Содержание

404 Not found

А теперь подумаем, куда пойдем дальше?

Хиты продаж

Посмотреть все

  • Магнитное крепление с винтом С10 (М3)

    31.60

    Кол-во:

  • Крючок на неодимовом магните Е10 (М3)

    44.00

    Кол-во:

  • Неодимовый магнит пруток 3х4 мм

    3. 30

    Кол-во:

  • Ферритовый магнит кольцо 45х22х9 мм

    28.00

    Кол-во:

  • Неодимовый магнит прямоугольник 10х5х2 мм

    8.50

    Кол-во:

  • Магнитный держатель для телефона Car Kit, Forceberg

    495. 00

    Кол-во:

  • Неодимовый магнит диск 3х2 мм, 240 шт, Forceberg

    755.00

    Кол-во:

  • Магнитный уголок для сварки для 3 углов Forceberg, усилие до 11 кг

    240.00

    Кол-во:

  • Поисковый магнит односторонний Forceberg F120, сила сц. 140 кг

    1 990.00

    1 495.00

    Кол-во:

  • Напульсный магнитный держатель Forceberg

    255.00

    205.00

    Кол-во:

  • Веревка Forceberg полипропиленовая высокопрочная с сердечником 30 метров

    795. 00

    Кол-во:

  • Магнитное крепление для бейджей 45х13 мм, металл

    24.10

    Кол-во:

  • Forceberg Cube — куб из магнитных шариков 5 мм, стальной, 216 элементов

    995.00

    Кол-во:

  • Поисковый магнит двухсторонний Forceberg F200х2, сила сц. 220 кг

    3 990.00

    2 490.00

    Кол-во:

  • Неодимовый магнит диск 5х1 мм

    2.30

    1.95

    Кол-во:

Вечный двигатель на постоянных магнитах. Миф или реальность?

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Устройство и принцип работы

Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.

Для примера мы рассмотрим наиболее наглядный вариант:

Принцип действия магнитного двигателя

Как видите на рисунке, мотор состоит из следующих компонентов:

  • Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
  • Ротор дискового типа из немагнитного материала.
  • Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
  • Балласт  — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).

Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.

Требования к вечным двигателям

Так как такие устройства должны работать постоянно, то и требования к ним должны предъявляться особые:

  • полное сохранение движения;
  • идеальная прочность деталей;
  • обладание исключительной износостойкостью.

Вечный двигатель с научной точки зрения

Что говорит по этому поводу наука? Она не отрицает возможность создания такого двигателя, который будет работать на принципе использования энергии совокупного гравитационного поля. Она же – энергия вакуума или эфира. В чем должен заключаться принцип работы такого двигателя? В том, что это должна быть машина, в которой непрерывно действует сила, вызывающая движение без участия внешнего влияния.

Современная классификация вечных двигателей

  • Вечный двигатель первого рода — двигатель (воображаемая машина), способный бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Их существование противоречит первому закону термодинамики. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал.
  • Вечный двигатель второго рода — воображаемая машина, которая будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел (см. Демон Максвелла). Они противоречат второму закону термодинамики. Согласно Второму началу термодинамики, все попытки создать такой двигатель обречены на провал.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле – это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах
К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.

Самые известные аналоги вечного двигателя магнитах

Многочисленные энтузиасты стараются создать вечный двигатель на магнитах своими руками по схеме, в которой вращательное движение обеспечивается взаимодействием магнитных полей. Как известно, одноименные полюса отталкиваются друг от друга. Именно этот эффект и лежит в основе практически всех подобных разработок. Грамотное использование энергии отталкивания одинаковых полюсов магнита и притяжения разноименных полюсов в замкнутом контуре позволяет обеспечить длительное безостановочное вращение установки без приложения внешней силы.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.

Первоначально расчет данного типа устройства вел Фарадей, но его прототип при сходном принципе действия не обладал должной эффективностью, стабильностью работы, то есть не достиг цели. Термин «униполярный» означает, что в схеме агрегата кольцевой, дисковый (пластина) или цилиндровый проводник расположен в цепи между полюсами постоянного магнита.

Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Минато

Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор  позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.

Схема двигателя Минато

Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной  подачи электроэнергии через реле или полупроводниковый прибор.

При этом   ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.

«Тестатика» Пауля Баумана

Одна из самых известных разработок – это «тестатика» Баумана. Устройство напоминает своей конструкцией простейшую электростатическую машину с лейденскими банками. «Тестатик» состоит из пары акриловых дисков (для первых экспериментов использовались обычные музыкальные пластинки), на которые наклеены 36 узких и тонких полосок алюминия.

Кадр из документального фильма: к Тестатике подключили 1000-ваттную лампу. Слева — изобретатель Пауль Бауман
После того, как диски толкали пальцами в противоположные стороны, запущенный двигатель продолжал работать неограниченно долгое время со стабильной скоростью вращения дисков на уровне 50-70 оборотов в минуту. В электроцепи генератора Пауля Баумана удается развить напряжение до 350 вольт с силой тока до 30 Ампер. Из-за небольшой механической мощности это скорее не вечный двигатель, а генератор на магнитах.

Роторный кольцар Лазарева

Большой популярностью пользуется схема вечного двигателя на магнитах на основе проекта Лазарева. На сегодняшний день его роторный кольцар считается устройством, реализация которая максимально близка к концепции вечного двигателя. Важное преимущество разработки Лазарева состоит в том, что даже без профильных знаний и серьезный затрат можно собрать подобный вечный двигатель на неодимовых магнитах своими руками. Такое устройство представляет собой емкость, разделенную пористой перегородкой на две части. Автор разработки использовал в качестве перегородки специальный керамический диск. В него устанавливается трубка, а в емкость заливается жидкость. Для этого оптимально подходят улетучивающиеся растворы (например, бензин), но можно использовать и простую водопроводную воду.


Механизм работы двигателя Лазарева очень просто. Сначала жидкость подается через перегородку вниз емкости. Под давлением раствор начинает подниматься по трубке. Под получившейся капельницей размещают колесо с лопастями, на которых устанавливают магниты. Под силой падающих капель колесо вращается, образуя постоянное магнитное поле. На основе этой разработки успешно создан самовращающийся магнитный электродвигатель, на которой зарегистрировало патент одно отечественное предприятие.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:

Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении  расстояний и зазоров между основными элементами мотора.

Антигравитационный магнитный двигатель Лоренца

Двигатель Лоренца можно сделать самостоятельно с использованием простых материалов
Если вы хотите собрать вечный двигатель на магнитах своими руками, то обратите внимание на разработки Лоренца. Антигравитационный магнитный двигатель его авторства считается наиболее простым в реализации. В основе этого устройства лежит использование двух дисков с разными зарядами. Их наполовину помещают в полусферический магнитный экран из сверхпроводника, который полностью выталкивает из себя магнитные поля. Такое устройство необходимо для изоляции половин дисков от внешнего магнитного поля. Запуск этого двигателя выполняется путем принудительного вращения дисков навстречу друг другу. По сути, диски в получившейся система являются парой полувитков с током, на открытые части которых будут воздействовать силы Лоренца.

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Вакуумный триодный усилитель Свита Флойда

Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.

Мотор-колесо Шкондина

Если вы ищете интересные варианты, как сделать вечный двигатель из магнитов, то обязательно обратите внимание на разработку Шкондина. Конструкцию его линейного двигателя можно охарактеризовать как «колесо в колесе». Это простое, но в то же время производительное устройство успешно используется для велосипедов, скутеров и другого транспорта. Импульсно-инерционное мотор-колесо представляет собой объединение магнитных дорожек, параметры которых динамично изменяются путем переключения обмоток электромагнитов.

Общая схема линейного двигателя Василия Шкондина
Ключевыми элементами устройства Шкондина являются внешний ротор и статор особой конструкции: расположение 11 пар неодимовых магнитов в вечном двигателе выполнено по кругу, что образует в общей сложности 22 полюса. На роторе установлены 6 электромагнитов в форме подков, которые установлены попарно и смещены друг к другу на 120°. Между полюсами электромагнитов на роторе и между магнитами на статоре одинаковое расстояние. Изменение положения полюсов магнитов относительно друг друга приводит к созданию градиента напряженности магнитного поля, образуя крутящий момент.
Неодимовый магнит в вечном двигателе на основе конструкции проекта Шкондина имеет ключевое значение. Когда электромагнит проходит через оси неодимовых магнитов, то образуется магнитный полюс, который является одноименным по отношению к преодоленному полюсу и противоположным по отношению к полюсу следующего магнита. Получается, что электромагнит всегда отталкивается от предыдущего магнита и притягивается к следующему. Такие воздействия и обеспечивают вращение обода. Обесточивание элетромагнита при достижении оси магнита на статоре обеспечивается размещением в этой точке токосъемника.

Житель г.Пущино Василий Шкондин изобрел не вечный двигатель, а высокоэффективные мотор-колёса для транспорта и генераторы электроэнергии.
Коэффициент полезного действия двигателя Шкондина составляет 83%. Конечно, это пока еще не полностью энергонезависимый вечный двигатель на неодимовых магнитах, но очень серьезный и убедительный шаг в правильном направлении. Благодаря особенностям конструкции устройства на холостом ходу удается вернуть часть энергии батареям (функция рекуперации).

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Джона Серла

От электрического мотора такой магнитный двигатель  отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии  в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.

Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Магнитно-гравитационный двигатель

Здесь все немного проще, чем в предыдущем варианте. Для создания такого устройства нужны постоянные магниты и грузы определённых параметров. Работает это так: в центре вращающегося колеса находится основной магнит, а вокруг него (на краях колеса) расположены вспомогательные магниты и грузы. Магниты взаимодействуют друг с другом, а грузы находятся в движении и перемещаются то ближе к центру вращения, то дальше. Таким образом центр массы смещается, и колесо вращается.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.

Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Watch this video on YouTube

Watch this video on YouTube

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Почему вечный двигатель невозможен

Когда речь заходит о вечном двигателе, главная проблема — путаница в формулировках. Почему-то некоторые считают, что вечный двигатель – это машина, которая движется постоянно, что она никогда не останавливается. Эта правда, но лишь отчасти.

Действительно, если вы однажды установили и запустили вечный двигатель, он должен будет работать до «скончания времён». Назвать срок работы двигателя «долгим» или «продолжительным» – значит сильно преуменьшить его возможности. Однако, ни для кого не секрет, что вечного двигателя в природе нет и не может существовать.

Но как же быть с планетами, звездами и галактиками? Ведь все эти объекты находятся в постоянном движении, и это движение будет существовать постоянно, до тех пор пока существует Вселенная, пока не наступит время вечной, бесконечной, абсолютной темноты. Это ли не вечный двигатель?

Именно при ответе на этот вопрос и вскрывается та путаница в формулировках, о которой мы говорили в начале. Вечное движение не есть вечный двигатель! Само по себе движение во Вселенной «вечно». Движение будет существовать до тех пор, пока существует Вселенная. Но так называемый вечный двигатель — это устройство, которое не просто движется бесконечно, оно еще и вырабатывает энергию в процессе своего движения.  Поэтому верно то определение, которое даёт Википедия:

Вечный двигатель — это воображаемое устройство, вырабатывающее полезную работу бо́льшую, чем количество сообщённой этому устройству энергии.

В интернете можно найти множество проектов, которые предлагают модели вечных двигателей. Глядя на эти конструкции, можно подумать, что они способны работать без остановки, постоянно вырабатывая энергию. Если бы нам действительно удалось спроектировать вечный двигатель, последствия были бы ошеломляющими. Это был бы вечный источник энергии, более того, бесплатной энергии. К сожалению, из-за фундаментальных законов физики нашей Вселенной, создание вечных двигателей невозможно. Разберёмся, почему это так.

Видео в помощь

Источники

  • https://220v. guru/elementy-elektriki/dvigateli/magnitnyy-vechnyy-dvigatel-delaem-svoimi-rukami.html
  • https://www.asutpp.ru/magnitnyj-dvigatel.html
  • https://www.syl.ru/article/189970/new_kak-sdelat-vechnyiy-dvigatel-svoimi-rukami
  • https://dic.academic.ru/dic.nsf/ruwiki/839655
  • https://odinelectric.ru/knowledgebase/chto-takoe-magnitniy-dvigatel
  • https://MirMagnitov.ru/blog/primenenie-magnitov/vechnyy-dvigatel-na-magnitakh/
  • https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/dvigatel-na-postoyannyh-magnitah.html
  • https://220v.guru/elementy-elektriki/dvigateli/vechnyy-dvigatel-svoimi-rukami-ego-opisanie-i-vidy.html
  • https://yourtutor.info/%D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%B2%D0%B5%D1%87%D0%BD%D1%8B%D0%B9-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C-%D0%BD%D0%B5%D0%B2%D0%BE%D0%B7%D0%BC%D0%BE%D0%B6%D0%B5%D0%BD

[свернуть]

Возможен ли магнитный «вечный двигатель»? . Удивительная физика

С магнитами связаны многочисленные проекты «вечных двигателей», которые оказалось довольно трудно разоблачить.

В хронологическом порядке это выглядит так. Еще в XIII в. средневековый исследователь магнитов Пьер Перигрин де Марикур утверждал, что если магнитный камень обточить в виде правильного шара и направить его полюсами точно по оси мира, то такой шар завертится и будет вертеться вечно.

Сам де Марикур такого опыта не делал, хотя магнитные шары у него были, и другие эксперименты он с ними проделывал. Видимо, он считал, что сам недостаточно точно изготовил шар либо направил его полюсами не по оси мира. Но он настойчиво советовал читателям изготовить и опробовать магнитный вечный двигатель, добавляя: «Если выйдет, вы насладитесь, если нет – вините свое малое искусство!»

У этого же автора имеется описание еще одного «вечного двигателя» – зубчатого колеса с зубьями из стали и серебра через один. Если поднести к этому колесу магнит, утверждал де Марикур, колесо придет во вращение. Здесь де Марикур был очень близок к постройке хоть и не вечного, но по крайней мере теплового, двигателя, который в то время несомненно сочли бы за «вечный». Но об этом после, а пока о «настоящих» «вечных двигателях».


Любителей изготовлять магнитные «вечные двигатели» было великое множество. Английский епископ Джон Вилькенс в XVII в. даже получил официальное подтверждение изобретения им «вечного двигателя», но от этого последний не заработал. На рис. 331 показан принцип его действия. По мысли автора, стальной шарик, притягиваемый магнитом, поднимается по верхней наклонной плоскости, но, не достигнув магнита, проваливается в отверстие и катится по нижнему лотку. Скатившись, он снова попадает на прежний свой путь и так вечно продолжает свое движение.

На самом деле все выходило иначе. Если магнит был силен, то шарик не проваливался в отверстие, а перескакивал через него и прилипал к магниту. Если магнит был слаб, то шарик останавливался на полдороге на нижнем лотке, либо не сходил с нижней точки вообще. А вот «вечный двигатель», который построил сам автор в детстве, и был очень удивлен, когда тот не заработал.

В круглую пластмассовую коробочку, посаженную на спицу, как колесо на ось, помещался стальной шарик. Спереди нужно было поднести магнит, и коробочка-колесо должна была завертеться на спице (рис. 332). Еще бы: шарик притягивался магнитом, поднимался по стенке коробочки, как белка в колесе, как та же белка начинал, падая вниз, крутить колесо. Однако колесо вертеться не хотело. Как выяснилось, шарик под действием магнита поднимался, прижимаясь к стенке коробки, и падать вниз не собирался.

Рис. 331. Магнитный «вечный двигатель» Д. Вилькенса

Рис. 332. «Вечный двигатель» с магнитом и шариком: 1 – пластмассовая коробка; 2 – магнит; 3 – стальной шарик

Но существуют и реальные магнитные двигатели, которые с первого взгляда похожи на вечные.

Еще сам Гильберт заметил, что если железо сильно нагреть, то оно совершенно перестает притягиваться магнитом. Сейчас температуру, при которой железо, сталь или сплавы теряют магнитные свойства, называют точкой Кюри, по имени физика Пьера Кюри, объяснившего это явление. Если бы эти магнитные свойства не терялись, то раскаленные болванки в кузницах можно было бы переносить магнитами, что очень заманчиво.

Но это свойство позволило создать так называемую магнитную мельницу, или карусель. Подвесим на нити деревянный диск или поставим его на стальную иглу подобно стрелке компаса. Затем воткнем в него несколько спиц и приставим сбоку полюс сильного магнита (рис. 333). Чем не зубчатое колесо де Марикура? Разумеется, как и то колесо, наша мельница вращаться не будет, пока мы не нагреем соседнюю с магнитом спицу в пламени горелки и легким толчком не сообщим вращение. Нагретая спица уже не притягивается к магниту, а следующая стремится к нему, пока не попадет в пламя горелки. А пока нагретая спица пройдет полный круг, она остынет и снова притянется магнитом.

Рис. 333. Магнитная карусель: 1 – стальные спицы; 2 – магнит; 3 – пламя

Чем не вечный двигатель? А тем, что на вращение его уходит энергия горелки. Стало быть, этот двигатель не вечный, а тепловой, в принципе такой же, как на автомобилях и тепловозах.

Работающие на этом же принципе магнитные качели легко построить и самому. Небольшой железный предмет подвесим на проволоке к вершине стойки качелей. Легче всего взять длинный кусок железной проволоки и скатать ее конец в небольшой комочек. Затем на небольшую подставку положим магнит, направленный одним полюсом вбок. Будем придвигать подставку с магнитом к подвешенному железному комочку, пока он не притянется к магниту.

Рис. 334. Магнитные качели: 1 – магнит; 2 – комок железной проволоки; 3 – пламя

Теперь подставим под качели спиртовку, свечу или другую горелку так, чтобы комочек оказался над самым пламенем (рис. 334). Через некоторое время, нагревшись до точки Кюри, он отпадет от магнита. Раскачиваясь в воздухе, он снова охладится и опять притянется к полюсу магнита. Получатся интересные качели, которые будут раскачиваться до тех пор, пока мы не уберем горелку.

Комочек, скатанный из проволоки, хорош для опыта тем, что он и нагревается, и охлаждается быстрее, чем, например, цельный стальной шарик. Поэтому и раскачиваться такие качели будут чаще, чем с шариком на нити.

В практике этот принцип иногда используют для автоматической закалки мелких стальных предметов, например игл. Холодные иголки висят, притянутые магнитом, и нагреваются. Как только они нагреются до точки Кюри, то перестают притягиваться и падают в закалочную ванну.

Обычное железо имеет достаточно высокую точку Кюри: 753 °C, но сейчас получены сплавы, для которых точка Кюри ненамного превышает комнатную температуру. Нагретый солнечным теплом, такой материал, особенно окрашенный в темный цвет, уже немагнитен. А в тени магнитные свойства восстанавливаются, и материал снова может притягиваться. Например, у металла гадолиния точка Кюри всего 20 °C.

Изобретатель и журналист А. Пресняков создал на этом принципе двигатель, непрерывно качающий воду в жаркой пустыне. Солнце сполна обеспечивает его своей энергией. Построена даже тележка, автоматически двигающаяся навстречу Солнцу и даже электролампе (рис. 335). Такие двигатели, работающие на чистой и даровой энергии Солнца, очень перспективны, особенно при освоении Луны и других планет. Чем не «вечные двигатели», о которых мечтал де Марикур?

Рис. 335. Тележка А. Преснякова: 1 – магнит; 2 – обод из материала с низкой точкой Кюри

Вечный двигатель на постоянных магнитах. Генератор на неодимовых магнитах

Первым известным магнитным вечным двигателем была машина Петра Пилигрима (1269 г.), уже описанная ранее

Новые виды магнитных вечных двигателей, появившихся позже, основывались также как и первый, на аналогии между силой тяжести и силой притяжения магнита

Такая аналогия была совершенно естественна; она подкреплялась общефилософскими соображениями; кроме того, силу притяжения магнита можно было непосредственно сравнить с силой тяжести

Действительно, если на одну чашу весов положить кусок железа, а на другую — равную по весу гирю, то, воздействуя снизу на железо магнитом, можно определить его силу. Для этого нужно вновь уравновесить весы, добавочный груз будет равен силе притяжения магнита. Такое измерение произвел Николай Кербс (1401-1464 гг.), известный под именем Николая Кузанского. Именно совместное действие двух тождественных сил — магнита и тяжести — служило основой почти всех предложенных после Петра Пилигрима магнитных perpetuum mobile

Предложил любитель науки, изобретатель и кол- лекционер, иезуит Анастасиус Кирхер (1602-

1680 гг.). его двигатель предельно прост. Как вид- но из рисунка, он состоит из железного круга (черный на рисунке), на котором радиально расположены направленные наружу железные стрелы Этот круг должен вращаться под действием четы рех магнитов I , F , G , H , расположенных на внешнем кольце

Почему Кирхер решил, что круг со стрелами будет вращаться, совершенно непонятно. Все предыдущие изобретатели таких кольцевых двигателей пытались создать какую-то асимметрию, чтобы вызвать силу, направленную по касательной. У Кирхера таких мыслей не возникло. Он мыслит еще в совершенно средневековом духе. Он даже серьезно утверждал, что притягательная сила магнита увеличится, если его поместить между двумя листьями растения Isatis Sylvatica.

Более интересный и оригинальный магнитный вечный двигатель описал в соей книге «Сотня изобретений» (1649 г.) Джон Уилкинс. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один прямой, установленный выше, другой изогнутый вниз, установленный под прямым. Изобретатель считал, что железный шарик, помещенный на верхний желоб, покатится вверх, притягиваемый магнитом. Но так как перед магнитом в верхнем желобе сделано отверстие, шарик провалится в него, скатится по нижнему желобу и через изогнутую часть снова выскочит наверх и двинется к магниту и так далее до бесконечности

Уилкинс, который хорошо разбирался в принципиальных вопросах механических perpetuum mobile , оказался на высоте и в этом случае. Закончив описание этой конструкции, он пишет: «Хотя это изобретение на первый взгляд кажется возможным, детальное обсуждение покажет его несостоятельность». Основная мысль Уилкинса в этом обсуждении сводится к тому, сто если даже магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он тем более не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик просто на будет притягиваться. В принципе объяснение Уилкинса правильное; характерно, что он четко представляет себе, как быстро уменьшается сила притяжения магнита с увеличением расстояния до него

Возможно, Уилкинс учел и взгляды знаменитого Уильяма Гильберта (1544-1603 гг.) — придворного врача королевы Елизаветы Английской, который тоже не поддержал идею этого вечного двигателя

В XX веке была все же найдена возможность осуществить устройство с шариком, «вечно» бегущим по двум желобам, в точности соответствующее по внешнему виду магнитному вечному двигателю, описанному Уилкинсом. Вносятся лишь небольшие изменения в модель Уилкинса. Верхний желоб изготовляется из двух электрически изолированных одна от другой металлических полос, а вместо постоянного магнита на стойке устанавливается электромагнит. Обмотка электромагнита присоединена к аккумулятору или другому источнику питания так, чтобы цепь замыкалась через железный шарик, когда он находился на верхнем желобе, касаясь обеих его полос. Тогда электромагнит притягивает шарик. Докатившись до отверстия, шарик размыкает цепь, проваливается и скатывается по нижнему желобу, возвращаясь по инерции на верхний желоб, и так далее. Если спрятать аккумулятор в стойку (или незаметно провести через нее провода для питания электромагнита извне), а сам электромагнит поместить в шаровой футляр, то можно считать. Что действующий perpetuum mobile готов. На тех, кто не знает секрета, он производит большое впечатление

Нетрудно видеть, что в такой игрушке как раз устранен тот недостаток, на который показывал Уилкинс,- возможность того, что шарик притянется к магниту и не провалится в отверстие. Магнит перестает действовать как раз в тот момент, когда шарик должен провалиться в отверстие, и снова включается тогда, когда нужно тянуть шарик вверх

Для современного человека секрет лежит на поверхности — по такому же принципу работают все электроприборы, — работа, совершаемая электрическим током, переходит в механическую или другую (всегда даже с потерями какой-либо ее части) — значит, их тоже можно считать «вечными» двигателями

В дальнейшем были предложены и многие другие магнитные perpetuum mobile , в том числе и довольно замысловатые; некоторые из них были построены, но их постигла та же судьба, что и остальные. Идея одного из таких построенных магнитных двигателей была выдвинута уже в конце XVIII века. Некий шотландский сапожный мастер по фамилии Спенс нашел такое вещество, которое экранировало притягивающую и отталкивающую силу магнита. Известно даже, что оно было черного цвета. С помощью этого вещества Спенс обеспечил работу двух изготовленных им магнитных вечных двигателей

Успехи Спенса были описаны шотландским физиком Дэвидом Брюстером (1781-1868 гг.) в серьезном французском журнале «Анналы физики и химии» в 1818 году. Нашлись даже очевидцы: в статье написано, сто «мистер Плейфер и капитан Кейфер осмотрели обе эти машины (они были выставлены в Эдинбурге) и вызвали удовлетворение тем, что проблема вечного двигателя, наконец, решена»

Нужно отметить, что в части открытия вещества, экранирующего магнитное поле, Спенс ничего особенного не сделал и его «черный порошок» для этого не нужен. Хорошо известно, что для этого достаточно листа железа, которым можно заслонить магнитное поле. Другое дело создать таким путем вечный двигатель, поскольку для движения листа, экранирующего магнитное поле, нужно в лучшем случае затратить столько же работы, сколько даст магнитный двигатель

Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель — двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50-100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90 о С сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

Тема «вечных двигателей» сейчас очень активно обсуждается в Интернете, приводится уйма различных проектов, но потенциал этой идеи всё ещё не израсходован.

Одним из направлений «вечных двигателей» являются магнитные двигатели и преобразователи магнитной энергии. История использования магнитов для создания энергии уходит в века, ведь скрытая сила магнитов придавала им магическое значение и будоражила воображение. Сейчас в мире известно много патентов магнитных двигателей, часть информации ещё с советских времён засекречена, но пока ещё нет ни одного работающего двигателя, о котором было бы известно. Все те видео, что размещены на «YouTube», преследуют разные цели, но не демонстрацию работающего двигателя.

Экологичные японские мотоциклы

Самым старым магнитным двигателем, о котором известно широкому кругу, является магнитный двигатель «Perendev». Он, как всё гениальное, имеет простую и понятную конструкцию. Используя внешнее качественное изготовление и своё первенство, авторы умудрились даже найти покупателей на свои двигатели. Используемый в Японии магнитный двигатель «
Минато
»
изначально номинировался как экономичный электрический двигатель с постоянными магнитами, он не входит в число автономных («вечных») двигателей. Сейчас на его базе в Японии производят экологичные гибридные мотоциклы.

Вариации магнитных двигателей так многообразны, что это отдельная тема, требующая большего объёма и времени для рассмотрения. Следует отметить, что магнитные двигатели в России имеют патенты не на «Изобретение», а на «Полезную модель».

Соответственно, запатентованы просто идеи, не имеющие возможности практической реализации, которые, может быть, никогда не смогут осуществиться по техническим или научным причинам.

Вечный двигатель, возможно, возможен

Следует пояснить, почему идея «вечного двигателя» на постоянных магнитах может привести к созданию работающего двигателя. Начнём с закона сохранения энергии: нет, я не хочу его отрицать, просто я думаю, что надо смотреть глубже. Многие задаются вопросом, откуда энергия? И говорят, что из ничего не может быть работы. А кто сказал, что магнитное поле — это ничего? Ведь оно имеет определённое значение плотности энергии магнитного поля, которая достигает 280 кДж/куб.м.

Это потенциальная энергия магнитного поля. И в магнитном двигателе происходит преобразование потенциальной энергии в кинетическую. Данный вид преобразования уже существует: это генератор постоянного тока. Если вы будете вращать или двигать проводник, то электрического тока в нём не произойдёт. Но когда вы сделаете это в магнитном поле, то в проводнике возникнет движение электронов — произойдёт преобразование потенциальной энергии магнитного поля в кинетическую энергию электронов.

А вот то, что магнитное поле не исчезает и не уменьшается после произведённой им работы, пока за рамками знаний человечества. Ведь мы не знаем, какая сила вечно вращает электроны вокруг ядра, заставляет не исчезать гравитационное поле, вращает планеты, заставляет светить Солнце. Проходят века, а энергия не исчезает (сильное магнитное поле всё-таки начинает ослабевать). Даже немного смешно, когда профессор из университета, который ведёт серьёзную научную работу, на эти вопросы начинает отвечать по-детски: «Ну, там какая-то сила чуть-чуть подкручивает». Зато этот же профессор, не задумываясь, говорит: работать не будет, потому что такого не может быть. Ясно одно, мы снова упёрлись в своё незнание мира, и скоро должен произойти очередной качественный скачок.

«Магнитный двигатель» № 34826

Я тоже являюсь автором одного из патентов с постоянными магнитами, идея зародилась ещё в детстве, но воплощение произошло только в 2003 году. При оформлении своего двигателя я использовал прототип «Двигатель на постоянных магнитах» (патент России № 2177201), но есть более схожий прототип «Постоянное устройство преобразования движения магнита» патента Джона Эклина (патент США № 3879622 от 22.04.75 г.). Мой патент называется «Магнитный двигатель» № 34826.

В отличие от большинства других изобретателей, я пошёл немного другим путём — применил ферромагнитный экран между магнитами. В данном двигателе используется способность магнитного поля быть изолированным с помощью ферромагнитного экрана.

Элементарный детский опыт: если к магниту прислонить стальную пластинку, то за пластинкой уже отсутствует магнитное поле. Только пластинка должна быть достаточно толстой, чтобы экранировать поле. Вторая хитрость: из физики мы знаем, да и из жизни тоже, что если сила, приложенная к телу, перпендикулярна перемещению тела, то эта сила не производит работы при данном перемещении.

Отсюда следует вывод: если мы будем перемещать в магнитном поле ферромагнитный экран, перпендикулярно силовым линиям магнитного поля, то магнитное поле не производит работу сопротивления перемещению экрана. В то же время, экран, перекрыв всю поперечную площадь магнита, позволит поднести второй отталкивающийся магнит без преодоления сил магнитного отталкивания. Даже наоборот, второй магнит ещё и притянется к экрану. Если же вывести экран между магнитами, то магниты разлетаются в стороны.

Осталось придумать такую схему конструкции, чтобы перемещения узлов могли влиять друг на друга. Если измерить вредную работу на перемещение экрана и полезную работу перемещения магнитов, то образуется положительная разница работ, которую и можно использовать как постоянный источник дополнительной энергии.

Сейчас стали появляться новые материалы с выдающимися характеристиками (пиролитический углерод, оксид кобальта), которые позволят в будущем заменить ферромагнитный экран на антиферромагнитный или диамагнитный, что сильно снизит вредную работу и повысит производительность этого двигателя.

С того времени, как я оформил патент, прошло уже 12 лет, но у меня, как и у многих, нет работающего двигателя.

Основная причина в том, что сложность изготовления двигателя с современными сверхсильными магнитами достигает уровня производства двигателя внутреннего сгорания, плюс большая финансовая стоимость; в домашних условиях, как вы понимаете, это не сделать.

В процессе работы над двигателем я создал сайт, с помощью которого мне удалось пообщаться в Интернете, и вживую со многими людьми, занимающимися и интересующимися данной темой.

И почти все задают вопрос: почему эта технология не поддерживается государством или промышленностью? И сами на него отвечают: данная технология опасна для существующего мирового порядка, ведь при её внедрении могут произойти большие катаклизмы.

Пока что автономный магнитный двигатель не существует, но это не означает, что он невозможен вообще.

Магнитный двигатель — один из наиболее вероятных вариантов «вечного двигателя». Идея его создания была высказана ещё очень давно, однако до сих пор он не был создан. Существует множество устройств, которые на шаг или несколько шагов приближают ученых к созданию этого двигателя, однако ни одно из них не доведено до логического завершения, следовательно, о практическом применении еще нет речи. Существует и множество мифов, связанных с этими устройствами.

Никола Тесла был одним из первых ученых, серьезно занявшихся созданием магнитного двигателя. Его двигатель содержал турбину, катушку, провода, соединяющие данные объекты. В катушку вкладывался небольшой магнит таким образом, чтобы он захватывал как минимум два её витка. После придания турбине небольшого толчка (раскручивания) она начинала двигаться с неимоверной скоростью. Это движение будет вечным. Магнитный является практически идеальным вариантом. Единственным его недостатком является то, что турбине необходимо придать первоначальную скорость.

Магнитный двигатель Перендева — другой возможный вариант, однако он гораздо более сложный. Он представляет собой кольцо из диэлектрического материала (чаще всего древесина) с вмонтированными в него магнитами, наклоненными под определенным углом. В центре располагался ещё один магнит. Такая схема тоже является неидеальной, ведь для нужен толчок.

Основной проблемой создания такого вечного двигателя является склонность магнитов к постоянному Два сильных магнита будут двигаться до тех пор, пока их противоположные полюса не соприкоснутся. Из-за этого магнитный двигатель не может правильно работать. Эту проблему невозможно решить при современных возможностях человечества.

Создание идеального магнитного двигателя привело бы человечество к источнику вечной энергии. В таком случае все существующие можно было бы с легкостью упразднить, так как магнитный двигатель стал бы не только вечным, но и самым дешевым и безопасным вариантом получения энергии. Но нельзя определенно сказать, будет ли магнитный двигатель лишь или его можно будет использовать не только в мирных целях. Этот вопрос существенно меняет положение дел и заставляет задуматься.

С магнитами связаны многочисленные проекты «вечных двигателей», которые оказалось довольно трудно разоблачить.

В хронологическом порядке это выглядит так. Еще в XIII в. средневековый исследователь магнитов Пьер Перигрин де Марикур утверждал, что если магнитный камень обточить в виде правильного шара и направить его полюсами точно по оси мира, то такой шар завертится и будет вертеться вечно.

Сам де Марикур такого опыта не делал, хотя магнитные шары у него были, и другие эксперименты он с ними проделывал. Видимо, он считал, что сам недостаточно точно изготовил шар либо направил его полюсами не по оси мира. Но он настойчиво советовал читателям изготовить и опробовать магнитный вечный двигатель, добавляя: «Если выйдет, вы насладитесь, если нет – вините свое малое искусство!»

У этого же автора имеется описание еще одного «вечного двигателя» – зубчатого колеса с зубьями из стали и серебра через один. Если поднести к этому колесу магнит, утверждал де Марикур, колесо придет во вращение. Здесь де Марикур был очень близок к постройке хоть и не вечного, но по крайней мере теплового, двигателя, который в то время несомненно сочли бы за «вечный». Но об этом после, а пока о «настоящих» «вечных двигателях».

Любителей изготовлять магнитные «вечные двигатели» было великое множество. Английский епископ Джон Вилькенс в XVII в. даже получил официальное подтверждение изобретения им «вечного двигателя», но от этого последний не заработал. На рис. 331 показан принцип его действия. По мысли автора, стальной шарик, притягиваемый магнитом, поднимается по верхней наклонной плоскости, но, не достигнув магнита, проваливается в отверстие и катится по нижнему лотку. Скатившись, он снова попадает на прежний свой путь и так вечно продолжает свое движение.

На самом деле все выходило иначе. Если магнит был силен, то шарик не проваливался в отверстие, а перескакивал через него и прилипал к магниту. Если магнит был слаб, то шарик останавливался на полдороге на нижнем лотке, либо не сходил с нижней точки вообще. А вот «вечный двигатель», который построил сам автор в детстве, и был очень удивлен, когда тот не заработал.

В круглую пластмассовую коробочку, посаженную на спицу, как колесо на ось, помещался стальной шарик. Спереди нужно было поднести магнит, и коробочка-колесо должна была завертеться на спице (рис. 332). Еще бы: шарик притягивался магнитом, поднимался по стенке коробочки, как белка в колесе, как та же белка начинал, падая вниз, крутить колесо. Однако колесо вертеться не хотело. Как выяснилось, шарик под действием магнита поднимался, прижимаясь к стенке коробки, и падать вниз не собирался.

Рис. 331. Магнитный «вечный двигатель» Д. Вилькенса

Рис. 332. «Вечный двигатель» с магнитом и шариком: 1 – пластмассовая коробка; 2 – магнит; 3 – стальной шарик

Но существуют и реальные магнитные двигатели, которые с первого взгляда похожи на вечные.

Еще сам Гильберт заметил, что если железо сильно нагреть, то оно совершенно перестает притягиваться магнитом. Сейчас температуру, при которой железо, сталь или сплавы теряют магнитные свойства, называют точкой Кюри, по имени физика Пьера Кюри, объяснившего это явление. Если бы эти магнитные свойства не терялись, то раскаленные болванки в кузницах можно было бы переносить магнитами, что очень заманчиво.

Но это свойство позволило создать так называемую магнитную мельницу, или карусель. Подвесим на нити деревянный диск или поставим его на стальную иглу подобно стрелке компаса. Затем воткнем в него несколько спиц и приставим сбоку полюс сильного магнита (рис. 333). Чем не зубчатое колесо де Марикура? Разумеется, как и то колесо, наша мельница вращаться не будет, пока мы не нагреем соседнюю с магнитом спицу в пламени горелки и легким толчком не сообщим вращение. Нагретая спица уже не притягивается к магниту, а следующая стремится к нему, пока не попадет в пламя горелки. А пока нагретая спица пройдет полный круг, она остынет и снова притянется магнитом.

Рис. 333. Магнитная карусель: 1 – стальные спицы; 2 – магнит; 3 – пламя

Чем не вечный двигатель? А тем, что на вращение его уходит энергия горелки. Стало быть, этот двигатель не вечный, а тепловой, в принципе такой же, как на автомобилях и тепловозах.

Работающие на этом же принципе магнитные качели легко построить и самому. Небольшой железный предмет подвесим на проволоке к вершине стойки качелей. Легче всего взять длинный кусок железной проволоки и скатать ее конец в небольшой комочек. Затем на небольшую подставку положим магнит, направленный одним полюсом вбок. Будем придвигать подставку с магнитом к подвешенному железному комочку, пока он не притянется к магниту.

Рис. 334. Магнитные качели: 1 – магнит; 2 – комок железной проволоки; 3 – пламя

Теперь подставим под качели спиртовку, свечу или другую горелку так, чтобы комочек оказался над самым пламенем (рис. 334). Через некоторое время, нагревшись до точки Кюри, он отпадет от магнита. Раскачиваясь в воздухе, он снова охладится и опять притянется к полюсу магнита. Получатся интересные качели, которые будут раскачиваться до тех пор, пока мы не уберем горелку.

Комочек, скатанный из проволоки, хорош для опыта тем, что он и нагревается, и охлаждается быстрее, чем, например, цельный стальной шарик. Поэтому и раскачиваться такие качели будут чаще, чем с шариком на нити.

В практике этот принцип иногда используют для автоматической закалки мелких стальных предметов, например игл. Холодные иголки висят, притянутые магнитом, и нагреваются. Как только они нагреются до точки Кюри, то перестают притягиваться и падают в закалочную ванну.

Обычное железо имеет достаточно высокую точку Кюри: 753 °С, но сейчас получены сплавы, для которых точка Кюри ненамного превышает комнатную температуру. Нагретый солнечным теплом, такой материал, особенно окрашенный в темный цвет, уже немагнитен. А в тени магнитные свойства восстанавливаются, и материал снова может притягиваться. Например, у металла гадолиния точка Кюри всего 20 °С.

Изобретатель и журналист А. Пресняков создал на этом принципе двигатель, непрерывно качающий воду в жаркой пустыне. Солнце сполна обеспечивает его своей энергией. Построена даже тележка, автоматически двигающаяся навстречу Солнцу и даже электролампе (рис. 335). Такие двигатели, работающие на чистой и даровой энергии Солнца, очень перспективны, особенно при освоении Луны и других планет. Чем не «вечные двигатели», о которых мечтал де Марикур?

Рис. 335. Тележка А. Преснякова: 1 – магнит; 2 – обод из материала с низкой точкой Кюри

Двигатели на постоянный магнит работает — Авто Портал

Содержание

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.

Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.

Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.

Магнитный мотор Говарда Джонсона

Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.

Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.

Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.

Генератор Перендева

Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.

Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Среди преимуществ таких агрегатов, можно отметить следующие:

  • Полная автономность с максимальной экономией топлива.
  • Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  • Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  • Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  • Большое количество моделей не может эффективно работать в бытовых условиях.
  • Есть небольшие сложности в подключении даже готового агрегата.
  • Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Кто из нас в детстве не пытался или хотя бы не размышлял о том, чтобы построить вечный двигатель на постоянных магнитах? Казалось бы, если магниты отталкиваются друг от друга одноименными полюсами, то, наверное, можно найти такую конфигурацию магнитов, когда отталкивание станет действовать непрерывно, и сможет, например, вращать ротор «вечного» двигателя.

Однако, стоило нам попробовать реализовать эту идею практически, как тут же выяснялось, что в реальности ротор все равно находит такое положение, в котором останавливается. Словно ротор и вращался лишь для того, чтобы в конце концов найти эту точку и остановиться в ней. То есть неизбежно наступало устойчивое равновесие ротора.

Стремление термодинамических систем к равновесию

И это вовсе не удивительно, ведь ученым давно известно, что термодинамические системы стремятся к равновесию, и в конце концов пребывают в устойчивом равновесии (статическом или динамическом).

Из механики мы знаем, что тело покоится либо движется равномерно и прямолинейно, если на него не действуют никакие внешние силы, либо если действие этих внешних сил на тело скомпенсировано, то есть суммарная сила равна нулю (результирующее внешнее воздействие отсутствует).

Как вы понимаете, принцип стремления термодинамических систем к равновесию относится и к чисто механическим системам. Так, если система изначально пребывает в устойчивом равновесии (и конструкция с постоянными неодимовыми магнитами не является исключением), то при воздействии на такую конструкцию внешнего фактора, выводящего систему из равновесия, неизбежно возникнет реакция со стороны данной системы.

Это значит, что в системе начнут усиливаться процессы, стремящиеся уменьшить влияние внешнего фактора, который систему из равновесия вывел (Принцип Ле Шателье — Брауна).

Модель магнитного генератора индийского блогера с канала Creative Think:

Чтобы вызвать стремление к равновесию, необходимо создать условия не равновесия

Известный пример из электродинамики — правило Ленца. Если бы правило Ленца не работало, то электродвигатели не могли бы функционировать (смотрите — Виды электрических двигателей и принципы их работы).

В электродвигателе электрический ток создает магнитное поле, которое заставляют ротор непрерывно искать равновесие, и чтобы ротор не останавливался, магнитное поле все время действует таким образом, что вынуждает ротор (даже под механической нагрузкой) постоянно догонять точку, в которой должно будет наступить равновесие.

Но при этом электрическим полем, действующим в проводниках, совершается работа, то есть расходуется энергия источника, ведь в двигателе есть как минимум трение вала о подшипники, на преодоление которого, даже если ротор не нагружен и двигатель работает вхолостую, требуется работа, то есть расход энергии.

Если бы трения (даже о воздух) не было, и вал не был бы нагружен, то ротор бы вращался очень долго, например в полном вакууме в отсутствие силы притяжения к Земле. Но тогда никакая работа этим ротором бы уже не совершалась, и это был бы уже не двигатель, а вращающийся без сопротивления кусок металла.

Вернемся теперь к постоянным магнитам. Для системы с постоянными магнитами предсказать направление протекания процесса уравновешивающей реакции несложно.

Так, еще в 90-е годы японский экспериментатор Кохеи Минато исследовал возможность создания непрерывного вращения используя постоянные магниты на роторе и статоре своего мотора. В конце концов он был вынужден также создавать изменяющееся магнитное поле, которое заставляло бы ротор искать равновесие.

Минато демонстрировал, как приближая или отдаляя постоянный магнит, можно вынудить ротор с постоянными магнитами вращаться. Но в итоге он просто дошел в экспериментах до двигателя с постоянными магнитами на роторе.

Никакого вечного двигателя не получилось. На изменение внешнего магнитного поля, от которого бы отталкивался ротор с магнитами, требуется энергия извне. То есть, для создания условий, в которых ротор с магнитами будет искать равновесие, необходимо параллельно совершать работу.

Еще одна модель магнитного генератора с Интернета:

Динамическое равновесие при низкотемпературной сверхпроводимости как частный случай

Рассмотрим крайний случай. Многие знают, что свинцовая катушка с током, помещенная в жидкий гелий, способна поддерживать ток (и магнитное поле тока) на протяжении многих лет, поскольку сопротивление проводника исчезает.

Почему сопротивление исчезает? Потому что колебания атомов в металле, обуславливающие электрическое сопротивление металла, прекращаются при критической температуре. Две такие катушки будут вести себя по отношению друг к другу как постоянные магниты. Но опять же, они найдут устойчивое равновесие и остановятся.

Движения под действием силы не будет, то есть двигателя совершающего работу не получится. Движущиеся в сверхпроводнике электроны также работы не совершают, хотя и пребывают в устойчивом динамическом равновесии.

Чтобы двигатель совершал работу — он обязан расходовать энергию, но откуда ей взяться?

Допустим, что двигатель на постоянных магнитах реально возможен. Тогда для совершения механической работы, то есть на перемещение какого-нибудь объекта под действием силы со стороны вала такого двигателя (даже на преодоление силы трения при вращении ротора вхолостую), необходимо преобразование некой энергии внутри двигателя.

А что это за энергия, если не энергия постоянных магнитов или не энергия подводимая извне? Раз по условию задачи энергия извне не подводится, значит остается энергия постоянных магнитов.

Однако, будучи просто расположены на роторе и статоре, магниты энергию не отдадут. Чтобы заставить магнит размагничиваться, необходимо совершить работу, то есть опять же подвести к устройству энергию извне. Остается делать выводы.

Модель при помощи генератора на 12 В

Применение генератора на 12 В позволяет довольно просто собрать вечный двигатель на неодимовых магнитах. Преобразователь для него необходимо использовать хроматический. Сила магнитного поля в данном случае зависит от массы пластин. Для увеличения фактической индуктивности многие специалисты советуют применять специальные операционные усилители.

Подсоединяются они напрямую к преобразователям. Пластину необходимо использовать только с медными проводниками. Проблемы с волновой индукцией в данной ситуации решить довольно сложно. Как правило, проблема чаще всего заключается в слабом скольжении диска. Некоторые в сложившейся ситуации советуют устанавливать подшипники в вечный двигатель на неодимовых магнитах, которые крепятся к подвеске. Однако сделать это порой невозможно.

Гидравлические вечные двигатели

Важнейшим открытием человечества стало колесо. За прошедшие тысячелетия оно видоизменялось от сухопутного до водного. Самые значимые машины прошлого времени – насосы, пилы, мельницы – в сопряжении с мускульной силой животных и человека были основным источником движущейся силы колеса.

Водяное колесо, отличаясь своей простотой, имеет и отрицательные стороны: недостаточное количество воды в разное время года. Поэтому возникли идеи работы водяного колеса в замкнутом цикле. Это сделало бы его независимым при широком временном использовании. Такая задумка имела одну существенную проблему при доставке воды в обратном направлении к лотку, который питает лопатки насоса, поэтому гидравлическим вечным двигателем занимались многие ученые того времени: Архимед, Галилей, Герона Александрийский, Ньютон и др. В средние века появились и конкретные машины, претендующие на название вечных двигателей. Создавалось много оригинальных трудов. Рассмотрим один из них.

Необычный и сложный по тем временам гидравлический вечный двигатель своими руками соорудил поляк Станислав Саульский.

Главные части этого механизма – это колесо и водяной насос. При плавном опускании груза ушат поднимается вверх. При этом должен подниматься и насосный клапан: вода поступает в сосуд. Затем вода, попадая в круглый резервуар, открывает в нем заслонку и выливается в ушат через кран. При этом под тяжестью воды ушат опускается, и в определенный момент с помощью прикрепленной с одной стороны к нему веревки он, наклоняясь, опорожняется. Поднимаясь наверх, пустой ушат снова опускается, и весь процесс заново повторяется. При этом само колесо совершает лишь колебательные движения.

Все существующие ныне механизмы, машины, устройства и т. делятся на вечные двигатели первого и второго рода. Двигатели первого рода – машины, работающие без извлечения энергии из окружающей среды. Их невозможно построить, так как сам принцип их функционирования – нарушение первого начала термодинамики.

Двигатели второго рода – машины, уменьшающие тепловую энергию резервуара и полностью превращающие ее в работу без изменений в окружающей среде. Их применение нарушило бы второе начало термодинамики.

Хотя за прошедшие века были изобретены тысячи всевозможных вариантов рассматриваемого прибора, остается вопрос о том, как сделать вечный двигатель. И все же надо понимать, что такой механизм должен полностью находится в изоляции от внешней энергии. И еще. Всякая вечная работа любой конструкции осуществляется при направлении этой работы в одну сторону.

Это позволяет избежать затрат на возвращение в исходное положение. И последнее. Ничего вечного на этом свете не бывает. И все эти так называемые вечные двигатели, работающие и на энергии земного притяжения, и на энергиях воды и воздуха, и на энергии постоянных магнитов, не будут функционировать постоянно. Всему приходит конец.

Лучшие самоделки из магнита

Применение магнитов в повседневности настолько широко, что перечисление всех займет много времени. Но так как, многие являются скорее развлекательными, подробнее остановимся на перечислении широко применяемых.

  • При монтажных работах;
  • Мытье окон;
  • В качестве держателей.

В первую очередь стоит отметить, что поиск магнитов не очень сложное занятие. Магниты небольших размеров, вы сможете найти в старых наушниках. Более мощные неодимовые магниты можно извлечь из старых жестких дисков компьютера.

Предположим, что вы работаете с деревянной конструкцией. В одной руке вы держите молоток, а в другой элемент данной конструкции. В данном случае держать охапку гвоздей не совсем удобно. Для этого, нужно просто поместить в нагрудный карман магнит и приклеить к нему гвозди.

Бывают ситуации, когда приходится закручивать саморезы в труднодоступных местах, в которых придержать саморез не представляется возможным. Для этого, просто крепите магнит на металлической части отвертки. Намагниченная отвертка позволяет держаться болту или саморезу самостоятельно.

Если приклеить небольшие магниты к компьютерному столу (в любом удобном месте), то можно использовать их в качестве держателей для различных USB или других видов проводов. Для этого на провода одеваются небольшие пружины (можно использовать пружины от ручек), которые и являются металлической примагничивающейся конструкцией.

В качестве составного элемента декора, магниты можно использовать в качестве крепежных элементов пазла располагающегося на дверце холодильника. Для этого берется любая фотография, которая расчерчивается на определенные элементы. К каждому элементу при помощи обычного клея приклеивается небольшой магнит. Фото разделяется на составные элементы. После этого собирается на двери холодильника в виде пазла.

Как сделать хорошую коптильню из барабана стиральной машины

Вишенка на торте в нашем вопросе – коптильня. Ароматное копчёное мясо, сало и рыбка – что может быть лучше к столу? Если у вас в сарае или гараже завалялся бак от машины с вертикальной загрузкой – считайте, дело в шляпе.

В днище бака необходимо вырезать отверстие для топки, внутри приварить крепления для подвеса продуктов. Остаётся только установить бак на очаг, подвесить рыбу или сало, накрыть бак сверху крышкой и запалить опилки.

Продукты нужно коптить несколько часов до готовности

Важно, чтобы топливо под коптильней тлело, а не горело. Такой прибор лучше расположить вдали от дома

Надеемся, мы вас убедили в том, что не стоит сдавать старую стиральную машину в металлолом

Экономьте время: отборные статьи каждую неделю по почте

Синхронный двигатель на постоянных магнитах

Одним из основных видов электродвигателей является синхронный, частота вращения магнитных полей статора и ротора которого равны. У обычного электромагнитного мотора обе эти части состоят из обмоток на пластинах. Но если конструкцию якоря поменять и вместо катушки поставить постоянные магниты, то можно получить интересную, эффективную, действующую модель синхронного двигателя. Статор имеет привычную компоновку магнитопровода из пластин и обмоток, в которых способно генерироваться вращающееся магнитное поле от электрического тока. Ротор создает постоянное поле, которое взаимодействует с предыдущим, и создает крутящий момент.

Также следует отметить, что в зависимости от схемы, относительное расположение статора и якоря могут меняться, например, последний будет выполнен в форме внешней оболочки. Для пуска мотора от тока из сети используется цепь из магнитного пускателя (реле, контактора) и теплового защитного реле.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств. Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен электрический ток. В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса постоянного магнита должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Среди преимуществ таких агрегатов, можно отметить следующие:

  • Полная автономность с максимальной экономией топлива.
  • Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  • Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  • Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  • Большое количество моделей не может эффективно работать в бытовых условиях.
  • Есть небольшие сложности в подключении даже готового агрегата.
  • Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Видео в помощь

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т.

Рассмотрим каждый из примеров подробнее.

Вакуумный триодный усилитель Свита Флойда

Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т.

Рассмотрим каждый из примеров подробнее.

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Бестопливный двигатель

С каждым днем все больше людей во всем мире задумываются о возможности получения свободной энергии. Сегодня доступным способом получения такой энергии является альтернативная энергетика. Альтернативные источники энергии преобразуют природную энергию в нужную нам электрическую и тепловую. Но главным их недостатком является зависимость от погодных условий. Данного недостатка и некоторых других лишен изобретенный безтопливный двигатель Москвина.

Безтопливный двигатель Москвина — механическое устройство, преобразующее потенциальную энергию наружней консервативной силы, в кинетическую энергию вращения рабочего вала без потребления какого-либо вида топлива и электроэнергии. Безтопливный двигатель — своего рода вечный двигатель, работающий бесконечно долго, пока к рычагам приложено усилие и детали не изношены с непрерывным преобразованием свободной энергии. Свободная энергия, получаемая в процессе работы бестопливного двигателя, полность бесплатна, а потребление бесплатной электроэнергии от бестопливного генератора, при подключении к двигателю обычного электрогенератра, будет абсолютно законно.

Безтопливный двигатель — это экологически чистый универсальный привод для различных устройств и механизмов, работающий без вредных выбросов в атмосферу с сохранением окружающей среды.

Безтопливный генератор — основное устройство, которое стало возможным благодаря бестопливному двигателю. Безтопливный генератор электроэнерги — это возможность производить автономные бестопливные электростанции различной мощности!

В настоящее время изобретение находится на стадии экспертизы по существу, и в отличии от многочисленных аналогичных запатентованых изобретений, работоспособность которых не была проверена по различным причинам и находится под сомнением, данный безтопливный двигатель уже имеет рабочий образец. практически подтверждающий реальность получения свободной энергии.

Принцип работы

Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  • Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  • Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  • Магнитное поле создается установленными магнитами.
  • Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  • Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  • Затем идет стержневая обмотка.
  • Ступица ротора и за ней специальная пластина.
  • Затем, изготовленные из электротехнической стали, секции редечника ротора.
  • Постоянные магниты являются частью ротора.
  • Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Двигатель Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле – это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах

К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

миф или реальность, устройство, виды

Содержание

  • Что такое вечный двигатель?
  • История возникновения вечного двигателя
  • Виды
  • Преимущества и недостатки
  • Как сделать своими руками?
  • Рекомендации
  • Принцип действия вечного магнитного движителя
  • Магнитный униполярный двигатель Тесла
  • Двигатель Минато
  • Двигатель Лазарева
  • Модификация Перендева
  • Модель Лоренца
  • Антигравитационная модификация двигателя
  • Устройство с линейным ротором
  • Линейный двигатель своими руками
  • Общее устройство и принцип работы
  • Сборка двигателя Шконлина
  • В чем преимущества и минусы работающих двигателей на магнитной энергии
  • Как самостоятельно собрать подобный двигатель
  • Заключение

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель – это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

Вечный двигатель и учёные, практики

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась идея о вечном двигателе? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного магнита и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

Майкл Брэди в 2002 году создавая двигатель Перендева на магнитах

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного электрического мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

Варианты разработок вечных двигателей

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид,год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделятькорпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.

Первоначально расчет данного типа устройства вел Фарадей, но его прототип при сходном принципе действия не обладал должной эффективностью, стабильностью работы, то есть не достиг цели. Термин «униполярный» означает, что в схеме агрегата кольцевой, дисковый (пластина) или цилиндровый проводник расположен в цепи между полюсами постоянного магнита.

Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Устройство двигателя Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Магнитный мотор Говарда Джонсона

В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.

Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.

Модификация Перендева

При помощи статора большой мощности можно сложить данный вечный двигатель на магнитах своими руками (схема показа ниже). Сила электромагнитного поля в этой ситуации зависит от многих факторов. В первую очередь следует учитывать толщину обтекателя. Также важно заранее подобрать небольшой кожух. Пластину для двигателя необходимо использовать толщиной не более 2,4 мм. Преобразователь на это устройство устанавливается низкочастотный.

Дополнительно следует учитывать, что ротор подбирается только последовательного типа. Контакты на нем установлены чаще всего алюминиевые. Пластины для магнитов необходимо предварительно прочистить. Сила резонансных частот будет зависеть исключительно от мощности преобразователя.

Чтобы усилить положительную обратную связь, многие специалисты рекомендуют воспользоваться усилителем промежуточной частоты. Устанавливается он на внешнюю сторону пластины возле преобразователя. Для усиления волновой индукции применяются спицы небольшого диаметра, которые закрепляются на диске. Отклонение фактической индуктивности происходит при вращении пластины.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Антигравитационная модификация двигателя

Антигравитационный вечный двигатель на магнитах является наиболее сложным устройством среди всех представленных выше. Всего пластин в нем используется четыре. На внешней их стороне закрепляются диски, на которых находятся магниты. Все устройство необходимо уложить в корпус для того, чтобы выровнять пластины. Далее важно закрепить на модели проводник. Подсоединение к мотору осуществляется через него. Волновая индукция в данном случае обеспечивается за счет нехроматического резистора.

Преобразователи у этого устройства используются исключительно низкого напряжения. Скорость фазового искажения может довольно сильно меняться. Если диски вращаются прерывисто, необходимо уменьшить диаметр пластин. В данном случае отсоединять проводники не обязательно. После установки преобразователя к внешней стороне диска прикладывается обмотка.

Устройство с линейным ротором

Линейные роторы обладают довольно высоким образцовым напряжением. Пластину для них целесообразнее подбирать большую. Стабилизация проводящего направления может осуществляться за счет установки проводника (чертежи вечного двигателя на магнитах показаны ниже). Спицы для диска следует использовать стальные. На инерционный усилитель желательно устанавливать преобразователь.

Усилить магнитное поле в данном случае можно только за счет увеличения количества магнитов на сетке. В среднем их там устанавливается около шести. В этой ситуации многое зависит от скорости аберрации первого порядка. Если наблюдается в начале работы некоторая прерывистость вращения диска, то необходимо заменить конденсатор и установить новую модель с конвекционным элементом.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

Сборка двигателя Шконлина

Вечный двигатель данного типа собрать довольно сложно. В первую очередь следует заготовить четыре мощных магнита. Патина для данного устройства подбирается металлическая, а диаметр ее должен составлять 12 см. Далее необходимо использовать проводники для закрепления магнитов. Перед применением их необходимо полностью обезжирить. С этой целью можно воспользоваться этиловым спиртом.

Следующим шагом пластины устанавливаются на специальную подвеску. Лучше всего ее подбирать с затупленным концом. Некоторые в данном случае используют кронштейны с подшипниками для увеличения скорости вращения. Сеточный тетрод в вечный двигатель на мощных магнитах крепится напрямую через усилитель. Увеличить мощность магнитного поля можно за счет установки преобразователя. Ротор в этой ситуации необходим только конвекционный. Термооптические свойства у данного типа довольно хорошие. Справиться с волновой аберрацией в устройстве позволяет усилитель.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда.

Источники

  • https://www.13min.ru/nauka/vechnyj-dvigatel-na-magnitax/
  • https://slarkenergy.ru/oborudovanie/engine/na-postoyannyx-magnitax.html
  • https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/dvigatel-na-postoyannyh-magnitah.html
  • https://hockey-samara. ru/dlya-avto/linejnyj-dvigatel-svoimi-rukami.html
  • https://www.syl.ru/article/208432/new_vechnyiy-dvigatel-na-magnitah-svoimi-rukami-shema
  • https://econet.ru/articles/167189-magnitnyy-dvigatel-svoimi-rukami-fantastika-ili-realnost

[свернуть]

ньютоновской механики. Почему мы не можем сделать вечный двигатель, используя магнит, чтобы притянуть кусок металла, а затем позволить ему упасть обратно?

Задавать вопрос

Спросил

Изменено
3 года, 6 месяцев назад

Просмотрено
12 тысяч раз

$\begingroup$

Здесь уже есть ответы на этот вопрос :

Почему не работает этот магнитный вечный двигатель?

(5 ответов)

Закрыт 3 года назад.

Очевидно, что вечный двигатель невозможен ни по одному закону физики, потому что энергию нельзя «создать» или «разрушить», а только преобразовать.
Тем не менее, у меня была идея вечного двигателя, и я не могу найти свою ошибку (на самом деле я очень близок к тому, чтобы построить и попробовать ее).

Вот план:

Возьмите кусок дерева и прикрепите его верхний конец к винту, чтобы он мог качаться как маятник. Затем прикрепите магнитный металл к нижнему концу дерева. Теперь поместите по два магнита с каждой стороны маятника так, чтобы при максимальной амплитуде металл едва касался магнитов и отклонялся назад из-за своего веса.
Теперь, в моей голове, если вы придадите маятнику небольшой импульс, он качнется в одном направлении и слегка притянется магнитом. Таким образом, на «обратном пути» она будет иметь несколько большую амплитуду. Таким образом, он качается в другую сторону, ближе к магниту, который будет тянуть маятник еще немного вверх, тем самым еще больше увеличивая амплитуду.
Теоретически это может продолжаться, и маятник никогда не остановится, на самом деле он будет набирать большую скорость в начале.

Итак, условия таковы:

  • Металл должен быть достаточно тяжелым, чтобы не прилипать к магнитам
  • Металл должен быть достаточно магнитным, чтобы мы набирали амплитуду, а не теряли ее при каждом взмахе

Вот и все. Я знаю, что конструкция не может работать, но изо всех сил пытаюсь найти, где я допустил ошибку.
В любом случае, если это работает, и вы, ребята, создадите его раньше меня: я хочу 50% всей прибыли и хочу, чтобы вы назвали его Perpenduluum Mobile 😀

  • ньютоновская механика
  • электромагнетизм
  • сохранение энергии
  • диссипация
  • вечный двигатель

$\endgroup$

5

$\begingroup$

Теперь, в моей голове, если дать маятнику небольшой импульс, он качнется в одном направлении и притянется магнитом совсем чуть-чуть.

Вы забыли учесть магнитное притяжение, когда маятник возвращается в свое центральное положение.

Что касается внешней ноги, вы правы в том, что притяжение магнита будет притягивать боб и давать ему больше энергии, чем в отсутствие магнита. Однако на обратном пути маятниковый груз пытается уйти от силы притяжения магнита, и это вернет всю дополнительную энергию.

(… если система идеальна, то есть. Реальные магнитные материалы будут демонстрировать некоторый гистерезис, поэтому на обратном пути боб потеряет чуть больше энергии, чем получит на выходе.)

Этот тип ошибки довольно распространен, когда у вас есть основная динамика, которая, как известно, является консервативной, и все еще, кажется, производит энергию — вы просто пренебрегаете теми частями цикла, где эта сила выполняет работу против вашей системы. Аналогичный пример в действии см. в разделе Что мешает работе этого магнитного вечного двигателя?

$\endgroup$

4

$\begingroup$

Вечный двигатель невозможен из-за диссипации или если вы предпочитаете второй принцип термодинамики, а не сохранение энергии.

Если ваш анализ предложенной установки был правильным, вы могли бы создавать механическую энергию бесплатно!

В первом анализе, пренебрегая (неизбежными) потерями в ферромагнитной среде, ваша система консервативна: у вас есть модифицированный маятник, в котором удерживающий потенциал содержит не только гравитационную часть, но и магнитную составляющую. На самом деле магнитная сила немного уменьшает крутящий момент отзыва, который был бы у вас только при гравитации, и амплитуда движения действительно будет больше. Но у вас все же будет точка поворота, где кинетическая энергия обращается в нуль, и, возвращаясь назад, вы достигнете точно такого же угла точки поворота с другой стороны.
Это соответствует осциллятору с постоянной амплитудой, потому что потерями пренебрегли.
Источниками потерь являются как минимум: трение в воздухе, трение об оси, ферромагнитный гистерезис, токи Фуко. Таким образом, амплитуда уменьшится, и вечное движение сведется к вечной неподвижности…

$\endgroup$

3

$\begingroup$

Вы упускаете из виду, что при прохождении металла через меняющееся магнитное поле возникают вихревые токи.

Эти токи приведут к нагреву металла (количество зависит от скорости движения и напряженности поля).

Этот нагрев в основном приводит к удалению энергии из системы; и таким образом подпрыгивание не может быть сделано навсегда; даже если остальная часть системы идеальна.

$\endgroup$

Очень активный вопрос . Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование к репутации помогает защитить этот вопрос от спама и отсутствия ответа.

вечных двигателей — что-то даром?

Почти всем нравится получать что-то даром. С самого начала письменной истории и, вероятно, задолго до этого люди пытались построить машину, которая производила бы больше энергии, чем потребляла. Никто еще этого не сделал и, вероятно, никогда не сделает.

Первый закон термодинамики является одним из основных принципов фундаментальной физики. По сути, это говорит о том, что вы не можете создать энергию из ничего, и вы также не можете ее уничтожить. Энергия сохраняется. Как это может быть?

А огонь? Если бензин сгорает, это, кажется, создает много энергии.

Как бензин используется в качестве энергии

Бензин удерживает энергию в своей молекулярной структуре. Проще говоря, бензин состоит из атомов водорода и углерода, связанных вместе, и именно эти связи удерживают энергию. Горение разрывает эти связи, высвобождая накопленную энергию, которая затем нагревает другие молекулы, разрывая их связи, высвобождая еще больше энергии и так далее. В акте горения используется кислород, который рекомбинирует с атомами водорода и углерода с образованием молекул, которые имеют меньшую общую энергию, хранящуюся в их молекулярных связях.

Как вообще появились молекулярные связи бензина? Бензин перерабатывается из сырой нефти, которую добывают глубоко под землей. Нефть — это ископаемое топливо, и, как и окаменелости динозавров, она появилась очень давно. На протяжении миллионов лет океанские отложения запирали крошечные растения и животных, таких как водоросли и зоопланктон, глубоко под миллиардами тонн материала.

Под большим давлением и жарой растения и животные в конце концов превратились в молекулы углеводородов. Почему бы молекулам сразу не сгореть и не высвободить энергию прямо там под землей? Потому что нет кислорода. Для сжигания углеводородов требуется кислород.

Может ли маховик вращаться бесконечно?

Допустим, мы могли бы создать объём пространства, который был бы чистым, без материи, без гравитации, без света, без какой-либо энергии, без ничего. В этом объеме мы помещаем идеально сбалансированный маховик. Этот маховик сделан из материала, который не имеет внутренней энергии даже в своих атомах. Он сбалансирован до размещения отдельных атомов и находится на оси без трения. Если мы добавим энергию колесу, вращая его; это когда-нибудь остановится? Нет! Он будет вращаться вечно. Энергия, которую мы добавили в эту систему, навсегда сохраняется в движении колеса.

Теперь добавим пару атомов другого материала на одну сторону оси. Этот маленький комочек материала добавит бесконечно малое трение в нашу маленькую систему. Это может занять больше времени, чем продолжительность жизни Вселенной, но в конце концов энергия, добавленная нами при вращении, будет преобразована в тепло в оси и колесе.

Катерина Кон/Shutterstock

Поскольку в нашем объеме пространства нет абсолютно ничего, кроме колеса и оси, тепло колеса не может рассеиваться в объеме. Эта тепловая энергия будет рассеиваться в объеме колеса и оси до тех пор, пока каждый атом не окажется на одном уровне энергии или тепла; и так будет всегда, независимо от любого изменения энергии на атомном уровне.

Наша маленькая система, описанная выше, называется закрытой системой: ничего не входит и ничего не выходит. Теперь давайте представим, что наша система — это не просто маленькая ось и колесо, а целая вселенная. Даже самая глубокая и темная область космоса не свободна от гравитации или энергии. То, что называется космическим фоновым излучением, оставшимся от большого взрыва, есть повсюду.

Многие люди утверждают, что построили вечный двигатель. Во многих случаях они построили невероятно эффективные машины. Они будут работать очень долго, но всегда есть что-то, что вытянет малейшую часть энергии, и машина в конце концов остановится.

Например, во всех машинах есть трение; этого не избежать. Эти машины — открытые системы; энергия может втекать, но может и вытекать обратно.

Посмотреть вечный двигатель с качающимся магнитом можно по адресу: https://youtu.be/XNqq6YgdGX4

Магниты для вечного двигателя

Популярной и вызывающей недоумение демонстрацией является вечный двигатель с подвесным магнитом. В нем используются два постоянных магнита. Один магнит установлен постоянно, скажем, северным концом вверх. Другой магнит подвешен прямо над ним северным концом вниз. Два магнита будут отталкивать друг друга, и подвешенный магнит будет качаться взад и вперед, казалось бы, бесконечно.

Суть в том, как образовались магниты. Молекулы в магнитах сами по себе являются маленькими магнитами. В какой-то момент времени каждая из молекул в магнитах была выстроена какой-то силой природы. Работая вместе, они создают гораздо большее магнитное поле.

Когда подвешенный магнит качается вниз к постоянному магниту, он немедленно отталкивается и отклоняется. Сила, которая отбрасывает его, сместит некоторые маленькие молекулярные магниты в обоих больших магнитах очень легко. Движение этих молекул и есть тепло.

В течение очень долгого времени размещение этих молекул станет случайным, и постоянные магниты потеряют свои составные магнитные поля. Висячий магнит перестанет двигаться, и магниты будут рассеивать остаточное тепло в окружающий воздух, пока не достигнут комнатной температуры.

Вот почему нагрев постоянного магнита может привести к потере его магнитного поля. Тепло заставляет молекулы вибрировать, и их положение становится случайным. Затем магнит излучает тепло до тех пор, пока не достигнет температуры окружающей среды.

Если все машины в конце концов остановятся без непрерывного подвода энергии, как вы сможете вырабатывать больше энергии, чем потребляете? Каждая такая машина должна преобразовывать входную энергию в выходную. Часто очень сложно найти источник дополнительной энергии, поступающей в систему, из-за очень высокого КПД машины.

Независимо от того, насколько хорошо работает машина, эффективность выше 100%, вероятно, невозможна. И нет такого понятия, как вечный двигатель.

Тим Шивли, 18 марта 2018 г.

Некоторые вещи, которые следует учитывать.

1. Как работают ядерный синтез и деление? Откуда берется энергия? Один расщепляет атомы, а другой сплавляет атомы. Как это может быть?

2. Является ли Вселенная закрытой системой? Или это открытая система? Может быть, это открытые пути, которые мы не можем видеть. Может ли темная сила быть входом из-за пределов системы нашей вселенной? Наверное, нет, но об этом интересно подумать.

3. Уму непостижимо, что происходит в любой области пространства в любое время. Просто сядьте спокойно и представьте себе объем в один кубический дюйм, который легко лежит на вашей руке. Что происходит в этом томе? Конечно, есть и воздух, и пыль, и молекулы всяких материалов.

Но что еще? Во-первых, широкая полоса солнечного излучения нагревает вашу руку, а рука испускает инфракрасное излучение. Через это пространство проходят радиоволны каждой радиостанции, телевизионной станции и почти бесконечного числа источников.

Миллиарды частиц из космоса проходят через это пространство почти без последствий; нейтрино, космические лучи. Фотоны энергии со всего электромагнитного спектра, свет от самых тусклых звезд, космическое фоновое излучение Большого взрыва, даже излучение, которое прошло миллиарды лет, чтобы попасть сюда, проходят через этот небольшой объем.

В этом объеме присутствует гравитационное поле солнца, земли, луны, фактически каждой частички массы во вселенной. Гравитационные поля и электромагнитные поля непрерывны и ослабевают с расстоянием. Насколько слабыми они могут стать? Они достигают навсегда? А как насчет того факта, что электромагнитные поля являются одновременно частицами и волнами? Является ли гравитационное поле одновременно частицей и волной? Даже гравитационные волны от столкновения нейтронных звезд за миллиарды миль от нас проходят через этот объем.

Невероятно, не так ли?

https://en.wikipedia.org/wiki/First_law_of_thermodynamics

https://www.croftsystems.net/oil-gas-blog/what-is-oil-made-o

Магнитная энергия | AltEnergyMag

Вечный магнитный генератор невозможен? Возможно, но на эту теорию было выдано несколько патентов, и по мере того, как стоимость энергии продолжает расти, все больше ученых будут искать способы создать рабочий практичный вечный магнитный генератор.

Магнитная энергия

Лен Кальдероне

13.06.12, 09:50

| Солнечный ветер

| Обсуждение технологий

Что, если бы вы вышли из дома и сели в машину будущего, похожую на пончик? Вы нажимаете кнопку, и автомобиль поднимается примерно на фут от земли. Небольшой двигатель двигает автомобиль вперед, когда он следует по электромагнитной полосе, встроенной в дорогу, при этом электромагнетизм отталкивает автомобиль от дороги.

Очевидно, что это всего лишь концепт-кар, представленный Volkswagen в Китае в рамках проекта People’s Car. Автомобиль VW Hover был представлен на автосалоне в Пекине в 2012 году.

Сегодня существуют электромагнитные двигатели и двигатели с постоянными магнитами, которые осуществимы и используются. Большое противоречие заключается в том, существует ли такая вещь, как магнитный двигатель (генератор) с вечным источником энергии.

Электромагнитная энергия — это энергия электромагнитного излучения, такого как радиоволны и волны видимого света, которые вызывают как электрические, так и магнитные поля. Компонент, который мы называем постоянным магнитом, представляет собой кусок магнитного материала, который после намагничивания или «зарядки» внешним магнитным полем сохраняет полезный большой магнитный момент после устранения намагничивающей силы. Таким образом, постоянный магнит сам становится источником магнитного поля, которое может взаимодействовать с другими намагничиваемыми материалами или с электрическими токами.

Простейшая форма магнитной энергии — фонарик Фарадея, который мы все видели. Вы встряхиваете фонарик вперед и назад, и действие создает энергию для питания лампочки. Принцип достаточно прост. Магнит проходит вперед и назад через катушку провода и создает электрический ток, который затем накапливается в конденсаторе. Когда фонарик включен, конденсатор подает накопленную энергию в лампочку, как в фонаре с батарейным питанием.

В основном эта система состоит из пяти частей. Магнит — это то, что генерирует энергию, когда она проходит через проволочную катушку. Чем сильнее магнит, тем больше энергии генерируется при каждом встряхивании. Размер проволочной катушки (количество витков) также определяет, сколько энергии вырабатывается при каждом проходе магнита. Конденсатор хранит энергию, которую вы генерируете, встряхивая фонарик. Чем выше качество и больше размер конденсатора, тем дольше световой поток. Тогда есть светодиодная лампа, которая имеет сниженное энергопотребление и срок службы. Наконец, есть кнопка включения/выключения.

Вопрос: «Можно ли создать вечный двигатель, используя аналогичный процесс?» Вечный двигатель в замкнутой системе нарушает первый закон термодинамики. Машины, производящие работу и энергию без затрат энергии, противоречат закону сохранения энергии. По законам термодинамики энергия не может просто создаваться или уничтожаться. Следовательно, настоящий вечный двигатель может никогда не стать жизнеспособным, но можно построить его близкую замену. В то время как энергия нужна для инициализации краткосрочного запуска вечного двигателя, что-то простое, например, рукоятка, может стать катализатором в устройстве, которое производит достаточно энергии, чтобы поддерживать себя и обеспечивать дополнительную мощность.

В этом типе двигателя используется конструкция с постоянными магнитами, в которой роторы удерживают постоянные магниты, расположенные вокруг вала. Эти магниты должны синхронизироваться с магнитами статора; а для создания хорошей мощности нужны редкоземельные элементы. Без разумного запаса материала постоянного магнита постоянные магниты не были бы очень постоянными. Проблема в том, что большая часть редкоземельных материалов, необходимых для изготовления надежных магнитов с длительным сроком службы, поступает из Китая.

Ниже приведен пример двигателя с постоянными магнитами и асинхронного двигателя с электромагнитным полем.

В асинхронном двигателе с электромагнитным полем вокруг статора создается вращающееся магнитное поле, которое вращается с синхронной (возникающей одновременно) скоростью. Это вращающееся магнитное поле проходит через воздушный зазор и перерезает неподвижные проводники ротора. Из-за относительной скорости между неподвижными проводниками ротора и вращающимся магнитным полем в проводниках ротора индуцируется электромагнитное поле. Когда проводники ротора замыкаются накоротко, через них начинает течь ток. И поскольку эти токонесущие проводники ротора помещены в магнитное поле, создаваемое статором, они испытывают механическую силу, которая перемещает ротор в том же направлении, что и вращающееся магнитное поле.

Двигатель с постоянными магнитами является разновидностью электродвигателя. В основном все типы двигателей работают, когда они имеют корпус статора и ротор. Во многих электродвигателях в качестве ротора используется электромагнит. В двигателе с постоянными магнитами ротор содержит постоянный магнит, а не электромагнит.

Двигатель с постоянными магнитами способен генерировать более высокий крутящий момент по сравнению с асинхронным двигателем. Кроме того, двигатель с постоянными магнитами можно использовать для производства электроэнергии, а не механического движения, особенно в ветроэнергетическом устройстве.

Магниты в двигателе с постоянными магнитами сделаны в основном из неодима и поэтому являются чрезвычайно мощными и долговечными постоянными магнитами. Для выработки электроэнергии ветер вращает турбину, которая затем включает магниты генератора и создает электрический ток. В результате при преобразовании кинетической формы энергии ветра в электрический ток фактически теряется гораздо меньше энергии.

XEMC Darwind производит высокопроизводительные ветряные турбины мощностью несколько мегаватт на основе технологии генератора с постоянными магнитами с прямым приводом.

Есть еще одно применение магнитов для создания эффективной энергии. Магнитогидродинамическая генерация энергии основана на законе электромагнитной индукции Фарадея. То есть, когда проводящая жидкость, такая как плазма, течет через магнитное поле, ионы будут двигаться в направлении, перпендикулярном как магнитному полю, так и направлению потока, и тогда возникнет электродвижущая сила. На сегодняшний день МГД является наиболее эффективной солнечной электрической технологией.

Слово Magneto Hydro Dynamic (MHD) происходит от Magneto, означающего магнитное поле, Hydro, означающего жидкость, и Dynamics, означающего движение.

Изображенный здесь МГД генерирует электричество непосредственно из тела очень горячего движущегося ионизированного газа без каких-либо механических движущихся частей. Солнечная энергия, сконцентрированная зеркалами и линзами, создает перегретые газы. Из-за более высокой температуры генерируемая солнечная МГД более эффективна, чем другие типы солнечных тепловых технологий, которые работают при гораздо более низкой температуре.

Магнитогидродинамика работает, используя сверхпроводящие магниты для извлечения электричества из перегретого движущегося ионизированного газа. В технологии МГД использование чрезвычайно больших сверхпроводящих постоянных магнитов повышает эффективность.

Первоначально генераторы с постоянными магнитами производят электричество, прикрепляя рукоятку или турбину, которая инициирует его движение. Ручная рукоятка будет использоваться бытовыми генераторами, в то время как турбина нужна генераторам, которые управляют гидроэлектростанциями. Магниты внутри генератора создают магнитное поле, которое активирует электричество в проводнике каждый раз, когда он проходит через него. Последовательное движение проводника создает устойчивый поток электричества.

Тем не менее, как с электромагнитными двигателями, так и с двигателями с постоянными магнитами, для запуска двигателя необходим внешний источник. Концепция вечного магнитного двигателя существует уже давно, но пока этот источник энергии не является жизнеспособным.

Идея магнитных вечных двигателей достаточно проста для понимания. Магнитные вечные двигатели приводятся в движение магнитами, которые заставляют вращаться пластины, и это движение приводит в движение генератор. Он может производить энергию или электроэнергию без необходимости в каком-либо внешнем источнике топлива. Электромагнитное поле, создаваемое расположением магнитов, является основой мощности, и как только генератор заработает, вы получите всю необходимую вам электроэнергию абсолютно бесплатно. Электрогенераторы, которые вы обычно находите в доме, требуют источника топлива, чтобы они могли производить электричество.

Принцип работы магнитного вечного двигателя заключается в том, что роторы приводятся в движение точно расположенными магнитами, а вращение роторов питает магнитный генератор так же, как ветрогенератор получает энергию от вращающегося ротора. Все эти моторы хоть и называются вечными, но таковыми не являются. Все изнашивается в какой-то момент времени, и магниты в конечном итоге разряжаются. По сути, вечный двигатель — это двигатель, который работает в течение длительного периода времени.

Энергия двигателя с вечным магнитом генерирует энергию из магнитных полей внутри магнитов. Эти поля можно использовать для инициирования силы, которая, в свою очередь, создает движение. Затем это движение может быть использовано для создания энергии.

Генератор с магнитным питанием — это другое название вечного магнитного генератора. Двигатели воспринимают силу, создаваемую полями внутри магнитов, и преобразуют эту силу в электрическую энергию.

Если вы возьмете достаточное количество магнитов и правильно расположите их, они будут отталкиваться друг от друга. Разместив эти магниты в форме круга, вы теоретически создадите колесо, которое будет вращаться, поскольку магнитные поля толкают колесо. Вращение колеса — это то, как двигатель вырабатывает энергию. Поскольку энергии в магнитах хватает на многие годы, колесо может вращаться и продолжать вращаться без необходимости когда-либо останавливаться, таким образом, движение вращающегося колеса создает энергию на многие годы. Это то, что превращает генератор с магнитным питанием в вечный генератор.

Двигатель с вечным магнитом Johnson патент номер 4151431

Невозможно? Возможно, но на эту теорию было выдано несколько патентов, и по мере того, как стоимость энергии продолжает расти, все больше ученых будут искать способы создать рабочий практичный вечный магнитный генератор.

Для получения дополнительной информации:

http://www.levitationfun.com/mfield.pdf

http://www.smma.org/mmpa_pmg-88.pdf

http://askmar.com/Magnets/Modern%20Permanent%20Magnet%20Applications.pdf

http://freeenergynews.com/Directory/Howard_Johnson_Motor/1979Paper/

О Лене

Лен начал работать в аудиовизуальной индустрии в 1975 году и написал статьи для нескольких изданий. Он также пишет редакционные статьи для местной газеты. Сейчас он на пенсии.

Эта статья содержит заявления личного мнения и комментарии, сделанные добросовестно в интересах общественности. Вы должны подтвердить все заявления с производителем, чтобы убедиться в правильности заявлений.

Содержание и мнения в этой статье принадлежат автору и не обязательно отражают точку зрения AltEnergyMag

13.06.12, 09:50

| Солнечный ветер

| Обсуждение технологий


Другие статьи о солнечной и ветровой энергии | Истории | Новости

Комментарии (0)

Этот пост не имеет комментариев. Будьте первым, кто оставит комментарий ниже.


Опубликовать комментарий

Вы должны войти в систему, прежде чем сможете оставлять комментарии. Войти сейчас.

Рекомендуемый продукт

QuickBOLT — Расширьте спектр своих услуг

Исследуйте новые источники дохода для своего бизнеса по установке солнечных батарей с помощью кровельных креплений QuickBOLT из стали с покрытием из камня, разработанных в сотрудничестве с самими производителями металлических крыш. Эти кровельные крепления SCS подходят для всех профилей металлочерепицы и помогут вам заработать деньги, которые вы упускаете. Благодаря тому, что кровельные крюки QuickBOLT из стали с каменным покрытием не врезаются в кровельный материал, они сохраняют целостность крыши. Устанавливайте легко и уверенно, зная, что ваша крыша защищена от суровых условий, для которых предназначены эти крюки.

Возможен ли двигатель с постоянными магнитами?

Недавно мы опубликовали статью о силовой электронике с заголовком «Уникальный двигатель использует только постоянные магниты — электроэнергия не требуется». Мы получили шквал критики за то, что это звучит как вечный двигатель и противоречит закону сохранения энергии и закону термодинамики. Некоторые инженеры сказали, что это должно было быть датировано 1 апреля, потому что это, должно быть, шутка. Меня заставили поверить, что такой мотор существует, но мотора не существует — по крайней мере, пока.

Выяснилось, что заголовок был неверным. В нем должно было быть сказано: «Новое открытие может привести к коммерческому производству двигателей с постоянными магнитами». Соавтор оригинальной статьи, доктор Кеннет Козека, открыл способ использования постоянных магнитов для создания механического движения. В статье должно было быть ясно, что это открытие может привести к двигателю с постоянными магнитами, но пока нет. Затем мы попросили доктора Козеку объяснить предысторию своего открытия, и он предоставил то, что вы увидите в тексте ниже. Прочитав это объяснение, вы сможете решить, считаете ли вы этот подход осуществимым.

Доктор Козека говорит, что легко представить себе силу притяжения между двумя магнитами, выполняющими работу за нас, например, вращение двигателя, когда они сближаются. Проблема, конечно, в том, что энергия должна быть потрачена на разрыв магнитов, если мы хотим, чтобы они снова работали на нас. Таким образом, нет никакой пользы в том, чтобы магниты работали на нас.

Ученые и изобретатели пытались использовать только постоянные магниты для привода двигателя. Другие отвергли идею двигателя, приводимого в движение только постоянными магнитами, как противоречащего законам термодинамики. Мы не понимали источник электромагнитной энергии, ответственный за магнитные силы. Уже в 1926, квантовая физика описала собственный спин или угловой момент неспаренного электрона в ферромагнитном материале как источник. Доктор Фейнман (лауреат Нобелевской премии по физике) описывает вращение как «вечное» в своих лекциях об электромагнитной энергии.

В физике существует несколько теорий, предлагающих источник электромагнитной энергии, переносимой потоками виртуальных фотонов, исходящих от атомного электрона. Каким бы ни был источник, он присущ и изобилен. Таким образом, идея двигателя, приводимого в движение одними только постоянными магнитами, вполне осуществима, и ее нельзя отвергать как нарушение закона сохранения энергии.

Двигатель с постоянными магнитами не будет производить энергию и не будет вечным двигателем. Вместо этого он просто использовал бы электромагнитную энергию, передаваемую угловым моментом электрона в виде магнитных сил. Хотя квантовая физика описывает угловой момент как источник энергии, некоторые ученые и неспециалисты придерживаются неверной парадигмы, согласно которой двигатели с постоянными магнитами противоречат основным законам физики.

Представленное здесь открытие проливает свет на очень необычное явление. Два постоянных магнита с противоположными полюсами, обращенными друг к другу, способны создавать экваториальное притяжение и полярное отталкивание без изменения полярности магнита и без использования другого источника энергии. Противоположные полюса не вызывают отталкивания. Отталкивание также не является побочным продуктом инерции или импульса горизонтального притяжения. Это ясно видно из демонстрации полярного отталкивания, происходящего без предварительного создания горизонтального притяжения. Посетите сайт www.kedronenergy.com, чтобы посмотреть видеоролики, демонстрирующие отдельно горизонтальное притяжение и вертикальное отталкивание.

Удивительно, если не захватывает дух, наблюдать, как два постоянных магнита с обращенными противоположными полюсами создают одновременно экваториальное (горизонтальное) притяжение и полярное (вертикальное) отталкивание, которые можно использовать для создания последовательности притяжения и отталкивания. Таким образом, не нужно тратить энергию на то, чтобы разъединить магниты после того, как они притянутся и сделают работу за нас. Вместо этого магниты отделяются друг от друга. И фаза притяжения, и фаза отталкивания могут выполнять для нас работу, например, управлять электрическим генератором. Есть два рабочих такта по сравнению с одним рабочим тактом в двигателе внутреннего сгорания. Это удивительное открытие нельзя ни сбросить со счетов, ни опровергнуть, потому что оно легко воспроизводимо кем угодно. На сайте Kedron представлено видео, демонстрирующее это явление с помощью небольшого аппарата. Инструкции предоставляются для воспроизведения этого небольшого устройства. Редко, если вообще когда-либо, такое важное научное открытие так легко проверяется.

Нетрудно представить, как можно использовать рабочий ход двигателя внутреннего сгорания для создания непрерывного движения. Точно так же легко представить, как притяжение и отталкивание силовых ударов постоянных магнитов можно использовать для создания непрерывного движения, аналогичного конструкции обычного электродвигателя или двигателя внутреннего сгорания. На веб-сайте Kedron доступно видео, в котором показано, как несколько пар магнитов, соединенных вместе, могут создавать непрерывное движение, используя магниты на обоих концах своего пути. Также предоставляется моделирование того, как несколько пар постоянных магнитов могут быть соединены для создания непрерывного движения. Это, пожалуй, самая простая версия машины или «мотора», создающего непрерывное движение. Лучшие конструкции будут использоваться в коммерческом подразделении.

Kedron ищет партнерство с компаниями, которые могут разрабатывать и производить коммерческие двигатели с постоянными магнитами. Это открытие было опубликовано для поиска поддержки для дальнейшего развития и внедрения. Подробная информация о конструкции двигателя станет доступна после получения патентной защиты и коммерческого производства компаниями-производителями.

вечный двигатель с магнитами

Вечный двигатель всегда интересовал ученых и инженеров. Они думают изменить работу и, следовательно, энергоемкий специфический мир деятельности, используя вечную машину. Но этому типу приключений просто противоречат основные законы природы/науки, например, мы не можем выполнять работу без рассеивания энергии или наоборот. Вечные двигатели приведут к неограниченным запасам энергии.

Однако, в эпоху информационного взрыва в Интернете, существует ряд доступных/опубликованных видеороликов и статей, в которых подчеркивается, а также демонстрируется возможность вечного двигателя/машин, и, как правило, эти машины, как говорят, используют магниты. .

Таким образом, уместно рассмотреть вопрос беспристрастно, чтобы увидеть возможность такого движения, которое не должно бросать вызов принципам природы/науки, таким как «Энергия не может быть ни создана, ни уничтожена, но может быть преобразована из одной формы в другую». еще один». Студентов, изучающих естественные и инженерные науки, также привлекает концепция вечного двигателя, и они участвуют в разработке таких проектов для участия в научных и инженерных конкурсах. Полное устранение трения является необходимостью для настоящего вечного двигателя, чего можно достичь с помощью магнитной левитации, в которой одно тело плавает относительно другого под действием магнитных сил. Таким образом, явление магнитной левитации, проявляющееся в сверхпроводящем состоянии материала, также является важной вехой на пути к реализации вечного движения.

Сила в физике — это любое взаимодействие, стремящееся изменить движение объекта. Другими словами, любая сила может заставить объект с массой изменить свою скорость (в том числе начать движение из состояния покоя), т. е. ускориться. Это означает, что мы можем успешно использовать силу тяжести, силу пружины и силу притяжения/отталкивания постоянных магнитов для получения энергии путем прямого преобразования действия физической силы в механическое движение и, таким образом, в работу и энергию. К сожалению, мы ничего не знаем об источнике энергии, обеспечивающем гравитационное притяжение объектов друг к другу, также как ничего не знаем об источниках энергии упругости (пружинной силы) и силы притяжения/отталкивания постоянных магнитов. Тем не менее, это не может помешать нам успешно использовать эти силы для получения энергии. Наука говорит, что такие машины невозможны, так как они нарушили бы первый или второй закон термодинамики. Хорошо известно, что патентное ведомство выдает патенты на эти машины, и похоже, что они противоречат утверждениям термодинамики. Однако эти машины действуют в полном соответствии с законами физики, поскольку каждая из указанных сил имеет свой источник энергии, обеспечивающий их работу, и нет никакого противоречия законам термодинамики.

Магниты очень полезны в обычных системах преобразования энергии. Они необходимы в генераторах, которые преобразуют химическую или ядерную энергию в электрические формы через механические формы, и в двигателях, которые преобразуют ее обратно в механическую энергию. Что же касается «альтернативных» применений, в которых магниты сами должны быть источниками безграничной энергии, то это подделки, чистые и простые. Они нарушают фундаментальные физические законы, поэтому неудивительно, что они никогда не работают, если их тестирует кто-то, кто не продает акции какой-нибудь фиктивной компании. Многие пытались построить магнитный двигатель, производящий свободную энергию, но весь процесс преобразования свободной магнитной энергии в механическую энергию остается необъяснимым. Существует много недоразумений и неправильных представлений о магнитах и ​​магнетизме, а также о том, что они действительно могут делать. Многие не технические люди воспринимают магниты как загадочные объекты, содержащие неограниченную энергию, тем самым открывая дверь к мифическому вечному двигателю и генерации свободной энергии. В действительности магниты могут генерировать только статические поля. Кроме того, их полярность не может быть изменена. Если в статоре и роторе двигателя используются только магниты, двигатель почти сразу блокируется. Даже если мы расположим магниты статора таким образом, что они первоначально отталкивают магниты ротора, после доли оборота магнитные силы уравновесятся, и вал перестанет вращаться. Мы можем попытаться изменить количество магнитов, используемых в статоре и роторе, их положение, ориентацию и силу, но результат все тот же: магнитные силы уравновешиваются, и вал больше не вращается. Даже в более сложных устройствах, использующих несколько роторов с валами, соединенными вместе, рано или поздно магнитные поля достигают равновесия, и двигатель перестает работать. Однако, чтобы получить работающий двигатель, нам нужно использовать электромагниты помимо магнитов или только электромагниты. Фактически, полярность электромагнитов можно изменить, изменив направление тока, протекающего в их катушках. Это можно использовать, чтобы убедиться, что между магнитами статора и ротора существует постоянное магнитное отталкивание, пока ротор вращается. Если источником напряжения является постоянный ток, нам также необходимо ввести механизм для питания электромагнитов таким образом, чтобы при вращении ротора они всегда отталкивали магниты в статоре. Очевидно, что у нас больше нет двигателя свободной энергии, а просто обычный двигатель, которому для работы нужен внешний источник энергии.

Создание вечного двигателя всегда было фантастической мечтой. В истории много попыток, но всегда один и тот же конец: вечный двигатель продолжает оставаться легендой. Ученые и изобретатели пытались использовать только постоянные магниты для привода двигателя. Другие отвергли идею двигателя, приводимого в движение только постоянными магнитами, как противоречащего законам термодинамики. Мы не понимали источник электромагнитной энергии, ответственный за магнитные силы. В физике существует несколько теорий, предлагающих источник электромагнитной энергии, переносимой потоками виртуальных фотонов, исходящих от атомного электрона. Каким бы ни был источник, он присущ и изобилен. Таким образом, идея двигателя, приводимого в движение одними только постоянными магнитами, вполне осуществима, и ее нельзя отвергать как нарушение закона сохранения энергии. Легко представить, как можно использовать рабочие ходы притяжения и отталкивания постоянных магнитов для создания непрерывного движения, аналогичного конструкции обычного электродвигателя или двигателя внутреннего сгорания. Демонстрации показывают, как несколько пар магнитов, соединенных вместе, могут производить непрерывное движение, используя магниты на обоих концах своего пути. Удивительно, если не захватывает дух, видеть, как два постоянных магнита с противоположными полюсами, обращенными друг к другу, создают одновременно экваториальное (горизонтальное) притяжение и полярное (вертикальное) отталкивание, которые можно использовать для создания последовательности притяжения и отталкивания. Таким образом, не нужно тратить энергию на то, чтобы разъединить магниты после того, как они притянутся и сделают работу за нас. Вместо этого магниты отделяются друг от друга. И фаза притяжения, и фаза отталкивания могут выполнять для нас работу, например, управлять электрическим генератором.

Последние слова

Двигатель с постоянными магнитами не будет производить энергию и не будет вечным двигателем. Вместо этого он просто использовал бы электромагнитную энергию, передаваемую угловым моментом электрона в виде магнитных сил. Хотя квантовая физика описывает угловой момент как источник энергии, некоторые ученые и неспециалисты придерживаются неверной парадигмы, согласно которой двигатели с постоянными магнитами противоречат основным законам физики. Вечный двигатель работает на бумаге, но в реальном мире все ломается. Скорость разрушения магнитов колеблется от 2 до 500 лет. Таким образом, это будет длиться всю вашу жизнь, но только потому, что оно живет вами и вашими детьми, и так далее, и тому подобное, не делает его вечным, оно закончится в какой-то момент.

Perpetual Motion — Scientific American

  • Share on Facebook

  • Share on Twitter

  • Share on Reddit

  • Share on LinkedIn

  • Share via Email

  • Print

OUT ничего, ничего не приходит. Это действительно замечательная аксиома. Люди согласятся с этим сразу как с абстрактным предложением. Но когда они применяют ее к реальным вещам, некоторые, кажется, приходят в замешательство и лелеют ожидания, которые, если бы они осуществились, свели бы эту аксиому на нет. Та же самая общая истина выражается утверждением: «Каждое следствие должно иметь причину». Это также будет признано почти всеми, пока не будет применено к реальным вещам.
Возможно, ни у кого нет проблем со случаем, когда вообще ничего нет. От пространства, где нет материи, будь то твердое, жидкое или газообразное, никто ничего не будет ожидать. Но жонглирование имеет небольшое значение. Положим А, положим В. Предположим, что известно, что именно сделает А и что Б. И предположим, далее, что мы обнаружили, после нашей комбинации А и В, что мы можем проследить эти достижения А. и B. Назовите их a и l. Теперь именно здесь некоторые, кажется, сбиваются с пути. Кажется, они готовы поверить, что вдобавок может появиться что-то новое, с. Ну, а если должно, то у нас будет случай, когда что-то возникнет из ничего. С тем же успехом мы могли бы ожидать, что иногда 2 и 2 дадут 5. Дополнительная единица he’e была бы не более замечательной, чем c.
В этом беда искателей вечного двигателя. Они действительно ожидают чего-то от «ничего»; они ожидают эффекта без причины для его производства. Они берут машину (А) и определенное количество энергии (В1) и ожидают, что каким-то образом это сочетание приведет не только к самой машине (а) и сумме энергии (1 ) эквивалентно по количеству тому, что они вложили в (В).Они ожидают не только а и б, они ищут дополнительную энергию с.I они ее получают, они получают что-то из ничего, они получают следствие без причины Это так же нелепо, как ожидать получить 17 отдельных унций металла, разрезая фунт стали. увеличивается, манипулируя им. Тогда он готов увидеть, что, если он вложит в машину 2 футо-фунта, он не может рассчитывать на получение 21 футо-фунта. энергия будет преобразована в тепло и будет излучаться и, таким образом, может ускользнуть от наблюдения.
Однако люди веками работали над невыполнимой задачей получения чего-то из ничего. И, возможно, некоторые до сих пор в нем. Несомненно, сегодня в Соединенных Штатах есть люди, которые думают, что каким-то образом можно создать машину, которая будет работать без постоянного вложения в нее энергии. Это как если бы они рассчитывали разрезать 8-дюймовый квадрат на две отдельные части и получить прямоугольник 5 х 13 дюймов, соединив эти части другим способом.
То, что возможность создания вечного двигателя еще не полностью исключена, станет понятно, когда станет известно, что в период с 1855 по 1919 г. в Британское патентное бюро было подано 575 заявок на патенты на подобные устройства.03. Это около десяти патентов в год.
На фиг. 1 мы имеем пример, приведенный г-ном Ф. Ф. Чарлсуортом из Британского патентного ведомства. Бесконечная лента или цепь зацепляются с двумя звездочками. Лента несет ряд чашек или, скорее, ковшиков, прикрепленных таким образом, что ручки постоянно перпендикулярны ленте. Тяжелые шары по одному подаются в открытые ковши на нисходящей стороне. Когда ковш приближается к дну, выступающий рог перехватывает шар и уводит его прочь. Видно, что эта машина будет работать до тех пор, пока шары будут подаваться сверху. В показанной форме подъемный винт используется для поднятия шаров наверх и позволяет использовать их снова. Этот бесконечный винт приводится в движение механизмом, соединенным с валом верхней звездочки. Здесь упускается из виду тот факт, что для подъема мяча в исходное положение потребуется столько же энергии, сколько он разовьет при падении. Предлагалось, по-видимому, для этой же машины обеспечить обратный подъем шаров проводкой их по наклону к полой башне, наполненной ртутью или какой-либо другой жидкостью. Как только шар попадал в основание башни, он поднимался на поверхность ртути из-за разницы в удельной массе. Затем его можно было поднять с помощью подъемного устройства, сбросить на склон и снова загрузить в машину наверху. Очень хорошая схема — единственная трудность заключалась в том, чтобы поместить шарики на дно ртутной колонны.
Рассмотрим теперь фиг. 2. Здесь мы имеем конструкцию, подобную той, что показана на рис. 1. Однако бесконечная лента здесь резиновая и полая. Вместо
ковши, есть полые резиновые выступы или милостыни. На следующей стороне каждого из рукавов, заставляя все вращаться стрелками часов, находятся воздушные мешки. К этим весам прикреплены. Когда рука поднимается и, следовательно, вес оказывается внизу, мешок растягивается. Весь этот аппарат погружен в воду. Ожидается, что теперь он начнет двигаться по часовой стрелке. Поднимающаяся сторона легче нисходящей, потому что растяжение воздушных мешков уменьшило удельный вес с одной стороны. Все воздушные отсеки сообщаются с основной трубой. Напряжение воздуха не меняется. Когда груз наверху переходит в положение, при котором его мешок сжимается, другой мешок внизу растягивается, и поэтому требуемый воздух будет иметь тот же объем. Во всяком случае, это общая схема. Но почему это не сработает? Причина кроется в постепенно увеличивающемся давлении воды по мере того, как человек проходит вниз под поверхность. Именно это должно поднять растянутый бок. Но это также то, что препятствует движению воздуха сверху, чтобы раздуть воздушный мешок внизу. Растяжение воздушного мешка в лототроне в целом представляет собой ту же проблему, что и введение металлического шарика на дно колонны с ртутью.
Теперь обратимся к рис. 3. Это представляет собой то, что, по-видимому, было французским «решением». На оси, перпендикулярной бумаге, расположен герметичный сильфонный ЭФЭ. Общая длина сильфонов составляет около 40 дюймов. В точке E’ имеется отверстие, посредством которого и подходящей трубки имеется сообщение между внутренней частью мехов и сосудом с ртутью G. Этот сосуд закреплен примерно на уровне вала, на котором расположены меха. повороты. B — противовес, а C — застежка, которая служит для удержания сильфона на месте с умеренной силой. Предположим теперь, что люльки принудительно открываются, скажем, на треть своей вместимости. Ртуть будет течь из G, и через некоторое время, как утверждается, вес внутри мехов будет прилагать вращательное усилие suf. чтобы заставить его оторваться от dasp. Нижний конец трубки Е останется в ртутной ванне. Движение F&colon будет остановлено в положении, показанном на рис. 4, а другая застежка H войдет в зацепление с сильфоном. Ртуть поднялась раньше, потому что высота трубки Е меньше высоты обычного барометрического столба. Теперь ртуть вытечет из мехов, и они лопнут. Затем противовес B возвращает сильфон в исходное положение. Прибыв сюда, какая бы ртуть ни осталась внутри, она падает примерно на 27 дюймов в высоту, после чего ртуть из резервуара поднимется и попадет в меха, потому что длина трубки Е значительно меньше 27 дюймов. По сути, это описание этой схемы доктором Папеном. Что не так с устройством?
Рассмотрим теперь рис. 5. Здесь у нас есть барабан, наполненный водой или другой жидкостью и установленный на цапфах. На одной из цапф установлено маховое колесо, а соответствующий ремень передает мощность от генератора вечного движения. С помощью сальниковых коробок через барабан проходят два стержня. Эти стержни взаимно перпендикулярны. На их концах расположены грузы. Понятно, что если бы мы всегда могли иметь одинаковое количество веса на двух сторонах барабана или колеса, но вес на одной стороне был бы расположен дальше от оси вращения, колесо или барабан вращались бы. Избыток рычага на одной стороне заставит эту сторону постоянно опускаться. Чтобы управлять этим смещением грузов, изобретатель снабдил стержни пробковыми сферами, расположенными по центру. Очевидно, что когда один стержень находится в вертикальном положении, его пробковая пена, если она имеет подходящие размеры по отношению к двум грузам, заставит верхний груз подняться и, таким образом, выступать из барабана на максимальное расстояние. Не будет тенденции к потере этого положения до тех пор, пока этот вертикальный стержень не займет горизонтальное положение. На рисунках показано состояние, при котором один стержень расположен вертикально, а другой горизонтально. Вертикальный стержень и его грузы, кроме предшествующего движения, не будут оказывать никакого вращательного усилия. А вот горизонтальный будет, так как один его вес дальше от оси, чем другой. Движение будет настроено в направлении стрелки. Конечно, стержни должны быть расположены так, чтобы их пробковые пластины не мешали друг другу.
Простое устройство показано на рис. 6. Бесконечная цепь проходит вокруг двух колес ВВ. Тройка холостых колес COD отклоняет цепь от вертикали в одну сторону. Результатом этого является то, что большая длина и, следовательно, больший вес цепи постоянно находятся на правой стороне. Предположительно, у нас здесь движение по часовой стрелке. Трудность в том, что отклоненная часть, хотя и тяжелее, не оказывает
полный эффект своего веса. Гравитация цепи действует вниз в точно вертикальном направлении. Но так как это гравитационное действие вынуждено действовать, скажем, на самое верхнее колесо под углом, то есть некоторая потеря. Чтобы сделать это совершенно ясным, предположим, что цепь висит строго вертикально. В точке касания гравитационное притяжение будет направлено по касательной и, следовательно, наиболее эффективно. Сверните цепь внутрь или наружу, и гравитационное притяжение будет направлено под углом к ​​касательной, а значит, с некоторыми потерями. На самом деле оси колес ВСВ несут определенную долю веса цепи.
Рассмотрим рис. 7. Три вращающихся вала расположены горизонтально, так что вертикальный разрез показывает участки вала в вершинах прямоугольного треугольника, как показано на рисунке. Предположим теперь, что эти ролики охвачены бесконечной цепью. Можно было бы подумать, что, поскольку гипотенуза длиннее вертикальной стороны, равномерная цепь должна вызвать движение по часовой стрелке. Однако только что данное объяснение подготавливает нас к пониманию того, что это не так. На самом деле тот недостаток, при котором действует гравитационное притяжение гипотенузы, как раз компенсируется ее избыточным весом. Такое расположение будет уравновешенным, неподвижным. Но предположим, что металлическая цепь заменена лентой, к которой прикреплены губки, и все это обернуто цепочкой равномерно распределенных грузов. Предположим, кроме того, что горизонтальная часть аппарата погружена в воду. Теперь у нас есть устройство, изобретенное сэром Уильямом Конгривом, вероятно, около 1827 года. Сэр Уильям был членом британского парламента и изобретателем знаменитых ракет Конгрива. Ожидалось, что эта машина будет вращаться против часовой стрелки. Modus operandi был задуман следующим образом: С вертикальной стороны губка при входе в воду не будет сжата цепочкой грузов и, следовательно, сможет впитывать воду за счет капиллярного притяжения. Когда губка выходит из воды на нижнем конце гипотенузы, линия грузов сжимает ее и, таким образом, сохраняет ее сравнительно сухой. Из-за разницы в весе сухой и мокрой сторон вся система будет двигаться.
Возможно, самые знаменитые усилия в направлении вечного движения были предприняты в связи с постоянным распределением и перераспределением веса внутри или вокруг колеса, подвижно установленного на оси или цапфах. Цель состоит в том, чтобы иметь одинаковое количество грузов на нисходящей и восходящей сторонах, но иметь большее среднее расстояние от оси вращения на нисходящей стороне. Предполагается, что по принципу различия рычагов, оказываемых двумя группами весов, мы получили бы непрекращающееся движение, если бы это отношение могло сохраняться постоянно. Одним из наиболее выдающихся из тех, кто уделял внимание этому вопросу, был второй маркиз Вустер, родившийся примерно в середине семнадцатого века. Этот джентльмен написал в своем «Столетии изобретений» устройство, назначение которого состояло в том, чтобы «предусмотреть и сделать так, чтобы все веса нисходящей стороны колеса постоянно находились дальше от центра, чем над установочной стороной, и но равны по количеству и весу с одной стороны, чем с другой. Совершенно невероятная вещь, если не сцена, которую я предпринял перед покойным королем счастливой и славной памяти в Тауэре по моему указанию, двумя необычайными Эмбафадорами, сопровождающими его Мати и Д. Ричмонда, Д. Гамильтона и большую часть придворный его».
Далее он рассказывает, что колесо, или барабан, имело 14 футов в диаметре и было снабжено 40 гирями по 50 фунтов каждая. вертикальный диаметр вверху они висели на фут дальше от центра, и что, когда они проходили этот диаметр на нижней стороне, они висели на фут ближе. Может показаться, что предварительный метод, с помощью которого был достигнут этот результат, доподлинно неизвестен. Тем не менее, считается, что в основном это так, как показано на рис. 8. Будет видно, что распределение справа и слева примерно одинаково, так что, что касается простого веса, у нас есть галанс. Но есть перевес рычагов с одной стороны. Вид представляет положение в определенный момент времени. И мы можем допустить, что это мгновение отображает условия довольно типичным образом. Тогда может показаться, что маркиз был, возможно, прав, когда сказал: «Пчела соизволила судить вас по совести».
Спустя полвека или около того Жан Эрнест Эли-Бесслер Орфирреус неоднократно сконструировал знаменитый аппарат, который, как считается, в значительной степени основывался на вышеизложенных принципах. Рассказывают, что Орфирей, как его обычно называют, сделал одну машину около 1715 года, но сломал ее из-за налога, наложенного на нее правительством Гессен-Касселя. Второй аппарат был изготовлен и выставлен ландграфу. Говорят, что эта машина, которая внешне представляла собой барабан 12 футов в диаметре и 14 дюймов между гранями, установленный на железной оси, если ее запустить резким импульсом — в любом направлении, — будет вращаться все быстрее и быстрее, пока периферия не исчезнет. , двигаясь со скоростью около 16 футов в секунду. Утверждали, что колесо, приведенное в движение в покоях ландграфа и опечатанное там, продолжало вращаться по прошествии двух месяцев. Машина была остановлена, как говорится, для предотвращения чрезмерного износа. Однако изобретатель хранил свою тайну очень близко. Ландграфу, сделавшему ему прекрасный подарок, показали внутреннее убранство. Но он должен был пообещать не рассказывать о том, что видел, и не пользоваться своими знаниями. На самом деле Орфиреус потребовал плату в размере около 100 000 долларов за свой секрет. Профессор Грейвсанд из Лейдена был нанят ландграфом для исследования машины, поскольку это можно было сделать, не открывая внутренности. В письме сэру Исааку Ньютону по этому поводу он описывает его как сделанный из «нескольких поперечных кусков дерева, скрепленных вместе, которые целиком покрыты холстом, чтобы не было видно внутренней части. Через центр этого колеса или барабана проходит ось диаметром около шести дюймов, заканчивающаяся на обоих концах железными осями диаметром около трех четвертей дюйма, на которых вращается машина. Я исследовал эти оси и твердо убежден, что ничто извне колеса ни в малейшей степени не способствует его движению. Когда я поворачивал его осторожно, он всегда останавливался, как только я убирал руку; но когда я придавал ему какую-либо сносную скорость, мне всегда приходилось снова останавливать его силой; ибо когда я отпустил его, он за два или три оборота приобрел наибольшую скорость, после чего сделал двадцать пять или двадцать шесть оборотов в минуту. Это движение сохранилось некоторое время тому назад в течение двух месяцев в квартире замка; двери и окна которого были заперты и опечатаны».
Похоже, что никто, у кого были 100 000 долларов, никогда не соглашался выплатить их при условии, что аппарат «будет признан вечным двигателем». Отвечал ли сэр Исаак Ньютон проф. Грейвзанду или нет, я не знаю.
Устройство, вероятно, похожее на только что описанное, показано на рис. 9.. Имеется вращающееся колесо, на окружности которого через равные промежутки шарнирно закреплены плечи. На внешних концах крепятся грузы. Упоры устроены так, что движение рычага на шарнире ограничено углом, одна сторона которого является продолжением радиуса. Все рычаги расположены так, чтобы поворачиваться из радиального направления в круговое, в отличие от часовых стрелок. Глядя на рисунок, легко увидеть, что справа гири А, В и а расположены выгодно, чтобы производить движение по часовой стрелке, даже несмотря на некоторое сопротивление. Из-за преобладающего преимущества, которое может показаться разумным постоянно придавать весу на th! правильно, мы могли бы искать вечное движение.
То, что можно рассматривать как разновидность этого устройства, показано на рис. ВОЗДУХ ГАЗ! Последнее изобретение
Стандартная вакуумная газовая машина делает
газ автоматически! Использование97% обычный воздух!
Самый дешевый, самый безопасный, самый гигиеничный для освещения, отопления и приготовления пищи! Все удобства городского газа! Неядовитый, неудушающий, невзрывоопасный и не-одорирующий! Машина всегда готова». Газ можно производить© по цене 15 экв. за 1000 куб. фл.! В 25 раз дешевле ацетилена! Дешевле керосиновых ламп, электричества или городского газа! Экономия окупит машину за несколько месяцев! Агенты разыскиваются повсюду в США и за границей! Машина мощностью 25 л.с. $125.00.
Standard-Gillette Light Co., 10 H Michigan St., Чикаго, США,
Бензиновая лампа Nulite
Красивый lnmp для дома, гостиницы, офиса, магазина, банка. кафе. Портативный, безопасный; можно переворачивать вверх дном или катать по полу, не опасаясь и не засветив свет .. 00 C . П . мягкого, яркого света, одна треть цента в час. Также 200 000 различных стилей светильников и систем. ACENTS-Мы хотим towu, округа и путешествия; Продавец н, л&колон;&колон;&колон; t I:?po!r!ID Fer of l1 ered. Продается везде. Напишите для специального предложения.
Национальный штамповочный и электрический завод 412 So. Клинтон Сент-ЧИКАКО
м»ЕЕ
&аст; ВСЕ
Увлекательный буклет «ПУТИ И СРЕДСТВА В ФОТОГРАФИИ»
Полный полезных советов.-Написать
БЕРРОУЗ ВЕЛКОМ энд Ко.
35, «West 33rd St., Нью-Йорк, или 101, Coristine Building, Монреаль.
tggJQggj
ЭДИСОН С
Конкретный
о использовать
Как он обработан ХПК, сколько он покроет. я. это практично с архитектурной и инженерной точек зрения) Th.. и другие важные вопросы, касающиеся структуры, обсуждаются в хорошей, тщательной, иллюстрированной статье, опубликованной в Scientific American Supplement 1685. Цена 10 центов по почте. Закажите у своего продавца новостей или у
MUNN CO., Inc., Publishers, 361 Broadway, N.Y.
ПЕНСМАН
СТАЛЬНЫЕ РУЧКИ
Закаленный для высокой эластичности, отшлифованный
для плавного письма — совершенство
ручки. Для любого стиля письма.
Образец карты 12 различных стилей и
2 хорошие подставки для ручек Bent за 10 копеек.
СПЕХЕРИЯ ПЕ ГО., 349Бродвей, Нью-Йорк
я включаю
Ваши ПАТЕНТЫ и :USINESS в ARIZC:i
Lawi lbe самый либеральный. Затраты минимальны. Проведите встречу!. сделка бизнес ss y где . Бланки . В соответствии с законодательством форма ami for ma k in2 stock fl llj-pay id за наличные. имущество или услуги. свободно . Президент Стоддард. БЫВШИЙ СЕКРЕТОР АРИЗ ОНА. ре, иден! afent для многих тысяч компаний. Ссылка e: Любой банк в Аризоне.
STODDARD INCORPORATING COMPANY, 80: 8000
ФЕНИКС, АРИЗОНА
БАКЕЛИТ
(aHG. против S. PAT. OFF.)
новое синтетическое вещество многих применений. Пишите для буклета. GENERAL BAKELITE COMPANY, 100 William St., Нью-Йорк, штат Нью-Йорк.
№ A. Wizard Monorail Jumping Top № 9. Wizard 6 Minute Jumping Top
Один глоток творога.
покрасила скорлупу и продолжает крутиться. на кончике пальца, конец 8f носа, e
Проходит 50 футов по встроенной проволоке. Оборот 10 000 раз в секунду с
J1u мпс от
Спины
гэ из
тумблер и др.
Каждый комплект содержит : Верх, полированный панцирь для прыжков, монорельсовая тележка, проволока, шнуры, I. прочерченные направления.
№ 9
Либо Онтфит,
люди 50c, почтовая оплата, 60-е •
Расходы, $1. 00.
<#- 1 WIZARD CO., 129 W. 31st Street, NY 18, 19 ноября1 1 НАУЧНЫЙ АМЕРИКАНСКИЙ 467 ДЕРЕВООБРАБАТЫВАЮЩЕЕ ОБОРУДОВАНИЕ Для нарезки, поперечной (обрезки) скосов, прорези канавок, сверления 8кроликов, лепки, долбления, торовой обработки дерева во всех м и колонах, сшивания ('atnloglle A. СЕНЕКА ФОЛЛС MFG. СО. 6 95 Water Street Seneca Falls, N.Y.. U.S.A. SEBAS!IAN LA!HES Качели от 9 до 15 дюймов Высокое качество Низкие цены Каталог Бесплатный THE SEBASTIAN LATHE CO .. 120 Culvert St . Цинциннати. О. МАСТЕРСКИЕ рабочих по дереву и металлу, без использования пара, оборудованных ОБОРУДОВАНИЕ BARNES' Foot Power разрешить более низкие ставки на рабочие места и дать большая прибыль от работы. Машины отправляют на пробу по желанию. Каталог бесплатно. WF&JNO. БАРНС КО. 1999 Ruby Street Основана в 1872 году. Рокфорд, Иллинойс. Напильник и зажим Elkins Saw это полезный инструмент в каждом совершенстве carperr, это v совершенен в Себе. магазин. Он держит и подает пилу Он легкий, прочный и долговечный, в нем нет незакрепленных частей, которые могут потеряться или выйти из строя. »,.«:.». Изобретение
БЕСПЛАТНЫЙ ОБРАЗЕЦ идет с первой буквы
Что-то новое. Каждая фирма хочет этого. Заказы от $1,00 до $100. Везде большой спрос. Хороший приятный бизнес. Пишите сразу. METALLIC SIGN CO., 438 N. Clark, Cbicago
‘TE LsC w 0 e O G E
Я ПЛЕЙНФДЖЕЛД. Нью-Джерси
РЕЗИНА
Опытные производители тонкой работы PARKER, STEARNS & CO., 288-290 Шеффилд Авеню, Бруклин, Нью-Йорк
Производство специализированного оборудования, специализации по металлургии, запатентованных устройств, штампов и инструментов, штамповок, винтовых станков. Modt l и затратный труд. М. П. Ш ЭЛ Л МФГ. CO. 509·511 Howard St. — — — — Сан-Франциско, Калифорния.
ЧТО Ж
БУРОВЫЕ СТАНКИ
Более 70 размеров и стилей. для бурения глубоких и неглубоких скважин любого типа в грунте или породе. Устанавливается на колеса или на пороги. \Витьб двигатели или лошадиные силы. СИЛЬНЫЙ. ПРОСТОЙ И НАДЕЖНЫЙ. Любой механик может управлять .’ легко, Sen(i tor catalo;,
УИЛЬЯМС БРОС.. Итака. Н.Ю.
звеньев, соединенных шарнирно. Желоб D C устроен так, чтобы грузы, которые в данном случае представляют собой незакрепленные шары, могли перекатываться с одной стороны на другую. Этот желоб фиксируется на месте. Таким образом, веса верхнего левого квадранта полностью удаляются или приближаются к вертикальному диаметру. Когда гиря поднимается в точку D, она скатывается по желобу к руке, прежде согнувшейся, а теперь вытянутой.
Самое важное, что упускают из виду в таких устройствах, — это вопрос скорости. Шарик, падающий сверху вниз, приобретет, помимо трения, именно такой импульс. Это связано с пройденным расстоянием по вертикали и не будет меняться, каким бы извилистым ни был реальный путь. Причина, по которой это связано с вертикальным расстоянием, заключается в том, что это направление, в котором действует гравитация. Аналогичные соображения применимы и к восходящему движению. Важно вертикальное расстояние, потому что это направление, в котором гравитация должна быть преодолена. Конечно, это точно так же сверху вниз, как и снизу вверх.
Мне будет позволено обратить внимание на устройство, несколько похожее на только что описанные. (См. рис. 11.) Число цифр справа и слева от вертикального диаметра одинаковое. Поскольку очевидно, что число 9преобладает над равным числом 6, колесо должно, конечно, вращаться по часовой стрелке. Хорошо изучите это устройство; это так же хорошо, как и любой другой.
Описанные до сих пор устройства были направлены на получение баланса мощности за счет эффекта гравитации. Другие изобретатели стремились использовать свойства магнита для той же цели.
Самое старое из устройств такого рода (рис. 13), предложенное в 1570 году священником-иезуитом Йоханнесом Тейснером, имело магнит на столбе, который якобы тянул железные шары вверх по склону. Достигнув вершины, они должны были упасть в изогнутую трубу, которая должна была выпустить их в нижней части склона через ловушку dQor. Все остальные три типа основаны на наиболее популярном представлении о схемах вечного двигателя, а именно на перебалансировке одной стороны колеса, чтобы заставить его вращаться. План Стефана (рис. 14), датируемый 179 г.9, должен был иметь четыре цилиндрических магнита, скользящих в радиально просверленных отверстиях в квадратном деревянном блоке, который был установлен так, чтобы вращаться между двумя вращающимися магнитами противоположной полярности. У всех этих скользящих магнитов северные полюса были направлены в сторону от центра, следовательно, они были бы прикреплены поворотным магнитом с южным полюсом на его свободном конце, но отталкивались бы другим. Затем углы деревянного бруска должны были наклонить магниты так, чтобы осуществить движение за мертвые точки.
Вместо такого деревянного бруска писатель в школьные годы предложил (рис. 15) латунный барабан, вращающийся рядом с подковообразным магнитом, с двумя стержнями, радиально проходящими через барабан под прямым углом друг к другу. Каждый из этих стержней должен был нести тяжелые ручки на своих внешних концах и арматуру из мягкого железа внутри барабана. Затем магнит должен был притягивать якоря так, чтобы выдвигать одну ручку за другой, оставляя силу тяжести возвращать их. Несколько родственным является еще более недавнее предложение Кортинга и Хёпе (рис. 12) использовать магнит для притяжения одного за другим ряда кусков мягкого железа, соединенных на концах латунными звеньями в кольцо и поддерживаемых стержни, которые могут входить и выходить из спиц колеса.