Содержание
Подключение трехфазного двигателя к однофазной и трехфазной сети
Из всех видов электропривода наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема — большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом. Поэтому давайте разбираться, как выполнить подключение трехфазного двигателя к однофазной и трехфазной сети.
- Что такое звезда и треугольник у электродвигателя
- Подключение к трёхфазной сети
- Подключение к однофазной сети
Что такое звезда и треугольник у электродвигателя
Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:
- звезда;
- треугольник.
Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:
Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.
В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода — то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.
Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным. Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек.
К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.
Таким образом, если вы установите перемычки на нижние контакты клеммника в линию — получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения — не нужно гнуть проволочки.
Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.
Подключение к трёхфазной сети
Теперь, когда мы разобрались как подключаются обмотки, давайте разберемся как они подключаются к сети.
Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений. Так получили распространение электродвигатели с питающими напряжениями:
- 380/220;
- 660/380;
- 220/127.
Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.
Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в 380В. Например, на кораблях встречается сеть с изолированной нейтралью (без нуля) на 220В, да и в старых советских постройках первой половины прошлого века и сейчас иногда встречается сеть 127/220В. В то время как сеть с линейным напряжением 660В встречается редко, чаще на производстве.
Об отличиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: https://samelectrik.ru/linejnoe-i-faznoe-napryazhenie.html.
Итак, если вам нужно подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите питающее напряжение.
Электродвигатели на шильдике которых указано 380/220 можно подключить только звездой к нашим сетям. Если вместо 380/220 написано 660/380 — подключайте обмотки треугольником. Если вам не повезло и у вас старый двигатель 220/127 — здесь нужен либо понижающий трансформатор, либо однофазный частотный преобразователь с трёхфазным выходом (3х220). Иначе подключить его к трём фазам 380/220 не получится.
Самый худший вариант — это когда номинальное напряжение двигателя с тремя проводами с неизвестной схемой соединения обмоток. В этом случае нужно вскрывать корпус и искать точку их соединения и, если это возможно, и они соединены по схеме треугольника — переделывать в схему звезды.
С подключением обмоток разобрались, теперь поговорим о том какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками с номинальным напряжением 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод к нулю, а не к фазе «B».
Электродвигатели почти всегда подключаются через магнитный пускатель (или контактор). Схему подключения без реверса и самоподхвата вы видите ниже. Она работает таким образом, что двигатель будет вращаться только тогда, когда нажата кнопка на пульте управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты пока удерживается в нажатом положении, как те, что используются в клавиатурах, мышках и дверных звонках.
Принцип работы этой схемы: при нажатии кнопки «ПУСК» начинает протекать ток через катушку контактора КМ-1, в результате якорь контактора притягивается и силовые контакты КМ-1 замыкаются, двигатель начинает работать. Когда вы отпустите кнопку «ПУСК» — двигатель остановится. QF-1 – это автоматический выключатель, который обесточивает и силовую цепь и цепь управления.
Если вам нужно чтобы вы нажали кнопку и вал начал вращаться — вместо кнопки ставьте тумблер или кнопку с фиксацией, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.
Но так делают нечасто. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — блок-контакт пускателя (или контактора), подключенный параллельно кнопке «ПУСК». Такая схема может использоваться для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одном направлении.
Принцип работы схемы:
Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Кнопка «СТОП» — нормально замкнутая, т.е. её контакты размыкаются, когда на неё нажимают. Через «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК», блок-контакт и в конечном итоге катушку, поэтому когда вы на неё нажмёте, то цепь управления катушкой обесточится и контактор отключится.
На практике в кнопочном посте каждая кнопка имеет нормально-разомкнутую и нормально-замкнутую пару контактов, клеммы которых расположены на разных сторонах кнопки (см. фото ниже).
Когда вы нажимаете кнопку «ПУСК», ток начинает протекать через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается, как A1 и A2), в результате его якорь притягивается и замыкаются силовые контакты КМ-1. КМ-1.1 – это нормально-разомкнутый (NO) блок-контакт контактора, при подаче напряжения на катушку он замыкается одновременно с силовыми контактами и шунтирует кнопку «ПУСК».
После того как вы отпустите кнопку «ПУСК» — двигатель продолжит работать, так как ток на катушку контактора теперь подаётся через блок-контакт КМ-1.1.
Это и называется «самоподхват».
Основная сложность, которая возникает у новичков в понимании этой базовой схемы, состоит в том, что не сразу становится понятно, что кнопочный пост располагается в одном месте, а контакторы в другом. При этом КМ-1.1, который подключается параллельно кнопке «ПУСК», на самом деле может находится и за десяток метров.
Если вам нужно чтобы вал электродвигателя вращался в обе стороны, например, на лебедке или другом грузоподъёмном механизме, а также разных станках (токарный и пр.) — используйте схему подключения трехфазного двигателя с реверсом.
Кстати эту схему часто называют «реверсивная схема пускателя».
Реверсивная схема подключения – это две нереверсивных схемы с некоторыми доработками. КМ-1.2 и КМ-2.2 — то нормально-замкнутые (NC) блок-контакты контакторов. Они включены в цепь управления катушкой противоположного контактора, это так называемая «защита от дурака», она нужна чтобы не произошло межфазного КЗ в силовой цепи.
Между кнопкой «ВПЕРЁД» или «НАЗАД» (их назначение такое же, что в предыдущей схеме у «ПУСК») и катушкой первого контактора (КМ-1) подключается нормально-замкнутый (NC) блок-контакт второго контактора (КМ-2). Таким образом, когда включается КМ-2 — нормально-замкнутый контакт размыкается соответственно и КМ-1 уже не включится, даже если вы нажмёте «ВПЕРЁД».
И наоборот, NC от КМ-2 установлен в цепь управления КМ-1, чтобы предотвратить одновременное их включение.
Чтобы запустить двигатель в противоположном направлении, то есть включить второй контактор, нужно отключить действующий контактор. Для этого нажимаете на кнопку «СТОП», и цепь управления двумя контакторами обесточивается, и уже после этого нажимайте на кнопку запуска в противоположном направлении вращения.
Это нужно, чтобы не допустить короткого замыкания в силовой цепи. Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Как известно для смены направления вращения асинхронного двигателя (реверса) нужно поменять местами 2 из 3 фаз (любые), здесь поменяли местами 1 и 3 фазу.
В остальном работа схемы аналогична предыдущей.
Кстати на советских пускателях и контакторах были совмещенные блок-контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.
Подключение к однофазной сети
Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.
Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения до -90˚ а с помощью конденсатора на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.
Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.
Резистор на схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.
Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск — зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.
Или посчитать по формулам:
Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) — нужно подключить и пусковой конденсатор.
Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши — «ПУСК» и «СТОП» (как на автоматах АП-50).
Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.
Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:
Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.
Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:
- Номинальное напряжение 3х220В — вам повезло, и используйте приведенные выше схемы.
- Номинальное напряжение 3х380В — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!
Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема — потери мощности. Они могут достигать 40-50%.
Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.
Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!
Материалы по теме:
- Подключение магнитного пускателя на 380 и 220в
- Как собрать трехфазный щит
- Как выбрать частотный преобразователь
Трехфазный двигатель в однофазной сети. Схема правильного подключения трехфазного двигателя
Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это – единственный выход.
Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений – 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.
Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети переменного тока. Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.
Устройство трехфазного двигателя
Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них – «рабочие лошадки», составляющие большинство электромашин на любом предприятии – асинхронные машины мощностью в 1 – 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?
Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. Асинхронный двигатель трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.
Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.
Треугольник или звезда?
Трехфазный двигатель в трехфазной сети может включаться двумя способами – с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под фазным напряжением (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.
Как включить мотор в обратном направлении?
Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.
Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.
Фазосдвигающие емкости
Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических емкостей (конденсаторов), обозначаемых на схемах латинской буквой С.
Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.
Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую – фаза, а на третью — некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?
Пусковой конденсатор
В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и пусковой конденсатор создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость.
Расчет величины емкостей
Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:
С = С ст + Ср, где:
С ст – стартовая дополнительная отключаемая после разбега емкость;
С р – рабочий конденсатор, обеспечивающий вращение.
Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:
I н = P / (3 х U), где:
U – напряжение, при подключении «звездой» — 220 В, а если «треугольник», то 380 В;
P – мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.
Итак, зависимости требуемой рабочей мощности вычисляются по формулам:
С р = Ср = 2800 I н / U – для «звезды»;
С р = 4800 I н / U – для «треугольника»;
Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения – микрофарады.
Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.
Почему нужна подгонка
Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?
Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, соединенных параллельно и последовательно. Главное – после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.
Составление батареи емкостей
Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:
1/С = 1/С1 + 1/С2… и так далее, а при параллельном – наоборот, складывается.
Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.
Разрядный резистор
Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая – от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.
Использование электролитов
Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.
Если нет конденсаторов
Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет – и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:
R = (0,86 x U) / kI, где:
kI — величина тока при трехфазном подключении, А;
U – наши верные 220 Вольт.
Какие двигатели подойдут
Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.
Подключение трехфазного двигателя схема
Трехфазный электродвигатель при пуске контактами магнитного пускателя подключается к трёхфазной сети переменного тока напряжением 380 вольт.
На рис 1. показан вариант схемы пуска с питанием катушки магнитного пускателя переменным током напряжением 220 вольт. Напряжение для схемы управления снимается с двух проводов: с фазного провода и провода нейтрали (на схеме рис.1 это провода «C» и «N»).
При нажатии кнопки «Пуск» напряжение 220 вольт через нормально замкнутые контакты кнопки «Стоп» поступает на обмотку магнитного пускателя. Сердечник обмотки втягивается и замыкает соединенные с ним три группы мощных контактов, подающие трехфазное напряжение на выводы обмоток электродвигателя.
Кроме трёх групп мощных контактов, магнитный пускатель замыкает группу маломощных нормально разомкнутых контактов (К1), включенных параллельно кнопке «Пуск». Контакты замыкаются и последующее отпускание кнопки «Пуск» уже не изменяет состояние схемы. Процесс пуска завершен.
Нейтральный провод (N) не участвует в питании электродвигателя, но, в соответствии с требованиями правил электробезопасности, при отсутствии заземления обязательно подсоединяется к корпусу электродвигателя. Если корпус электродвигателя по какой-то причине окажется под напряжением (например, фазная обмотка статора электродвигателя замкнёт на его корпус), то резко возрастёт потребляемый электродвигателем ток (идущий по цепи «фаза-нейтраль») и сработавшая схема защиты отключит электродвигатель от питающей сети, исключая тем самым поражение электрическим током человека, случайно прикоснувшегося к его корпусу.
Схема пуска может работать с магнитными пускателями рассчитаными на переменное напряжение напряжение 220 и 380 вольт. Выбор типа магнитного пускателя определен только конкретными условиями монтажа схемы. Если провод «нейтраль» недоступен, то дешевле применить магнитный пускатель с питающим напряжением обмотки катушки электромагнита пускателя 380 вольт, чем прокладывать дополнительно провод «нейтрали» для питания пускателя с обмоткой на 220 вольт. Такой вариант схемы пуска показан ниже на Рисунке 2.
Токовая защита трехфазного электродвигателя
Трехфазный электродвигатель следует защищать от выхода из строя, что может случитьсяАвтоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.
Кроме того, автоматические выключатели питания быстро срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов. Такие токи возникают при коротких замыканиях электрических цепей. Экстра ток — это такой ток, который превышает номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.
На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.при повышеннии напряжения источника питания, при перегреве элементов конструкции электродвигателя и при аварийной остановке вращения ротора электродвигателя. Внешнюю электрическую цепь, питающую трехфазный электродвигатель, следует защищать от токовых перегрузок, которые возникают при коротком замыкании электрических проводов схемы между собой или внутреннем замыкании токоведущих компонентов электродвигателя.
Простейшая токовая защита трехфазного электродвигателя выполнена посредством включения в цепь питающих проводов токовых тепловых датчиков, входящих в состав типового устройства токовой защиты. Превышение тока, потребляемого электродвигателем, в течении небольшого времени времени вызывает размыкание исполнительных контактов датчика тока, последовательно включенных в цепь питания катушки магнитного пускателя.
Существует линейная зависимость времени срабатывания устройства токовой защиты от кратности превышения тока. Токовая защита с паспортным значением 100А сработает через 1,5 минуты после пропускания по любой одной фазе (или по двум или трём фазным проводам сразу) тока в 100 ампер. При превышении тока в два раза, защита сработает в два раза быстрее, чем при номинальном токе, т.е. через 45 секунд и т.д. Устройство токовой защиты имеет возможность регулировки в небольших пределах (в 1.5-2 раза) номинального тока срабатывания защиты.
При срабатывании устройства токовой защиты размыкаются исполнительные контакты теплового датчика тока, что вызывает обесточивание и отпускание сердечника катушки магнитного пускателя, включенного последовательно с этими контактами (рис.3) и, соответственно, отключение электродвигателя от источника питающего напряжения. После остывания датчика, для приведения устройства в исходное состояние, нажимается кнопка возврата. При этом исполнительные контакты токового датчика вновь замыкаются. Теперь кнопкой «Пуск» можно вновь запустить электродвигатель.
Автоматический выключатель питания трехфазного электродвигателя
Подключение трехфазного электродвигателя обеспечивается достаточно сложной схемой. Для защиты питающих проводов от перегрева, для защиты помещения от пожара в случае возгорания электропроводки при коротком замыкания, на входе схемы подключения трехфазного электродвигателя применяются автоматические выключатели электропитания. Схема с применением такого автомата токовой защиты изображена ниже на Рис.4
Автоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.
Кроме того, автоматические выключатели питания быстро срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов. Такие токи возникают при коротких замыканиях электрических цепей. Экстра ток — это такой ток, который превышает номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.
На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.
Схемы подключения электрических трехфазных двигателей к однофазной сети: Инструкция
Продвигаемся к кнопочному посту
На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.
Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»
Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.
Перемычка между пусковой и стоповой кнопкой необходима
Продолжаем подключение кнопочного поста
Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.
Соединение на пусковой кнопке — работа с постом практически завершена
Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.
Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя
Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.
Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя
Подключение трехфазного двигателя через ручной пускатель
4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА
Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.
Ручной пускатель двигателя с дополнительным контрольным контактом.
Вот что у него на боковой стенке:
Автомат защиты двигателя – характеристики на боковой стенке
Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.
В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.
Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.
Подбираем конденсатор
В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.
Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.
Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.
Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.
А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.
В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.
Стандартная схема включения трехфазного двигателя в однофазную сеть
Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.
На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:
Схема подключения трехфазного двигателя коммутацией обмоток треугольником
- На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
- Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
- На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.
Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.
Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три — по числу обмоток.
Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:
- Схему электрического соединения обмоток.
- Рабочий конденсатор, служащий цели создания правильного распределения фаз.
- Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).
Подключение трехфазного двигателя 230 вольт треугольником
Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.
Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:
- Частоты вращения вала.
- Мощность двигателя.
- Нагрузки, ложащиеся на ротор.
Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током
Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя
О конденсаторах
Значение конденсатора в сети
В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит снижение таких показателей, как электрическая мощность и мощность вала движка.
Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от остальных обмоток была максимальная отдача, их нужно использовать совмещенно при подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.
Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.
Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.
Еще одна особенность конденсатора при подключении к трехфазной сети это его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы можете управлять движением вала.
Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу. Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на месте конденсатора будет подключен дроссель. То он будет способствовать значительному уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.
Поэтому конденсатор является единственным элементом пригодным для эффективного перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.
Виды конденсаторов
Для подключения электрических агрегатов 380 на 220 Вольт в основном используют следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.
Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.
Трехфазный двигатель в однофазной сети. Схема подключения трехфазного двигателя
Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это – единственный выход.
Схемы подключения
Варианты подключения двигателя через конденсатор:
- схема подключения однофазного двигателя с использованием пускового конденсатора;
- подключение электродвигателя с использованием конденсатора в рабочем режиме;
- подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.
Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.
Схема с пусковым конденсатором
Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.
Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.
Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.
Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.
Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.
В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.
Схема с рабочим конденсатором
Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.
Как определить, по какой схеме подключены обмотки двигателя?
Метод коммутации обмотки двигателя влияет на его характеристики, однако все соединения выводов находятся под защитным кожухом, в блоке управления. Их попросту не видно, но не стоит отчаиваться. Есть способ, который позволяет узнать метод коммутации, не прибегая к разбору блока управления.
Для этого достаточно заглянуть на номерную табличку, установленную на корпусе двигателя. На ней отмечают точные технические параметры, в том числе и метод коммутации. К примеру, на ней можно обнаружить следующие обозначения: 220/380В и геометрические обозначения треугольник/звезда. Эта последовательность говорит о том, что на моторе, работающим от сети 380В., установлена схема коммутации обмоток по типу «звезда».
Однако данный способ не всегда срабатывает наверняка. Таблички на старых двигателях часто затерты либо вовсе потеряны. В таком случае придется раскручивать блок управления.
Второй способ подразумевает визуальный осмотр выводных контактов. Контактная группа может быть соединена следующим способом:
- Одна перемычка на трех контактах с одной стороны выводов. К свободным выводом подведены проводу питания. Это метод звезда.
- Выводы соединены попарно тремя перемычками. На три вывода приходит три провода питания. Это метод треугольника.
На некоторых моторах в блоке управления можно обнаружить всего три вывода. Это говорит о том, что коммутация произведена внутри самого двигателя, под защитным кожухом.
Трехфазные моторы очень выносливы и ценятся в хозяйстве, ремонте и стройке. Но они бесполезны для домашнего использования, так как бытовая сеть может дать всего одну фазу, напряжением 220В. На самом деле, это не совсем верное суждение. Подключить трехфазный асинхронный двигатель к бытовой сети возможно. Это делается при помощи радиодетали – конденсатора. Разберем данный способ подробнее.
Пусковой конденсатор трехфазного двигателя
Чаще подключение трехфазного двигателя к однофазной сети нужно вести с участием пускового конденсатора. Особенно аспект касается мощных моделей, моторов под значительной нагрузкой на старте. В этом случае увеличивается собственное реактивное сопротивление, которое придется компенсировать при помощи емкостей. Проще подобрать опять же экспериментально. Нужно собрать стенд, на котором имеется возможность «на горячую» включать, исключать из цепи отдельные емкости.
Избегайте помогать двигателю запуститься рукой, как демонстрируют “бывалые” мастера. Просто найдите значение батареи, при котором вал бодро вращается, по мере раскрутки начинайте исключать из цепи конденсаторы один за другим. Пока останется такой набор, ниже которого двигатель не вращается. Отобранные элементы образуют пусковую емкость. А правильность своего выбора нужно контролировать при помощи тестера: напряжение в плечах обмоток со сдвинутой фазой (в нашем случае С и В) должно быть одинаковым. Это значит, что отдается примерно равная мощность.
Трехфазный двигатель с пусковым конденсатором
Что касается оценок и прикидок, емкость батарей растет с увеличением мощности, оборотов. А если говорить о нагрузке, большое влияние оказывает на старте. Когда вал раскрутится, в большинстве случаев малые препятствия преодолеваются за счёт инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» возникшего затруднения.
Обратите внимание, что подключение асинхронного двигателя обычно ведется через защитный автомат. Устройство, которое остановит вращение при превышении током некоторого значения
Это не только уберегает пробки местной сети от выгорания, но и спасет обмотки двигателя при заклинивании вала. В этом случае ток резко повысится, и работа устройства прекратится. Небесполезен автомат защиты и при подборе нужного номинала емкости. Очевидцы утверждают, что если подключение 3-фазного двигателя в однофазную сеть ведется через слишком слабые конденсаторы, то нагрузка резко возрастает
В случае наличия мощного мотора это очень важно, потому что даже в нормальном режиме потребление превышает номинальное в 3-4 раза
И пара слов о том, как оценить заранее пусковой ток. Допустим, нужно подключить асинхронный двигатель на 230 мощностью 4 кВт. Но это для трех фаз. В случае штатной проводки ток по каждой из них течет отдельно. У нас же все это будет складываться. Поэтому смело делим мощность на напряжение сети и получаем 18 А. Понятно, что без нагрузки подобный ток вряд ли будет расходоваться, но для стабильной работы двигателя на полную катушку нужен защитный автомат потрясающей мощности. Что касается простого тестового запуска, то вполне сгодится устройство ампер на 16. И даже есть шанс, что старт пройдет без эксцессов.
Надеемся, читатели теперь знают, как подключить трехфазный двигатель в домашнюю сеть на 230 вольт. Осталось к этому добавить, что возможности стандартной квартиры не превышают с точки зрения отдачи мощности потребителю значения порядка 5 кВт. Это значит, описанный выше двигатель дома попросту включать опасно
Обратите внимание, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт
Проще говоря, слишком мощные устройства не только вызовут моргание света, но скорее всего, спровоцируют возникновение других нештатных ситуаций. В лучшем случае выбьет пробки, в худшем – случится возгорание проводки.
На этом говорим “до свидания” и хотим заметить: знание теории иной раз полезно практикам. Особенно если дело касается мощной техники, способной причинить немалый вред.
Схемы подключения
Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.
Существует две схемы подключения:
- Звезда.
- Треугольник.
Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.
Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.
Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора
Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.
Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.
Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.
При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.
Схема звезда-треугольник
Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.
Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.
Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.
Как устроен трехфазный асинхронный двигатель
В большинстве случаев асинхронные двигатели используют конденсаторный запуск, однако бывают и другие способы пуска. В трехфазных электродвигателях в отличие от однофазных имеется три обмотки статора, которые сдвинуты под определённым углом. Угол намотки обмоток статора трехфазного двигателя — 120 градусов, что позволяет создавать вокруг ротора мощное магнитное поле.
Конструкция статора трехфазного электродвигателя состоит из таких элементов:
- Корпуса;
- Магнитопровода и сердечника с обмотками;
- Клеммной коробки.
Стандартное соединение обмоток трехфазного электродвигателя выполнено по схеме «звезда». Также существует менее распространённым способ соединения обмоток трехфазного двигателя, а именно — «треугольник». В любом случае, каждая обмотка статора имеет определённое направление, а также, начало и конец.
Для нумерации обмоток статора электродвигателя используются арабские цифры: 1, 2, 3. Концы обмоток обозначаются буквой и цифрой: К1, К2, К3, а их начало — Н1, Н2, Н3. В некоторых типах электродвигателей маркировка обмоток статора может иметь другое обозначение, например: С1, С2, С3 и С4, С5, С6.
Двигатель, особенности размещения перемычек катушек, первые шаги подключения
Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация
Шильдик электродвигателя – на нём указаны все параметры
Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.
Перемычки установлены в контактной группе для подключения «треугольником»
Подключение трехфазного двигателя к сети 220В
Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.
Схема подсоединения мотора 380 на 220
При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.
Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.
При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.
Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:
- Питание подается через тумблер или специальную кнопку;
- Нажимается кнопка пускового конденсатора;
- Она удерживается до тех пор, пока электродвигатель не разгонится;
- Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.
При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.
На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).
Подбор конденсаторов
Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:
- Соединение треугольником: Ср=4800*I/U.
- Соединение звездой: Ср=2800*I/U.
Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.
Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.
Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:
- МБГЧ,
- МБПГ,
- МБГО,
- БГТ.
Вы можете узнать все характеристики накопителя (емкость, тип, рабочее напряжение), взглянув на его корпус.
Теперь вы сможете пользоваться трехфазным асинхронным электродвигателем, включая его к сети 220В или 380В в зависимости от того, какая линия проходит рядом. Чтобы лучше понять принцип подсоединения обмоток и фаз с их началами и концами, посмотрите видео.
Расчет конденсаторов
Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.
Пример расчетов для конденсатора
I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.
Наши читатели рекомендуют!
Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.
Емкость пускового конденсатора берется из расчета 2–3 Сраб .
Однако все равно, лучшим вариантом будет дополнительный подбор нужных емкостей экспериментальным путем. В этом поможет таблица:
По напряжению конденсаторы должны быть в 1,5 раза выше напряжения сети. Это обусловлено тем, что 220В – это действующее напряжение, но ведь на конденсатор будет воздействовать полное, амплитудное напряжение. А оно в 2 выше действующего. Это приблизительно 1,4. Несложный математический подсчет помогает увидеть: 220*1,4=308 В. Ну а если учесть, что в розетке редко бывает ровно 220, чаще всего напряжение плавает в одну и другую сторону, то нужно брать большее значение.
Трехфазный двигатель в однофазной сети: 3 схемы
Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.
Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.
Все они не раз опробованы на личном опыте.
Содержание статьи
Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:
- используйте схему треугольник, предварительно проверив исправность двигателя;
- выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
- в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
- не забывайте соблюдать меры безопасности с электрическим током и инструментом.
Все остальное рекомендую новичкам внимательно прочитать и осмыслить в той последовательности, как я излагаю.
На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.
Трехфазный асинхронный двигатель: на что обратить внимание до его подключения
За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.
Даже в этом случае я рекомендую убедиться в его исправности лично.
Механическое состояние статора и ротора: что может мешать работе двигателя
Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.
Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.
Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.
После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.
В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.
Электрические характеристики статорных обмоток: как проверять схему сборки
Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.
Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.
Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.
Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.
Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.
Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.
На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.
Электрические методики проверки схемы сборки обмоток
Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.
Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.
В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.
Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.
Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.
После перемонтажа схемы рекомендую дополнительно покрывать внешние слои обмоток лаком, а затем хорошо просушить их до окончательной сборки теплым воздухом.
Что делать, если маркировка выводов отсутствует
На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.
Работу выполняем в два этапа:
- Проверяем принадлежность концов обмоткам.
- Определяем и маркируем каждый вывод.
На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.
С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.
Как найти конец и начало обмотки: 2 способа
Можно вести поиск с помощью вольтметра:
- и батарейки;
- или источника пониженного переменного напряжения.
Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.
Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.
С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).
После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.
Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.
Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.
Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.
Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.
После окончания маркировки делают контрольный замер для проверки выполненной работы.
Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.
Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.
Такая проверка опасна. Ею не стоит заниматься необученным людям: можно легко получить электрическую травму.
Как оценить состояние изоляции обмоток
Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.
Однако до включения двигателя под напряжение я рекомендую:
- взять мегаомметр с выходным напряжением на 1000 вольт;
- проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
- если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.
Проверку изоляции электродвигателя мегаомметром необходимо обязательно проводить до его подключения под нагрузку. Однако она не способна выявить повреждения диэлектрического слоя, вызывающие межвитковые замыкания обмотки.
При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.
Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.
Как проверяют магнитное поле статора на заводе
При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.
Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.
Только правильное подключение обмоток обеспечивает вращение шарика или ротора.
Мощность электродвигателя и диаметр провода обмотки
Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.
Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.
Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:
- Диаметру провода обмотки.
- Габаритам сердечника магнитопровода.
После вскрытия крышки статора проанализируйте их визуально.
Подключение трехфазного двигателя к однофазной сети по схеме звезды
Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…
Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.
Схема подключения звезды показана на картинке.
Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.
Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.
Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.
При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.
Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.
Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.
Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.
Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.
Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.
Схема треугольник: преимущества и недостатки
Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.
За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.
Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.
Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.
При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.
Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.
Как подобрать конденсаторы: 3 важных критерия
Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.
В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.
Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.
От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.
Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.
Обращаю внимание на три важных параметра:
- емкость;
- допустимое рабочее напряжение;
- тип конструкции.
Как подобрать конденсаторы по емкости и напряжению
Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.
Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.
Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.
Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.
Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.
Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.
Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.
Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.
Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.
У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.
Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.
Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.
При параллельном подключении общая емкость суммируется, а напряжение не меняется.
Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.
Какие типы конденсаторов можно использовать
Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.
Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.
Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.
Без его использования они быстро выходят из строя.
Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.
Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось
Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.
Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.
В его состав входят:
- дроссель с индуктивным сопротивлением на 140 Ом;
- конденсаторная батарея на 80 и 40 микрофарад;
- регулируемый реостат на 140 Ом с мощностью 1000 ватт.
Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.
В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.
Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.
Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.
Мне даже приходила мысль использовать водяной реостат.
Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.
Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.
Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.
Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.
Меры безопасности при подключении трехфазного двигателя: напоминание
Сначала я повторюсь с рекомендацией использовать все подключения только через отдельный автоматический выключатель. Это очень важно.
Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.
Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.
Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!
В заключение рекомендую посмотреть полезное видео владельца Сергея Герасимчука по подключению трехфазного двигателя к однофазной сети.
Если остались вопросы или заметили неточности, то воспользуйтесь разделом комментариев.
Схемы подключения трехфазного двигателя к однофазной сети
Трёхфазный двигатель — электродвигатель, конструктивно предназначенный для питания от трехфазной сети переменного тока.
Из всех разработанных многочисленными исследователями методов подключения асинхронного электродвигателя на практике чаще всего применяется два, называемые способами:
1. звезды;
2. треугольника.
Оба они используют конденсаторный запуск, отличающийся доступной элементной базой.
Название каждого метода дано по способу подключения обмоток статора в сеть. Узнать же, как они собраны в конкретном двигателе, можно с помощью таблички, смонтированной на корпусе.
Обычно даже на старых моделях можно разобрать способ соединения обмоток и напряжение сети, на которые они созданы. Такой информации можно доверять, если двигатель уже опробован в работе и к нему нет претензий. Но, даже в этом случае необходимо провести электрические замеры.
Как проверить схему подключения обмоток электродвигателя
Начнем с плохого варианта выполнения монтажа статорных обмоток, когда их концы на заводе не обозначены, а сборка нуля для схемы звезды выполнена внутри корпуса и выведена одной общей жилой. Придется разбирать корпус, снимать крышки, демонтировать внутреннее соединение, разводить провода.
Определение фаз статора
После того. как концы проводов разъединены используется омметр. Один его щуп подсоединяют к произвольному проводу, а другим находят его окончание по показаниям омметра. Также поступают с остальными фазами. Не следует забывать их маркировать или помечать каким-то доступным способом.
Вместо омметра можно использовать самодельные прозвонки, состоящие из батарейки с лампочкой и проводами.
Определение полярности обмоток
Для нахождения одинакового расположенных концов рекомендуется воспользоваться одним из двух способов:
1. подачей импульса постоянного тока;
2. подключением источника переменного напряжения.
Оба этих варианта работают за счет подачи электрического напряжения на одну обмотку и трансформации его в остальные через магнитопровод сердечника.
Метод проверки с помощью батарейки и вольтметра постоянного тока
Принцип работы показан на картинке.
На клеммы одной из обмоток следует подключить чувствительный вольтметр постоянного тока, способный реагировать на появление импульса. К другой обмотке кратковременно прикладывают напряжение определённым полюсом, например, плюсом.
В момент подачи импульса наблюдают показание вольтметра: возможно отклонение стрелки в положительную или отрицательную сторону. Движение ее к плюсу означает совпадение полярностей обеих обмоток (размыкание контакта — стрелка к минусу). Процедуру повторяют для третьей обмотки.
Сменой обмотки для подключения батарейки осуществляют контрольную проверку правильности маркировки.
Метод проверки переменным напряжением
Две произвольных обмотки подключают параллельно соединенными концами к вольтметру, а на третью подают напряжение от трансформатора. Контролируют показания вольтметра: при совпадении полярностей обеих обмоток на вольтметре будет отображаться значение источника ЭДС, а при нарушении — ноль.
Сменой положения трансформатора на другую обмотку и переключением цепей вольтметра осуществляют проверку полярности третьей фазы, а затем выполняют контрольный замер.
Схема запуска «звезда»
Она обеспечивается схемой подключения обмоток, использующей три разных цепи — фазы, объединенные общей точкой, нейтралью.
Схему собирают после проверки полярности подключения обмоток статора внутри двигателя. Двухфазное напряжение 220 вольт фазой через автоматический выключатель подают на начала двух разных обмоток. К одной из них в разрыв врезают конденсаторы: пусковые и рабочие.
Ноль сети питания подводится на третий вывод звезды.
Емкость рабочих конденсаторов подбирают по эмпирической формуле:
С раб = (2800·I)/U.
Для схемы пуска эту величину увеличивают в 2÷3 раза. В процессе работы двигателя под нагрузкой следует проверить соотношения токов в обмотках замерами и провести корректировку рабочих конденсаторов применительно к усредненным нагрузкам привода. Иначе будет происходить перегрев оборудования, ведущий к старению изоляции.
Подключение электродвигателя в работу удобно выполнять через конструкцию специального выключателя, который раньше производился для стиральных машин с центрифугой типа «Рига».
Здесь уже встроена пара замыкающих контактов, которые одновременно подают напряжение на две параллельно подключенные схемы нажатием на кнопку Пуск. Причем при отпускании этой кнопки одна цепочка разрывается. Этот контакт и используют для пусковой цепочки.
Общее отключение напряжения производят нажатием на кнопку Стоп.
Схема запуска «треугольник»
Она повторяет алгоритм предыдущей схемы в части запуска, но отличается способом подключения обмоток статора.
Токи, протекающие в них, превышают значения для цепей звезды. Рабочие конденсаторы требуют больших номиналов. Их рассчитывают по следующему выражению:
С раб = (4800·I)/U.
Правильность подбора конденсаторов тоже определяют по соотношению токов в обмотках статора контрольными замерами под нагрузкой.
Ранее ЭлектроВести писали, что британская компания Swindon Powertrain предложила вариант преобразования любого топливного автомобиля в электрический, выпустив компактную и готовую к установке силовую установку High Power Density (HPD) мощностью 80 кВт.
По материалам: electrik.info.
Трехфазная проводка
Необходимость в трехфазном питании или обслуживании возникает при наличии тяжелого оборудования, такого как большие двигатели (свыше 5 л.с.), потому что такое крупное оборудование требует больших пусковых и рабочих токов.
[adsense1]
Для больших зданий, заводов и офисов требуется больше электроэнергии, чем для бытовых установок. Поэтому, как правило, они часто устанавливаются с трехфазной проводкой или трехфазным питанием.
Трехфазное питание обычно используется для оборудования с номинальной мощностью, такого как большие кондиционеры, насосные агрегаты с высокой мощностью, воздушные компрессоры и двигатели с высоким крутящим моментом.
Поэтому он редко используется для бытовых установок, но обычно используется в коммерческих зданиях, офисах и промышленных установках.
Трехфазное питание переменного тока
Трехфазное питание переменного тока вырабатывается трехфазным генератором переменного тока (также называемым генератором переменного тока) на электростанциях.
В генераторе переменного тока три обмотки статора (или, скажем, три независимые катушки), обычно разделенные некоторым числом градусов вращения, и, следовательно, ток, создаваемый этими катушками, также разделен на несколько градусов вращения, что обычно составляет 120 градусов.
[adsense2]
Эта трехфазная мощность от генераторов переменного тока далее передается на распределительный конец по линиям электропередач.
Трехфазное питание от трансформатора распределительной линии подается в дом или пункт обслуживания здания. Большинство промышленных и коммерческих услуг состоит из трехфазных систем, которые обычно работают при напряжении 415 В между фазами и 230 В между фазами и нейтралью.
Трехфазная система состоит из трех проводников, в отличие от одного проводника в однофазной системе, за исключением нейтрального проводника. В дополнение к трем фазам для трехфазной четырехпроводной системы требуется дополнительный нейтральный проводник.
Трехфазные системы могут быть трехфазными трехпроводными или трехфазными четырехпроводными системами. Трехфазное 3-х линейное соединение состоит из трех фазных проводников и используется только там, где нет необходимости подключать фазу к нейтральным нагрузкам.
Эти соединения могут быть звездой или треугольником в зависимости от вторичной обмотки распределительного трансформатора.
Трехфазная 4-проводная система – это наиболее часто используемое соединение, состоящее из трех фазных проводников и одного нейтрального проводника.
В этой трехфазной проводке освещение, малая бытовая нагрузка и розетки часто подключаются между фазой и нейтралью, в то время как более крупное оборудование, такое как кондиционеры и электрические обогреватели, подключается между двумя фазами (т. е. между фазами).
Для эффективного и сбалансированного подключения как однофазных, так и трехфазных нагрузок предпочтительнее трехфазное четырехпроводное соединение звездой.
Это соединение позволяет подключать фазу к нейтрали для небольших нагрузок. Трехфазное четырехпроводное соединение треугольником используется только там, где нагрузка между фазой и нейтралью очень мала по сравнению с трехфазной нагрузкой.
Трехфазные цепи могут обеспечивать квадратный корень из 3 (1,732) раз большей мощности по сравнению с однофазной мощностью при том же токе. Таким образом, трехфазная система экономит затраты на электромонтаж за счет уменьшения размера кабеля и связанных с ним электрических устройств.
Мы можем легко наблюдать трехфазные цепи, глядя на линию электропередач во время движения по дорогам. Даже для большой системы электропередачи они представляют собой трехфазные линии электропередачи, если только они не имеют постоянного тока.
Большие отели, рестораны, большинство заводов, офисных зданий и продуктовых магазинов с мощными холодильными установками имеют трехфазное обслуживание.
Трехфазное электроснабжение для промышленной среды
Промышленность или фабрики подключаются к трехфазному электроснабжению для подключения тяжелой техники и оборудования. Шины несут это трехфазное питание, от которого через кабели выводятся отдельные соединения к отдельным нагрузкам. На рисунке ниже показана принципиальная схема промышленной трехфазной проводки.
Трехфазное питание от коммунальных служб подключается к главному выключателю через трехфазный счетчик электроэнергии. Затем мощность главного выключателя передается на различные шины.
Эта панель также входит в комплект измерительного устройства для отображения таких параметров, как ток, напряжение, энергия и мощность. На рисунке ниже показано распределение мощности от главного щита к оборудованию и осветительной нагрузке.
Электроэнергия от главного распределительного щита распределяется на тяжелое машинное оборудование, а также на щиты освещения с силовыми розетками. Мощность, распределяемая через однофазные и трехфазные субсчетчики, показана на рисунке ниже.
Трехфазное электроснабжение домов или офисов необходимо, если однофазное питание не может удовлетворить требования нагрузки. Эффективное использование трехфазного питания зависит от сбалансированного распределения нагрузки по каждой фазе трехфазного источника питания.
Таким образом, однофазные нагрузки в офисах или домах должны быть подключены к каждой фазе таким образом, чтобы была достигнута максимально возможная балансировка нагрузки.
Основные компоненты трехфазной проводки к дому, зданию или офисному помещению показаны на рисунке ниже.
При этом проводники служебного ввода подключаются к трехфазной вводной панели. Эта панель имеет трехфазный главный выключатель или иногда три отдельных патронных предохранителя.
Этот трехфазный выключатель состоит из трех вводных наконечников для подачи питания на три вертикальные шины. Этот главный выключатель имеет одну рукоятку, так что все нагрузки отключаются одновременно, а также в случае электрических неисправностей он отключает или размыкает все нагрузки одновременно.
Питание от этой главной панели подключено к ответвленным цепям. Главный щит может состоять из однополюсных, двухполюсных или трехполюсных выключателей для этих ответвленных цепей, где подключены нагрузки фаза-земля, фаза-фаза или трехфазные нагрузки.
На приведенном выше рисунке мощность от опоры электросети подключается к подцепям через трехфазный счетчик энергии, трехфазный выключатель (3-полюсный 60 А), двухполюсное УЗО, двухполюсный автоматический выключатель и однополюсный автоматический выключатель.
Подключение однофазной и трехфазной нагрузки к трехфазному источнику питания показано на рисунке ниже. Мы можем подключить однофазные нагрузки к трехфазным подцепям через переключатели или MCB.
Но для трехфазных нагрузок, таких как двигатели, их необходимо подключить к трехфазной сети через контактор или прерыватель.
Трехполюсный выключатель с соответствующим номинальным током используется для подключения трехфазного двигателя. Следует соблюдать надлежащую осторожность при подключении трехфазных проводов к двигателю, поскольку направление вращения можно изменить, просто поменяв местами любой из двух проводов трехфазной системы.
Схема подключения трехфазного двигателя к источнику питания вместе с проводкой управления показана на рисунке ниже. Это схема кнопочного управления пуском и остановом, которая включает в себя контактор (M), реле перегрузки, управляющий трансформатор и кнопки.
Контактор содержит контакты большой нагрузки, предназначенные для работы с большим током. Реле перегрузки защищают двигатель от перегрузки, отключая питание катушки контактора.
Вышеупомянутая информация и схемы показаны только для того, чтобы дать общее представление о распределении трехфазного электропитания в домах и на предприятиях.
Вместо того, чтобы концентрироваться на характеристиках различного оборудования, рейтингах автоматических выключателей и других сечениях кабелей, мы просто дали краткое представление об этой теме. Пожалуйста, свяжитесь с нами, если вам нужна дополнительная помощь по теме трехфазной проводки.
Поиск и устранение неисправностей трехфазных электродвигателей. Журнал Water Well
Часть 1. Оборудование и первоначальные методы устранения неисправностей.
Эд Баттс, PE, CPI
В этом месяце «Разработка вашего бизнеса» — это первая часть обсуждения, состоящего из двух частей, а вторая часть завершается в майском номере. Это также четвертая и последняя часть серии статей о том, почему и как выходят из строя электродвигатели, а также о некоторых распространенных методах устранения неполадок как для однофазных, так и для трехфазных двигателей.
Как и при всех процедурах устранения неполадок и обслуживания электрооборудования, особенно важных для трехфазных систем, в первую очередь следует обращать внимание на безопасность персонала и оборудования. Это означает, что лица, не прошедшие полную подготовку, не имеющие опыта и лицензии, когда это необходимо для устранения неполадок, ремонта и обслуживания электрооборудования, не должны пытаться выполнять какие-либо действия по устранению неполадок или обслуживанию.
При выполнении работ такого типа знание и соблюдение правил блокировки/маркировки, правил дугового разряда, а также распознавание и учет типа двигателя, приводной системы (т. е. процесса) системы управления и типа контроллера двигателя, и всегда необходимо наблюдать за возможными последствиями остановки процесса.
Необходимое оборудование для поиска и устранения неисправностей в трехфазных сетях
В дополнение к обычным ручным инструментам для устранения неисправностей в трехфазных системах необходимы четыре основных типа инструментов:
- Измеритель напряжения переменного тока
- Амперметр переменного тока
- Омметр
- Мегаомметр
Некоторые из этих функций могут быть объединены в одном измерителе. Вольтаметр или мультиметр, если они используются, должны иметь номинальные характеристики, быть изолированными и способными измерять весь диапазон применимого напряжения переменного тока.
Рисунок 1. Проверка напряжения трехфазной электрической системы.
Однако наибольшая точность обычно достигается при чтении в среднем диапазоне шкалы. Счетчики более низкого напряжения (менее 1000 вольт переменного тока) часто рассчитаны на 300, 600 или 1000 вольт переменного тока (В переменного тока). Хотя вольтметр с номинальным напряжением 300 В переменного тока удовлетворительно измеряет цепи на 120 и 240 вольт, он явно не подходит для цепей на 480 или 575 вольт.
Более одного вольтметра взорвалось в руках техника из-за того, что 300-вольтовый метр был подключен к 480-вольтовой цепи. Хотя счетчик на 600 вольт будет работать в цепи на 480 вольт, я рекомендую приобрести и использовать вольтметр на 1000 вольт для всех трехфазных неисправностей низкого напряжения, так как счетчик с более высоким номиналом будет иметь большую изоляцию и с меньшей вероятностью взорваться или выйти из строя.
Второй измеритель, амперметр, используется для измерения тока двигателя во время работы. Этот измеритель может состоять из счетчика с круговой шкалой или как элемент мультиметра с зажимом для усилителя и втычными проводами.
Рисунок 2. Проверка целостности предохранителей.
Еще раз, необходимо, чтобы счетчик был рассчитан на все мыслимые диапазоны ампер, которые могут потребоваться для считывания. Для большинства двигателей мощностью до 200 л.с. модель Amprobe RS-3 является отличным и надежным измерительным прибором для этой работы. Он имеет несколько поворотных шкал от 6 до 300 ампер. Зажим измерителя достаточно мал, чтобы поместиться между проводами практически любого сечения до 250 мкм и обеспечивает считывание по стрелке, а не по светодиодному или ЖК-дисплею, которые часто плохо читаются в освещенных местах.
Обычный аналоговый омметр, например модель Simpson 372, можно использовать для измерения сопротивления обмотки и изоляции двигателя, но для измерения сопротивления изоляции я рекомендую использовать электронный (конденсаторный) или кривошипный мегомметр с минимальным номиналом 500 В постоянного тока.
Эти функции также можно объединить в одном мультиметре, хотя я все же предпочитаю работать с отдельными приборами.
Первоначальные методы устранения неполадок трехфазных двигателей
Трехфазные двигатели удивительно надежны и универсальны. По сравнению с однофазными двигателями, в которых используются пусковые конденсаторы и выключатели с двумя отдельными и различными типами обмоток и ограничениями по мощности, трехфазные двигатели работают с использованием трех согласованных обмоток и имеют мощность от долей до нескольких тысяч лошадиных сил.
Таким образом, трехфазные двигатели часто удовлетворительно работают в экстремальных условиях эксплуатации и суровых условиях. При поиске и устранении потенциальной проблемы с установкой трехфазного двигателя необходимо выполнить три начальных шага в следующем порядке, прежде чем переходить к самому двигателю:
- Если это надземная установка и доступ к ней, проверьте насос и двигатель бесплатно. -ручное вращение.
- Проверьте подачу питания и напряжения на контроллер мотора.
- Проверьте расчетные характеристики двигателя, а также пусковое и управляющее оборудование и цепь управления.
Рис. 3. Типичные соединения трехфазного двигателя.
Первое, что нужно быстро проверить, это вращение двигателя и приводимого оборудования, обычно насоса. Связанный (заблокированный) двигатель или насос часто являются источником системной проблемы, и, как правило, проверка свободного вращения в случае наземного агрегата представляет собой краткую задачу.
Проверка входного источника питания и напряжения является очевидным шагом по устранению неполадок, который затем следует выполнить на всех установках, поскольку часто это единственная реальная проблема. Это состояние может состоять из перегоревшего предохранителя двигателя или цепи управления, срабатывания автоматического выключателя или перегрузки.
Проверка входного напряжения должна выполняться, как показано на рис. 1, с использованием измерений между фазами, а не между линиями и землей, поскольку обратная связь по напряжению через элементы управления или магнитную катушку часто может приводить к ошибочным и ложным показаниям.
Проверка предохранителей может выполняться на обесточенной панели с помощью настройки омметра Rx1 с каждой стороны предохранителя, как показано на рис. 2 (хотя в целях безопасности я рекомендую снять предохранитель и проверить его целостность вне панели).
В сбалансированной трехфазной системе фазные напряжения между фазами должны быть равными или очень близкими к равным. Асимметрия или дисбаланс напряжения — это измерение неравенства фазных напряжений, что является распространенной проблемой, особенно в трехфазных энергосистемах с открытым треугольником.
Дисбаланс напряжения — это мера разности напряжений между фазами трехфазной системы. Процедура расчета асимметрии напряжения была описана в колонке «Разработка вашего бизнеса» в выпуске журнала 9 за февраль 2022 г.0165 Журнал водяного колодца . Это ухудшает рабочие характеристики и значительно сокращает срок службы трехфазных двигателей.
Переходные процессы могут возникать в результате переключения линий электропередач или гармоник от частотно-регулируемых приводов, балластов люминесцентного освещения и другого электронного и емкостного оборудования. Воздействие переходных процессов на двигатели также может быть серьезным, поскольку изоляция обмотки двигателя может неуклонно ухудшаться, что приводит к дорогостоящему преждевременному отказу двигателя и незапланированному простою.
Недавняя тенденция к переоснащению двигателей с высоким или премиальным КПД существующими насосными установками также может вызвать проблемы с существующими контроллерами двигателей. Высокоэффективные электродвигатели часто рассчитаны на более высокий пусковой ток в фазе пуска, чем старые двигатели. Это может привести к мгновенному срабатыванию автоматического выключателя, особенно при пуске при полном напряжении.
Часто это можно исправить, отрегулировав положение шкалы пускового тока на автоматическом выключателе. Однако в некоторых случаях может потребоваться замена автоматического выключателя или переход на двухэлементные предохранители.
Неправильное подключение к двигателю, особенно при новых установках и двигателях с двойным напряжением, является распространенной проблемой для трехфазных двигателей. Большинство трехфазных двигателей снабжены девятью проводами, хотя в некоторых типах используются только шесть или три провода. Они сняты со статора и должны быть объединены и подключены к входному источнику питания в соответствии с типом обмотки и подаваемым напряжением.
Для каждого типа двигателя, треугольника и звезды, используется стандартная конфигурация проводки, как показано на рис. 3. Тем не менее, установщик или электрик должен всегда проверять тип двигателя и соответствующую схему подключения перед выполнением соединений распределительной коробки.
Недостаточное знание типа пускателя двигателя часто является самым большим препятствием для эффективного поиска и устранения неисправностей трехфазного двигателя. Специалисты по устранению неполадок должны приложить усилия, чтобы ознакомиться с функциями и сложностями применимого метода запуска и управления двигателем, поскольку проблема часто заключается в контроллере двигателя или цепи управления, а не в двигателе.
Проблемы с контроллером мотора или цепью управления могут быть как простыми, например, перегоревший предохранитель или сработавший автоматический выключатель, так и сложными, например, перегоревшими диодами или конденсаторами в преобразователе частоты. Знание электрических схем и понимание конкретного типа контроллера двигателя и его функций необходимо для эффективного поиска и устранения неисправностей трехфазных двигателей, особенно двигателей со сложными пускателями, обширной проводкой, внешними устройствами и цепями или многочисленными компонентами.
Рисунок 4. Общие методы управления двигателем.
Часто устранение проблемы с контроллером мотора или схемой управления приводит к устранению всей проблемы. Трехфазные двигатели способны запускать и эксплуатировать двигатели с использованием различных типов оборудования с полным и пониженным напряжением. Типичные типы показаны на рис. 4 в виде однолинейных схем, включая:
- Прямое включение (DOL) (через линию или ALS): Подает на двигатель постоянное полное напряжение при пуске
- Звезда-Треугольник: Снижает напряжение при пуске по схеме «звезда», затем переходит на схему «треугольник»
- Первичный резистор или дроссель: Соответствующее сопротивление вводится последовательно с каждой пусковой обмоткой.
- Автотрансформатор: Использует отводы обмотки для снижения пускового напряжения до 50 %, 65 % или 80 % от полного напряжения
- Часть обмотки: Запускает двигатель от одной половины обмоток двигателя, требуется специальная конструкция двигателя
- Электронное устройство плавного пуска: Электронно снижает напряжение на двигателе во время пусковой фазы
- Частотно-регулируемый привод (VFD): Работает так же, как устройство плавного пуска, но имеет возможность регулирования скорости.
За исключением частотно-регулируемого привода, все вышеперечисленные методы пуска предназначены для перехода на полные значения напряжения после того, как двигатель запустится и начнет разгоняться до полной скорости.
Многие из этих пускателей двигателей, включая частичные обмотки и автотрансформаторы, используют реле задержки времени для выполнения перехода от пуска с пониженным напряжением к работе с полным напряжением. Эти реле задержки времени часто являются источником проблемы, особенно если двигатель не может успешно разогнаться до полной скорости после запуска.
Протокол устранения неполадок, связанный с каждым контроллером, зависит от метода и типа системы и не может быть легко упрощен. Крайне важно, чтобы любой, кто рассматривает возможность устранения неполадок с этими различными методами управления двигателем, имел полное представление о типе контроллера, системе, которой он управляет, и возможных проблемах.
Электронные устройства плавного пуска и частотно-регулируемые приводы требуют еще более специальных знаний об электронных схемах, чем большинство контроллеров двигателей. Часто требуются дополнительные тестовые измерители, такие как измерители частоты и синусоидального сигнала.
При устранении неполадок в такой сложной системе, как диск, иногда трудно понять, как и с чего начать. Первоначально проверяя напряжение питания, ток и частоту, специалист по устранению неполадок может исключить проблемы, которые могут повлиять на привод двигателя или цепи выключателя. Если это работает, проверка выходного напряжения и частоты двигателя с эталонным значением или системами, использующими обратную связь управления скоростью, такими как аналоговый контур управления, является ценным этапом устранения неполадок.
Это может сэкономить драгоценное время и ускорить решение проблемы. Кроме того, путем выявления условий повышенного или пониженного напряжения часто можно избежать ложного срабатывания устройства плавного пуска или цепей неисправности привода и предотвратить возможное повреждение двигателя и устройства.
Основная процедура поиска и устранения неисправностей электронных устройств плавного пуска и приводов выглядит следующим образом:
- При наземной установке всегда проверяйте насос и двигатель на свободное вращение.
- Проверьте входное напряжение от источника переменного тока, поступающего на устройство плавного пуска или привод.
- Проверьте компоненты устройства на предмет обгоревших паяных соединений или ослабленных соединений, включая преобразователь переменного тока в постоянный, печатную плату, фильтр постоянного тока и преобразователь постоянного тока в переменный, которые обеспечивают питание двигателя.
- Проверьте сам двигатель.
После того, как источник питания (трехфазное напряжение между фазами), контроллер двигателя, соответствующая схема управления и соединения распределительной коробки проверены на правильные значения и правильность функционирования, специалист по устранению неполадок может обратиться к самому двигателю.
__________________________________________
На этом мы завершаем первую из двух частей, посвященных поиску и устранению неисправностей трехфазного двигателя и электрической системы. Мы завершим эту тему и серию в мае обсуждением поиска и устранения неисправностей трехфазного двигателя.
А пока работайте безопасно и разумно.
Узнайте, как добиться успеха в своем бизнесе
Проектирование вашего бизнеса: серия статей, служащих руководством по работе с подземными водами , представляет собой подборку работ Water Well Journal обозреватель Эд Баттс, PE, CPI. Для получения дополнительной информации нажмите здесь.
Эд Баттс, PE, CPI , главный инженер компании 4B Engineering & Consulting, Салем, Орегон. Он имеет более чем 40-летний опыт работы в сфере бурения скважин, специализируясь на проектировании и управлении бизнесом. С ним можно связаться по адресу [email protected].
Страница не найдена
Ой!
Страница, которую вы ищете, не может быть найдена.
Веб-страница, содержащая информацию, которую вы искали, расположенная на веб-сайте https://wwpp.co, могла быть удалена, ее адрес изменился или она больше недоступна.
Вы можете использовать окно поиска ниже или выбрать производителя слева, чтобы продолжить. Если ваш поиск не увенчался успехом, позвоните нашим специалистам по продажам или технической поддержке по бесплатному номеру 1-866-960-9621.
Введите ключевые слова для поиска.
Показать:
Продукты
Информационные страницы
Расширенный поиск
Показаны продукты 1–25 из 25 всего
Контроллеры F&W Artesian Drive БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Особенности и преимущества: Artesian Drive® — это линейка специально запрограммированных частотно-регулируемых приводов (VFD), которые повышают производительность стандартных центробежных… Артикул: 4306 | ||
Центробежный насос F&W CJ101C303AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101C303AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 3PH HP: 3 ступени: 3 Вольт:. .. Артикул: 1024 | ||
Центробежный насос F&W CJ101C203AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101C203AB (новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 3PH HP: 2 ступени: 3 Вольт:… Артикул: 1023 | ||
Центробежный насос F&W CJ101B203AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B203AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 3PH HP: 2 ступени: 2 Гц… Артикул: 1022 | ||
Центробежный насос F&W CJ101B153AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B153AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 3PH HP: 1-1/2 ступени:. .. Артикул: 1021 | ||
Центробежный насос F&W CJ101B103AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B103AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 3PH HP: 1 Ступени: 2 Вольт:… Артикул: 1020 | ||
Центробежный насос F&W CJ101B073AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B073AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 3PH HP: 3/4 ступени: 2… Артикул: 1019 | ||
Центробежный насос F&W CJ101B101AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B101AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 1PH HP: 1 Ступени: 2 Вольт:. .. Артикул: 1014 | ||
Центробежный насос F&W CJ101B071AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B071AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 1PH HP: 3/4 ступени: 2… Артикул: 1013 | ||
Центробежный насос F&W CJ101P203 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P203 Материал рабочего колеса: композитный PH: 3PH HP: 2 ступени: 2 Вольт: 230/460 Гц: 60 Гц Двигатель… Артикул: 1010 | ||
Центробежный насос F&W CJ101P071 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P071 Материал рабочего колеса: композитный PH: 1PH HP: 3/4 ступени: 2 Вольт: 115/230 Гц: 60 Гц. .. Артикул: 1001 | ||
Центробежный насос F&W CJ101P153 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P153 Материал рабочего колеса: композитный PH: 3PH HP: 1-1/2 ступени: 2 Вольт: 230/460 Гц: 60 Гц… Артикул: 1009 | ||
Центробежный насос F&W CJ101P103 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P103 Материал рабочего колеса: Композитный PH: 3PH HP: 1 Ступени: 2 Вольт: 230/460 Гц: 60 Гц Двигатель… Артикул: 1008 | ||
Центробежный насос F&W CJ101P073 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P073 Материал рабочего колеса: композитный PH: 3PH HP: 3/4 ступени: 2 Вольт: 230/460 Гц: 60 Гц. .. Артикул: 1007 | ||
Центробежный насос F&W CJ101D301 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101D301 Материал рабочего колеса: композитный PH: 1PH HP: 3 ступени: 3 Вольт: 230 Гц: 60 Гц Корпус двигателя:… Артикул: 1006 | ||
Центробежный насос F&W CJ101D201 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101D201 Материал рабочего колеса: композитный PH: 1PH HP: 2 ступени: 3 Вольт: 115/230 Гц: 60 Гц Двигатель… Артикул: 1005 | ||
Центробежный насос F&W CJ101P201 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P201 Материал рабочего колеса: композитный PH: 1PH HP: 2 ступени: 2 Вольт: 115/230 Гц: 60 Гц Двигатель. .. Артикул: 1004 | ||
Центробежный насос F&W CJ101P151 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101P151 Материал рабочего колеса: композитный PH: 1PH HP: 1-1/2 ступени: 2 В: 115/230 Гц: 60 Гц… Артикул: 1003 | ||
Центробежный насос F&W CJ101P101 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ ДОСТАВКА НА НАЗЕМНУЮ ДОСТАВКУ Центробежный насос CJ101P101 (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: композитный PH: 1PH HP: 1 Ступени: 2… Артикул: 1002 | ||
Центробежный насос F&W CJ101C301AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101C301AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 1PH HP: 3 ступени: 3 Вольт:. .. Артикул: 1018 | ||
Центробежный насос F&W CJ101C201AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101C201AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 1PH HP: 2 ступени: 3 Вольт:… Артикул: 1017 | ||
Центробежный насос F&W CJ101B201AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B201AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 1PH HP: 2 ступени: 2 Вольт:… Артикул: 1016 | ||
Центробежный насос F&W CJ101B151AB Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101B151AB (совершенно новая модель с низким содержанием свинца) Материал рабочего колеса: латунь PH: 1PH HP: 1-1/2 ступени:. .. Артикул: 1015 | ||
Центробежный насос F&W CJ101D303 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101D303 Материал рабочего колеса: композитный PH: 3PH HP: 3 ступени: 3 Вольт: 230/460 Гц: 60 Гц Двигатель… Артикул: 1012 | ||
Центробежный насос F&W CJ101D203 Перейти на веб-сайт F&W — Насосы CJ101 БЕСПЛАТНАЯ НАЗЕМНАЯ ДОСТАВКА Центробежный насос CJ101D203 Материал рабочего колеса: композитный PH: 3PH HP: 2 ступени: 3 Вольт: 230/460 Гц: 60 Гц Двигатель… Артикул: 1011 |
Показаны продукты 1–25 из 25 всего
Электропроводка трехфазного двигателя | Хобби-машинист
Karl_T
Поддерживающий элемент H-M — поддерживающий элемент
#1
У моего сына есть инструмент cinci № 2 и шлифовальный станок, который он купил, чтобы вытащить его.
Он знает, что он работал на 440 в магазине, из которого он вышел. Сегодняшняя проверка 9-го провода двигателя показала, что все номера выводов стали нечитаемыми. Он говорит, что не может найти читаемую табличку с указанием того, как его подключить. соединительная коробка двигателя ОЧЕНЬ ДОЛГО была заполнена маслом.
Можно ли с уверенностью предположить, что приведенная ниже схема подключения является правильной???
Если да, то он знает T1 T2 T3, потому что именно они подключены к входящей линии
Есть ли электрическая проверка ID T4 — T9. Он немного знает, потому что там три пары проводов.
ErichKeane
Изготовление металлолома с невероятной скоростью.
907:30 10 апреля 2020 г.
#2
См. здесь: https://electronics.stackexchange.com/questions/269189/identify-unmarked-leads-on-a-9-lead-motor
На самом деле существует 2 типа схем подключения для трехфазного двигателя, Дельта или Y. Это схема подключения, которая показывает, что это означает:
Так что, к сожалению, нет действительно хорошего способа узнать, основываясь на том, как он подключен. Тем не менее, я нашел эти видео полезными для выяснения этого:
он начинает как с того, как определить, так и помогает понять, какой провод какой!
Karl_T
Поддерживающий элемент H-M — поддерживающий элемент
#3
Я предполагаю, что Y должен быть подавляющим большинством двигателей меньшего размера. Я сделал десятки и никогда не видел схемы подключения низкого напряжения, такой как низкая дельта выше.
ErichKeane
Изготовление металлолома с невероятной скоростью.
#4
Карл_Т сказал:
Я предполагаю, что Y должен быть подавляющим большинством двигателей меньшего размера. Я сделал десятки и никогда не видел схемы подключения низкого напряжения, такой как низкая дельта выше.
Нажмите, чтобы развернуть…
Я думаю, что Y более распространен, но я не думаю, что это имеет какое-либо отношение к размеру двигателя. Тем не менее, омметр и несколько минут позволяют достаточно легко определить. По сути, вы группируете провода на основе непрерывности, а не непрерывности. Двигатель Y будет иметь 3 пары плюс 1 группу из 3. Двигатель треугольника будет иметь 3 группы по 3.
Доктор Ульма
Бесконечно Любопытный
#5
большинство двигателей, которые увидят потребители, подключены по схеме «звезда»
Karl_T
Поддерживающий элемент H-M — поддерживающий элемент
#6
Парень прошлой ночью протер все провода растворителем. После того как они высохли, при ярком свете он смог различить номера на нескольких проводах. задача решена.
Трансформаторы, фазопреобразователи и ЧРП | Электропроводка 3-фазного 2-скоростного двигателя — нужна помощь | Практик-механик
телеведущий
Титан
#1
У меня двигатель нуждается в проводке, мне интересно, может ли кто-нибудь подтвердить, что то, что я собираюсь сделать, кажется правильным.
Рассматриваемый двигатель представляет собой двухскоростной трехфазный двигатель мощностью 1,5 л. с. (0,375 л.с. на низкой скорости). Сделано GE, модель 5K204D1814, чего она стоит. выходит 6 проводов. какой-то шутник снял табличку со схемой подключения, так что я не уверен на 100%, как это сделать.
Насколько я понимаю, если вы подключите L1,2,3 к основному источнику питания, он будет вращаться с низкой скоростью, и что если вы замкнете L1,2,3 вместе и подключите L4,5,6 к основному источнику питания, он будет вращаться на высокой скорости. может ли кто-нибудь подтвердить, если это действительно правильно? Не хотелось бы подключить его и случайно что-нибудь сжечь.
спасибо,
Джон
Марк МакГрат
Алмаз
#2
Google двигатель Даландера
телеведущий
Титан
#3
Марк МакГрат сказал:
Двигатель Google Даландера
Нажмите, чтобы развернуть…
вроде полезно, но есть несколько разновидностей, как узнать, какой из них у вас есть? Я полагаю, что это не ракетостроение, но я действительно не хочу случайно выпустить дым из этой штуки.
Джраф
Титан
#4
У вас есть номера на проводах?
Только по описанию, что он 2-скоростной и имеет шесть проводов, вы все еще не знаете, была ли это обмотка 2 sp 2 или 2 sp 1. Тогда, если это был 2S1W, есть три разных соединения в зависимости от типа: Постоянная мощность, Постоянный крутящий момент или Переменный крутящий момент. С номерами на проводах мы можем помочь вам прозвонить их с помощью мультиметра, чтобы, по крайней мере, сузить выбор.
Джим Розен
Алмаз
#5
Хардиндж?
И дважды проверьте рейтинг HP. Если это половина л.с. на низкой скорости, то, скорее всего, это последовательный полюс, я думаю.
Джраф
Титан
#6
Джим Розен сказал:
Хардиндж?
И дважды проверьте рейтинг HP. Если это половина л.с. на низкой скорости, то, скорее всего, это последовательный полюс, я думаю.
Нажмите, чтобы развернуть…
Вы, скорее всего, правы, двигатели 2S1W, как правило, более распространены, и да, если HP на паспортной табличке составляет 1/2 на низкой скорости, то это соединение с последовательным полюсом (постоянный крутящий момент). Если это отношение скоростей 4:1, это будет VT, и если HP одинаково на обеих скоростях, т. е. вообще не говорится, что есть разные HP, то это соединение с постоянным HP.
…или, к сожалению, все еще может быть 2S2W.
телеведущий
Титан
#7
Джраеф сказал:
У вас есть номера на проводах?
Только по описанию, что он 2-скоростной и имеет шесть проводов, вы все еще не знаете, была ли это обмотка 2 sp 2 или 2 sp 1. Тогда, если это был 2S1W, есть три разных соединения в зависимости от типа: Постоянная мощность, Постоянный крутящий момент или Переменный крутящий момент. С номерами на проводах мы можем помочь вам прозвонить их с помощью мультиметра, чтобы, по крайней мере, сузить выбор.
Нажмите, чтобы развернуть…
они пронумерованы от 1 до 6. это не постоянная мощность, так как мощность оценивается 1,5 для полной скорости (1140 об / мин) и 0,375 для половинной скорости (570
Джим, это от заклепки 918, но я купил только шкаф и привод. и, конечно же, в двигателе отсутствует табличка, показывающая, как подключать обмотки.кто-то уже возился с органами управления и т. д., что отстой, потому что теперь мне нужно сделать новую тормозную рукоятку и управляющие тяги … но я полагаю, что это лучше, чем без привода и без тормоза. Теперь он находится под заклепкой 608, которую я очень медленно собирал и исправлял.0003
телеведущий
Титан
#8
на данный момент я просто хочу, чтобы он работал на полной скорости и подключил его к частотно-регулируемому приводу. не намного больше денег и намного проще, чем подключение с помощью контакторов и т. Д. , Чтобы изменить скорость и изменить ее.
петерх5322
Алмаз
#9
телеведущий
Титан
#10
спасибо, проверю.
телеведущий
Титан
#11
твой показывает постоянное HP, мой, я уверен, нет. у вас есть информация для других типов?
петерх5322
Алмаз
#12
Постоянный крутящий момент, переменный крутящий момент и постоянная мощность являются вариациями на тему.
Соединения несколько отличаются, но концепция очень похожа.
Суть упражнения в том, что двигатель симметричен относительно оси, и можно выбрать любую из трех осей в качестве опорной и вывести остальные.
Разумеется, эти три оси механически смещены на 120 градусов.
телеведущий
Титан
№13
, поэтому я уверен, что мои обмотки выглядят так:
T1 — T2 = 7,9 Ом
T1 — T3 = 7,8 Ом
T1 — T4 = 2,1 Ом
T1 — T5 = 6,0 Ом
T1 — T6 = 6,0 Ом
T4 — T5 = 4,0 Ом
T4 — T6 = 4,0 Ом
T5 — T6 = 4,0 Ом
и т.д.
Все обмотки ≈ 2 Ом
Так выглядит при подключении 1,2,3 к питанию , он работает медленно, а когда 4,5,6 подключены к источнику питания с 1,2,3, закороченными вместе, он работает быстро. что произойдет, если вы подключите 4,5,6, а остальные не замкнете вместе? работает быстро, но с меньшей мощностью?
как называется такой двигатель? Постоянный крутящий момент? Зачем им делать их вместо того, чтобы использовать конструкцию постоянного HP, если все, что для этого потребуется, это немного по-другому подключить обмотки внутри?
петерх5322
Алмаз
№14
Каждый тип имеет свое предназначение.
Постоянный крутящий момент, пожалуй, наиболее популярен в машиностроении.
Хорошим источником информации о различных вариантах является каталог магнитных пускателей электродвигателей компании Square D.
Джейсон Паткинс
Горячекатаный
№15
Извините, что поднимаю древнюю тему, но я думаю, что информация в этой теме имеет отношение к моему вопросу.
У меня есть старый (60-х годов) португальский токарный станок. Я купил его (очень) подержанным, и электрический переключатель скорости (высокая / низкая) был сломан. Двигатель имеет шесть проводов и двухскоростной вариант. Из того, что я читаю, шестипроводные, двухскоростные, трехфазные двигатели бывают только двух основных видов. Первая — это две отдельные обмотки, одна для высокой скорости, другая для низкой. Подайте питание на один набор для низкой скорости, переключите питание на другой набор, отключив от первого, и вы получите высокую скорость. Второй стиль — это стиль ведущего диаграммы, опубликованный выше.
Я почти уверен, что мой мотор второго типа, как у ведущего. Вот мое обоснование, пожалуйста, посмотрите, есть ли смысл, прежде чем я сожгу двигатель, пытаясь сделать это неправильно:
1) Между двумя группами проводов есть непрерывность (но сопротивление не помню), т.е. две красные/зеленые/желтые группы исходят от двигателя, и две красные имеют непрерывность. Если бы это были две отдельные обмотки, у них не было бы непрерывности, верно?
2) Первоначально мы неправильно подключили входящие три фазы к набору, который, как я теперь знаю, является «высокоскоростным» соединением двигателя. Мы сделали это, не закорачивая медленную скорость вместе. Двигатель работал, но очень медленно набирал скорость и не имел мощности (не мог даже повернуть патрон ни на какой, кроме самой низкой механической передачи). Как только мы отсоединили этот набор и подключили к низкоскоростному набору, двигатель разгоняется до нужной скорости и имеет хорошую мощность. Я благодарен, что мы не сожгли двигатель при этом, но когда мы подключили его таким образом, если бы это были «две отдельные обмотки», он должен был работать хорошо, а не так, как он. Так что либо высокоскоростная обмотка наполовину сгорела, либо она должна быть типа «низкоскоростная звезда, высокоскоростная треугольник», верно?
Комбинации скоростей токарного станка показывают, что высокая скорость в 2 раза меньше низкой скорости. Я думаю, когда я увидел табличку на двигателе, низкая скорость была 0,8 кВт, а высокая скорость была 1,3 кВт.
Мотор спрятан в днище, и будет очень сложно найти замену, если я испорчу этот. С другой стороны, мне нужны высокие доступные скорости. Указывает ли свидетельство на то, что высокоскоростные 1,2,3 закорочены вместе, 4,5,6 подключены к входящему 3ф?
Должен ли я пойти дальше и попробовать, или есть что-то еще, что я могу проверить, чтобы убедиться в этом, прежде чем добавлять в него сок?
Спасибо!
телеведущий
Титан
№16
ДжейсонПаткинс сказал:
?
Должен ли я пойти дальше и попробовать, или есть что-то еще, что я могу проверить, чтобы убедиться в этом, прежде чем добавлять в него сок?
Спасибо!
Нажмите, чтобы развернуть. ..
посмотрите на схему двумя постами выше, вы должны быть в состоянии методично измерить сопротивление между каждым проводом и записать результаты в небольшую таблицу. если проводка такая же, как у меня, должно быть какое-то базовое значение на одной катушке, которое будет вашим самым низким сопротивлением. самое высокое сопротивление, которое вы измеряете, будет между четырьмя катушками и должно быть в 4 раза больше этого наименьшего числа.
Если ваш двигатель подключен так же, как и мой, он не будет работать на полной мощности на высокой скорости без замыкания других проводов. вам нужно, чтобы эти катушки работали параллельно (что и происходит при коротком замыкании низкоскоростных проводов), чтобы получить полную мощность от двигателя.
Я не думаю, что вы можете повредить двигатель для короткого теста, если это двигатель с одним напряжением, но если он получает питание, но не вращается, вы можете сжечь его, если оставите его в таком состоянии надолго.
Джейсон Паткинс
Горячекатаный
# 17
Хорошо, я измерил сопротивления и думаю, что они похожи, но не совсем такие же, даже не обязательно одинаковые соотношения, но похожие схемы:
T1-T2, T2-T3, T1-T3, все 13 Ом
T4-T5, T5-T6, T4-T6, все 13 Ом
T1-T4, 8 Ом
T1-T5, 8 Ом
T1-T6, 16 Ом
T2-T4, 8 Ом
T2-T5, 16 Ом
T2 -T6, 8 Ом
T3-T4, 16 Ом
T3-T5, 8 Ом
T3-T6, 8 Ом
Я нумерую провода в соответствии с их порядком в клеммной колодке, но я думаю, что T4 и T6 могут быть в неправильном порядке, если бы я переименовал их, мои результаты были бы тогда:
T1-T4, 16 Ом
T1-T5, 8 Ом
T1-T6, 8 Ом
T2-T4, 8 Ом
T2-T5, 16 Ом
T2-T6, 8 Ом
T 3-T402, 8 Ом
T3-T5, 8 Ом
T3-T6, 16 Ом
Итак, это выглядит очень похоже, за исключением того, что в моем случае:
1) Сопротивление (13 Ом) между первыми тремя (T1-T2, T2- Т3, Т1-Т3) такое же, как между второй тройкой (Т4-Т5, Т5-Т6, Т4-Т6), и не было в примере ведущего.
2) В моем случае пара Т1-Т4 имеет более высокое сопротивление, чем Т1-Т5 и Т1-Т6, а не ниже, как у ведущего. Аналогично для T2-T5 и T3-T6.
Так что, думаю, больше нечего тестировать. Зная, что я делаю, должен ли я быть уверен, что не испорчу мотор, связав T1-T2-T3 и поставив входящий 3ph на T4-6 на несколько секунд?
Джейсон Паткинс
Горячекатаный
# 18
Для архивных целей это сработало как шарм. Свяжите Т1-Т2-Т3, включите Т4-6. Скорость в этом случае в 2 раза меньше низкой скорости. Теперь нужно найти замену выключателю.