Содержание

Вечный двигатель на постоянных магнитах. Миф или реальность?

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Устройство и принцип работы

Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.

Для примера мы рассмотрим наиболее наглядный вариант:

Принцип действия магнитного двигателя

Как видите на рисунке, мотор состоит из следующих компонентов:

  • Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
  • Ротор дискового типа из немагнитного материала.
  • Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
  • Балласт  — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).

Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.

Требования к вечным двигателям

Так как такие устройства должны работать постоянно, то и требования к ним должны предъявляться особые:

  • полное сохранение движения;
  • идеальная прочность деталей;
  • обладание исключительной износостойкостью.

Вечный двигатель с научной точки зрения

Что говорит по этому поводу наука? Она не отрицает возможность создания такого двигателя, который будет работать на принципе использования энергии совокупного гравитационного поля. Она же – энергия вакуума или эфира. В чем должен заключаться принцип работы такого двигателя? В том, что это должна быть машина, в которой непрерывно действует сила, вызывающая движение без участия внешнего влияния.

Современная классификация вечных двигателей

  • Вечный двигатель первого рода — двигатель (воображаемая машина), способный бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Их существование противоречит первому закону термодинамики. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал.
  • Вечный двигатель второго рода — воображаемая машина, которая будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел (см. Демон Максвелла). Они противоречат второму закону термодинамики. Согласно Второму началу термодинамики, все попытки создать такой двигатель обречены на провал.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле – это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах
К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.

Самые известные аналоги вечного двигателя магнитах

Многочисленные энтузиасты стараются создать вечный двигатель на магнитах своими руками по схеме, в которой вращательное движение обеспечивается взаимодействием магнитных полей. Как известно, одноименные полюса отталкиваются друг от друга. Именно этот эффект и лежит в основе практически всех подобных разработок. Грамотное использование энергии отталкивания одинаковых полюсов магнита и притяжения разноименных полюсов в замкнутом контуре позволяет обеспечить длительное безостановочное вращение установки без приложения внешней силы.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.

Первоначально расчет данного типа устройства вел Фарадей, но его прототип при сходном принципе действия не обладал должной эффективностью, стабильностью работы, то есть не достиг цели. Термин «униполярный» означает, что в схеме агрегата кольцевой, дисковый (пластина) или цилиндровый проводник расположен в цепи между полюсами постоянного магнита.

Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Минато

Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор  позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.

Схема двигателя Минато

Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной  подачи электроэнергии через реле или полупроводниковый прибор.

При этом   ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.

«Тестатика» Пауля Баумана

Одна из самых известных разработок – это «тестатика» Баумана. Устройство напоминает своей конструкцией простейшую электростатическую машину с лейденскими банками. «Тестатик» состоит из пары акриловых дисков (для первых экспериментов использовались обычные музыкальные пластинки), на которые наклеены 36 узких и тонких полосок алюминия.

Кадр из документального фильма: к Тестатике подключили 1000-ваттную лампу. Слева — изобретатель Пауль Бауман
После того, как диски толкали пальцами в противоположные стороны, запущенный двигатель продолжал работать неограниченно долгое время со стабильной скоростью вращения дисков на уровне 50-70 оборотов в минуту. В электроцепи генератора Пауля Баумана удается развить напряжение до 350 вольт с силой тока до 30 Ампер. Из-за небольшой механической мощности это скорее не вечный двигатель, а генератор на магнитах.

Роторный кольцар Лазарева

Большой популярностью пользуется схема вечного двигателя на магнитах на основе проекта Лазарева. На сегодняшний день его роторный кольцар считается устройством, реализация которая максимально близка к концепции вечного двигателя. Важное преимущество разработки Лазарева состоит в том, что даже без профильных знаний и серьезный затрат можно собрать подобный вечный двигатель на неодимовых магнитах своими руками. Такое устройство представляет собой емкость, разделенную пористой перегородкой на две части. Автор разработки использовал в качестве перегородки специальный керамический диск. В него устанавливается трубка, а в емкость заливается жидкость. Для этого оптимально подходят улетучивающиеся растворы (например, бензин), но можно использовать и простую водопроводную воду.


Механизм работы двигателя Лазарева очень просто. Сначала жидкость подается через перегородку вниз емкости. Под давлением раствор начинает подниматься по трубке. Под получившейся капельницей размещают колесо с лопастями, на которых устанавливают магниты. Под силой падающих капель колесо вращается, образуя постоянное магнитное поле. На основе этой разработки успешно создан самовращающийся магнитный электродвигатель, на которой зарегистрировало патент одно отечественное предприятие.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:

Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении  расстояний и зазоров между основными элементами мотора.

Антигравитационный магнитный двигатель Лоренца

Двигатель Лоренца можно сделать самостоятельно с использованием простых материалов
Если вы хотите собрать вечный двигатель на магнитах своими руками, то обратите внимание на разработки Лоренца. Антигравитационный магнитный двигатель его авторства считается наиболее простым в реализации. В основе этого устройства лежит использование двух дисков с разными зарядами. Их наполовину помещают в полусферический магнитный экран из сверхпроводника, который полностью выталкивает из себя магнитные поля. Такое устройство необходимо для изоляции половин дисков от внешнего магнитного поля. Запуск этого двигателя выполняется путем принудительного вращения дисков навстречу друг другу. По сути, диски в получившейся система являются парой полувитков с током, на открытые части которых будут воздействовать силы Лоренца.

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Вакуумный триодный усилитель Свита Флойда

Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.

Мотор-колесо Шкондина

Если вы ищете интересные варианты, как сделать вечный двигатель из магнитов, то обязательно обратите внимание на разработку Шкондина. Конструкцию его линейного двигателя можно охарактеризовать как «колесо в колесе». Это простое, но в то же время производительное устройство успешно используется для велосипедов, скутеров и другого транспорта. Импульсно-инерционное мотор-колесо представляет собой объединение магнитных дорожек, параметры которых динамично изменяются путем переключения обмоток электромагнитов.

Общая схема линейного двигателя Василия Шкондина
Ключевыми элементами устройства Шкондина являются внешний ротор и статор особой конструкции: расположение 11 пар неодимовых магнитов в вечном двигателе выполнено по кругу, что образует в общей сложности 22 полюса. На роторе установлены 6 электромагнитов в форме подков, которые установлены попарно и смещены друг к другу на 120°. Между полюсами электромагнитов на роторе и между магнитами на статоре одинаковое расстояние. Изменение положения полюсов магнитов относительно друг друга приводит к созданию градиента напряженности магнитного поля, образуя крутящий момент.
Неодимовый магнит в вечном двигателе на основе конструкции проекта Шкондина имеет ключевое значение. Когда электромагнит проходит через оси неодимовых магнитов, то образуется магнитный полюс, который является одноименным по отношению к преодоленному полюсу и противоположным по отношению к полюсу следующего магнита. Получается, что электромагнит всегда отталкивается от предыдущего магнита и притягивается к следующему. Такие воздействия и обеспечивают вращение обода. Обесточивание элетромагнита при достижении оси магнита на статоре обеспечивается размещением в этой точке токосъемника.

Житель г.Пущино Василий Шкондин изобрел не вечный двигатель, а высокоэффективные мотор-колёса для транспорта и генераторы электроэнергии.
Коэффициент полезного действия двигателя Шкондина составляет 83%. Конечно, это пока еще не полностью энергонезависимый вечный двигатель на неодимовых магнитах, но очень серьезный и убедительный шаг в правильном направлении. Благодаря особенностям конструкции устройства на холостом ходу удается вернуть часть энергии батареям (функция рекуперации).

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Джона Серла

От электрического мотора такой магнитный двигатель  отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии  в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.

Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Магнитно-гравитационный двигатель

Здесь все немного проще, чем в предыдущем варианте. Для создания такого устройства нужны постоянные магниты и грузы определённых параметров. Работает это так: в центре вращающегося колеса находится основной магнит, а вокруг него (на краях колеса) расположены вспомогательные магниты и грузы. Магниты взаимодействуют друг с другом, а грузы находятся в движении и перемещаются то ближе к центру вращения, то дальше. Таким образом центр массы смещается, и колесо вращается.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.

Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Watch this video on YouTube

Watch this video on YouTube

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Почему вечный двигатель невозможен

Когда речь заходит о вечном двигателе, главная проблема — путаница в формулировках. Почему-то некоторые считают, что вечный двигатель – это машина, которая движется постоянно, что она никогда не останавливается. Эта правда, но лишь отчасти.

Действительно, если вы однажды установили и запустили вечный двигатель, он должен будет работать до «скончания времён». Назвать срок работы двигателя «долгим» или «продолжительным» – значит сильно преуменьшить его возможности. Однако, ни для кого не секрет, что вечного двигателя в природе нет и не может существовать.

Но как же быть с планетами, звездами и галактиками? Ведь все эти объекты находятся в постоянном движении, и это движение будет существовать постоянно, до тех пор пока существует Вселенная, пока не наступит время вечной, бесконечной, абсолютной темноты. Это ли не вечный двигатель?

Именно при ответе на этот вопрос и вскрывается та путаница в формулировках, о которой мы говорили в начале. Вечное движение не есть вечный двигатель! Само по себе движение во Вселенной «вечно». Движение будет существовать до тех пор, пока существует Вселенная. Но так называемый вечный двигатель — это устройство, которое не просто движется бесконечно, оно еще и вырабатывает энергию в процессе своего движения. Поэтому верно то определение, которое даёт Википедия:

Вечный двигатель — это воображаемое устройство, вырабатывающее полезную работу бо́льшую, чем количество сообщённой этому устройству энергии.

В интернете можно найти множество проектов, которые предлагают модели вечных двигателей. Глядя на эти конструкции, можно подумать, что они способны работать без остановки, постоянно вырабатывая энергию. Если бы нам действительно удалось спроектировать вечный двигатель, последствия были бы ошеломляющими. Это был бы вечный источник энергии, более того, бесплатной энергии. К сожалению, из-за фундаментальных законов физики нашей Вселенной, создание вечных двигателей невозможно. Разберёмся, почему это так.

Видео в помощь

Источники

  • https://220v.guru/elementy-elektriki/dvigateli/magnitnyy-vechnyy-dvigatel-delaem-svoimi-rukami.html
  • https://www.asutpp.ru/magnitnyj-dvigatel.html
  • https://www.syl.ru/article/189970/new_kak-sdelat-vechnyiy-dvigatel-svoimi-rukami
  • https://dic.academic.ru/dic.nsf/ruwiki/839655
  • https://odinelectric.ru/knowledgebase/chto-takoe-magnitniy-dvigatel
  • https://MirMagnitov.ru/blog/primenenie-magnitov/vechnyy-dvigatel-na-magnitakh/
  • https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/dvigatel-na-postoyannyh-magnitah.html
  • https://220v.guru/elementy-elektriki/dvigateli/vechnyy-dvigatel-svoimi-rukami-ego-opisanie-i-vidy. html
  • https://yourtutor.info/%D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%B2%D0%B5%D1%87%D0%BD%D1%8B%D0%B9-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C-%D0%BD%D0%B5%D0%B2%D0%BE%D0%B7%D0%BC%D0%BE%D0%B6%D0%B5%D0%BD

[свернуть]

Вечный двигатель на магнитах

Карикатура вечного двигателя

ГЕНЕРАТОР БЕЗ ТОПЛИВА запущен в производство. Но Глобальный Запрет на БТГ и критику Эйншейна не снят

Наука давно не стоит на месте и развивается все больше и больше. Благодаря науке было изобретено множество предметов, которыми мы пользуемся в повседневной жизни. Однако, на протяжении многих столетий перед наукой всегда стоял вопрос изобретения такого устройства, которое бы могло работать не потребляя никакой энергии извне, работая вечно. Такого результата добивались многие. Однако кому это удалось? Создан ли такой двигатель? Об этом и о многом другом мы и поговорим в нашей статье.

Двигатель Стирлинга простейшей конструкции. Свободнопоршневой. Игорь Белецкий

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Откуда берется энергия в генераторе Бедини?

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель — это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

Вечный двигатель и учёные, практики

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась идея о вечном двигателе? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Андрей Mаклаков. В Новой Зеландии работает БТГ на 50 кВт

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие — появление постоянного магнита и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Американский БТГ выдвинут на Нобелевскую премию

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Двигатель Перендева основанный на взаимодействии магнитов

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

Майкл Брэди в 2002 году создавая двигатель Перендева на магнитах

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Как разоряют и убивают изобретателей двигателей на воде. Почему беЗтопливные технологии под запретом

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс (Thane Heins)

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного электрического мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

В США начат выпуск БТГ генераторов на магнитной тяге

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя. Удачи!

ВЕЧНЫЙ ДВИГАТЕЛЬ Горячая десятка лучших схем для обсуждения Free energy Machine Игорь Белецкий

миф или реальность, устройство, виды

Содержание

  • Что такое вечный двигатель?
  • История возникновения вечного двигателя
  • Виды
  • Преимущества и недостатки
  • Как сделать своими руками?
  • Рекомендации
  • Принцип действия вечного магнитного движителя
  • Магнитный униполярный двигатель Тесла
  • Двигатель Минато
  • Двигатель Лазарева
  • Модификация Перендева
  • Модель Лоренца
  • Антигравитационная модификация двигателя
  • Устройство с линейным ротором
  • Линейный двигатель своими руками
  • Общее устройство и принцип работы
  • Сборка двигателя Шконлина
  • В чем преимущества и минусы работающих двигателей на магнитной энергии
  • Как самостоятельно собрать подобный двигатель
  • Заключение

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель – это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

Вечный двигатель и учёные, практики

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась идея о вечном двигателе? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного магнита и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

Майкл Брэди в 2002 году создавая двигатель Перендева на магнитах

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного электрического мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

Варианты разработок вечных двигателей

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид,год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделятькорпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.

Первоначально расчет данного типа устройства вел Фарадей, но его прототип при сходном принципе действия не обладал должной эффективностью, стабильностью работы, то есть не достиг цели. Термин «униполярный» означает, что в схеме агрегата кольцевой, дисковый (пластина) или цилиндровый проводник расположен в цепи между полюсами постоянного магнита.

Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Устройство двигателя Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Магнитный мотор Говарда Джонсона

В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.

Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.

Модификация Перендева

При помощи статора большой мощности можно сложить данный вечный двигатель на магнитах своими руками (схема показа ниже). Сила электромагнитного поля в этой ситуации зависит от многих факторов. В первую очередь следует учитывать толщину обтекателя. Также важно заранее подобрать небольшой кожух. Пластину для двигателя необходимо использовать толщиной не более 2,4 мм. Преобразователь на это устройство устанавливается низкочастотный.

Дополнительно следует учитывать, что ротор подбирается только последовательного типа. Контакты на нем установлены чаще всего алюминиевые. Пластины для магнитов необходимо предварительно прочистить. Сила резонансных частот будет зависеть исключительно от мощности преобразователя.

Чтобы усилить положительную обратную связь, многие специалисты рекомендуют воспользоваться усилителем промежуточной частоты. Устанавливается он на внешнюю сторону пластины возле преобразователя. Для усиления волновой индукции применяются спицы небольшого диаметра, которые закрепляются на диске. Отклонение фактической индуктивности происходит при вращении пластины.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Антигравитационная модификация двигателя

Антигравитационный вечный двигатель на магнитах является наиболее сложным устройством среди всех представленных выше. Всего пластин в нем используется четыре. На внешней их стороне закрепляются диски, на которых находятся магниты. Все устройство необходимо уложить в корпус для того, чтобы выровнять пластины. Далее важно закрепить на модели проводник. Подсоединение к мотору осуществляется через него. Волновая индукция в данном случае обеспечивается за счет нехроматического резистора.

Преобразователи у этого устройства используются исключительно низкого напряжения. Скорость фазового искажения может довольно сильно меняться. Если диски вращаются прерывисто, необходимо уменьшить диаметр пластин. В данном случае отсоединять проводники не обязательно. После установки преобразователя к внешней стороне диска прикладывается обмотка.

Устройство с линейным ротором

Линейные роторы обладают довольно высоким образцовым напряжением. Пластину для них целесообразнее подбирать большую. Стабилизация проводящего направления может осуществляться за счет установки проводника (чертежи вечного двигателя на магнитах показаны ниже). Спицы для диска следует использовать стальные. На инерционный усилитель желательно устанавливать преобразователь.

Усилить магнитное поле в данном случае можно только за счет увеличения количества магнитов на сетке. В среднем их там устанавливается около шести. В этой ситуации многое зависит от скорости аберрации первого порядка. Если наблюдается в начале работы некоторая прерывистость вращения диска, то необходимо заменить конденсатор и установить новую модель с конвекционным элементом.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

Сборка двигателя Шконлина

Вечный двигатель данного типа собрать довольно сложно. В первую очередь следует заготовить четыре мощных магнита. Патина для данного устройства подбирается металлическая, а диаметр ее должен составлять 12 см. Далее необходимо использовать проводники для закрепления магнитов. Перед применением их необходимо полностью обезжирить. С этой целью можно воспользоваться этиловым спиртом.

Следующим шагом пластины устанавливаются на специальную подвеску. Лучше всего ее подбирать с затупленным концом. Некоторые в данном случае используют кронштейны с подшипниками для увеличения скорости вращения. Сеточный тетрод в вечный двигатель на мощных магнитах крепится напрямую через усилитель. Увеличить мощность магнитного поля можно за счет установки преобразователя. Ротор в этой ситуации необходим только конвекционный. Термооптические свойства у данного типа довольно хорошие. Справиться с волновой аберрацией в устройстве позволяет усилитель.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда.

Источники

  • https://www.13min.ru/nauka/vechnyj-dvigatel-na-magnitax/
  • https://slarkenergy.ru/oborudovanie/engine/na-postoyannyx-magnitax.html
  • https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/dvigatel-na-postoyannyh-magnitah.html
  • https://hockey-samara. ru/dlya-avto/linejnyj-dvigatel-svoimi-rukami.html
  • https://www.syl.ru/article/208432/new_vechnyiy-dvigatel-na-magnitah-svoimi-rukami-shema
  • https://econet.ru/articles/167189-magnitnyy-dvigatel-svoimi-rukami-fantastika-ili-realnost

[свернуть]

миф или реальность, устройство, виды

Содержание:

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась идея о вечном двигателе? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного магнита и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

Майкл Брэди в 2002 году создавая двигатель Перендева на магнитах

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного электрического мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя.

Конструктивные особенности

Из каких элементов состоит магнитный двигатель:

  1. Статор, выполненный как один постоянный магнит на пружинной основе.
  2. Ротор. Диск, обязательно выполненный из материала, который не подвержен намагничиванию. По поверхности диски расположены небольшие постоянные магниты определённых размеров. Все магниты на диске необходимо разместить в определённой форме и последовательности.
  3. Балласт. В магнитном двигателе это отдельный элемент, он обеспечивает разгон ротора и его постоянное вращение при работе.

Это пример самой простой конструкции магнитного двигателя. Мастера вроде Николы Тесла или Василия Шкондина создавали куда более изощрённые модели, а многие из конструкторов в данной сфере электротехники даже получили патенты на свои изделия.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Василия Шкондина

Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.

Двигатель Шкондина

На рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.

Джона Серла

От электрического мотора такой магнитный двигатель  отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии  в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.

Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.

Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:

Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении  расстояний и зазоров между основными элементами мотора.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Миф или всё же реальность?

Магнитный двигатель – это реальность. Конструкторы Игорь Свитницкий и Говард Джонсон это доказали, создав моторы, которые работали за счёт постоянного магнитного потока. Но решить основную проблему – увеличить КПД до положенных 100%, они, к сожалению, не смогли.

Поэтому магнитные двигатели существуют, а теория их массового производства вполне реальна. А вот трактовка магнитного мотора как вечного двигателя с совершенным КПД – это вымысел, незаслуживающий внимания. Вечных двигателей не существует, это доказано, но всё же не мешает появляться на свет «конструкторам», желающим данный факт оспорить.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид,год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделятькорпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Предыдущая

РазноеДля чего и в каких случаях измеряют сопротивление изоляции. Измерение сопротивления изоляции мегаомметром

Следующая

РазноеСистемы заземления TN-C, TN-S, TN-C-S, TT, IT со схемами (ПУЭ). Системы заземлений — преимущества и недостатки

Подготовка зонда под тепловой насос – Видео





Page not found

Ремонт квартир, школа ремонта от А до Я

Тепловые насосы



Главная  »  404 Error

Ошибка 404. Не найдено.

Попробуйте воспользоваться поиском или просмотреть архивы блога.

За год

  • 2011 (2)
  • 2010 (28)
  • 2009 (103)

За месяц

  • February 2011 (2)
  • October 2010 (2)
  • August 2010 (1)
  • July 2010 (3)
  • June 2010 (2)
  • May 2010 (4)
  • April 2010 (4)
  • March 2010 (8)
  • February 2010 (4)
  • November 2009 (3)
  • October 2009 (8)
  • September 2009 (9)
  • August 2009 (13)
  • July 2009 (12)
  • June 2009 (6)
  • May 2009 (7)
  • April 2009 (9)
  • March 2009 (11)
  • February 2009 (12)
  • January 2009 (13)

Рубрики

  • Видео (4)
  • Для души (8)
  • Контакты (1)
  • Наши проекты (1)
  • Новости (18)
  • Продукция (18)
  • Статьи по энергетики (56)
  • Что такое Тепловой Насос? (27)

Записи

  • Be careful! The list of scam sites or the list email of scams
  • Осторожно сайты мошенники или список сайтов с которых рассылаются мошеннические письма
  • Автомобиль без водителя от Google
  • Гугл, Logitech и Sony создают интернет телевидение
  • Утепление дома. Способы утепления дома своими руками
  • Системы вентиляции, Проектирование вентиляции
  • Система отопления загородного дома
  • Вакуумный трубчатый гелиоколлектор, типы гелиоколлекторов
  • Приборы учета тепловой энергии, тепловые приборы для энергетики
  • Построить камин своими руками, делаем камин сами
  • Методы очистки воды, очистка воды для дома и методы очистки
  • Фонтан своими руками, изготовление фонтана для дачи своими руками
  • Твердотопливные отопительные котлы, твердотопливные котлы отопления
  • Выбор бензогенератора для дачи, бензогенераторы для дома
  • Телевизионная антенна своими руками, ТВ антенна
  • Утепление стен из нутрии, утепление помещений внутри
  • Проектирование котельных, монтаж котельен и их установка
  • Котел отопления своими руками, строим руками свой котел
  • Каркасный дом своими руками, как построить каркасный дом
  • Газовые обогреватели, газовые системы отопления и нагреватели воздуха
  • Монтаж видеонаблюдения, установка видеонаблюдения своими руками
  • Установка пожарной и охранной сигнализации, как проводить установку и зачем нужна пожарная сигнализация
  • Монтаж теплого пола, какой выбрать пол электрический или водяной
  • Котлы отопления, Классификация котлов отопления
  • Как сделать печь своими руками, строим печь для бани собственными руками
  • Типы канальных вентиляторов, круглые канальные вентиляторы, разновидности вентиляторов
  • Приточно-вытяжная установка, Описание работы приточно-вытяжной установки
  • Теплоизоляция дома
  • ВЕЧНЫЙ ДВИГАТЕЛЬ, ДВИГАТЕЛЬ НА ПОСТОЯННЫХ МАГНИТАХ, СВОИМИ РУКАМИ двигатель на магнитах
  • Самодельная открытка своими руками, как сделать открытку
  • Бойлеры нагрева, бойлеры косвенного нагрева
  • Техническое обслуживание котлов, обслуживание котлов
  • Cамодельный вертикальный ветрогенератор в домашних условиях
  • Тепловые трубы, использование тепловых труб в возобновляемых источниках энергии
  • Монтаж теплого пола, Монтаж теплого пола своими руками
  • Отопительное оборудование, выбор отопительного оборудования
  • Обогреватели для дома, Домашние обогреватели
  • Электрические отопительные котлы, выбор электрического котла
  • Системы кондиционирования воздуха, кондиционирование воздуха
  • Жидкость для систем отопления, чем заправлять систему отопления
  • Теплый пол водяной? перимущества теплого водяного пола
  • Автономные системы отопления – преимущества автономные системы отопления
  • Малая энергетика – для чего нужна малая энергетика
  • Утепление деревянного дома
  • Внутрипольные конвектора, конвектора POLVAX
  • Энергосберегающие технологии, технологии сберегающие ваши деньги
  • Биметаллические радиаторы отопления их преимущества, радиаторы отопления
  • Отопление загородного дома, проектирование отопление загородного дома
  • Солнечный коллектор, солнечный водонагреватель
  • Учет тепловой энергии, Тепловая энергия
  • Расчет системы отопления, Расчет отопления
  • Cистемы отопления, Виды систем отопления
  • Водогрейные и паровые котлы, паровой котел
  • Тепловой аккумулятор, виды тепловых аккумуляторов
  • Тепловые насосы в Днепропетровске, компании по установке тепловых насосов
  • Отопление своими руками, монтаж отопления в доме
  • Энергосбережение, программа энергосбережения
  • Геотермальный зонд, конструкция геотермального зонда от REHAU
  • Cолнечный коллектор, солнечные коллекторы от REHAU
  • Тепловые насосы от sunwin. com.ua, теплонасосное оборудование компании Sunwin
  • Расчет теплового насоса, расчет мощности и стоимости теплового насоса
  • Теплый пол, теплый электрический пол
  • Биогазовая установка своими руками, биогазовая установка
  • Ветрогенератор своими руками, Как создать своими руками ветрогенератор малой мощности
  • Тепловые насосы REHAU, тепловое оборудование от REHAU
  • Как сделать солнечную батарею своими руками? Солнечная батарея своими руками
  • Геотермальные насосы geoterm.com.ua, тепловые насосы EarthLinked
  • Тепловые насосы CONERGY, компания CONERGY производитель тепловых насосов
  • Тепловые насосы Thermia, тепловой насос от фирмы Thermia, модельный ряд Thermia
  • Классификация буровых установок для бурения скважин под геотермальные зонды
  • Подготовка зонда под тепловой насос
  • Видео Монтажа и установки теплового насоса Earthlinked final
  • Видео установки и бурения скважины для теплового насоса Vaillant geoTHERM
  • Тепловые насосы Thermia, история развития компании Thermia, тепловые насосы от компании Thermia
  • Геотермальный тепловой насос – Тепловые насосы Nukleon / Геотермальное отопление
  • Франция вложит миллиарды евро в энергосберегающие технологии
  • Китайские тепловые насосы, Воздушные тепловые насосы из Китая
  • Геотермальный Зонд, Зонды геотермального теплового насоса
  • Ручная буровая установка – бурение скважин, видео
  • ВНЕДРЕНИЕ ТЕПЛОВЫХ НАСОСОВ В УКРАИНЕ, ТЕПЛОВЫЕ НАСОСЫ В УКРАИНЕ
  • ТЕПЛОВЫЕ НАСОСЫ ПОМОГУТ ЗАРАБОТАТЬ ДНЕПРОПЕТРОВСКОЙ ОБЛАСТИ 66 МЛН. ЕВРО
  • ИСПОЛЬЗУЙТЕ ТЕПЛОВЫЕ НАСОСЫ ДЛЯ ОТОПЛЕНИЯ ТАМ, ГДЕ НЕТ ГАЗА
  • УТИЛИЗАЦИЯ СТОЧНЫХ ВОД ТЕПЛОВЫМ НАСОСОМ
  • КАБИНЕТ МИНИСТРОВ УКРАИНЫ ПРИНЯЛ РЕШЕНИЯ ВНЕДРЯТЬ ТЕПЛОВЫЕ НАСОСЫ
  • “УКРРОСМЕТАЛЛ” БУДЕТ СЕРИЙНО ПРОИЗВОДИТЬ ТЕПЛОВЫЕ НАСОСЫ ДЛЯ УКРАИНЫ И СНГ
  • ЗАТОПЛЕННЫЕ ШАХТЫ + ТЕПЛОВОЙ НАСОС = ТЕПЛО
  • ОТОПИТЕЛЬНЫЕ РАДИАТОРЫ, ВИДЫ РАДИАТОРОВ ОТОПЛЕНИЯ
  • Днепропетровск должен за тепло 292 300 000, спасение в тепловых насосах
  • ИРКУТСКАЯ ОБЛАСТЬ ЗА СОЛНЕЧНУЮ ЭНЕРГЕТИКУ
  • ТИМОШЕНКО ЗА ТЕПЛОВЫЕ НАСОСЫ
  • Развитие ветроэнергетики в Приморске
  • Тепловые насосы в Севастополе работающие от морской воды
  • ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ В ВАТИКАНЕ
  • ТЕПЛОВЫЕ НАСОСЫ В КИТАЕ – ТЕПЛОВЫЕ НАСОСЫ КИТАЙСКОГО ПРОИЗВОДСТВА
  • РОССИЯ ИЩЕТ СПАСЕНИЕ ОТ КРИЗИСА В ИСПОЛЬЗОВАНИИ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ
  • АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ – КАКИЕ БЫВАЮТ АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ
  • СОЛНЕЧНЫЙ КОЛЛЕКТОР СВОИМИ РУКАМИ
  • КРЕДИТ НА ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ
  • СОЛНЕЧНАЯ ЭНЕРГЕТИКА ДЛЯ АВТОНОМНОГО ДОМА
  • СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ ДЛЯ ЖИЛЫХ ДОМОВ
  • СОЛНЕЧНЫЕ ПАНЕЛИ ДЛЯ ДОМА – ВЫГОДНО ЛИ ЭТО И КАК УСТАНОВИТЬ СОЛНЕЧНЫЕ ПАНЕЛИ ДЛЯ ДОМА
  • АЛЬТЕРНАТИВНАЯ ЭНЕРГЕТИКА ПОЛУЧИЛА РЯД ЛЬГОТ ОТ ГОСУДАРСТВЕННЫХ ФОНДОВ
  • КПД СОЛНЕЧНЫХ ПАНЕЛЕЙ 80%
  • Общие сведения о солнечном коллекторе теплоснабжения
  • Принцип действия солнечного коллектора
  • Конференция. Приднепровский центр инженерной академии
  • СОЛНЕЧНАЯ ЭНЕРГЕТИКА
  • Необходимость сбережения энергии
  • ТЕПЛОВЫЕ НАОСЫ И ПРЕИМУЩЕСТВА ТЕПЛОВЫХ НАСОСОВ
  • ПРИНЦИП РАБОТЫ ТЕПЛОВОГО НАСОСА И КАК РАБОТАЕТ ОТОПЛЕНИЕ С ТЕПЛОВЫМ НАСОСОМ
  • УСТАНОВКА ТЕПЛОВОГО НАСОСА – EARTHLINKED FINAL УСТАНОВКА ТЕПЛОВОГО НАСОСА
  • ТЕПЛОВОЙ НАСОС NIBE – РАЗВОДКА ТРУБ ТЕПЛОВОГО НАСОСА NIBE
  • МОНТАЖ ТЕПЛОВОГО НАСОСА VAILLANT GEOTHERM – ТЕПЛОВОЙ НАСОС МОНТАЖ
  • КУПИТЬ ТЕПЛОВОЙ НАСОС, КАКОЙ ЛУЧШЕ КУПИТЬ ТЕПЛОВОЙ НАСОС
  • ПРИНЦИП РАБОТЫ ТЕПЛОВОГО НАСОСА, КАК РАБОТАЕТ ТЕПЛОВОЙ НАСОС
  • МОНТАЖ ТЕПЛОВЫХ НАСОСОВ, КАК СЭКОНОМИТЬ ПРИ МОНТАЖЕ ТЕПЛОВОГО НАСОСА
  • РАСЧЕТ МОЩНОСТИ ТЕПЛОВОГО НАСОСА – РАСЧЕТ ТЕПЛОВОГО НАСОСА
  • ТЕПЛОВОЙ НАСОС ВОЗДУХ – ВОДА – ПРИНЦИП РАБОТЫ ТЕПЛОВОГО НАСОСА ВОЗДУХ – ВОДА
  • ОТОПЛЕНИЕ ТЕПЛОВЫМ НАСОСОМ – ОТОПЛЕНИЕ С ПОМОЩЬЮ ТЕПЛЫХ ПОЛОВ
  • ТЕПЛОВОЙ НАСОС – ВНЕШНИЙ КОНТУР ТЕПЛОВОГО НАСОСА
  • ТЕПЛОВЫЕ НАСОСЫ НА УКРАИНЕ
  • КОГДА ПОЯВИЛСЯ ТЕПЛОВОЙ НАСОС И КТО ИЗОБРЕЛ ТЕПЛОВОЙ НАСОС
  • КОМПАНИЯ VIESSMANN – ТЕПЛОВЫЕ НАСОСЫ КОМПАНИИ VIESSMANN
  • ТЕПЛОВОЙ НАСОС – НАШ ПРОЕКТ ПО УСТАНОВКЕ ТЕПЛОВОГО НАСОСА
  • ТЕПЛОВЫЕ НАСОСЫ NIBE – ФИРМА NIBE
  • ТЕПЛОВОЙ НАСОС СВОИМИ РУКАМИ – КАК СОЗДАТЬ И УСТАНОВИТЬ ТЕПЛОВОЙ НАСОС СВОИМИ РУКАМИ
  • ОТОПЛЕНИЕ ТЕПЛОВЫМИ НАСОСАМИ – ПРИНЦИП РАБОТЫ ТЕПЛОВОГО НАСОСА
  • ТЕПЛОВЫЕ НАСОСЫ – ЦЕНА НА ТЕПЛОВЫЕ НАСОСЫ
  • Контакты
  • СПИСОК ФИРМ ПРОИЗВОДИТЕЛЕЙ ТЕПЛОВЫХ НАСОСОВ
  • ИСТОЧНИК ЭНЕРГИИ ДЛЯ ТЕПЛОВОГО НАСОСА. НЕОБХОДИМЫЕ ТРЕБОВАНИЯ К ТЕПЛОВОМУ НАСОСУ
  • ЗАЧЕМ НУЖЕН ТЕПЛОВОЙ НАСОС? КОГДА СЛЕДУЕТ ВЫБРАТЬ ТЕПЛОВОЙ НАСОС?
  • ТЕПЛОВЫЕ НАСОСЫ – ПРИНЦИП ДЕЙСТВИЯ ТЕПЛОВОГО НАСОСА





«Вечный» ли магнитный двигатель? — Научное Сообщество Гайдпарка (Парфёнов Сергей) — NewsLand

 

Тема «вечных двигателей» сейчас очень активно обсуждается в Интернете, приводится уйма различных проектов, но потенциал этой идеи всё ещё не израсходован.

 

Одним из направлений «вечных двигателей» являются магнитные двигатели и преобразователи магнитной энергии. История использования магнитов для создания энергии уходит в века, ведь скрытая сила магнитов придавала им магическое значение и будоражила воображение. Сейчас в мире известно много патентов магнитных двигателей, часть информации ещё с советских времён засекречена, но пока ещё нет ни одного работающего двигателя, о котором было бы известно. Все те видео, что размещены на «YouTube», преследуют разные цели, но не демонстрацию работающего двигателя.

Экологичные японские мотоциклы

Самым старым магнитным двигателем, о котором известно широкому кругу, является магнитный двигатель «Perendev». Он, как всё гениальное, имеет простую и понятную конструкцию. Используя внешнее качественное изготовление и своё первенство, авторы умудрились даже найти покупателей на свои двигатели. Используемый в Японии магнитный двигатель «Минато» изначально номинировался как экономичный электрический двигатель с постоянными магнитами, он не входит в число автономных («вечных») двигателей. Сейчас на его базе в Японии производят экологичные гибридные мотоциклы.

Вариации магнитных двигателей так многообразны, что это отдельная тема, требующая большего объёма и времени для рассмотрения. Следует отметить, что магнитные двигатели в России имеют патенты не на «Изобретение», а на «Полезную модель».

Соответственно, запатентованы просто идеи, не имеющие возможности практической реализации, которые, может быть, никогда не смогут осуществиться по техническим или научным причинам.

Вечный двигатель, возможно, возможен

Следует пояснить, почему идея «вечного двигателя» на постоянных магнитах может привести к созданию работающего двигателя. Начнём с закона сохранения энергии: нет, я не хочу его отрицать, просто я думаю, что надо смотреть глубже. Многие задаются вопросом, откуда энергия? И говорят, что из ничего не может быть работы. А кто сказал, что магнитное поле — это ничего? Ведь оно имеет определённое значение плотности энергии магнитного поля, которая достигает 280 кДж/куб.м.

Это потенциальная энергия магнитного поля. И в магнитном двигателе происходит преобразование потенциальной энергии в кинетическую. Данный вид преобразования уже существует: это генератор постоянного тока. Если вы будете вращать или двигать проводник, то электрического тока в нём не произойдёт. Но когда вы сделаете это в магнитном поле, то в проводнике возникнет движение электронов — произойдёт преобразование потенциальной энергии магнитного поля в кинетическую энергию электронов.

 

А вот то, что магнитное поле не исчезает и не уменьшается после произведённой им работы, пока за рамками знаний человечества. Ведь мы не знаем, какая сила вечно вращает электроны вокруг ядра, заставляет не исчезать гравитационное поле, вращает планеты, заставляет светить Солнце.

Проходят века, а энергия не исчезает (сильное магнитное поле всё-таки начинает ослабевать). Даже немного смешно, когда профессор из университета, который ведёт серьёзную научную работу, на эти вопросы начинает отвечать по-детски: «Ну, там какая-то сила чуть-чуть подкручивает». Зато этот же профессор, не задумываясь, говорит: работать не будет, потому что такого не может быть. Ясно одно, мы снова упёрлись в своё незнание мира, и скоро должен произойти очередной качественный скачок.

«Магнитный двигатель» № 34826

Я тоже являюсь автором одного из патентов с постоянными магнитами, идея зародилась ещё в детстве, но воплощение произошло только в 2003 году. При оформлении своего двигателя я использовал прототип «Двигатель на постоянных магнитах» (патент России № 2177201), но есть более схожий прототип «Постоянное устройство преобразования движения магнита» патента Джона Эклина (патент США № 3879622 от 22. 04.75 г.). Мой патент называется «Магнитный двигатель» № 34826.

 

В отличие от большинства других изобретателей, я пошёл немного другим путём — применил ферромагнитный экран между магнитами. В данном двигателе используется способность магнитного поля быть изолированным с помощью ферромагнитного экрана.

 

Элементарный детский опыт: если к магниту прислонить стальную пластинку, то за пластинкой уже отсутствует магнитное поле. Только пластинка должна быть достаточно толстой, чтобы экранировать поле. Вторая хитрость: из физики мы знаем, да и из жизни тоже, что если сила, приложенная к телу, перпендикулярна перемещению тела, то эта сила не производит работы при данном перемещении.

Отсюда следует вывод: если мы будем перемещать в магнитном поле ферромагнитный экран, перпендикулярно силовым линиям магнитного поля, то магнитное поле не производит работу сопротивления перемещению экрана. В то же время, экран, перекрыв всю поперечную площадь магнита, позволит поднести второй отталкивающийся магнит без преодоления сил магнитного отталкивания. Даже наоборот, второй магнит ещё и притянется к экрану. Если же вывести экран между магнитами, то магниты разлетаются в стороны.

 

Осталось придумать такую схему конструкции, чтобы перемещения узлов могли влиять друг на друга. Если измерить вредную работу на перемещение экрана и полезную работу перемещения магнитов, то образуется положительная разница работ, которую и можно использовать как постоянный источник дополнительной энергии.

 

Сейчас стали появляться новые материалы с выдающимися характеристиками (пиролитический углерод, оксид кобальта), которые позволят в будущем заменить ферромагнитный экран на антиферромагнитный или диамагнитный, что сильно снизит вредную работу и повысит производительность этого двигателя.

С того времени, как я оформил патент, прошло уже 12 лет, но у меня, как и у многих, нет работающего двигателя.

Основная причина в том, что сложность изготовления двигателя с современными сверхсильными магнитами достигает уровня производства двигателя внутреннего сгорания, плюс большая финансовая стоимость; в домашних условиях, как вы понимаете, это не сделать.

 

В процессе работы над двигателем я создал сайт, с помощью которого мне удалось пообщаться в Интернете, и вживую со многими людьми, занимающимися и интересующимися данной темой.

И почти все задают вопрос: почему эта технология не поддерживается государством или промышленностью? И сами на него отвечают: данная технология опасна для существующего мирового порядка, ведь при её внедрении могут произойти большие катаклизмы. 

 

Пока что автономный магнитный двигатель не существует, но это не означает, что он невозможен вообще.

ньютоновской механики. Почему мы не можем сделать вечный двигатель, используя магнит, чтобы притянуть кусок металла, а затем позволить ему упасть обратно?

Задавать вопрос

спросил

Изменено
3 года, 11 месяцев назад

Просмотрено
13 тысяч раз

$\begingroup$

На этот вопрос уже есть ответы здесь :

Почему этот магнитный вечный двигатель не работает?

(5 ответов)

Закрыт 3 года назад.

Очевидно, что вечный двигатель невозможен ни по одному закону физики, потому что энергию нельзя «создать» или «разрушить», а только преобразовать.
Тем не менее, у меня была идея вечного двигателя, и я не могу найти свою ошибку (на самом деле я очень близок к тому, чтобы построить и попробовать ее).

Вот план:

Возьмите кусок дерева и прикрепите его верхний конец к винту, чтобы он мог качаться как маятник. Затем прикрепите магнитный металл к нижнему концу дерева. Теперь поместите по два магнита с каждой стороны маятника так, чтобы при максимальной амплитуде металл едва касался магнитов и отклонялся назад из-за своего веса.
Теперь, в моей голове, если вы придадите маятнику небольшой импульс, он качнется в одном направлении и слегка притянется магнитом. Таким образом, на «обратном пути» она будет иметь несколько большую амплитуду. Таким образом, он качается в другую сторону, ближе к магниту, который будет тянуть маятник еще немного вверх, тем самым еще больше увеличивая амплитуду.
Теоретически это может продолжаться, и маятник никогда не остановится, на самом деле он будет набирать большую скорость в начале.

Итак, условия таковы:

  • Металл должен быть достаточно тяжелым, чтобы не прилипать к магнитам
  • Металл должен быть достаточно магнитным, чтобы мы набирали амплитуду, а не теряли ее при каждом взмахе

Вот и все. Я знаю, что конструкция не может работать, но изо всех сил пытаюсь найти, где я допустил ошибку.
В любом случае, если это работает, и вы, ребята, создадите его раньше меня: я хочу 50% всей прибыли и хочу, чтобы вы назвали его Perpenduluum Mobile 😀

  • ньютоновская механика
  • электромагнетизм
  • сохранение энергии
  • диссипация
  • вечный двигатель

$\endgroup$

5

$\begingroup$

Теперь, в моей голове, если дать маятнику небольшой импульс, он качнется в одном направлении и притянется магнитом совсем чуть-чуть.

Вы забыли учесть магнитное притяжение, когда маятник возвращается в свое центральное положение.

Что касается внешней ноги, вы правы в том, что притяжение магнита будет притягивать боб и давать ему больше энергии, чем в отсутствие магнита. Однако на обратном пути маятниковый груз пытается уйти от силы притяжения магнита, и это вернет всю дополнительную энергию.

(… если система идеальна, то есть. Реальные магнитные материалы будут демонстрировать некоторый гистерезис, поэтому на обратном пути боб потеряет чуть больше энергии, чем получит на выходе.)

Этот тип ошибки довольно распространен, когда у вас есть основная динамика, которая, как известно, является консервативной, и все еще, кажется, производит энергию — вы просто пренебрегаете теми частями цикла, где эта сила выполняет работу против вашей системы. Аналогичный пример в действии см. в разделе Что мешает работе этого магнитного вечного двигателя?

$\endgroup$

4

$\begingroup$

Вечный двигатель невозможен из-за диссипации или если вы предпочитаете второй принцип термодинамики, а не сохранение энергии.

Если ваш анализ предложенной установки был правильным, вы могли бы создавать механическую энергию бесплатно!

В первом анализе, пренебрегая (неизбежными) потерями в ферромагнитной среде, ваша система консервативна: у вас есть модифицированный маятник, в котором удерживающий потенциал содержит не только гравитационную часть, но и магнитную составляющую. На самом деле магнитная сила немного уменьшает крутящий момент отзыва, который был бы у вас только при гравитации, и амплитуда движения действительно будет больше. Но у вас все же будет точка поворота, где кинетическая энергия обращается в нуль, и, возвращаясь назад, вы достигнете точно такого же угла точки поворота с другой стороны.
Это соответствует осциллятору с постоянной амплитудой, потому что потерями пренебрегли.
Источниками потерь являются как минимум: трение в воздухе, трение об оси, ферромагнитный гистерезис, токи Фуко. Таким образом, амплитуда уменьшится, и вечное движение сведется к вечной неподвижности…

$\endgroup$

3

$\begingroup$

Вы упускаете из виду, что при прохождении металла через меняющееся магнитное поле возникают вихревые токи.

Эти токи приведут к нагреву металла (количество зависит от скорости движения и напряженности поля).

Этот нагрев в основном приводит к удалению энергии из системы; и таким образом подпрыгивание не может быть сделано навсегда; даже если остальная часть системы идеальна.

$\endgroup$

Очень активный вопрос . Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование к репутации помогает защитить этот вопрос от спама и отсутствия ответа.

электромагнетизм. Вечный двигатель с постоянными магнитами

спросил

Изменено
2 года, 7 месяцев назад

Просмотрено
4к раз

$\begingroup$

На этот вопрос уже есть ответы здесь :

Могут ли магниты вращаться бесконечно?

(4 ответа)

Закрыт 2 года назад.

Я не физик, но знаю первый закон термодинамики (переход энергии), и связал это с пришедшей мне некоторое время назад в голову идеей создать вечный двигатель, который невозможен по первому закону термодинамический.

Эта прялка изготовлена ​​из ферромагнитного материала, поэтому на колесо будет приложена сила, вызывающая крутящий момент. Если мы поместим его на место без воздуха, это постоянные магниты, поэтому они будут постоянно прикладывать силу. , а атомы в ферромагнитном материале не будут выровнены, потому что перманенты направлены в противоположные стороны, поэтому как это колесо остановит ускорение?

  • электромагнетизм
  • термодинамика
  • вечное движение

$\endgroup$

1

$\begingroup$

Вы ошибаетесь, что на колесе есть крутящий момент. Хотя поле от постоянного магнита может немного притягивать некоторые участки колеса, общее притяжение в среднем равно нулю.

Да, некоторые части колеса хотят двигаться по часовой стрелке, чтобы быть ближе к магниту, но некоторые другие части колеса хотят двигаться против часовой стрелки, чтобы быть ближе. Мы не можем рассматривать только биты непосредственно перед полюсом магнита. Необходимо учитывать все магнитное поле. При суммировании (при условии, что колесо однородное) крутящий момент будет равен нулю.

$\endgroup$

5

$\begingroup$

Несмотря на то, что пользователь BowlOfRed дал отличный ответ, разъясняющий недостаток вашего аргумента, я попытаюсь представить визуальное обоснование того, почему эта идея может не сработать.

Во-первых, направление сил на вашем рисунке, составляющих пару, неверно. Здесь я предполагаю, что ваш диск « очень хороший » вообще не помнит о намагниченности и представляет собой простой кусок ферромагнитного материала. Лучшее, что вы могли сделать, это инвертировать черные стрелки на диаграмме. Тем не менее, вы бы что-то упустили, и это принесло бы вам чистый крутящий момент в размере 0 долларов США, поскольку пользователь упоминает 😉

Здесь, если мы посмотрим внимательно, мы увидим две пары крутящих моментов (отмечены фиолетовым), которые взаимно компенсируют друг друга.

Следовательно, идея может не сработать.

Для более подробного анализа, я думаю, мы должны также рассмотреть взаимодействия, обусловленные магнитами, но это еще более усложнит дело и, кроме того, здесь не очень полезно.

$\endgroup$

1

$\begingroup$

Эта идея возникла с тех пор, как впервые были обнаружены магниты, и с тех пор регулярно появляется вновь. Это так называемый магнитный двигатель , и вы найдете много бесполезных статей о нем в Интернете.

Доказательство Напомню о том, почему в принципе невозможно сделать одно из этих оснований на том, что дивергенция магнитного поля равна нулю. Это означает, что невозможно расположить набор постоянных магнитов таким образом, чтобы позволить одному магниту «подкрадываться» к другому и затем внезапно отталкиваться или притягиваться к нему, а затем «отпускать», чтобы следующая пара магнитов магниты в массиве могут повторить процесс и создать для вас кучу «бесплатной энергии».

Этот факт не оказал абсолютно никакого влияния на всех изобретателей, мастеров и аферистов, которые утверждали, что сделали невозможное и сконструировали двигатель на свободной энергии на основе постоянных магнитов. Вероятно, они будут сохраняться до скончания века.

$\endgroup$

Очень активный вопрос . Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование к репутации помогает защитить этот вопрос от спама и отсутствия ответа.

вечных двигателей — что-то даром?

Почти всем нравится получать что-то даром. С самого начала письменной истории и, вероятно, задолго до этого люди пытались построить машину, которая производила бы больше энергии, чем потребляла. Никто еще этого не сделал и, вероятно, никогда не сделает.

Первый закон термодинамики является одним из основных принципов фундаментальной физики. По сути, это говорит о том, что вы не можете создать энергию из ничего, и вы также не можете ее уничтожить. Энергия сохраняется. Как это может быть?

Как насчет огня? Если бензин сгорает, это, кажется, создает много энергии.

Как бензин используется в качестве энергии

Бензин удерживает энергию в своей молекулярной структуре. Проще говоря, бензин состоит из атомов водорода и углерода, связанных вместе, и именно эти связи удерживают энергию. Горение разрывает эти связи, высвобождая накопленную энергию, которая затем нагревает другие молекулы, разрывая их связи, высвобождая еще больше энергии и так далее. В акте горения используется кислород, который рекомбинирует с атомами водорода и углерода с образованием молекул, которые имеют меньшую общую энергию, хранящуюся в их молекулярных связях.

Как вообще появились молекулярные связи бензина? Бензин перерабатывается из сырой нефти, которую добывают глубоко под землей. Нефть — это ископаемое топливо, и, как и окаменелости динозавров, она появилась очень давно. На протяжении миллионов лет океанские отложения запирали крошечные растения и животных, таких как водоросли и зоопланктон, глубоко под миллиардами тонн материала.

Под большим давлением и жарой растения и животные в конце концов превратились в молекулы углеводородов. Почему бы молекулам сразу не сгореть и не высвободить энергию прямо там под землей? Потому что нет кислорода. Для сжигания углеводородов требуется кислород.

Может ли маховик вращаться бесконечно?

Допустим, мы могли бы создать объём пространства, который был бы чистым, без материи, без гравитации, без света, без какой-либо энергии, без ничего. В этом объеме мы помещаем идеально сбалансированный маховик. Этот маховик сделан из материала, который не имеет внутренней энергии даже в своих атомах. Он сбалансирован до размещения отдельных атомов и находится на оси без трения. Если мы добавим энергию колесу, вращая его; это когда-нибудь остановится? Нет! Он будет вращаться вечно. Энергия, которую мы добавили в эту систему, навсегда сохраняется в движении колеса.

Теперь добавим пару атомов другого материала на одну сторону оси. Этот маленький комочек материала добавит бесконечно малое трение в нашу маленькую систему. Это может занять больше времени, чем продолжительность жизни Вселенной, но в конце концов энергия, добавленная нами при вращении, будет преобразована в тепло в оси и колесе.

Катерина Кон/Shutterstock

Поскольку в нашем объеме пространства нет абсолютно ничего, кроме колеса и оси, тепло колеса не может рассеиваться в объеме. Эта тепловая энергия будет рассеиваться в объеме колеса и оси до тех пор, пока каждый атом не окажется на одном уровне энергии или тепла; и так будет всегда, независимо от любого изменения энергии на атомном уровне.

Наша маленькая система, описанная выше, называется закрытой системой: ничего не входит и ничего не выходит. Теперь давайте представим, что наша система — это не просто маленькая ось и колесо, а целая вселенная. Даже самая глубокая и темная область космоса не свободна от гравитации или энергии. То, что называется космическим фоновым излучением, оставшимся от большого взрыва, есть повсюду.

Многие люди утверждают, что построили вечный двигатель. Во многих случаях они построили невероятно эффективные машины. Они будут работать очень долго, но всегда есть что-то, что вытянет мельчайшую часть энергии, и машина в конце концов остановится.

Например, во всех машинах есть трение; этого не избежать. Эти машины — открытые системы; энергия может втекать, но может и вытекать обратно.

Посмотреть вечный двигатель с качающимся магнитом можно по адресу: https://youtu.be/XNqq6YgdGX4

Магниты для вечного двигателя

Популярной и вызывающей недоумение демонстрацией является вечный двигатель с подвесным магнитом. В нем используются два постоянных магнита. Один магнит установлен постоянно, скажем, северным концом вверх. Другой магнит подвешен прямо над ним северным концом вниз. Два магнита будут отталкивать друг друга, и подвешенный магнит будет качаться взад и вперед, казалось бы, бесконечно.

Суть в том, как образовались магниты. Молекулы в магнитах сами по себе являются маленькими магнитами. В какой-то момент времени каждая из молекул в магнитах была выстроена какой-то силой природы. Работая вместе, они создают гораздо большее магнитное поле.

Когда подвешенный магнит качается вниз к постоянному магниту, он немедленно отталкивается и отклоняется. Сила, которая отбрасывает его, сместит некоторые маленькие молекулярные магниты в обоих больших магнитах очень легко. Движение этих молекул и есть тепло.

В течение очень долгого времени размещение этих молекул станет случайным, и постоянные магниты потеряют свои составные магнитные поля. Висячий магнит перестанет двигаться, и магниты будут рассеивать остаточное тепло в окружающий воздух, пока не достигнут комнатной температуры.

Вот почему нагрев постоянного магнита может привести к потере его магнитного поля. Тепло заставляет молекулы вибрировать, и их положение становится случайным. Затем магнит излучает тепло до тех пор, пока не достигнет температуры окружающей среды.

Если все машины в конце концов остановятся без непрерывного подвода энергии, как вы сможете вырабатывать больше энергии, чем потребляете? Каждая такая машина должна преобразовывать входную энергию в выходную. Часто очень сложно найти источник дополнительной энергии, поступающей в систему, из-за очень высокого КПД машины.

Независимо от того, насколько хорошо работает машина, эффективность выше 100%, вероятно, невозможна. И нет такого понятия, как вечный двигатель.

Тим Шивли, 18 марта 2018 г.

Некоторые вещи, которые следует учитывать.

1. Как работают ядерный синтез и деление? Откуда берется энергия? Один расщепляет атомы, а другой сплавляет атомы. Как это может быть?

2. Является ли Вселенная закрытой системой? Или это открытая система? Может быть, это открытые пути, которые мы не можем видеть. Может ли темная сила быть входом из-за пределов системы нашей вселенной? Наверное, нет, но об этом интересно подумать.

3. Уму непостижимо, что происходит в любой области пространства в любое время. Просто сядьте спокойно и представьте себе объем в один кубический дюйм, который легко лежит на вашей руке. Что происходит в этом томе? Конечно, есть и воздух, и пыль, и молекулы всяких материалов.

Но что еще? Во-первых, широкая полоса солнечного излучения нагревает вашу руку, а рука испускает инфракрасное излучение. Через это пространство проходят радиоволны каждой радиостанции, телевизионной станции и почти бесконечного числа источников.

Миллиарды частиц из космоса проходят через это пространство почти без последствий; нейтрино, космические лучи. Фотоны энергии со всего электромагнитного спектра, свет от самых тусклых звезд, космическое фоновое излучение Большого взрыва, даже излучение, которое прошло миллиарды лет, чтобы попасть сюда, проходят через этот небольшой объем.

В этом объеме присутствует гравитационное поле солнца, земли, луны, фактически каждой частички массы во вселенной. Гравитационные поля и электромагнитные поля непрерывны и ослабевают с расстоянием. Насколько слабыми они могут стать? Они достигают навсегда? А как насчет того факта, что электромагнитные поля являются одновременно частицами и волнами? Является ли гравитационное поле одновременно частицей и волной? Даже гравитационные волны от столкновения нейтронных звезд за миллиарды миль от нас проходят через этот объем.

Невероятно, не правда ли?

https://en.wikipedia.org/wiki/First_law_of_thermodynamics

https://www.croftsystems.net/oil-gas-blog/what-is-oil-made-o

Можно ли заставить магниты вращаться вечно ?

Все может вращаться бесконечно, если нет трения . Вращение объекта с постоянной скоростью не требует энергии для поддержания.

Запрос на удаление

|
Посмотреть полный ответ на physics. stackexchange.com

Могут ли магниты заставить что-то вращаться вечно?

Двигатель с постоянными магнитами не будет производить энергию и не будет вечным двигателем.

Запрос на удаление

|
Посмотреть полный ответ на сайте electronicdesign.com

Могут ли магниты оставаться магнитными вечно?

При температуре, называемой точкой Кюри — она различна для разных металлов, но для железа она составляет около 770° — постоянный магнетизм полностью утрачивается. В течение более длительного периода времени случайные колебания температуры, блуждающие магнитные поля и механическое движение приведут к ухудшению магнитных свойств.

Запрос на удаление

|
Посмотреть полный ответ на newscientist.com

Можно ли создать вечный двигатель с помощью магнитов?

Магнитный двигатель или магнитный двигатель — это тип вечного двигателя, который предназначен для создания вращения с помощью постоянных магнитов в статоре и роторе без внешнего подвода энергии. Такой мотор как теоретически, так и практически не реализуем.

Запрос на удаление

|
Посмотреть полный ответ на en.wikipedia.org

Можно ли использовать магниты в качестве оружия?

Существует множество гипотетических магнитных орудий, таких как рельсотрон и койлган, которые ускоряют магнитную (в случае рельсотронов, немагнитную) массу до высокой скорости, или ионные пушки и плазменные пушки, которые фокусируют и направляют заряженные частицы с помощью магнитных полей.

Запрос на удаление

|
Посмотреть полный ответ на en.wikipedia.org

Spin Forever — Использование магнитов для вращения Fidget Spinner !!

Могут ли магниты искривить пулю?

Как правило, нет. Большинство пуль не являются ферромагнитными — они не притягиваются к магнитам. Пули обычно сделаны из свинца, возможно, с медной оболочкой вокруг них, ни одна из которых не прилипает к магниту. Эти магниты заставляли пулю падать на Разрушителей мифов, но не меняли места, где она попадала в цель.

Запрос на удаление

|
Посмотреть полный ответ на kj Magnetics.com

Является ли создание вечного двигателя незаконным?

Насколько нам известно, вечный двигатель нарушил бы первый и второй законы термодинамики, сказал Симанек Live Science. Проще говоря, Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена, а только преобразована из одной формы в другую.

Запрос на удаление

|
Полный ответ см. на сайте livecience.com

Могут ли магниты создавать движение?

Электромагнитное движение — это новый вид технологии, использующий естественную способность магнита отталкивать другой магнит. Под контролем толкание магнита можно использовать для приведения в движение другого магнитного объекта. Поезда на маглеве используют эту технологию.

Запрос на удаление

|
Полный ответ можно найти на сайте howthingsfly.si.edu

Возможна ли свободная энергия с помощью магнитов?

Поэтому считается, что свободную энергию можно извлекать из постоянных магнитов, располагая магниты в особой конфигурации. Подобно солнечной панели не прилагает усилий для производства электроэнергии, мощность магнита исходит из окружающей среды, а не из магнита.

Запрос на удаление

|
Посмотреть полный ответ на toppr.com

Можно ли перезарядить магнит?

Иногда можно перезарядить магнит, потерявший часть своего первоначального заряда, более сильным магнитом. Вы можете попробовать потереть сверхмощный сильный магнит о более слабый, используя линейные движения в одном направлении в течение примерно 15 минут.

Запрос на удаление

|
Посмотреть полный ответ на usmagnetix.com

Почему мы не можем использовать магниты для получения энергии?

Потому что магниты не содержат энергии — но они могут помочь ею управлять… В 1841 году немецкий врач и физик Юлиус фон Майер сформулировал то, что впоследствии стало известно как первый закон термодинамики: «Энергию нельзя ни создать, ни уничтожить», — писал он.

Запрос на удаление

|
Посмотреть полный ответ на engineering.mit.edu

Каков ожидаемый срок службы магнита?

Ваш постоянный магнит должен потерять не более 1% своей магнитной силы в течение 100 лет, если он правильно подобран и за ним ухаживают. Есть несколько вещей, которые могут привести к тому, что ваш магнит потеряет свою силу: ТЕПЛО.

Запрос на удаление

|
Посмотреть полный ответ на mpimagnet. com

Почему мы не используем магнитные двигатели?

Почему у нас нет магнитных вечных генераторов/двигателей? Потому что сила, с которой два магнита притягиваются друг к другу, точно такая же, как сила, необходимая для их разделения.

Запрос на удаление

|
Полный ответ на quora.com

Бесконечна ли магнитная сила?

Магнитная сила не может быть бесконечной энергией из общего определения энергии, силы и работы. Работа или энергия есть произведение силы и расстояния.

Запрос на удаление

|
Посмотреть полный ответ на homework.study.com

Можно ли заставить что-то вращаться вечно?

Но, как мы знаем, ни один волчок не может вращаться сам по себе вечно — по крайней мере, на Земле, — потому что даже самые совершенные волчки не идеально сбалансированы, равно как и поверхности, на которых они вращаются.

Запрос на удаление

|
Посмотреть полный ответ на brucecharlesdesigns.com

Можете ли вы левитировать человека с помощью магнитов?

Диамагнитная левитация

Обычные предметы, даже люди, могут левитировать, если их поместить в сильное магнитное поле. Хотя большинство обычных материалов, таких как дерево или пластик, кажутся немагнитными, все они обладают очень слабым диамагнетизмом. Такие материалы можно поднимать в воздух с помощью магнитных полей около 10 тесла.

Запрос на удаление

|
Посмотреть полный ответ на ru.nl

Создают ли магниты напряжение?

Перемещение магнита в катушку с проволокой создаст напряжение в этой катушке в соответствии с законом Фарадея. Величина напряжения пропорциональна скорости изменения магнитного потока в катушке, так что более быстрое перемещение магнита приведет к большему напряжению.

Запрос на удаление

|
Полный ответ можно найти на сайте hyperphysics.phy-astr.gsu.edu

Могут ли люди обладать магнитными способностями?

Так что, к сожалению, нет, мы, простые смертные, не обладаем настоящей магнетической способностью. На самом деле вы не можете заставить магниты прилипать к вам, и вы, конечно же, не можете заставить магниты двигаться силой мысли. Однако было обнаружено, что люди потенциально обладают способностями к магниторецепции.

Запрос на удаление

|
Посмотреть полный ответ на apexmagnets.com

Что нам ближе всего к вечному двигателю?

Несмотря на это, поскольку механизм продолжает работать, часы Беверли считаются одним из самых продолжительных экспериментов в мире и наиболее близкими к «вечному двигателю», который когда-либо можно было увидеть.

Запрос на удаление

|
Посмотреть полный ответ на atlasobscura. com

Почему бесплатная энергия невозможна?

Машины свободной энергии не работают. Никакая машина не может создать энергию из ничего, так как это нарушило бы закон сохранения массы-энергии, который является фундаментальным и универсальным. Закон сохранения массы-энергии гласит, что масса-энергия никогда не может быть создана или уничтожена.

Запрос на удаление

|
Посмотреть полный ответ на wtamu.edu

Почему бесконечная энергия невозможна?

Это означает, что энергия не может быть ни создана, ни уничтожена. Вместо этого он просто переходит из одной формы в другую. Чтобы машина продолжала двигаться, прилагаемая энергия должна оставаться с машиной без каких-либо потерь. Только из-за этого невозможно построить вечный двигатель.

Запрос на удаление

|
Посмотреть полный ответ на futurism.com

Какой металл не могут пробить пули?

Обычные пуленепробиваемые материалы включают:

  • Сталь. Стальные пуленепробиваемые материалы прочны, но при толщине всего в несколько миллиметров чрезвычайно эффективны в остановке пуль современного огнестрельного оружия. …
  • Керамика. …
  • Стекловолокно. …
  • Древесина. …
  • Кевлар. …
  • Полиэтилен. …
  • Поликарбонат.

Запрос на удаление

|
Посмотреть полный ответ на rrds.com

Какой металл может остановить пулю?

Пуленепробиваемые материалы (также называемые баллистическими материалами или, что то же самое, антибаллистическими материалами) обычно жесткие, но могут быть гибкими. Они могут быть сложными, такими как кевлар, СВМПЭ, лексан или композитные материалы из углеродного волокна, или базовыми и простыми, такими как сталь или титан.

Запрос на удаление

|
Полный ответ можно найти на en.wikipedia.org

Может ли воздух остановить пулю?

Даже пуля, выпущенная прямо вверх с максимальной скоростью, до которой ее может разогнать взрыв пороха, никогда не покинет нижние слои земной атмосферы. Сочетание гравитации и сопротивления воздуха будет замедлять его до тех пор, пока он не достигнет максимальной высоты, после чего он упадет обратно на поверхность Земли.

Запрос на удаление

|
Посмотреть полный ответ на forbes.com

Предыдущий вопрос
У кого больше турниров Большого шлема: Надаль, Джокович или Федерер?

Следующий вопрос
Что помогает коже восстановиться после пореза?

Магнитная энергия | AltEnergyMag

Вечный магнитный генератор невозможен? Возможно, но на эту теорию было выдано несколько патентов, и по мере того, как стоимость энергии продолжает расти, все больше ученых будут искать способы создать рабочий практичный вечный магнитный генератор.

Магнитная энергия

Лен Кальдероне

13.06.12, 09:50

| Солнечная энергия

| Обсуждение технологий

Что, если бы вы вышли из дома и сели в машину будущего, похожую на пончик? Вы нажимаете кнопку, и автомобиль поднимается примерно на фут от земли. Небольшой двигатель двигает автомобиль вперед, когда он следует по электромагнитной полосе, встроенной в дорогу, при этом электромагнетизм отталкивает автомобиль от дороги.

Очевидно, что это всего лишь концепт-кар, представленный Volkswagen в Китае в рамках проекта People’s Car. Автомобиль VW Hover был представлен на автосалоне в Пекине в 2012 году.

Сегодня существуют электромагнитные двигатели и двигатели с постоянными магнитами, которые осуществимы и используются. Большое противоречие заключается в том, существует ли такая вещь, как магнитный двигатель (генератор) с вечным источником энергии.

Электромагнитная энергия — это энергия электромагнитного излучения, такого как радиоволны и волны видимого света, которые вызывают как электрические, так и магнитные поля. Компонент, который мы называем постоянным магнитом, представляет собой кусок магнитного материала, который после намагничивания или «зарядки» внешним магнитным полем сохраняет полезный большой магнитный момент после устранения намагничивающей силы. Таким образом, постоянный магнит сам становится источником магнитного поля, которое может взаимодействовать с другими намагничиваемыми материалами или с электрическими токами.

Простейшая форма магнитной энергии — фонарик Фарадея, который мы все видели. Вы встряхиваете фонарик вперед и назад, и действие создает энергию для питания лампочки. Принцип достаточно прост. Магнит проходит вперед и назад через катушку провода и создает электрический ток, который затем накапливается в конденсаторе. Когда фонарик включен, конденсатор подает накопленную энергию в лампочку, как в фонаре с батарейным питанием.

В основном эта система состоит из пяти частей. Магнит — это то, что генерирует энергию, когда она проходит через проволочную катушку. Чем сильнее магнит, тем больше энергии генерируется при каждом встряхивании. Размер проволочной катушки (количество витков) также определяет, сколько энергии вырабатывается при каждом проходе магнита. Конденсатор хранит энергию, которую вы генерируете, встряхивая фонарик. Чем выше качество и больше размер конденсатора, тем дольше световой поток. Тогда есть светодиодная лампа, которая имеет сниженное энергопотребление и срок службы. Наконец, есть кнопка включения/выключения.

Вопрос: «Можно ли создать вечный двигатель, используя аналогичный процесс?» Вечный двигатель в замкнутой системе нарушает первый закон термодинамики. Машины, производящие работу и энергию без затрат энергии, противоречат закону сохранения энергии. По законам термодинамики энергия не может просто создаваться или уничтожаться. Следовательно, настоящий вечный двигатель может никогда не стать жизнеспособным, но можно построить его близкую замену. В то время как энергия нужна для инициализации краткосрочного запуска вечного двигателя, что-то простое, например, рукоятка, может стать катализатором в устройстве, которое производит достаточно энергии, чтобы поддерживать себя и обеспечивать дополнительную мощность.

В этом типе двигателя используется конструкция с постоянными магнитами, в которой роторы удерживают постоянные магниты, расположенные вокруг вала. Эти магниты должны синхронизироваться с магнитами статора; а для создания хорошей мощности нужны редкоземельные элементы. Без разумного запаса материала постоянного магнита постоянные магниты не были бы очень постоянными. Проблема в том, что большая часть редкоземельных материалов, необходимых для изготовления надежных магнитов с длительным сроком службы, поступает из Китая.

Ниже приведен пример двигателя с постоянными магнитами и асинхронного двигателя с электромагнитным полем.

В асинхронном двигателе с электромагнитным полем вокруг статора создается вращающееся магнитное поле, которое вращается с синхронной (возникающей одновременно) скоростью. Это вращающееся магнитное поле проходит через воздушный зазор и перерезает неподвижные проводники ротора. Из-за относительной скорости между неподвижными проводниками ротора и вращающимся магнитным полем в проводниках ротора индуцируется электромагнитное поле. Когда проводники ротора замыкаются накоротко, через них начинает течь ток. И поскольку эти токонесущие проводники ротора помещены в магнитное поле, создаваемое статором, они испытывают механическую силу, которая перемещает ротор в том же направлении, что и вращающееся магнитное поле.

Двигатель с постоянными магнитами является разновидностью электродвигателя. В основном все типы двигателей работают, когда они имеют корпус статора и ротор. Во многих электродвигателях в качестве ротора используется электромагнит. В двигателе с постоянными магнитами ротор содержит постоянный магнит, а не электромагнит.

Двигатель с постоянными магнитами способен генерировать более высокий крутящий момент по сравнению с асинхронным двигателем. Кроме того, двигатель с постоянными магнитами можно использовать для производства электроэнергии, а не механического движения, особенно в ветроэнергетическом устройстве.

Магниты в двигателе с постоянными магнитами сделаны в основном из неодима и поэтому являются чрезвычайно мощными и долговечными постоянными магнитами. Для выработки электроэнергии ветер вращает турбину, которая затем включает магниты генератора и создает электрический ток. В результате при преобразовании кинетической формы энергии ветра в электрический ток фактически теряется гораздо меньше энергии.

XEMC Darwind производит высококлассные ветряные турбины мощностью несколько мегаватт на основе технологии генератора с постоянными магнитами с прямым приводом.

Есть еще одно применение магнитов для создания эффективной энергии. Магнитогидродинамическая генерация энергии основана на законе электромагнитной индукции Фарадея. То есть, когда проводящая жидкость, такая как плазма, течет через магнитное поле, ионы будут двигаться в направлении, перпендикулярном как магнитному полю, так и направлению потока, и тогда возникнет электродвижущая сила. На сегодняшний день МГД является наиболее эффективной солнечной электрической технологией.

Слово Magneto Hydro Dynamic (MHD) происходит от Magneto, означающего магнитное поле, Hydro, означающего жидкость, и Dynamics, означающего движение.

Изображенный здесь МГД генерирует электричество непосредственно из тела очень горячего движущегося ионизированного газа без каких-либо механических движущихся частей. Солнечная энергия, сконцентрированная зеркалами и линзами, создает перегретые газы. Из-за более высокой температуры генерируемая солнечная МГД более эффективна, чем другие типы солнечных тепловых технологий, которые работают при гораздо более низкой температуре.

Магнитогидродинамика работает, используя сверхпроводящие магниты для извлечения электричества из перегретого движущегося ионизированного газа. В технологии МГД использование чрезвычайно больших сверхпроводящих постоянных магнитов повышает эффективность.

Первоначально генераторы с постоянными магнитами производят электричество, прикрепляя рукоятку или турбину, которая инициирует его движение. Ручная рукоятка будет использоваться бытовыми генераторами, в то время как турбина нужна генераторам, которые управляют гидроэлектростанциями. Магниты внутри генератора создают магнитное поле, которое активирует электричество в проводнике каждый раз, когда он проходит через него. Последовательное движение проводника создает устойчивый поток электричества.

Тем не менее, как с электромагнитными двигателями, так и с двигателями с постоянными магнитами, для запуска двигателя необходим внешний источник. Концепция вечного магнитного двигателя существует уже давно, но пока этот источник энергии не является жизнеспособным.

Идея магнитных вечных двигателей достаточно проста для понимания. Магнитные вечные двигатели приводятся в движение магнитами, которые заставляют вращаться пластины, и это движение приводит в движение генератор. Он может производить энергию или электроэнергию без необходимости в каком-либо внешнем источнике топлива. Электромагнитное поле, создаваемое расположением магнитов, является основой мощности, и как только генератор заработает, вы получите всю необходимую вам электроэнергию абсолютно бесплатно. Электрогенераторы, которые вы обычно находите в доме, требуют источника топлива, чтобы они могли производить электричество.

Принцип работы магнитного вечного двигателя заключается в том, что роторы приводятся в движение точно расположенными магнитами, а вращение роторов питает магнитный генератор так же, как ветрогенератор получает энергию от вращающегося ротора. Все эти моторы хоть и называются вечными, но таковыми не являются. Все изнашивается в какой-то момент времени, и магниты в конечном итоге разряжаются. По сути, вечный двигатель — это двигатель, который работает в течение длительного периода времени.

Энергия двигателя с вечным магнитом генерирует энергию из магнитных полей внутри магнитов. Эти поля можно использовать для инициирования силы, которая, в свою очередь, создает движение. Затем это движение может быть использовано для создания энергии.

Генератор с магнитным питанием — это другое название вечного магнитного генератора. Двигатели воспринимают силу, создаваемую полями внутри магнитов, и преобразуют эту силу в электрическую энергию.

Если вы возьмете достаточное количество магнитов и правильно расположите их, они будут отталкиваться друг от друга. Разместив эти магниты в форме круга, вы теоретически создадите колесо, которое будет вращаться, поскольку магнитные поля толкают колесо. Вращение колеса — это то, как двигатель вырабатывает энергию. Поскольку энергии в магнитах хватает на многие годы, колесо может вращаться и продолжать вращаться без необходимости когда-либо останавливаться, таким образом, движение вращающегося колеса создает энергию на многие годы. Это то, что превращает генератор с магнитным питанием в вечный генератор.

Двигатель с вечным магнитом Johnson патент номер 4151431

Невозможный? Возможно, но на эту теорию было выдано несколько патентов, и по мере того, как стоимость энергии продолжает расти, все больше ученых будут искать способы создать рабочий практичный вечный магнитный генератор.

Для получения дополнительной информации:

http://www.levitationfun.com/mfield.pdf

http://www.smma.org/mmpa_pmg-88.pdf

http://askmar.com/Magnets/Modern%20Permanent%20Magnet%20Applications.pdf

http://freeenergynews.com/Directory/Howard_Johnson_Motor/1979Paper/

О Лене

Лен начал работать в аудиовизуальной индустрии в 1975 году и написал статьи для нескольких изданий. Он также пишет редакционные статьи для местной газеты. Сейчас он на пенсии.

Эта статья содержит заявления личного мнения и комментарии, сделанные добросовестно в интересах общественности. Вы должны подтвердить все заявления с производителем, чтобы убедиться в правильности заявлений.

Содержание и мнения в этой статье принадлежат автору и не обязательно отражают точку зрения AltEnergyMag

13.06.12, 09:50

| Солнечная энергия

| Обсуждение технологий


Другие статьи о солнечной энергии | Истории | Новости

Комментарии (0)

Этот пост не имеет комментариев. Будьте первым, кто оставит комментарий ниже.


Опубликовать комментарий

Прежде чем оставлять комментарии, вы должны войти в систему. Войти сейчас.

Рекомендуемый продукт

MORNINGSTAR — GenStar MPPT

GenStar MPPT — это первая в отрасли полностью интегрированная система зарядки постоянного тока от солнечных батарей, совершенно новый дизайн с «литиевой ДНК» от лидера в области контроллеров заряда. По умолчанию GenStar — это легендарное качество, эффективность, мощность и надежность Morningstar, а также новейшие передовые технологии связи и управления. Все наиболее востребованные установщиком функции встроены; дополнительные функции могут быть легко добавлены с помощью технологии расширения ReadyBlock от Morningstar с вставными блоками, которые обеспечивают измерение и мониторинг батареи, сигнализацию и управление нагрузкой, а также связь/управление литиевой батареей

Возможен ли двигатель с постоянными магнитами?

Недавно мы опубликовали статью о силовой электронике с заголовком «Уникальный двигатель использует только постоянные магниты — электроэнергия не требуется». Мы получили шквал критики за то, что это звучит как вечный двигатель и противоречит закону сохранения энергии и закону термодинамики. Некоторые инженеры сказали, что это должно было быть датировано 1 апреля, потому что это, должно быть, шутка. Меня заставили поверить, что такой мотор существует, но мотора не существует — по крайней мере, пока.

Выяснилось, что заголовок был неверным. В нем должно было быть сказано: «Новое открытие может привести к коммерческому производству двигателей с постоянными магнитами». Соавтор оригинальной статьи, доктор Кеннет Козека, открыл способ использования постоянных магнитов для создания механического движения. В статье должно было быть ясно, что это открытие может привести к двигателю с постоянными магнитами, но пока нет. Затем мы попросили доктора Козеку объяснить предысторию своего открытия, и он предоставил то, что вы увидите в тексте ниже. Прочитав это объяснение, вы сможете решить, считаете ли вы этот подход осуществимым.

Доктор Козека говорит, что легко представить себе силу притяжения между двумя магнитами, выполняющими работу за нас, например, вращение двигателя, когда они сближаются. Проблема, конечно, в том, что энергия должна быть потрачена на разрыв магнитов, если мы хотим, чтобы они снова работали на нас. Таким образом, нет никакой пользы в том, чтобы магниты работали на нас.

Ученые и изобретатели пытались использовать только постоянные магниты для привода двигателя. Другие отвергли идею двигателя, приводимого в движение только постоянными магнитами, как противоречащего законам термодинамики. Мы не понимали источник электромагнитной энергии, ответственный за магнитные силы. Уже в 1926, квантовая физика описала собственный спин или угловой момент неспаренного электрона в ферромагнитном материале как источник. Доктор Фейнман (лауреат Нобелевской премии по физике) описывает вращение как «вечное» в своих лекциях об электромагнитной энергии.

В физике существует несколько теорий, предлагающих источник электромагнитной энергии, переносимой потоками виртуальных фотонов, исходящих от атомного электрона. Каким бы ни был источник, он присущ и изобилен. Таким образом, идея двигателя, приводимого в движение одними только постоянными магнитами, вполне осуществима, и ее нельзя отвергать как нарушение закона сохранения энергии.

Двигатель с постоянными магнитами не будет производить энергию и не будет вечным двигателем. Вместо этого он просто использовал бы электромагнитную энергию, передаваемую угловым моментом электрона в виде магнитных сил. Хотя квантовая физика описывает угловой момент как источник энергии, некоторые ученые и неспециалисты придерживаются неверной парадигмы, согласно которой двигатели с постоянными магнитами противоречат основным законам физики.

Представленное здесь открытие проливает свет на очень необычное явление. Два постоянных магнита с противоположными полюсами, обращенными друг к другу, способны создавать экваториальное притяжение и полярное отталкивание без изменения полярности магнита и без использования другого источника энергии. Противоположные полюса не вызывают отталкивания. Отталкивание также не является побочным продуктом инерции или импульса горизонтального притяжения. Это ясно видно из демонстрации полярного отталкивания, происходящего без предварительного создания горизонтального притяжения. Посетите сайт www.kedronenergy.com, чтобы посмотреть видеоролики, демонстрирующие отдельно горизонтальное притяжение и вертикальное отталкивание.

Удивительно, если не захватывает дух, наблюдать, как два постоянных магнита с обращенными противоположными полюсами создают одновременно экваториальное (горизонтальное) притяжение и полярное (вертикальное) отталкивание, которые можно использовать для создания последовательности притяжения и отталкивания. Таким образом, не нужно тратить энергию на то, чтобы разъединить магниты после того, как они притянутся и сделают работу за нас. Вместо этого магниты отделяются друг от друга. И фаза притяжения, и фаза отталкивания могут выполнять для нас работу, например, управлять электрическим генератором. Есть два рабочих такта по сравнению с одним рабочим тактом в двигателе внутреннего сгорания. Это удивительное открытие нельзя ни сбросить со счетов, ни опровергнуть, потому что оно легко воспроизводимо кем угодно. На сайте Kedron представлено видео, демонстрирующее это явление с помощью небольшого аппарата. Инструкции предоставляются для воспроизведения этого небольшого устройства. Редко, если вообще когда-либо, такое важное научное открытие так легко проверяется.

Нетрудно представить, как можно использовать рабочий ход двигателя внутреннего сгорания для создания непрерывного движения. Точно так же легко представить, как притяжение и отталкивание силовых ударов постоянных магнитов можно использовать для создания непрерывного движения, аналогичного конструкции обычного электродвигателя или двигателя внутреннего сгорания. На веб-сайте Kedron доступно видео, в котором показано, как несколько пар магнитов, соединенных вместе, могут создавать непрерывное движение, используя магниты на обоих концах своего пути. Также предоставляется моделирование того, как несколько пар постоянных магнитов могут быть соединены для создания непрерывного движения. Это, пожалуй, самая простая версия машины или «мотора», создающего непрерывное движение. Лучшие конструкции будут использоваться в коммерческом подразделении.