура статора BLDC Motor аналогична конструкции асинхронного двигателя. Он состоит из штабелированных стальных пластин с аксиально прорезанными пазами для намотки. Обмотка BLDC немного отличается от обмотки традиционного асинхронного двигателя.

Как правило, большинство двигателей BLDC состоят из трех обмоток статора, соединенных звездой или звездой (без нейтральной точки). Кроме того, в зависимости от соединений катушек обмотки статора подразделяются на трапециевидные и синусоидальные двигатели.

В трапециевидном двигателе как управляющий ток, так и противо-ЭДС имеют форму трапеции (синусоидальная форма в случае синусоидальных двигателей). Обычно двигатели с номинальным напряжением 48 В (или менее) используются в автомобилестроении и робототехнике (гибридные автомобили и роботизированные руки).

Ротор

Роторная часть двигателя BLDC состоит из постоянных магнитов (обычно магнитов из редкоземельных сплавов, таких как неодим (Nd), самарий-кобальт (SmCo) и сплав неодима, феррита и бора (NdFeB)).

В зависимости от применения количество полюсов может варьироваться от двух до восьми, при этом северный (N) и южный (S) полюса размещаются попеременно. На следующем изображении показаны три различных расположения полюсов. В первом случае магниты размещены на внешней периферии ротора.

Вторая конфигурация называется ротором с магнитными вставками, где прямоугольные постоянные магниты встроены в сердечник ротора. В третьем случае магниты вставлены в железный сердечник ротора.

Датчики положения (датчики Холла)

Поскольку в бесщеточном двигателе постоянного тока нет щеток, коммутация управляется электронным способом. Чтобы вращать двигатель, обмотки статора должны быть запитаны в определенной последовательности, и положение ротора (то есть северный и южный полюса ротора) должно быть известно, чтобы точно подать питание на определенный набор обмоток статора.

Датчик положения, который обычно представляет собой датчик Холла (работающий по принципу эффекта Холла), обычно используется для определения положения ротора и преобразования его в электрический сигнал. В большинстве двигателей BLDC используются три датчика Холла, встроенные в статор, для определения положения ротора.

Выходной сигнал датчика Холла будет ВЫСОКИМ или НИЗКИМ в зависимости от того, проходит ли рядом с ним северный или южный полюс ротора. Комбинируя результаты трех датчиков, можно определить точную последовательность подачи питания.

Читать о КАК ИСПОЛЬЗОВАТЬ ДАТЧИК ХОЛЛА С ARDUINO?

Принцип работы

Рассмотрим следующую установку трех обмоток в статоре, обозначенных A, B и C. Для лучшего понимания заменим ротор одним магнитом.

Мы знаем, что когда ток проходит через катушку, создается магнитное поле, и ориентация силовых линий, т. е. полюсов генерируемого магнита, будет зависеть от направления тока, протекающего через катушку.

Используя этот принцип, если мы подаем ток на катушку A, чтобы она создавала магнитное поле и притягивала магнит ротора. Положение магнита ротора немного сместится по часовой стрелке и выровняется с A.

Если теперь мы пропустим ток через катушки B и C одну за другой (в таком порядке), магнит ротора будет вращаться по часовой стрелке.

Для повышения эффективности мы можем намотать противоположные катушки, используя одну катушку, чтобы получить двойное притяжение. Еще больше повышая эффективность, мы можем запитать две катушки одновременно, чтобы одна катушка притягивала магнит, а другая катушка отталкивала его. В это время третий будет простаивать.

Для полного 360 0 оборота магнита ротора применимы шесть возможных комбинаций катушек A, B и C, которые показаны на следующей временной диаграмме.

Основываясь на приведенной выше диаграмме, мы можем подтвердить, что в любое время одна фаза является положительной, одна фаза отрицательной, а третья фаза простаивает (или плавает). Итак, на основе входных сигналов от датчиков Холла у нас есть два переключателя фаз в соответствии с приведенной выше схемой.

Управление бесщеточными двигателями постоянного тока

Если статор и ротор являются неотъемлемыми частями бесконтактного двигателя постоянного тока, то и управляющая электроника не менее важна. Блок-схема типичной системы управления бесщеточным двигателем постоянного тока или системы привода показана на следующем рисунке.

Эта схема привода часто известна как система электронного регулятора скорости или просто ESC. Одна из распространенных настроек называется схемой полного моста. Он состоит из MCU с выходами PWM, шести МОП-транзисторов для трех фаз обмоток статора, обратной связи от датчиков Холла и некоторых компонентов, связанных с питанием.