ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Оптический энкодер или шутка производителя. Устройство энкодера двигателя


Энкодеры – назначение, виды, характеристики

Что такое энкодер

Энкодер (преобразователь угловых перемещений) – это электронное устройство, позволяющее с необходимой точностью измерить различные параметры вращения какой-либо детали, как правило, вала электродвигателя или редуктора.

Измеряемыми параметрами могут быть: скорость вращения, угловое положение по отношению к нулевой метке, направление вращения. Фактически энкодер является датчиком обратной связи, на выходе которого цифровой сигнал меняется в зависимости от угла поворота. Этот сигнал обрабатывается и далее подается на устройство индикации или на привод.

Применение энкодеров

Энкодеры широко применяются в промышленном оборудовании в ситуациях, когда необходима точная информация об объекте, который вращается или перемещается. Это может быть лента транспортера с какими-либо деталями или грузами, система измерения длины и проч. Энкодер позволяет цифровым способом узнать точную позицию детали или угол её поворота.

Виды энкодеров

Существуют два вида энкодеров – инкрементальный и абсолютный.

Инкрементальный энкодер по конструкции проще абсолютного и используется в подавляющем большинстве случаев. Данное устройство можно представить как диск с прорезями, который просвечивается оптическим датчиком. При вращении диска датчик включается или выключается в зависимости от того, находится ли он над прорезью или нет. В результате на выходе энкодера формируется последовательность дискретных импульсов, частота которых зависит от разрешения устройства (см. ниже) и частоты его вращения.

Для того, чтобы определять начальное положение (точку отсчета), используется нуль-метка (выход Z, Zero), которая формируется один раз на полный оборот. Для определения направления вращения у энкодеров обычно имеются два выхода (А и В), на которых импульсы сдвинуты по фазе на четверть периода. По разнице фаз можно однозначно определить, в какую сторону вращается вал.

Основным минусом инкрементального энкодера является необходимость непрерывной обработки и анализа сигналов — для этого требуется контроллер и соответствующая программа. Кроме того, чтобы узнать положение инкрементального энкодера после подачи на него питания, необходимо провести инициализацию для поиска нуль-метки.

Абсолютный энкодер имеет более сложное устройство, но позволяет определить угол поворота в любой момент времени, даже в неподвижном состоянии механизма сразу после включения питания. На выходе абсолютного энкодера действует параллельный код Грея, разрядность которого определяет разрешение, а значит и точность показаний датчика.

Основные параметры

Главный параметр любого энкодера – разрешение, то есть количество импульсов (для абсолютного преобразователя – разрядность, или количество бит) на один оборот. Довольно часто используются преобразователи с разрешением 1024 импульса на оборот.

Прочие параметры:

Также учитываются размер корпуса, тип крепления и степень защиты.

Монтаж

Энкодер крепится на валу, параметры вращения которого измеряются. Для монтажа используется специальная переходная муфта, позволяющая компенсировать возможную несоосность с валом энкодера, при этом его корпус должен быть жестко зафиксирован.

Другой вариант крепежа подходит для преобразователей с полым валом. В этом случае вал, параметры вращения которого подлежат измерению, непосредственно входит внутрь преобразователя и фиксируется в полой втулке либо в сквозном отверстии. В данном случае корпус энкодера не фиксируется, за исключением какой-либо пластины или ограничителя, не позволяющей ему вращаться.

Подключение

В простейшем случае, если позволяет ситуация, выход энкодера можно подключить ко входу счетчика и запрограммировать его на измерение скорости.

Но, как правило, энкодер используется совместно с контроллером. К контроллеру подключаются все необходимые выходы, и его программа рассчитывает скорость, ускорение, положение объекта с необходимыми коэффициентами и размерностями.

Например, энкодер установлен на валу электродвигателя, который перемещает одну деталь по направлению к другой. Путем вычислений на экране оператора отображается зазор между деталями, а при достижении некоторого минимального зазора движение деталей прекращается, чтобы избежать их повреждения.

Также преобразователи угловых перемещений нередко используются в качестве элемента обратной связи на валу двигателя, подключенного через частотный преобразователь. В этом случае энкодер устанавливается на валу двигателя или редуктора, и подключается к частотнику через специальную плату сопряжения. Таким образом, появляется возможность точного позиционирования поддержания нужной скорости и момента двигателя.

Другие полезные материалы:10 типичных проблем с частотникамиFAQ по электродвигателямИспользование тормозных резисторов с ПЧ

tehprivod.su

Что такое абсолютный и инкрементальный энкодер, как работают энкодеры

 О чем эта статья

В статье вы узнаете, что такое энкодер, какие он может измерять величины. Узнаете что такое инкрементальный и абсолютный энкодер. Познакомитесь с классификацией по принципу действия. А также узнаете на какие характеристики энкодеров нужно обращать внимание при выборе. Напоследок, небольшой список производителей. Вы также можете посмотреть другие статьи. Например, «Датчики измерения давления» или «Относительная влажность воздуха».

Что такое энкодер

Контроллер (датчик) положения вращающегося объекта или по-другому энкодер - это электромеханическое устройство, с помощью которого можно определить положение вращающейся оси (вала). В данном устройстве механическое движение преобразовывается в электрические сигналы, определяющие положение объекта, дают информацию об угле поворота вала, его положении и направлении вращения. С помощью энкодера также можно измерить длину и расстояние или установить перемещение инструмента.

Энкодеры имеют широкую сферу применения в печатной промышленности, металлообработке, лифтовой технике, автоматах для фасовки, упаковки и розлива, в испытательных стендах, а также в роботах и прочих машинах, требующих точной регистрации показателей движения частей. Они практически полностью заменили широко распространенные ранее сельсины.

Типы энкодеров

Выделяют следующие типы энкодеров: инкрементальные (инкрементные) и абсолютные.

Инкрементальный энкодер

Инкрементальный энкодер - это устройство, которое определяет угол поворота вращающегося объекта, выдавая импульсный цифровой код. Используется для определения скорости вращения вала (оси), когда нет нужды сохранять абсолютное угловое положение при выключении питания. То есть, если вал неподвижен, передача импульсов прекращается. Другими словами, если включить энкодер этого типа, то отсчет поворота угла начнется с нуля, а не с угла на который он был выставлен до момента выключения. Оси объекта и энкодера соединяются между собой с помощью специальной гибкой переходной муфты или жесткой втулки, либо энкодер может помещаться собственно на сам вал. Основным преимуществом инкрементальных энкодеров является их простота, надежность и относительно низкая стоимость.

Абсолютный энкодер

Абсолютный энкодер выдает цифровой код, различный для каждого положения объекта, позволяет определять угол поворота оси даже в случае исчезновения и восстановления питания и не требует возвращения объекта в начальное положение, что является несомненным преимуществом этого типа энкодеров. Так как угол поворота всегда известен, то счетчик импульсов в этом случае не нужен. Сигнал абсолютного энкодера не подвергается помехам и вибрации и тем самым для него не нужна точная установка вала. Абсолютный энкодер используется в высокоточных системах: робототехника, станки с числовым программным управлением и др.

Классификация по принципу действия

По принципу действия различают:

 

Оптические

Схема оптического энкодера Рис. Схема оптического энкодера.

Конструкция оптического энкодера состоит из специального оптического диска, светоизлучающего диода и фотодетектора. Диск с нанесенной оптической шкалой (поверхность диска состоит из прозрачных и непрозрачных участков) жестко закрепляется на валу. При вращении объекта специальный датчик считывает информацию и преобразовывает ее в импульсы.

Магнитные

Схема магнитного энкодераРис. Схема магнитного энкодера.

Магнитный энкодер включает в себя вал с магнитом и датчиком Холла, который регистрирует последовательность прохождения магнитных полюсов (северные и южные) и измеряет скорость и направление вращения.

Магниторезисторные

Схема магниторезистивного энкодераРис. Схема магниторезистивного энкодера.

Магниторезистивный энкодер состоит из катушки помещенной в магнитное поле, катушка закрепляется на валу. При вращении катушки ее витки будут изменять положение относительно поля, они будут то пералельны полю, то перпенликулярны, соответсвенно ток в катушке будут меняться. Таким образом, протекащий через катушку ток будут изменяться в зависимости от угла поворота вала.

Параметры, на которые необходимо обратить внимание при выборе энкодеров

При выборе энкодера следует обратить внимание на следующие параметры:

  1. Число импульсов на оборот (число бит у абсолютных энкодеров). От данного показателя зависит точность системы — чем больше импульсов тем выше точность.
  2. Вал, отверстие под вал (и их диаметр). От этого зависит каким образом на энкодер будет передаваться вращение, либо объект будет подсоединяться к отверстию энкодера, либо на вал энкодера будет передаваться вращение с помощью, например, зубчатой передачи или ремня.
  3. Тип выходного сигнала энкодера (HTL, TTL, RS422, двоичный код, код Грея, и др.). Данный параметр влияет на снятие сигнала энкодера и дальнейшую его передачу..
  4. Напряжение питания. От этого показателя зависит работа системы и точность снятия сигнала.
  5. Длина кабеля или тип разъема влияют на возможности установки рабочей системы.
  6. Другие требования по крепежу (необходимость муфты, монтажного фланца, крепежной штанги и др.). Данный параметр влияет на устойчивость установки и тем самым на точность системы.
  7. Важна также степень защиты энкодера от проникновения пыли и влаги.

Производители

На российском рынке основными производителями энкодеров являются предприятия Екатеринбурга, а именно - ЗАО «Сенсор», НПП «Уралметаллургавтоматика», ЗАО «Уралчерметавтоматика». Кроме этого, выделяют НПК "ТЕКО" (г. Челябинск), СКБ ИС (г. Санкт-Петербург), Меандр (г. Санкт-Петербург), СТРАУС (г. Тольятти), Мега-К (г. Калуга) и др.

Опубликована 16-10-11.

Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

Принцип работы энкодеров

Опубликовано 22.05.2016

Датчики углового и линейного перемещения, датчики наклона

Инкрементальные энкодеры

Инкрементальный энкодер (Incremental Encoder) регистрирует относительное перемещение (приращение). Разрешение (Resolution) углового энкодера определяется количеством импульсов на один оборот (на рисунке изображён оптический дик с разрешением 8 имп/об).

Частота импульсов на выходе энкодера пропорциональна скорости вращения.

Система управления должна подсчитывать импульсы, чтобы вычислить угол поворота энкодера относительно точки отсчёта.

В системах, работающих с абсолютными координатами (станок с ЧПУ), перед началом работы (после включения питания) необходимо выставить ноль – вывести рабочий орган машины в опорную (реперную) точку и в ней обнулить счётчик импульсов.

Синусно-косинусные инкрементальные датчики положения sin/cos 1-Vss и 1-Vpp

Синусоидальные выходные сигналы А и В сдвинуты друг относительно друга на 90 градусов, что позволяет определять направление вращения. Сигнал нулевой метки R используется для синхронизации с точкой отсчёта. Для повышения помехозащищённости датчик выдаёт ещё три инверсных сигнала: A, B, R. Оцифровываются эти сигналы в системе измерения.

Датчики с интерфейсом 1-Vpp используются в сервосистемах, т.к. как позволяют получать очень высокое разрешение. Так, например, если датчик выдаёт 2048 периодов синусоиды (импульсов) на оборот, а система управления в каждой такой синусоиде различает 2048 дискретных уровней, то общее разрешение датчика составит 2048 х 2048 = 4194304 импульсов на оборот.

Инкрементальные датчики с интерфейсом TTL или HTL

Эти датчики сами оцифровывают синусоидальные сигналы – у них на выходе 6 прямоугольных сигналов - три прямых: A, B, R и три инверсных: A, B, R. Для сигнализации неисправности датчика используется инверсный сигнал помехи (если нет неисправности, то сигнал помехи равен 1).

Абсолютные энкодеры

Разрешение абсолютного энкодера (Absolute Encoder) определяется количеством уникальных кодов на один оборот. Однооборотные (Single-turn) абсолютные энкодеры определяют положение в пределах одного оборота, многооборотные (Multi-turn) – в пределах определённого числа оборотов.

Абсолютные датчики положения не требуют для начала работы выхода в опорную точку – при включении питания датчик сразу определяет координату, сканируя кодовые дорожки.

Резольверы

Резольвер (Resolver) – это аналоговый электромагнитный абсолютный однооборотный датчик, работающий по принципу вращающегося электрического трансформатора.

Рассмотрим работу бесщёточного резольвера.На статоре расположены три обмотки: первичная обмотка возбуждения вращающегося трансформатора (на неё подаётся переменное напряжение) и две двухфазные обмотки, механически повёрнутые друг относительно друга на 90 градусов: синусная и косинусная. На роторе расположена вторичная обмотка вращающегося трансформатора, которая возбуждается от первичной обмотки на статоре за счёт электромагнитной индукции. Обмотка ротора в свою очередь индуцирует в синусной обмотке статора напряжение пропорциональное синусу угла поворота ротора, а в косинусной обмотке - напряжение пропорциональное косинусу угла поворота ротора.

Резольверы отличаются высокой надёжностью (они не бьются и не запотевают, как оптические) и точностью (аналоговые, а не дискретные).

Код Грея

Код Грея (Gray Code) – это двоичный код, в котором два соседних значения отличаются только одним разрядом.

ДесятичноечислоДвоичноечислоКод Грея
0000000
1001001
2010011
3011010
4100110
5101111
6110101
7111100

Формула побитного преобразования двоичного кода в код Грея

Gi = Bi⊕Bi+1,биты нумеруются справа налево, ⊕ – исключающее ИЛИ (если биты равны, то результат равен 0; если биты не равны, то результат равен 1).

Код Грея используется для кодирования положений в абсолютных датчиках, так как обладает большей помехозащищённостью, чем обычное двоичное кодирование (Natural Binary).

На рисунке изображён оптический диск с 3-х разрядным (8 положений) кодом Грея.

Тахогенераторы

Тахогенераторы предназначены для определения скорости и направления вращения. Напряжение на выходе тахогенератора пропорционально скорости вращения вала.

www.maxplant.ru

Оптические энкодеры | РОБОТОША

Колесный энкодер

Первые оптические энкодеры были разработаны в середине 1940-х годов «Фортепианной компанией Болдуина» для использования в качестве «тоновых колес», которые позволяли электрическим органам имитировать другие музыкальные инструменты. Современные устройства в основном представляют собой миниатюрные версии датчика приближения с использованием прерывания света. В энкодере сфокусированный луч света, направлен на совмещенный с излучателем фотоприемник, периодически прерывается вращающимся диском, расположенным между приемником и передатчиком света и закрепленный на валу контролируемого объекта. Диск может быть непрозрачным с отверстиями, либо прозрачным с нанесенным на него кодированным рисунком. По сравнению с более сложными преобразователями переменного тока, это простая схема кодирования реализует, по существу, цифровой вывод результатов с оптических датчиков в недорогой надежной конструкции с хорошей помехоустойчивостью.

Есть два основных типа оптических энкодеров: инкрементные и абсолютные. Инкрементный энкодер измеряет скорость вращения и может выдать относительное положение, в то время как абсолютный энкодер измеряет непосредственно угловое положение и на выходе дает скорость. Если не принимать во внимание изменение информации о местоположении, то с инкрементным энкодером, как правило, легче работать и он обеспечивает эквивалентное разрешение при гораздо более низкой стоимости, чем абсолютные оптические энкодеры.

 

Инкрементный оптический энкодер

Оптические поворотные инкрементные энкодеры, еще их называют датчиками угла поворота, стали наиболее популярным устройством для измерения угловой скорости и положения в моторах, на валу колеса или рулевого механизма. В мобильных роботах, энкодеры используются для контроля положения или скорости колес и других, управляемых при помощи моторов соединений. Из-за того, что энкодеры являются проприоцептивными датчиками, их оценка положения является лучшей в системе координат робота и, при решении задачи локализации робота (см. слайды «Проблема локализации мобильного робота»), требуются значительные поправки.

Инкрементный энкодер

Принцип действия инкрементного энкодера

Простейшим типом инкрементного энкодера является одноканальный тахометр, обычно состоящий из механического прерывателя света, производящего определенное количество прямоугольных или синусоидальных импульсов, при каждом обороте вала. Увеличение числа импульсов увеличивает разрешение (и стоимость) модуля. Разрешение энкодера измеряется в числе отсчетов на оборот (CPR, cycles per revolution). Минимальное угловое разрешение легко вычислить по величине CPR. Типичный энкодер в мобильной робототехнике имеет значение 2000 CPR, в то же время промышленный оптический энкодер может иметь параметр CPR равный 10000. С точки зрения требуемого диапазона, конечно же важно, чтобы энкодер был достаточно быстрым, чтобы успевать считывать значения на предполагаемой скорости вращения.  Промышленные оптические энкодеры полностью удовлетворяют требованиям, предъявляемым в робототехнических приложениях.

Инкрементный колесный энкодер

Эти, относительно недорогие устройства используются в качестве датчиков скорости в цепи обратной связи в системах управления, работающих на средних и высоких скоростях, но на очень малых скоростях чувствительны к шумам и проблемам со стабилизацией из-за ошибок квантования. Здесь нужно искать компромисс между разрешением и скоростью обновления: улучшенная переходная характеристика требует большей скорости обновления, которая для данного числа линий уменьшает число возможных импульсов энкодера для интервала дискретизации.

В дополнение к нестабильности на низких скоростях, одноканальный тахометр также неспособен определять направление вращения и, следовательно, не может быть использован в качестве датчика положения. Квадратурные энкодеры, преодолели эти проблемы путем добавления второго канала, смещенного относительно первого, поэтому результирующие последовательности импульсов сдвинуты по фазе на 90 градусов, как показано на рисунке ниже. Этот метод позволяет декодирующей электронике определить, какой канал опережает другой и, следовательно, установить направление вращения.  Кроме того, четыре детектируемых различных состояния увеличивают разрешение в четыре раза без изменения диска прерывателя. Таким образом, энкодер, имеющий 2000 CPR выдаст при квадратурной реализации даст уже 8000 отсчетов. Дальнейшее улучшение возможно путем измерения синусоидальной волны с помощью оптического детектора и выполнения сложной интерполяции. Такие методы, хотя и редко используемые в мобильной робототехнике, могут дать 1000-кратное увеличение разрешения.

Квадратурный инкрементный оптический энкодер

Принцип действия квадратурного инкрементного оптического энкодера

Следствием инкрементного характера фазо-квадратурных выходных сигналов является то, что любое разрешение углового положения может быть выражено не в абсолютной форме, а только относительно некоторой опорной точки. Создание такой точки отсчета может быть произведено несколькими способами. Для приложений, включающих непрерывное вращение на 360 градусов, большинство энкодеров включает в качестве третьего канала специальный индексный выход, который переходит в высокое состояние на каждом полном обороте вала. Промежуточные положения вала затем определяются числом, на которое увеличился, или уменьшился счетчик импульсов от этого известного индексированного положения. Одним из недостатков такого подхода является потеря информации об относительном положении в случае сбоя питания.

В случае ограниченного вращения, такого как возвратно-поступательное движение вдоль направляющих (как в станках с ЧПУ) можно использовать электрические концевые выключатели и/или механические ограничители для задания исходного положения. Для улучшения повторяемости, возврат в исходное положение разбивается на два этапа. Ось вращается с пониженной скоростью в соответствующем направлении до тех пор, пока не встретится механизм остановки, после чего происходит обраткое вращение в течение предопределенного короткого промежутка времени. Вал вращается медленно обратно до остановки на заданной медленной скорости из этой заданной начальной точки, тем самым, устраняя любые изменения в инерциальной нагрузке, которые могли бы повлиять на окончательное исходное положение. Этот двухэтапный подход используется, например, при старте шагового двигателя для инициализации позиционирования печатающей головки в принтерах.

С другой стороны, функция абсолютного индексирования может быть основана на каком-то внешнем действии по созданию опорной точки, которое отделено от цикла непосредственного сервоуправления. Хорошей иллюстрацией этой ситуации служит инкрементный датчик, используемый для отслеживания угла рулевого управления платформы. Например, когда робот включается в первый раз, абсолютный угол рулевого управления неизвестен и должен быть инициализирован, используя «привязку» действия к маякам на док-станции, соседней стене, или какой-либо другой идентифицирующий набор ориентиров. Увеличение или уменьшение значения счетчика электронного декодера используется для изменения регистра направления транспортного средства в относительной форме.

Как и большинство проприоцептивных датчиков, энкодеры, как правило, находятся в контролируемой среде внутренней структуры мобильного робота, и поэтому систематическая ошибка и кросс-чувствительность могут быть устранены. Точность оптических датчиков часто предполагается равной 100%, и, хотя это может быть не совсем корректно, какие-либо ошибки оптического датчика являются незначительными ошибками по сравнению с тем, что происходит за валом двигателя.

 

Абсолютный оптический энкодер

Абсолютные энкодеры обычно используются в приложениях с медленным вращением в которых недопустима потенциальная потеря информации о положении. Элементы дискретного детектора в фотоэлектрической матрице индивидуально совмещены с концентрическими дорожками на светопрерывателе, создавая эффект бесконтактной реализации энкодера с щеточными контактами. Назначение отдельной дорожки для каждого бита результирующего разрешения приводит к дискам большего размера (по сравнению с конструкцией инкрементного энкодера) и соответствующему снижению допустимого отклонения при ударе и вибрации. При этом каждая дополнительная дорожка энкодера удваивает разрешение, но учетверяет стоимость датчика.

Абсолютный оптический энкодер

Принцип действия абсолютного оптического энкодера

Вместо последовательного потока битов, как в инкрементном датчике, абсолютные оптические энкодеры обеспечивают параллельный вывод слова данных с уникальным кодом шаблона для каждого дискретного положения вала. Чаще всего используется код Грея, двоичное и двоично-десятичное кодирование. Характерной особенностью кода Грея (по имени изобретателя Франка Грея из Bell Labs) является то, что только один бит изменяется за раз, помогая избежать тем самым асинхронных неоднозначностей, обусловленными электронными и механическими допусками элементов. С другой стороны, двоичный код постоянно включает множество измененных битов при увеличении или уменьшении счета на единицу. Например, при переходе из положения 255 в положение 0, восемь бит меняются с 1 в 0. Так как нет никакой гарантии, что все пороговые детекторы, являющиеся элементами слежения детектора сработают одновременно, в момент перехода будет присутствовать значительная неопределенность в данной схеме кодирования. Поэтому требуется дополнительный сигнал подтверждения правильности данных, если больше чем один бит изменился между последовательными положениями энкодера.

Поворот 8-битного диска с кодом Грея

Поворот 8-битного диска с кодом Грея

На рисунке слева поворот против часовой стрелки на одну позицию становится причиной изменения только одного бита. На рисунке справа такой же поворот двоично-кодированного диска станет причиной изменения всех битов в частном случае (с 255 в 0) иллюстрируя тем самым опорную линию на 12 часов.

Абсолютные энкодеры лучше всего подходят для медленных и/или редких поворотов, таких как кодирование угла поворота рулевого колеса, в отличие от измерения высокоскоростного непрерывного (например, ведущее колесо) вращения, которое потребует вычисления смещения вдоль всего пути движения. Хотя и не столь надежны как резольверы для высокотемпературных или в приложениях с высокой ударной стойкостью, абсолютные энкодеры могут работать при температурах свыше 125 градусов и средним разрешением (1000 отсчетов на оборот). Потенциальным недостатком абсолютных энкодеров является их параллельный вывод данных, который требует более сложного интерфейса из-за большего количества проводов. 13-битный абсолютный энкодер, использующий  дополнительные выходные сигналы для помехоустойчивости потребует 28-жильный кабель (13 сигнальных пар плюс питание и заземление) вместо шести в случае с резольвером или инкрементным энкодером.

 

Еще по этой теме

Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.

robotosha.ru

Работа с энкодерами - ruxisupport

Область применения энкодеров¶

Энкодеры применяются для создания точной и быстродействующей обратной связи по координате со всеми типами электродвигателей. Причем обратная связь может осуществляться по положению оси мотора, по линейному положению позиционера, углу поворота моторизованного столика или по любому параметру, непосредственно связанному с положением оси мотора и измеряемому с помощью двухканального квадратурного энкодера, удовлетворяющего требованиям описанным в разделе Технические характеристики для соответствующего типа контроллера. Контроллер 8SMC5 поддерживает как дифференциальные энкодеры, так и простые (single-ended) энкодеры, с возможностью автоопределения типа энкодера. Контроллер 8SMC4 поддерживает только простые энкодеры.

Предупреждение. Автоопределение типа энкодера работает только с энкодерами на 3.3В и 5В (с погрешностью 0.2В).

Что такое квадратурный энкодер?¶

Энкодер - это датчик механического движения. Квадратурный энкодер предназначен для прямого определения позиции оси. Датчик передает относительное положение оси в виде двух электрических сигналов по каналам СН А и СН В, смещенных относительно друг друга на четверть периода.

Сигналы на выходе СН А и СН В квадратурного энкодера.

Механика оптического квадратурного энкодера.

Механика оптического квадратурного энкодера представлена на рисунке. Используются две оптопары. Принцип работы оптопары: светодиод и детектор расположены напротив друг друга с разных сторон от диска. Когда "окно" диска попадает на детектор, оптопара «открыта» (выходной сигнал - логический 0). Если детектор закрыт непрозрачной частью диска, то выходной сигнал датчика – логическая 1.

Основная характеристика квадратурного энкодера – число шагов на один оборот (CPR). Стандартные значения разрешения для энкодера – от 24 до 1024 CPR. Каждый период изменения сигнала может быть расшифрован 1,2 или 4 кодами, что соответствует режимам работы Х1, Х2 и Х4. В данном контроллере используется наиболее точный режим Х4. Максимальная частота каждого из сигналов энкодера, зависит от выбранного энкодера, так для 200 кГц и режима x4 контроллер способен воспринимать 800 000 отсчётов положения по энкодеру в секунду.

Возможности контроллера¶

Контроллер имеет два режима работы с энкодером:

Режим ведущего энкодера¶

В этом случае все параметры мотора, в том числе положение и скорость движения, измеряются непосредственно с помощью энкодера и имеют размерности, основанные на отсчетах энкодера. Положение отображается непосредственно в отсчетах энкодера, скорости выражаются в RPM - оборотах в минуту. Скорость движения рассчитывается контроллером на основе данных об измеренной скорости и значении количества импульсов энкодера на один полный оборот оси мотора, указанных в блоке настроек обратной связи во вкладке Настройка кинематики движения (Шаговый двигатель), (DC мотор). Отметим, что в случае использования DC мотора режимы поддержания заданной скорости, движения в заданную точку и все производные от них работают с помощью алгоритмов ПИД-регулирования и требуют соответствующих настроек. Для шаговых двигателей режим ведущего энкодера оптимизирует управление двигателем, за счет чего уменьшаются шумы при движении, стабильно проходятся резонансные скорости, достигается большая скорость вращения по сравнению с режимом работы без энкодера, без риска потери шагов, при которых сбивается координата и требуется повторная калибровка.

Новое! Новый алгоритм управления двигателем включен в последнюю версию прошивки. Алгоритм использует обратную связь с замкнутым контуром по энкодеру, подавляя колебания двигателя и акустические шумы. Этот алгоритм позволяет практически любым моторам двигаться в несколько раз быстрее без потери шагов. Все это поставляется с бесплатным обновлением прошивки и программного обеспечения. Новый алгоритм доступен с прошивкой 3.9.16+, которую можно загрузить с нашего сайта или обновить с помощью XiLab. Используйте XiLab 1.13.13+ и выставите параметр "Feedback" на "Encoder" в настройках Device configuration -> Stepper motor. Обратите внимание: значение позиции теперь отображается в отсчетах энкодера.

Подключение энкодера¶

Подключение энкодера к контроллеру осуществляется через разъем DSub, который есть во всех системах: плата контроллера, одноосная и двухосная в корпусе и многоосная.

Схема подключения простого энкодера к разъему DSub.

Схема подключения дифференциального энкодера к разъему DSub.

Также смотрите раздел пример подключения простого мотора.

Предупреждение. Входы энкодеров контроллера внутренне подтянуты к логической единице сопротивлением 5.1 килоОм. Обычно выходы энкодера имеют тип "открытый коллектор" с внутренним подтягивающим резистором. При передаче данных, они обеспечивают хорошие показатели перехода из высокого логического уровня в низкий. Но переход из логического 0 в логическую 1 оказывается более плавным. Он происходит через RC цепь, образованную сопротивлением подтяжки и ёмкостью кабеля. Это особенно важно для длинных кабелей. Если встроенной подтяжки недостаточно, то для улучшения показателей скорости перехода 0 - 1 можно добавить подтягивающий резистор R=1.5k Ом к +5 В на каждый выход, проверив, что открытый коллерктор энкодера способен пропускать ток 5 мА. Схема включения резисторов показана выше. Максимальной скорости работы инкрементального квадратурного энкодера можно достичь добавив к его выходу драйвер push-pull с выходным током более 10 мА, который обеспечивает резкие фронты переходов 0 - 1 и 1 - 0.

ru.xisupport.com

Оптический энкодер или шутка производителя

Рано или поздно в жизни каждого самоделкина возникает потребность в покупке чего-то такого этакого, что обычно само в голову не придет. Вот и я жил себе спокойно и об энкодерах даже не задумывался. Хотя должен признаться опыт работы с энкодерами имел. Как-то в одной из поделок использовал энкодер из принтера.В данной истории все приключилось внезапно. Ползая по своим хоббийным форумам натолкнулся на конкурс. Разыгрывался комплект из 3-х наборов для самостоятельной сборки сервоконтроллеров. Я зарегистрировался на форуме, подал заявку (вместе с 3 или 4-мя всего лишь участниками) и… выиграл.Так я стал обладателем 3-х наборов для сборки сервоконтроллеров. Далее мне потребовались энкодеры. Позволю себе объяснить для читателей не так глубоко погруженных в электронные компоненты, что такое сервоконтроллер, энкодер и с чем все это едят.Есть 2 основных способа управлять точным перемещением в изделиях с ЧПУ (числовое программное управление). Попробую объяснить максимально доступным языком, без сложных схем и терминов. Первый способ это шаговые двигатели. Шаговый двигатель имеет сложное устройство — несколько катушек, притягивающих сердечник в заданных положениях. 

Оптический энкодер или шутка производителя

Оптический энкодер или шутка производителяКоличество положений, в которых может быть зафиксирован сердечник называется шагами, промежуточные положения (регулируются различными промежуточными напряжениями и соответственно магнитными полями) называют микрошагами. Управляет шаговым двигателем драйвер — это плата управления, как правило с микропереключателями шагов и регулировкой тока, протекающего через двигатель. На вход драйвера подаются сигналы: Enable (разрешить работу шагового двигателя), DIR (направление вращения), STEP (количество шагов, на которое двигателю необходимо повернуть вал). И драйвер переводит команды в обороты вала двигателя. Очень простая и надежная конструкция. Из минусов — скорость вращения двигателя ограничена из-за его конструктива, и если двигатель пропустит по той или иной причине шаги, то управляющая программа об этом не узнает. Отсюда и область применения — низко и среднескоростные двигатели в заданной области нагрузок. Например 3Д принтер или хоббийные станки.Второй способ управлять перемещениями — сервомотор. Мотор сам по себе может быть любым, постоянного или переменного тока, без разницы. Единственное условие, его вал должен иметь энкодер. Энкодер — это устройство определения позиции вала в данный момент времени. Об энкодерах мы поговорим подробнее чуть позже. Сервоконтроллер имеет другой принцип работы, в отличии от драйвера шагового двигателя. Сервоконтроллер получает на входе те же самые сигналы Enable, STEP, DIR и подает на двигатель напряжение. Двигатель начинает вращаться в нужном направлении, энкодер возвращает данные о положении вала двигателя. Как нужное положение достигается, вал двигателя в нем фиксируется. Конечно это сильно упрощено, т.к. есть ускорение и торможение двигателя, управление током и напряжением, пропорционально-интегрально-дифференцирующий (ПИД) регулятор в контуре обратной связи,… но мы же договорились в этот раз не сильно лезть в теорию. 

Оптический энкодер или шутка производителяКакие же плюсы серводвигателей: любая скорость вращения, отсутствие пропуска шагов, бесшумность (шаговый двигатель ощутимо громок в работе из-за своего конструктива). Но цена сервоконтроллеров выше и существенно драйверов шаговых двигателей. Поэтому основная ниша сервоконтроллеров — профессиональное применение.Для своего проекта я выбрал двигатели Динамо Сливен. Эти двигатели широко использовались в советское время в ЭВМ и их было какое-то нереально большое количество. Кажется, что практически любой хоббийщик или имеет такой двигатель или сталкивался с ним. На барахолках их до сих пор перепродают. Это двигатели постоянного тока с фантастическим неубиваемым ресурсом и устойчивостью к любым издевательствам.

Оптический энкодер или шутка производителяВ качестве сервоконтроллера я использовал выигранную плату. Она представляет собой развитие open source сервоконтр

www.taker.im

Выбираем правильно разрешение энкодера | RuAut

Одним из основных параметров для выбора энкодера является скорость вращения (ограничена максимально допустимой механической скоростью вращения, обычно указанной в документации), с которой будет вращаться его вал, установленный на вал электродвигателя, а в некоторых случаях на исполнительный орган, охватывая передачи и соединительные муфты. Этот же параметр необходимо учитывать при выборе разрешения энкодера. При вращении с большой скоростью и с большим числом импульсов на оборот, выходная частота логической части энкодера должна успевать выдавать импульсы.

Выбирая разрешение энкодера нужно убедиться в том, что большое количество импульсов на оборот будет востребовано. С увеличением скорости вращения вала энкодера количество импульсов выдаваемых энкодером в единицу времени увеличивается. Устройство, которое будет принимать импульсы должно успевать считать импульсы, поступающие на вход, от энкодера. Таким устройством может быть модуль входа обратной связи преобразователя частоты или канал входа стойки ЧПУ. Это обстоятельство необходимо учитывать при выборе энкодера. В противном случае, если частота выходного сигнала энкодера будет превышать максимальную входную частоту принимающего устройства, тогда устройство не будет успевать считать импульсы и, следовательно, правильно измерять скорость.

Совсем другой вопрос, сколько импульсов на оборот будет достаточно для обеспечения точности системы. Если речь идёт об обратной связи по скорости с приводом и электродвигателем с асинхронным короткозамкнутым ротором, то от выбранного разрешения будет зависеть поведение системы. При маленьких разрешениях на очень низких скоростях вал мотора может двигаться не плавно, а дергаться, может измениться поведение системы при удержании вала на нулевой скорости. Но однозначно определить зависимость поведения системы от низких разрешений энкодера невозможно, не зная внутреннего логического устройства привода (а это уже коммерческая информация). Самым простым способом в таком случае будет проверка поведения системы «привод – электродвигатель – энкодер» опытным путём.

Физическое подключение энкодера, как правило, осуществляется с помощью 3-х проводной (открытый коллектор) или 6-ти проводной схемы (TTL интерфейс, или линейный драйвер), но существуют и другие варианты. Выбирать способ подключения стоит исходя от принимающего устройства.

Интерфейсу TTL соответствует более высокая выходная частота энкодера. Это происходит из-за разной реализации внутренних схем. На выходе TTL энкодера стоит операционный усилитель, сигнал меряется относительно инверсного сигнала. А все сигналы энкодера с выходом открытый коллектор меряются относительно общего провода.

В качестве кабеля связи с энкодером следует использовать только кабель, рекомендуемый заводом-изготовителем. Кроме того, если на принимающем устройстве нет клемм для питания энкодера, рекомендуется предусмотреть дополнительный отдельный источник питания. Это связано с тем, что энкодер – измерительный прибор, для которого рекомендуется стабилизированное напряжение питания. Не рекомендуется запитывать от источника реле, датчики и другое оборудование, потому что помехами по шине питания они могут внести изменения в показания энкодера.

Источник: по материалам компании ООО "Ракурс"

ruaut.ru