Содержание

зачем России детонационный ракетный двигатель

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний. Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30%.

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение. В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания. Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз.

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива. Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т. н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный кислород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в проект подобного рода удалось довести до стадии стендовых проверок. Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т.

Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах. П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука.

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу. Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.

Первый запуск опытного изделия «Ифрит»

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера.

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

Российская Федерация первой в мире провела успешные испытания детонационного жидкостного ракетного двигателя. Новую силовую установку создали в НПО «Энергомаш». Это успех для российской ракетно-космической отрасли, заявил корреспонденту Федерального агентства новостей
научный обозреватель Александр Галкин
.

Как сообщается на официальном сайте Фонда перспективных исследований, в новом двигателе тяга создается за счет контролируемых взрывов при взаимодействии топливной пары кислород-керосин.

«Значение успеха этих испытаний для опережающего развития отечественного двигателестроения трудно переоценить […] За ракетными двигателями такого рода будущее», — сообщил заместитель генерального директора и главный конструктор НПО «Энергомаш» Владимир Чванов.

Необходимо отметить, что к успешному испытанию новой силовой установки, инженеры предприятия шли последние два года. Исследовательские работы проводили ученые Новосибирского института гидродинамики им. М.А.Лаврентьева Сибирского отделения РАН и Московского авиационного института.

«Я думаю, что это новое слово в ракетной отрасли, и надеюсь, что оно окажется полезным для российской космонавтики. «Энергомаш» у нас сейчас единственная структура, которая разрабатывает ракетные двигатели и успешно ими торгует. Недавно они сделали для американцев двигатель РД-181, который по совокупной мощности слабее, нежели зарекомендовавший себя РД-180. Но дело то в том, что наметилось новое веяние в двигателестроении — уменьшение веса бортового оборудования космических кораблей приводит к тому, что двигатели становятся менее мощными. Это происходит за счет снижения выводимого веса. Так что надо пожелать успехов ученым и инженерам «Энергомаша», который работает, и что-то у него получается. Есть у нас еще головы креативные», — уверен Александр Галкин.

Необходимо отметить, что сам принцип создания реактивной струи за счет контролируемых взрывов может поднимать вопрос о безопасности будущих полетов. Однако переживать не стоит, так как ударная волна закручивается в камере сгорания двигателя.

«Уверен, систему гашения вибраций для новых двигателей придумают, потому что в принципе, традиционные ракеты-носители, которые разрабатывались еще Сергее Павловиче Королеве
и Валентине Петровиче Глушко
, тоже давали сильную вибрацию на корпус корабля. Но ведь как-то победили же, нашли способ погасить колоссальную тряску. Вот и здесь все будет так же», — заключает эксперт.

В настоящее время сотрудники НПО «Энергомаш» проводят дальнейшие изыскания по работе над стабилизацией тяги и уменьшением нагрузок на несущую конструкцию силовой установки. Как отмечают на предприятии, работа топливной пары кислород-керосин и сам принцип создания подъемной силы обеспечивает меньший расход топлива при большей мощности. В будущем начнутся испытания полноразмерной модели, и, возможно, его будут использовать для выведения на орбиту планеты полезных грузов или даже космонавтов.

Освоение космического пространства невольно ассоциируется с космическими кораблями. Сердцем любой ракеты-носителя является ее двигатель. Он должен развить первую космическую скорость — около 7,9 км/с, чтобы доставить космонавтов на орбиту, и вторую космическую, чтобы преодолеть поле тяготения планеты.

Добиться этого непросто, но ученые постоянно ищут новые пути решения этой задачи. Конструкторы из России шагнули еще дальше и сумели разработать детонационный ракетный двигатель, испытания которого завершились успехом. Это достижение можно назвать настоящим прорывом в области космического машиностроения.

Новые возможности

Почему на детонационные двигатели возлагают большие надежды? По расчетам ученых, их мощность будет в 10 тыс. раз больше, чем мощность существующих ракетных двигателей. При этом они будут потреблять гораздо меньше топлива, а их производство отличится низкой стоимостью и рентабельностью. С чем это связано?

Все дело в реакции окисления горючего. Если в современных ракетах используется процесс дефлаграции — медленное (дозвуковое) горение топлива при постоянном давлении, то детонационный ракетный двигатель функционирует за счет взрыва, детонации горючей смеси. Она сгорает со сверхзвуковой скоростью с выделением огромного количества тепловой энергии одновременно с распространением ударной волны.

Разработкой и испытанием российского варианта детонационного двигателя занималась специализированная лаборатория «Детонационные ЖРД» в составе производственного комплекса «Энергомаш».

Превосходство новых двигателей

Изучением и разработкой детонационных двигателей занимаются ведущие мировые ученые на протяжении 70 лет. Основной причиной, препятствующей созданию этого типа двигателей, является неконтролируемое самовозгорание топлива. Кроме того, на повестке дня стояли задачи по эффективному смешиванию горючего и окислителя, а также интеграции сопла и воздухозаборника.

Решив эти задачи, удастся создать детонационный ракетный двигатель, который по своим техническим характеристикам обгонит время. При этом ученые называют такие его преимущества:

  1. Способность развивать скорости в дозвуковом и гиперзвуковом диапазонах.
  2. Исключение из конструкции многих движущихся частей.
  3. Более низкая масса и стоимость силовой установки.
  4. Высокая термодинамическая эффективность.

Серийно данный тип двигатель не производился. Впервые был испытан на низколетящих самолетах в 2008 году. Детонационный двигатель для ракет-носителей был впервые испытан российскими учеными. Именно поэтому данному событию отводится столь большое значение.

Принцип работы: импульсный и непрерывный

В настоящее время ученые ведут разработку установок с импульсным и непрерывным рабочим процессом. Принцип работы детонационного ракетного двигателя с импульсной схемой работы основан на циклическом заполнении камеры сгорания горючей смесью, последовательном ее воспламенении и выбросе продуктов сгорания в окружающую среду.

Соответственно, при непрерывном рабочем процессе топливо подается в камеру сгорания непрерывно, горючее сгорает в одной или нескольких детонационных волнах, которые непрерывно циркулируют поперек потока. Преимуществами таких двигателей являются:

  1. Однократное зажигание топлива.
  2. Относительно простая конструкция.
  3. Небольшие габариты и масса установок.
  4. Более эффективное использование горючей смеси.
  5. Низкий уровень производимого шума, вибрации и вредных выбросов.

В перспективе, используя данные преимущества, детонационный жидкостный ракетный двигатель непрерывной схемы работы вытеснит все существующие установки благодаря своим массо-габаритным и стоимостным характеристикам.

Испытания детонационного двигателя

Первые испытания отечественной детонационной установки прошли в рамках проекта, учрежденного Министерством образования и науки. В качестве опытного образца был представлен небольшой двигатель с камерой сгорания диаметром 100 мм и шириной кольцевого канала в 5 мм. Испытания проводились на специальном стенде, фиксировались показатели при работе на различных видах горючей смеси — водород-кислород, природный газ-кислород, пропан-бутан-кислород.

Испытания детонационного ракетного двигателя на кислородно-водородном топливе доказали, что термодинамический цикл этих установок на 7 % эффективнее, чем при работе других установок. Кроме того, было экспериментально подтверждено, что с увеличением количества подаваемого горючего увеличивается и тяга, а также количество детонационных волн и частота вращения.

Аналоги в других странах

Разработкой детонационных двигателей занимаются ученые ведущих стран мира. Наибольших успехов в этом направлении достигли конструкторы из США. В своих моделях они реализовали непрерывный способ работы, или ротационный. Американские военные планируют использовать данные установки для оснащения надводных кораблей. Благодаря меньшей массе и небольшим размерам при высокой выдаваемой мощности они помогут увеличить эффективность боевых катеров.

Стехиометрическую смесь водорода и кислорода использует для своей работы американский детонационный ракетный двигатель. Преимущества такого источника энергии в первую очередь экономические — кислорода сгорает ровно столько, сколько того требуется для окисления водорода. Сейчас для обеспечения военных кораблей углеродным топливом правительство США тратит несколько миллиардов долларов. Стехиометрическое горючее снизит расходы в несколько раз.

Дальнейшие направления разработки и перспективы

Новые данные, полученные в результате испытаний детонационных двигателей, определили применение принципиально новых методов построения схемы работы на жидком топливе. Но для функционирования такие двигатели должны иметь высокую жаропрочность ввиду большого количества выделяемой тепловой энергии. В настоящий момент ведется разработка особого покрытия, которое обеспечит работоспособность камеры сгорания под высокотемпературным воздействием.

Особое место в дальнейших исследованиях занимает создание смесительных головок, с помощью которых можно будет получить капли горючего материала заданного размера, концентрации и состава. По решению данных вопросов будет создан новый детонационный жидкостный ракетный двигатель, который станет основой нового класса ракет-носителей.

Детонационный двигатель часто рассматривают как альтернативу стандартному двигателю внутреннего сгорания или ракетному. Он оброс множеством мифов и легенд. Рождаются и живут эти легенды только по тому, что распространяющие их люди или забыли школьный курс физики, или вообще прогуляли его полностью!

Рост удельной мощности или тяги

Заблуждение первое.

Из роста скорости сгорания топлива вплоть до 100 раз, можно будет поднять удельную (в расчете на единице рабочего объема) мощность двигателя внутреннего сгорания. Для работающих на детонационных режимах ракетных двигателей в 100 раз вырастит тяга на единицу массы.

Примечание: Как всегда, не понятно о какой массе идет речь — о массе рабочего тела или всей ракеты в целом.

Связи между тем с какой скоростью горит топливо и удельной мощностью нет вообще никакой.

Есть связь между степенью сжатия и удельной мощностью. Для бензиновых двигателей внутреннего сгорания степень сжатия около 10. В двигателях, использующих детонационный режим, ее можно увечить приблизительно в 2 раза, что как раз реализуется в дизельных двигателях, которые имеют степень сжатия уже около 20. Собственно работают в режиме детонации. То есть, конечно, степень сжатия повысить можно, но после того как произошла детонация, это никому не нужно! Ни о каких 100 раз не может быть и речи!! Более того, рабочий объем ДВС, скажем, 2л, объем всего двигателя литров 100 или 200. Экономия по объему составит 1%!!! А вот дополнительный «расход»(толщина стенок, новые материалы и тд) будет мериться не в процентах, а в разах или десятках раз!!

Для справки. Произведенная работа пропорционально, грубо говоря, V*P (у адиабатического процесса присутствуют коэффициенты, но сути сейчас не меняет). Если объем уменьшить в 100 раз, значит начальное давление должна вырасти в те же 100 раз! (чтобы произвести такую же работу).

Литровую мощность можно поднять если вообще отказаться от сжатия или оставить его на том же уровне, но подавать углеводороды (в большем количестве) и чистый кислород в весовом соотношении около 1:2,6-4, в зависимости от состава углеводородов, или вообще жидкий кислород (где уже это было:-)). Тогда можно и литровую мощность повысить, и КПД (за счет роста «степени расширения» которая может достигать 6000!). Но на пути стоит как способность камеры сгорания выдержать такие давления и температуры, так и необходимость «питаться» не атмосферным кислородом, а запасенным чистым или вообще жидким кислородом!

Собственно некое подобие этого — использование закиси азота. Закись азота — это просто способ поставить повышенное количество кислорода в камеру сгорания.

Но никакого отношения к детонации эти способы не имеют!!

Можно предложить дальнейшее развитие таких экзотических способов повышения литровой мощности — использовать вместо кислорода фтора. Это более сильный окислитель, т.е. реакции с ним идут с большим выделением энергии.

Увеличение скорости истечения реактивной струи

Залужение второе.
В двигателях ракет, использующих детонационные режимы работы, в результате того, что режим сгорания происходит на скоростях выше скорости звука в данной среде (которая зависит от температуры и давления), в камере сгорания параметры давления и температуры увеличиваются в несколько раз, повышается скорость выходящей реактивной струи. Это пропорционально улучшает все параметры подобного двигателя, в том числе, снижает его массу и расход, а значит и необходимый запас топлива.

Как уже отмечалось выше нельзя повысить степень сжатия более чем в 2 раза. Но опять-таки скорость истечения газов зависит от подведенной энергии и их температуры! (Закон сохранения энергии). При том же количестве энергии (том же количестве топлива) повысить скорость можно только понизив их температуру. Но этому уже препятствуют законы термодинамики.

Детонационные ракетные двигатели — будущее межпланетных полетов

Заблуждение третье.

Только ракетные двигатели на детонационных технологиях позволяют получить скоростные параметры требуемые для межпланетных перелетов на основе химической реакции окисления.

Ну это заблуждение хотя бы логически последовательное. Вытекает из первых двух.

Никакие технологии не способны ничего уже выжать из реакции окисления! По крайней мере для известных веществ. Скорость истечения определяется энергетическим балансом реакции. Часть этой энергии, согласно законам термодинамики, можно перевести в работу (кинетическую энергию). Т.е. даже если вся энергия перейдет в кинетическую, то это предел на основе закона сохранения энергии и никакими детонациями, степенями сжатия и тд его нельзя преодолеть.

Кроме энергетического баланса очень важный параметр — «энергия на нуклон». Если сделать небольшие расчеты, то можно получить что реакция окисления атома углерода(C) дает в 1,5 раза больше энергии чем реакция окисления молекулы водорода (h3). Но из-за того что продукт окисления углерода (СО2) в 2,5 раза тяжелее продукта окисления водорода (Н2О), скорость истечения газов из водородных двигателей на 13%. Правда, надо еще учитывать теплоемкость продуктов горения, но это дает совсем небольшую поправку.

В России испытали пульсирующий детонационный
двигатель

Опытно-конструкторское бюро имени Люльки разработало, изготовило
и испытало опытный образец пульсирующего резонаторного
детонационного двигателя с двухстадийным сжиганием
керосиновоздушной смеси. Как сообщает ИТАР-ТАСС , средняя измеренная
тяга двигателя составила около ста килограммов, а длительность
непрерывной работы ─ более десяти минут. До конца текущего года
ОКБ намерено изготовить и испытать полноразмерный пульсирующий
детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра
Тарасова, в ходе испытаний моделировались режимы работы,
характерные для турбореактивного и прямоточного двигателей.
Измеренные величины удельной тяги и удельного расхода топлива
оказались на 30-50 процентов лучше, чем у обычных
воздушно-реактивных двигателей. В ходе экспериментов
производилось многократное включение и выключение нового
двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании
данных, а также схемно-конструкторского анализа ОКБ имени Люльки
намерено предложить разработку целого семейства пульсирующих
детонационных авиационных двигателей. В частности, могут быть
созданы двигатели с коротким ресурсом работы для беспилотных
летательных аппаратов и ракет и самолетные двигатели с
крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы
двигатели для ракетно-космических систем и комбинированных
силовых установок самолетов, способных выполнять полеты в
атмосфере и за ее пределами.

По оценке
конструкторского бюро, новые двигатели позволят увеличить
тяговооруженность самолетов в 1,5-2 раза. Кроме того, при
использовании таких силовых установок дальность полета или масса
авиационных средств поражения могут увеличиться на 30-50
процентов. При этом удельный вес новых двигателей будет в 1,5-2
раза меньше аналогичного показателя обычных реактивных силовых
установок.

О том, что в России ведутся работы по созданию пульсирующего
детонационного двигателя, сообщалось в
марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий
директор научно-производственного объединения «Сатурн», в состав
которого входит ОКБ имени Люльки. О каком именно типа
детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─
клапанные, бесклапанные и детонационные. Принцип работы этих
силовых установок заключается в периодической подаче в камеру
сгорания топлива и окислителя, где происходит воспламенение
топливной смеси и истечение продуктов сгорания из сопла с
образованием реактивной тяги. Отличие от обычных реактивных
двигателей заключается в детонационном горении топливной смеси,
при котором фронт горения распространяется быстрее скорости
звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в
конце XIX века шведским инженером Мартином Вибергом. Пульсирующий
двигатель считается простым и дешевым в изготовлении, однако
из-за особенностей горения топлива ─ малонадежным. Впервые новый
тип двигателя был использован серийно во время Второй мировой
войны на немецких крылатых ракетах Фау-1. На них устанавливался
двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира
занимаются исследованиями в области создания высокоэффективных
пульсирующих реактивных двигателей. В частности, работы ведут
французская компания SNECMA и американские General Electric и
Pratt & Whitney. В 2012 году Научно-исследовательская
лаборатория ВМС США объявила о
намерении разработать спиновый детонационный двигатель, который
должен будет заменить на кораблях обычные газотурбинные силовые
установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем,
что детонационное горение топливной смеси в них происходит
непрерывно ─ фронт горения перемещается в кольцевой камере
сгорания, в которой топливная смесь постоянно обновляется.

Ротационный детонационный двигатель — реальная экономия в ГДТ

 

Военно-морские силы США планируют в будущем провести модернизацию силовых газотурбинных установок, которые в настоящее время установлены на их самолетах и кораблях, поменяв обычные двигатели с циклом Брайтона на ротационные детонационные двигатели. За счет этого предполагается экономия топлива на сумму около 400 миллионов долларов ежегодно. Однако серийное использование новых технологий возможно, по оценкам экспертов, не ранее, чем через десятилетие.

Разработки ротационных, или спиновых ротационных двигателей в Америке проводятся Научно-исследовательской лабораторией флота США. Согласно первоначальным подсчетам, новые двигатели будут обладать большей мощностью, а также примерно на четверть экономичнее обычных двигателей. При этом, основные принципы работы силовой установки останутся прежними – газы от сгоревшего топлива будут поступать в газовую турбину, вращая ее лопасти. Согласно данным лаборатории ВМС США, даже в относительно далеком будущем, когда весь американский флот будет приводиться в действие при помощи электричества, за выработку энергии по-прежнему будут отвечать газовые турбины, в определенной степени видоизмененные.

Напомним, что изобретение пульсирующего воздушно-реактивного двигателя приходится на конец девятнадцатого века. Автором изобретения был шведский инженер Мартин Виберг. Широкое распространение новые силовые установки получили в годы Второй мировой войны, хотя они значительно уступали по своим техническим характеристикам авиадвигателям, которые существовали в то время.

Надо заметить, что на данный момент времени американский флот насчитывает 129 кораблей, на которых используется 430 газотурбинных двигателя. Каждый год расходы на обеспечение их топливом составляют порядка 2 миллиардов долларов. В будущем, когда современные двигатели будут заменены новыми, изменятся и объемы затрат на топливную составляющую.

Двигатели внутреннего сгорания, используемые в настоящее время, работают по циклу Брайтона. Если определить суть данного понятия в нескольких словах, то все сводится к последовательному смешиванию окислителя и топлива, дальнейшем сжатии полученной смеси, затем – поджоге и горении с расширением продуктов горения. Это расширение как раз и используется для приведения в движение, перемещения поршней, вращения турбины, то есть выполнения механических действий, обеспечивая постоянное давление. Процесс горения топливной смеси двигается с дозвуковой скоростью – этот процесс носит название дафлаграция.

Что касается новых двигателей, то ученые намерены использовать в них взрывное горение, то есть детонацию, при которой горение происходит со сверхзвуковой скоростью. И хотя в настоящее время явление детонации еще изучено не в полной мере, однако известно, что при таком виде горения возникает ударная волна, которая распространяясь по смеси топлива и воздуха вызывает химическую реакцию, следствием которой является выделение довольно большого количества тепловой энергии. Когда ударная волна проходит через смесь, происходит ее нагрев, что и приводит к детонации.

В разработке нового двигателя планируется использовать определенные наработки, которые были получены в процессе разработки детонационного пульсирующего двигателя. Его принцип работы состоит в том, что предварительно сжатая топливная смесь подается в камеру сгорания, где осуществляется ее поджог и детонация. Продукты горения расширяются в сопле, выполняя механические действия. Затем весь цикл повторяется сначала. Но недостатком пульсирующих двигателей является то, что частота повторения циклов слишком мала. Помимо этого, конструкция самих этих двигателей в случае увеличения числа пульсаций становится более сложной. Это объясняется необходимостью синхронизации работы клапанов, которые отвечают за подачу топливной смеси, а также непосредственно самими циклами детонирования. Пульсирующие двигатели ко всему прочему еще и очень шумные, для их работы необходимо большое количество топлива, а работа возможна только при постоянном дозированном вспрыскивании топлива.

Если сравнивать ротационные детонационные двигатели с пульсирующими, то принцип их работы немного отличается. Так, в частности, в новых двигателях предусмотрена постоянная незатухающая детонация топлива в камере сгорания. Подобное явление получило название спиновая, или вращающаяся детонация. Впервые она была описана в 1956 году советским ученым Богданом Войцеховским. А открыто это явление было гораздо раньше, еще в 1926 году. Первопроходцами стали британцы, которые заметили, что в определенных системах возникала яркая светящаяся «голова», которая двигалась по спирали, вместо детонационной волны, имеющей плоскую форму.

Войцеховский же, использовав фоторегистратор, который сам же и сконструировал, сфотографировал фронт волны, которая двигалась в кольцевой камере сгорания в топливной смеси. Спиновая детонация отличается от плоской тем, что в ней возникает единственная ударная поперечная волна, затем следует нагретый газ, который не прореагировал, а уже за этим слоем находится зона химической реакции. И именно такая волна предотвращает сгорание самой камеры, которую Марлен Топчиян обозвал «сплющенным бубликом».

Необходимо отметить, что в прошлом детонационные двигатели уже применялись. В частности речь идет и пульсирующем воздушно-реактивном двигателе, который использовался немцами в конце Второй мировой войны на крылатых ракетах «Фау-1». Производство его было достаточно простое, использование достаточно легкое, однако при этом этот двигатель был не очень надежным для решения важных задач.

Далее, в 2008 году, в воздух поднялся Rutang Long-EZ — экспериментальный самолет, оснащенный детонационным пульсирующим двигателем. Полет длился всего десять секунд на высоте тридцати метров. За это время силовая установка развила тягу порядка 890 ньютонов.

Экспериментальный образец двигателя, представленный американской лабораторией ВМС США, — это кольцевая конусообразная камера сгорания, имеющая диаметр 14 сантиметров со стороны подачи топлива и 16 сантиметров со стороны сопла. Между стенками камеры расстояние составляет 1 сантиметр, при этом «трубка» имеет длину 17,7 сантиметров.

Смесь воздуха и водорода используется в качестве топливной смеси, которая подается под давлением 10 атмосфер в камеру сгорания. Температура смеси составляет 27,9 градусов. Отметим, данная смесь признана самой удобной для изучения явления спиновой детонации. Но, как утверждают ученые, в новых двигателях вполне можно будет использовать топливную смесь, состоящую не только из водорода но и из других горючих компонентов и воздуха.

Экспериментальные исследования ротационного детонационного двигателя показали его большую эффективность и мощность по сравнению с двигателями внутреннего сгорания. Еще одно достоинство – значительная экономия топлива. В то же время, в ходе проведения эксперимента было выявлено, что сгорание топливной смеси в ротационном «пробном» двигателе происходит неоднородно, поэтому необходимо оптимизировать конструкцию двигателя.

Продукты горения, которые расширяются в сопле, можно собрать в одну газовую струю с помощью конуса (это так называемый эффект Коанда), а затем эту струю отправлять в турбину. Под действием этих газов турбина будет вращаться. Таким образом, частично работу турбины можно будет использовать для приведения в движение кораблей, а частично – для выработки энергии, которая необходима для корабельного оборудования и различных систем.

Сами двигатели можно производить без подвижных частей, что значительно упростит их конструкцию, что, в свою очередь, снизит стоимость силовой установки в целом. Но это только в перспективе. Перед тем, как запускать новые двигатели в серийное производство, необходимо решить немало непростых задач, одной из которых является подбор прочных термостойких материалов.

Отметим, что в данный момент ротационные детонационные двигатели считаются одними из наиболее перспективных двигателей. Разработками их также занимаются ученые из Техасского университета в Арлингтоне. Силовая установка, которая были ими создана, была названа «двигателем непрерывной детонации». В том же университете проводятся исследования по подбору различных диаметров кольцевых камер и различных топливных смесей, в состав которых входят водород и воздух или кислород в различных пропорциях.

В России также ведутся разработки в данном направлении. Так, в 2011 году, по словам управляющего директора научно-производственного объединения «Сатурн» И.Федорова, силами ученых Научно-технического центра имени Люльки, ведутся разработки пульсирующего воздушного реактивного двигателя. Работа ведется параллельно с разработками перспективного двигателя, получившего название «Изделие 129» для Т-50. Помимо этого, Федоров также сказал, что объединение ведет исследования по созданию перспективных самолетов следующего этапа, которые, как предполагается, будут беспилотными.

При этом руководитель не уточнил, о каком именно виде пульсирующего двигателя идет речь. В данный момент известны три типа таких двигателей – бесклапанный, клапанный и детонационный. Общепринятым, между тем, признан факт, что пульсирующие двигатели являются наиболее простыми и дешевыми в производстве.

На сегодняшний день некоторые крупные оборонные фирмы занимаются проведением исследований в сфере создания пульсирующих высокоэффективных реактивных двигателей. Среди этих фирм – американские Pratt & Whitney и General Electric и французская SNECMA.

Таким образом, можно сделать определенные выводы: создание нового перспективного двигателя имеет определенные трудности. Главная проблема в данный момент заключается в теории: что именно происходит при движении ударной детонационной волны по кругу, известно лишь в общих чертах, а это в значительной степени усложняет процесс оптимизации разработок. Поэтому новая технология, хотя и имеет очень большую привлекательность, но в масштабах промышленного производства она малореализуема.

Однако если исследователям удастся разобраться с теоретическими вопросами, можно будет говорить о настоящем прорыве. Ведь турбины используются не только на транспорте, но и в энергетической сфере, в которой повышение КПД может иметь еще более сильный эффект.

Автор: Валерий Бовал

Использованы материалы:

http://science.compulenta.ru/719064/

http://lenta. ru/articles/2012/11/08/detonation/


ВНИМАНИЕ: Данная информация получена путем сканирования, цифровой обработки физических носителей или обмена с неравнодушными пользователями. Она не имеет отметок грифа секретности и тайны, если вы считаете, что эта информация нарушает Ваши авторские или другие права. Незамедлительно сообщите администратору для удаления ее из портала.

Установки на будущее

Стоимость запуска ракеты-носителя в современной космонавтике остается довольно высокой, достигая порой нескольких сотен миллионов долларов. Чтобы существенно снизить ее, конструкторы из разных стран мира разрабатывают принципиально новые виды ракетных двигателей, способные выводить полезный груз на орбиту при меньших энергозатратах по сравнению с обычными силовыми установками. На сегодня из различных перспективных проектов такого рода наиболее близки к реализации три. Мы решили разобраться в их особенностях.

Во всем мире в 2015 году были произведены 87 запусков ракет-носителей с различной полезной нагрузкой: 29 запусков пришлись на Россию, 20 — на США, 19 — на Китай, девять — на Европейское космическое агентство, пять — на Индию, четыре — на Японию и один — на Иран. Из этого количества пять запусков были неудачными и окончились потерей двух автоматических космических кораблей и десяти спутников. В 2014 году страны осуществили 92 запуска ракет-носителей, а годом ранее — 80. Сегодня стоимость выведения полезного груза на орбиту составляет от 15 до 25 тысяч долларов за один килограмм при выводе спутников на геопереходную орбиту, откуда они переходят на геостационарную. Запуск космического аппарата на низкую орбиту обходится дешевле, но все равно достаточно дорого — от 2,4 до 6 тысяч долларов на килограмм.

Неудивительно поэтому, что во многих странах ведутся работы по созданию технологий, способных существенно снизить стоимость космических запусков. При этом разные разработчики идут разными путями. Например, американская компания SpaceX занимается созданием ракет-носителей Falcon Heavy с возвращаемой первой ступенью. В компании уверены, что многоразовость первой ступени Falcon Heavy позволит снизить стоимость запуска полезного груза на низкую орбиту Земли до двух тысяч долларов за килограмм и до 9–11 тысяч при запуске на геопереходную орбиту. А американская же компания JP Aerospace занимается созданием многоступенчатой системы запуска, в которой первые две ступени будут представлены дирижаблями.

Словом, различных технологий, нацеленных на снижение стоимости запусков, сегодня разрабатывается много. К ним относятся и ракеты-носители с корпусами из современных материалов, и способные на самолетные взлет и посадку ракетопланы, и навигационные системы возвращаемых ступеней ракет. Но главное место среди них занимают новые двигатели. Правда, в этой области чаще всего речь идет об усовершенствовании конструкций уже существующих ракетных двигателей. Например, двигатель Merlin компании SpaceX обладает значительной мощностью, но при этом относится к традиционным жидкостным ракетным двигателям. Впрочем, есть и оригинальные решения, прежде не применявшиеся для ракет-носителей. О трех наиболее интересных из них, с точки зрения конструкции и потенциальной выгоды, мы расскажем ниже.

Гибридный двигатель

В начале 1990-х годов британская компания Reaction Engines занялась разработкой нового типа ракетного двигателя, который потреблял бы существенно меньше жидкого окислителя, но был бы эффективен на всех высотах полета. Предполагалось, что он будет совмещать в себе качества воздушного турбореактивного и ракетного двигателей. Новый проект получил название SABRE (Synergistic Air-Breathing Rocket Engine, синергичный атмосферный ракетный двигатель). Принцип силовой установки относительно прост: при полете в атмосфере для сжигания топлива используется атмосферный кислород, а при выходе в безвоздушное пространство двигатель переключается на использование жидкого кислорода из баков.

Согласно проекту, двигатель SABRE получит универсальную камеру сгорания и сопло, по конструкции во многом схожие с подобными элементами обычного ракетного двигателя. На старте и при разгоне SABRE будет работать как обычный прямоточный реактивный двигатель. В полете воздух будет поступать в воздухозаборник, а дальше по специальным обводным каналам — в охладитель и камеру сгорания. В зоне охладителя предусмотрена установка турбины и компрессора: при выходе реактивной струи из сопла воздух будет затягиваться в двигатель и раскручивать турбину, которая в свою очередь будет раскручивать компрессор. Последний станет сжимать охлажденный воздух, что позволит увеличить его подачу в камеру сгорания, а следовательно и полноту сгорания топлива и его энергетическую отдачу.

Предполагается, что в атмосферном режиме новый гибридный ракетный двигатель будет работать на скоростях полета до пяти чисел Маха (6,2 тысячи километров в час). По мере увеличения скорости воздух в воздухозаборнике — из-за его резкого торможения и сжатия — будет становиться все горячее и горячее. Это ухудшит его компрессию, а значит, и общую эффективность двигателя. Поэтому для охлаждения поступающего воздуха предполагается использовать специальную сеть трубок диаметром один миллиметр и общей протяженностью около двух тысяч километров. Их установят в воздуховоде. В сами трубки под давлением в 200 бар (197 атмосфер) будет подаваться гелий, выполняющий роль теплоносителя.

По расчетам разработчиков, система позволит охлаждать поступающий воздух с более чем одной тысячи градусов Цельсия до минус 150 градусов Цельсия за одну сотую секунды. При этом сжижения воздуха, способного резко снизить эффективность двигателя, не произойдет. После превышения скорости в пять чисел Маха воздухозаборник будет перекрыт, а двигатель переключится на потребление жидкого кислорода из бака. В таком варианте он сможет функционировать в разреженных верхних слоях атмосферы и в безвоздушном пространстве. В качестве топлива планируется использовать жидкий водород. Испытания отдельных узлов SABRE проводились Reaction Engines с 2012 года и признаны успешными.

В настоящее время британская компания занимается сборкой демонстратора технологий двигателя, испытания которого запланированы на конец 2017-го — первую половину 2018 года. В атмосферном режиме этот аппарат сможет развивать тягу в 196 килоньютонов. По своим размерам прототип силовой установки будет соответствовать габаритам турбореактивного двухконтурного двигателя с форсажной камерой F135. Такие двигатели ставятся на американские истребители F-35 Lightning II. Длина F135 составляет 5,6 метра, а диаметр — 1,2 метра. Эта силовая установка способна развивать тягу до 191 килоньютона в режиме форсажа. Полноценная установка SABRE будет немного крупнее и в атмосферном режиме сможет развивать тягу в 667 килоньютонов. Ее испытания запланированы на 2020–2021 годы.

В британской компании полагают, что благодаря ее двигателю ракету-носитель можно будет сделать одноступенчатой. Причем эта единственная ступень станет возвращаемой. Новая силовая установка будет потреблять топлива и особенно окислителя гораздо меньше обычного ракетного двигателя, ведь для полета на атмосферном участке кислород для сжигания горючего предполагается брать из воздуха. Британские двигатели планируется использовать в перспективных американских многоразовых двухступенчатых космических кораблях, которые, по предварительным расчетам, позволят выводить полезную нагрузку на низкую околоземную орбиту по 1,1–1,4 тысячи долларов за килограмм.

Гиперзвуковой двигатель

Поделиться

Запуск ракеты с гиперзвуковым прямоточным воздушно-реактивным двигателем в Индии на полигоне Шрихарихота

ISRO

В конце августа 2016 года индийская Организация космических исследований провела первые успешные испытания гиперзвуковых прямоточных воздушно-реактивных двигателей. Успешное испытание силовых установок состоялось на полигоне Шрихарихота на востоке страны. Для проверки разработчики использовали обычную твердопливную двухступенчатую ракету-носитель ATV, ко второй ступени которой и были прикреплены гиперзвуковые двигатели. Во время летных испытаний силовых установок исследователи проверили зажигание на сверхзвуковой скорости, устойчивое горение топлива, механизм забора воздуха и систему впрыска топлива. Общая продолжительность полета второй ступени составила 300 секунд, из которых пять секунд работали гиперзвуковые двигатели.

Индийские силовые установки, создаваемые в рамках проекта SRE (Scramjet Rocket Engine, гиперзвуковой прямоточный воздушно-реактивный ракетный двигатель), работали на скорости полета чуть больше шести чисел Маха. Ступень с двигателями поднялась на высоту 70 километров. Целью первого испытания гиперзвуковых двигателей была проверка стабильности их работы, а не возможности этих силовых установок разгонять носители до гиперзвуковых скоростей. В ближайшее время разработчики планируют завершить обработку данных, полученных во время первого запуска силовых установок, и провести еще серию их испытаний. Предполагается, что гиперзвуковые двигатели будут разгонять вторую ступень ракет-носителей до восьми-девяти чисел Маха.

Технические подробности о своих гиперзвуковых установках индийцы не раскрывают. Однако общая схема таких двигателей, разрабатываемых в нескольких странах мира с 1970-х годов, известна. Гиперзвуковой прямоточный воздушно-реактивный двигатель отличается от обычных тем, что топливо в его камере сгорает в сверхзвуковом воздушном потоке. При этом воздух для процесса горения подается в камеру прямотоком без использования дополнительных компрессоров. Выглядит это так: набегающий воздушный поток попадает в воздухозаборник, а затем в заужающуюся компрессорную камеру, где сжимается и откуда поступает в камеру сгорания. Что самое интересное, такие гиперзвуковые двигатели могут вообще не иметь никаких подвижных частей.

Гиперзвуковые силовые установки способны работать при скорости полета не менее четырех-пяти чисел Маха — именно при такой скорости обеспечивается необходимое сжатие воздуха и стабильное сгорание топлива. Теоретическим верхним пределом скорости гиперзвукового двигателя считаются 24 числа Маха. При этом силовая установка сможет развивать и большие скорости, если в камеру сгорания будет дополнительно впрыскиваться жидкий окислитель. Максимальная высота полета, на которой гиперзвуковые двигатели могут работать без потребности в дополнительном впрыске окислителя, составляет 75 километров. Для сравнения, низкая околоземная орбита начинается с отметки в 160 километров.

Помимо Индии, активными работами по созданию гиперзвуковых ракетных двигателей сегодня занимаются США, Россия, Китай и Австралия. США и Россия планируют устанавливать новые силовые установки на гиперзвуковые боевые ракеты, разведывательные аппараты и истребители шестого поколения. Австралия, ведущая разработки совместно с американцами, тоже намерена оснастить новыми двигателями ракеты. Китай, помимо боевого применения силовых установок, намерен использовать их и в ракетах-носителях. По неподтвержденным данным, гиперзвуковые двигатели будут разгонять китайские ракеты-носители до 10–12 чисел Маха, а боевые ракеты — до 20 чисел Маха. Первые испытания китайской гиперзвуковой ракеты состоялись в июне прошлого года.

В США и России полагают, что использование гиперзвуковых двигателей в ракетах-носителях усложнит, а не упростит их конструкцию. Кроме того, исследователи считают, что такие силовые установки не смогут развивать достаточную для запуска больших грузов тягу. Индийские же и китайские разработчики уверены, что использование гиперзвуковых прямоточных воздушно-реактивных двигателей в ракетах-носителях позволит отказаться от большей части жидкого окислителя, который будет необходим лишь на заатмосферном участке полета. А проблему возможной недостаточности тяги можно будет решить установкой нескольких гиперзвуковых силовых установок, причем выгода от отказа от окислителя нивелирована не будет — совокупная масса двигателей благодаря простой конструкции будет невелика.

Детонационный двигатель

Между тем в России специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» занимается разработкой спинового детонационного жидкостного ракетного двигателя, работающего на топливной паре кислород-керосин. О первом успешном испытании такой силовой установки было объявлено 26 августа текущего года. Следует отметить, что это первый в мире спиновый детонационный двигатель, разрабатываемый специально для использования на ракетах-носителях. Аналогичную силовую установку сегодня создают и в США, однако ее планируется использовать в качестве более экономичной и эффективной замены газотурбинных двигателей на кораблях ВМС.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Впервые ими занялись еще в Германии в 1940-е годы. Правда, тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1». В силовых установках таких ракет топливо подавалось в камеру сгорания небольшими порциями через равные промежутки времени. При этом распространение процесса горения по топливу происходило на скорости, меньшей скорости звука. Такое сгорание называется дефлаграцией, оно лежит в основе работы всех обычных двигателей внутреннего сгорания.

В детонационном двигателе фронт горения распространяется по топливной смеси быстрее скорости звука. Такой процесс горения называется детонацией. Детонационные двигатели сегодня делятся на два типа: импульсные и спиновые. Последние иногда называют ротационными. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей: топливо и окислитель подаются в камеру сгорания с высокой частотой через равные промежутки времени. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. Благодаря детонации топливо сгорает полнее, выделяя большее количество энергии, чем при дефлаграции.

В спиновых детонационных двигателях используется кольцевая камера сгорания. В ней топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает, пока подаются топливо и окислитель. Во время работы двигателя детонационная волна «обегает» кольцевую камеру сгорания, причем топливная смесь за ней успевает обновиться. При этом, если в импульсном двигателе в камеру сгорания следует подавать предварительно подготовленную смесь топлива и окислителя, то в спиновом двигателе этого делать не нужно — фронт высокого давления, движущийся перед детонационной волной, вполне эффективно смешивает необходимые компоненты. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

В новом российском спиновом детонационном ракетном двигателе частота спиновой детонации составляет 20 килогерц, то есть за одну секунду детонационная волна успевает «обежать» кольцевую камеру сгорания 20 тысяч раз. Теоретически, детонационные двигатели способны работать в широком пределе скоростей полета — от нуля до пяти чисел Маха, а при использовании дополнительных агрегатов, например компрессора, верхний предел можно поднять до семи-восьми чисел Маха. Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в базовом варианте в них отсутствует компрессор и многие движущиеся части.

Благодаря своей экономичности при высокой выдаваемой мощности спиновые детонационные двигатели в ракетах-носителях позволят существенно сократить объемы топлива и окислителя, необходимые для вывода полезного груза на орбиту. На практике (и это свойственно всем уже перечисленным проектам), уменьшение массы двигателя (а силовая установка будет весить меньше обычной ракетной), топлива и окислителя позволит либо увеличить забрасываемый вес носителя при сохранении его габаритов, либо оставить забрасываемый вес неизменным при уменьшении габаритов ракеты. Забрасываемый вес ракеты-носителя — это масса последней ступени, ее топлива и полезного груза.

В перспективе гонку на рынке космических запусков выиграет тот, кто сможет как можно дешевле выводить на орбиту как можно больше грузов. Некоторые компании полагают, что благодаря использованию новых технологий стоимость вывода грузов на низкую орбиту можно будет опустить ниже тысячи долларов за килограмм и ниже десяти тысяч за килограмм при запуске на геопереходную орбиту. Правда, когда именно такое будет возможно, пока неясно. По самым смелым оценкам, новые ракетные двигатели будут использоваться на ракетах-носителях с середины 2020-х годов.

Василий Сычёв

Импульсный детонационный двигатель – ISSI

Импульсный детонационный двигатель

Анимация предоставлена ​​Фредом Шауэром (AFRL/PRTS)

Рабочий цикл нашего PDE показан на анимации выше. Сначала в трубку впрыскивается продувочный воздух (синий), чтобы изолировать выхлопные газы от следующего заряда топлива/воздуха. После завершения этого процесса продувки трубка заполняется предварительно смешанной газообразной смесью топлива и воздуха (зеленый цвет). Клапаны закрываются, и обычная автомобильная свеча зажигания воспламеняет смесь, вызывая ее дефлаграцию. Дефлаграция — это знакомое повседневное возгорание, наблюдаемое при зажигании спички. В этот момент работа PDE начинает отличаться от работы обычного двигателя.

Волна дефлаграции в результате процесса, называемого переходом дефлаграции в детонацию (DDT), ускоряется до явления, известного как детонация. В отличие от дефлаграции, которая распространяется с дозвуковой скоростью и вызывает пиковое повышение давления только в два-три раза по сравнению с атмосферным, детонация распространяется со скоростью 5-6 Маха и вызывает пиковое повышение давления от 30 до 100 атм. Через очень короткое время детонационная волна выходит из трубы, оставляя газ высокого давления и температуры в детонационной трубе. Выброс этого высокоэнергетического газа создает тягу. На двигателе летного проекта каждую секунду производится по 20 детонаций в каждой из четырех трубок. Таким образом, каждую секунду происходит 80 детонаций. Эти быстрые импульсы силы создают тягу для движения самолета.

Разве немцы уже не построили работающие ПДЭ?

Нет. Во время Второй мировой войны Германия, а затем и Соединенные Штаты оснастили несколько систем вооружения двигателями, называемыми импульсными реактивными двигателями. Предпосылка импульсного реактивного двигателя очень похожа на основу PDE. Однако в импульсном реактивном двигателе топливо сгорает, а не детонирует. Дефлаграции вызывают пиковое повышение давления только на 2-3 атм и происходят на дозвуковых скоростях. С другой стороны, детонация вызывает пиковое повышение давления на 30 и более атм и распространяется со скоростью 5 Маха или быстрее. Таким образом, несмотря на низкую стоимость и простоту PDE, импульсные реактивные двигатели не достигают высокой эффективности и сверхзвукового рабочего диапазона, связанных с технологией PDE.

Зачем тратить деньги на исследования ФДЭ?

PDE предлагают широкий спектр потенциальных преимуществ как для военных, так и для коммерческих потребителей двигателей. Во-первых, как показано на графике справа, PDE имеют гораздо более широкий диапазон эффективности, чем реактивные двигатели. На самом деле, предполагается, что PDE будут поддерживать отличную эффективность во всем диапазоне от статической тяги до 4 Маха.

Несмотря на то, что они менее эффективны, чем реактивные двигатели на низких скоростях, PDE обеспечивают более высокую производительность при высоких числах Маха. В диапазоне 2-4 Маха ни одна другая технология двигателя не может похвастаться более высокой производительностью. Кроме того, в отличие от ГПВРД или ПВРД, которым для достижения крейсерской скорости требуется отдельный двигатель, ПДЭ может взлетать своим ходом. Наконец, PDE содержат очень мало движущихся частей. В отличие от реактивных двигателей, для которых требуется множество компонентов, изготовленных из специальных материалов и предназначенных для работы на высоких частотах вращения, ПДЭ просты и просты в обслуживании. На самом деле, первые исследования PDE в База ВВС Райт-Паттерсон почти полностью построена из готовых автомобильных компонентов.

Кто выполняет работу?

ISSI предоставляет несколько сотрудников, которые играют ключевую роль в проекте полета, который является государственным исследовательским проектом, финансируемым отделом науки о горении Управления исследовательской лаборатории силовых установок ВВС. Кроме того, Scaled Composites консультирует по вопросам использования своего самолета Long EZ, предоставляет летчиков-испытателей и проводит летные испытания. Управление воздушных транспортных средств на базе ВВС Райт-Паттерсон делится своим опытом в области акустических и вибрационных измерений и обеспечивает дополнительное финансирование проекта. Наконец, Universal Technology Corporation (UTC) предоставляет несколько членов команды в области дисплеев и связей с общественностью. Эта программа была бы невозможна без объединения усилий и талантов многочисленных ученых, инженеров, техников и администраторов, которые работают в промышленности, учатся в научных кругах и служат правительству США в военной форме или без нее.

Каковы цели проекта полета?

Целями проекта полета PDE являются приведение в движение самолета с помощью PDE, исследование акустического и вибрационного воздействия PDE на планер и пилота, а также демонстрация потенциала PDE сообществу исследователей горения. Эта демонстрация, первая в своем роде, представляет собой первый шаг к разработке PDE в качестве жизнеспособной двигательной технологии. Хотя самолет не будет сертифицирован для полетов, он получит сертификат летной годности FAA Phase II.

Следует отметить, что это не демонстрация движка. PDE был построен с низкими затратами и с точки зрения исследования, проверки концепции. Несмотря на то, что двигатель достаточно надежен, чтобы соответствовать надзору и нормам FAA/EA, он не предназначен для массового производства или длительной эксплуатации. Система была разработана для демонстрации дозвукового полета PDE со скоростью примерно 200 миль в час. Двигатель имеет ограниченную площадь клапана и не предназначен для демонстрации возможностей высокой тяги.

Использовались ли автомобильные детали в исследовательском PDE?

Да, цель этого проекта состояла в том, чтобы продемонстрировать жизнеспособность технологии PDE, а не исследовать оптимизацию конструкции PDE. Таким образом, двигатель был построен с использованием недорогих стандартных автомобильных компонентов. Эти детали можно легко заменить и модифицировать, и они легко доступны, что делает их идеальными для исследовательской среды.

Это работает?

Да, ISSI успешно запускает исследовательские PDE в AFRL/PRTS с 19 года.98, без использования обогащения кислородом, взрывчатых веществ или чрезмерно длинных детонационных труб. Фактически, в то время как многие группы измеряют свои тестовые запуски в секундах, PDE, разработанные персоналом ISSI, производят тягу в течение нескольких часов. Первый в мире полет PDE, установленного на самолет Rattan LongEZ , был успешно завершен 31 января 2008 года компанией ISSI в сотрудничестве с Исследовательской лабораторией ВВС и компанией Scaled Composites. Подробнее см. здесь.

Как работает вращающийся детонационный двигатель

  • Новое исследование может помочь ученым создать стабильный вращающийся детонационный двигатель после десятилетий теории.
  • Текущие ракетные исследования в основном направлены на создание более совершенных и легких систем двигателей внутреннего сгорания.
  • Детонация более мощная при меньшем количестве топлива, но сгорание более предсказуемое и стабильное.

Новый вращающийся детонационный двигатель может произвести революцию в запуске ракет — если его удастся сделать достаточно стабильным. Это большое «если», и исследователи надеются изучить его, используя новую математическую модель физики, действующую в непредсказуемых вращающихся детонациях. В этих двигателях в концентрических кругах происходят химические реакции, которые выталкивают импульсы сверхзвукового газа и создают тягу.

Ученые из Вашингтонского университета использовали финансирование ВМС и ВВС США для разработки модели, позволяющей фиксировать и объяснять «нестабильности и бифуркации» во вращающихся детонационных двигателях с использованием конструкции, которую они изложили в своей статье . Настраивая параметры модели, эти ученые могут изучать взаимодействующие волны детонации и другие явления, которые могут привести к нестабильности вращающегося детонатора.

«Я определил доминирующую физику и то, как они взаимодействуют», — говорится в заявлении ведущего автора Джеймса Коха. «Теперь я могу взять то, что я сделал здесь, и сделать это количественным. Оттуда мы можем говорить о том, как сделать двигатель лучше».

Технологическая основа для вращающейся детонации довольно хорошо известна, но работающий двигатель, использующий эту технологию, был более труднодостижимым. Это потому, что детонация и сгорание различны, и есть причина, по которой один из них исторически использовался в бомбах, а другой — в двигателях.

Горение является более контролируемой реакцией, при которой топливо при высоких температурах смешивается с кислородом, что приводит к мощной, но медленной и устойчивой химической реакции. Естественного кислорода недостаточно, поэтому в этих двигателях, особенно в ракетах, есть кислородосодержащие агенты, которые активируются под действием тепла и давления. Их иногда называют слабыми взрывчатыми веществами, и они также включают порох.

Напротив, детонация — это « процесс внутримолекулярного распада ». Как только эта реакция запускается, кислород или что-то еще («со-реагент») не требуется. Мощным взрывчатым веществам, таким как нитроглицерин и тротил, нужен детонатор в виде «ударной волны или электрического заряда», который может быть во многих формах, таких как капсюли-детонаторы или электрические детонаторы. Они создают энергию активации, необходимую для реакции бризантного взрывчатого вещества.

Умный двигатель
  • Гордость валькирий
  • Короткий ход двигателя — ключ к созданию мощности
  • Новая эра шоссейного мотоцикла V4

Вернемся к ракетам. Существующие ракетные двигатели по-прежнему являются двигателями внутреннего сгорания, только в больших масштабах с огромным количеством топлива. Текущие исследования сосредоточены на всем, от различных форм окислителей до топливных камер, напечатанных на 3D-принтере, но это все еще касается внутреннего сгорания, что делает его более безопасным, более эффективным и, что наиболее важно, меньшим весом . Space Shuttle (RIP) весил менее 200 000 фунтов, но только топливо весило в 20 раз больше, чем шаттл, и использовалось почти исключительно для вывода шаттла на орбиту.

Вращающаяся детонационная система обещает потреблять меньше топлива и быть значительно легче по весу. Но перенос дозвуковой (традиционной) реакции дефлаграции на территорию сверхзвуковой детонации требует переориентации научного мышления, а также совершенно нового дизайна того, как работает такой двигатель. Внутри кольцеобразного (кольцевого) реактора детонация запускается концентрически, а конец сопла на реакторе создает тягу, когда реагенты вытекают из него со сверхзвуковой скоростью.

Посмотреть полный пост на Youtube

Существует различных причин, существующие конструкции вращающихся детонаторов нестабильны. Трудно найти баланс между шириной канала детонации и непредсказуемым выбросом неизрасходованного топлива. Неизрасходованное топливо может взорваться за пределами реактора и вызвать проблемы, и его минимизация важна, но не может быть достигнута за счет оптимальной формы и размера реактора.

Здесь на помощь приходит рабочая математическая модель. «Недостаток этого в том, что у этих детонаций есть собственный разум. Как только вы что-то взорвете, оно просто исчезнет. Это так жестоко», — говорит Кох в заявлении. «Моя цель здесь состояла исключительно в том, чтобы воспроизвести поведение импульсов, которые мы видели, чтобы убедиться, что выходные данные модели аналогичны нашим экспериментальным результатам».

Кэролайн Делберт

Кэролайн Делберт — писатель, заядлый читатель и пишущий редактор журнала Pop Mech. Она также энтузиаст практически всего. Ее любимые темы включают ядерную энергию, космологию, математику повседневных вещей и философию всего этого.

Импульсные детонационные двигатели

Импульсные детонационные двигатели

Шон Кэссиди

21 ноября 2016 г.

Представлено в качестве курсовой работы для Ph340,
Стэнфордский университет, осень 2016 г.

Введение

Рис. 1: Импульсно-детонационный цикл двигателя.
(Источник: С. Кэссиди, по Кайласанатху. [1]) 90 135

Импульсно-детонационный двигатель (ИДД) является экспериментальным
движитель, использующий сверхзвуковые волны детонации в качестве горения
механизм. Теоретически конструкция PDE предлагает множество преимуществ по сравнению с
традиционные газотурбинные двигатели, в том числе улучшенный КПД и
снижение механической сложности. [1] Однако конструкции УЧП должны преодолевать
значительные препятствия для того, чтобы стать жизнеспособной и эффективной формой
двигательной установки, а также исследование конструкций PDE, инженерных свойств и
потенциал продолжается.

История

Импульсно-детонационные двигатели являются сверхзвуковыми родственниками
импульсно-реактивных двигателей. Импульсные реактивные двигатели полагаются на прерывистый дозвуковой
пламя дефлаграции в длинной трубе для сжигания впрыснутого топлива-окислителя
смесь. [2] Импульсные реактивные двигатели появились на мировой арене во время мировой войны.
II в качестве двигательной установки нацистской бомбы Фау-1. [2] Дефлаграция
пламя распространяется довольно медленно, и его горение можно смоделировать как
Процесс постоянного давления. [2] В результате производительность импульсно-
реактивных двигателей ограничивается медленной скоростью пламени. [2] Детонационные волны, а
сверхзвуковое явление, распространяющееся со скоростью в тысячи метров
в секунду и поэтому может быть смоделирован как процесс постоянного объема.
[2] Серьезные исследования детонационных двигательных установок начались в
1950-х годов, когда исследователи Мичиганского университета опубликовали серию
статей о детонационных волнах. [1,3] Новая идея прерывистого
детонация получила распространение в 1980-х годах, когда военно-морская аспирантура
исследовал конструкцию дальше. [4] Тем не менее, экспериментальная работа
столкнулась с рядом проблем, а именно с трудностями
переход дозвуковой волны дефлаграции (пламени) в сверхзвуковую
волна детонации, а также правильное смешивание горючего и окислителя для
произвести равномерную детонацию. [1] Совсем недавно появилась концепция PDE.
продолжал вызывать академический исследовательский интерес, и исследователи
подходить к исследованиям PDE с разных сторон, в том числе
вычислительная гидродинамика, экспериментальная термодинамика, а также
лазерная диагностика. [1,4]

Как это работает

Фундаментальная физика, лежащая в основе УЧП, довольно проста.
Горение происходит в шахте с клапанами или тщательно продуманными отверстиями.
на каждом конце, так что газ может проходить через устройство только в одном направлении. [1]
Топливная смесь в камере воспламеняется таким образом, что
сгорает и расширяется со сверхзвуковой скоростью (детонация), посылая ударную волну
по длине камеры. Потому что ударная волна движется так
быстро, остальное топливо в двигателе сгорает раньше, чем успевает
расширять; таким образом, горение происходит при приблизительно постоянном объеме. [1]
Процесс сгорания с постоянным объемом высвобождает больше химического потенциала
энергии в виде тепла, чем процесс постоянного давления, используемый в обычных
турбинные двигатели. [1] Теоретически при постоянном объеме все
химическая потенциальная энергия, запасенная в топливе, преобразуется в
внутренняя энергия (U) газа. Если бы газ расширился, часть этого
химическая энергия (PV) должна быть затрачена как работа против
атмосфера. Движение создается соплом в задней части
двигатель, который позволяет горячему газу расширяться при выходе из вала. [1] Как
выхлопные газы выдуваются из задней части двигателя, воздух устремляется в
спереди, чтобы заполнить вакуум, где он смешивается с топливом, воспламеняется и
перезапускает процесс с новой волной детонации (см. рис. 1). [1]

Вызовы

Какими бы многообещающими они ни казались в теории, PDE
должны преодолеть серьезные проблемы, прежде чем они могут быть практически
реализовано. Например, создание надлежащих условий для
детонация произойти может быть довольно трудно. Чтобы достичь
детонация, либо событие горения должно быть достаточно мощным,
или пламя дефлаграции ниже по потоку должно быть преобразовано в сверхзвуковое
волна в процессе, известном как дефлаграционно-детонационный переход (ДДТ). [1]
Один из методов вызывания ДДТ заключается в размещении внутренних препятствий.
вдоль пути течения волны горения для увеличения турбулентности
поток. [5] Текущие исследования ДДТ делают упор на минимизацию ДДТ.
переходный период и совершенствование материалов, выбранных для интерференции.
[5] Кроме того, PDE производит чрезвычайно большое количество тепла на единицу топлива.
сгорел. [1] В результате необходимые материалы и время испытаний доступны
экспериментальных ПДЭ ограничены. Такие вызовы подпитывают текущие
исследования форсунок PDE, свойств потока и механизмов охлаждения.

Заключение

Теоретически УЧП предлагают множество преимуществ по сравнению с
Современные реактивные и ракетные двигательные установки. Однако их практическое
развитие столкнулось с многочисленными проблемами, многие из которых остаются
сегодня неразгадан. Даже если PDE никогда не станут жизнеспособным средством движения
вне лаборатории их изучение не будет напрасным. ПДЭ
исследования раздвинули границы инженерных знаний, подпитывая
разработка усовершенствованных газодинамических моделей и диагностики, при этом
улучшение понимания науки о горении и гидродинамики.

© Шон Кэссиди. Автор дает разрешение на
копировать, распространять и отображать это произведение в неизмененном виде, с
ссылка на автора только в некоммерческих целях.