Содержание

Подключение трехфазного двигателя на 220 вольт

 Для правильного подключения трехфазного электродвигателя в однофазную сеть, необходимо использовать частотный преобразователь со входом 220 вольт и трехфазным выходом на 380 вольт (3 х 220вольт). Частотный преобразователь позволяет осуществлять плавный пуск электродвигателя, регулировать обороты электродвигателя, а так же реализовать реверсивное вращение.

 

 

ссылка на частотный преобразователь

 

 

Подключение по схеме треугольник

 

 

 

Подключение по схеме звезда

 

 

 

 

Подключение с пусковым конденсатором

 

 

Емкость конденсатора рассчитывается по формуле:


С = 66·Рном

, где С — емкость конденсатора,

Рном

— мощность двигателя в кВт.

на каждые 100 ватт мощности двигателя, требуется  7мкф емкости конденсатора.

 

 

Для расчета емкости конденсаторов используйте удобный

Калькулятор емкости конденсаторов для электродвигателей

ТреугольникомЗвездой

Схема соединения обмоток двигателя, Y/Δ

Мощность электродвигателя, Вт

Напряжение в сети, В

Коэффициент мощности, cosφ

КПД электродвигателя, (от 0 до 1)

   

Требуемая емкость рабочего конденсатора, мкФ

Требуемая емкость пускового конденсатора, мкФ

В качестве разделителя дробной части обязательно используйте точку, а не запятую!

Как подключить трехфазный электродвигатель в сеть 220 В

Как подключить трехфазный электродвигатель в сеть 220 В — нередко возникает необходимость в домашнем хозяйстве или при проведении ремонтных работ произвести подключение трехфазного электродвигателя в сеть 220 Вольт. Эти устройства работают от напряжения 380 В. Но, как известно, в большинстве домов питающая сеть имеет лишь 220В. Как подключить трехфазный электродвигатель в сеть 220В? Узнаем об этом из нашей статьи.

Рассмотрим пример со швейной машиной. Проблем на фабрике с подключением, конечно, не возникнет. Но для работы в однофазной сети нужно электродвигатель слегка подправить. Например, изменить схему подключения обмоток с формы звезды на треугольник. Конечно, нужно придерживаться полярности. Итак, как подключить трехфазный электродвигатель в сеть 220 В.
Мощность мотора швейной машины составляет 0,4 кВт. Если можно приобрести пусковые металлобумажные конденсаторы МБТТ, МБГО или МБГО с 50 или 100 мкФ емкостью и рабочим напряжением от 450 до 600, то проблем с пуском не будет. Однако стоить они могут слишком дорого. Поэтому лучше поискать альтернативные «дешевые» варианты решения проблемы. Таким может стать кратковременное подключение дополнительного электролитического конденсатора. Он должен работать всего две-три секунды, не более. Ведь его работа необходима лишь для запуска электродвигателя. Тогда последний будет функционировать в двухфазном режиме и терять до половины мощности. Запас ее, впрочем, можно предусмотреть. Кстати, такая же потеря мощности будет наблюдаться и при работе с фазосдвигающим конденсатором.

Недостаток метода и решение проблемы

Многим известно, что в сети переменного тока электролитический конденсатор очень быстро разогревается. Электролит в нем вскипает и взрывается. Практика показала, что это может произойти за период от десяти до пятнадцати секунд. Но если этот конденсатор включить лишь на полторы секунды, используя небольшое сопротивление, то устройство не повредится, так как времени для разогрева у него попросту не будет. В стиральных машинах для кратковременности используется кнопка ПНВС. Она трехконтактная. Два из них имеют фиксацию, а один обходится без нее. За счет последнего контакта конденсатор включается и перестает действовать после прекращения нажатия.

Напряжение на электролитических конденсаторах должно быть не меньше 450В. Поэтому емкость можно набрать из нескольких конденсаторов, помещенных в защитную коробку. Такая схема подключения на практике доказала свою жизнеспособность. Правда, опыты проводились лишь с электрическими двигателями, мощность которых составляла менее одного кВт. Для более мощных моторов, скорее всего, потребуется включение с конденсатором небольшого резистора с ограничением тока и необходимой рассеивающей мощностью.

Второй способ

Рассмотрим, как подключается асинхронный с короткозамкнутым ротором трехфазный электродвигатель в однофазной сети. На практике даже при наилучшем выборе емкости фазосдвигающего конденсатора вращающий момент не будет выше тридцати пяти процентов номинального. Это получается из-за того, что протекающий по одной обмотке ток, сдвинут по фазе относительно других обмоток. Поэтому в магнитном поле статора создается еще одна составляющая, помимо той, что вращает ротор в необходимом направлении.

Образованная компонента же вращается в противоположную сторону и тормозит ротор, сокращая момент на валу и тратя энергию, нагревая обычные и магнитные провода мотора. Но если отключить обмотку, то вращающий момент увеличится до сорока одного процента. А если изменить в ней направление тока и снова подключить, то он увеличится еще больше и может составить до пятидесяти восьми процентов.

Как еще улучшить процесс

Такая оптимизация процесса возможна не только благодаря смене направления вращения компоненты. Получается еще и компенсация полей других обмоток, которые совпадают в направлении и не участвуют в роторном вращении. Пуск двигателя улучшится и при использовании двух фазосдвигающих конденсаторов. Их емкости должны быть одинаковы. Такие показатели рассчитываются по специальной формуле. Они проверяются путем измерения напряжения на обмотках и должны показать примерно одинаковые результаты.

Равные напряжения можно встречно параллельно соединить штриховой линией.

Как подключить трехфазный двигатель в сеть 220 Вольт

Радиолюбителям часто приходится использовать рассматриваемые моторы. Поэтому о том, как подключить трехфазный электродвигатель в сеть 220В, им знать крайне необходимо. Уже известно, что для этого совсем необязательно иметь трехфазную сеть. Лучше подключить третью обмотку посредством фазосдвигающего конденсатора. Для нормальной работы двигателя емкость конденсатора меняют, учитывая количество оборотов. На практике это условие выполнить очень трудно. Из положения выходят двухступенчатым путем: двигатель включают с пусковой емкостью и оставляют при этом рабочую. В ручном режиме он переключается на рабочую.

Конденсатор используется только бумажного типа, а его рабочее напряжение должно быть больше в полтора раза, чем напряжение сети. Схема реверсирования двигателя с конденсаторным пуском довольно проста. При срабатывании переключателя мотор изменяет направление вращения. Но нужно знать особенности эксплуатации таких двигателей. Если по обмотке устройство работает вхолостую, ток будет протекать от двадцати до сорока процентов больше номинального. Поэтому при функционировании с нагрузкой рабочая емкость должна быть уменьшена. Если мотор перегрузится, он отключится, и для нового запуска потребуется опять включать конденсатор пуска.

Подключить электродвигатель в сеть 220В можно любой, даже трехфазный. Однако некоторые из них могут работать плохо. Примером является двойная клетка короткозамкнутого ротора МА. Но если схема включения выполнена правильно, и грамотно подобраны необходимые параметры конденсаторов, рабочий процесс будет отличным. Например, удачными вариантами являются асинхронные моторы А, АО2, АПН, АО, АОЛ и УАД.

Минусы трех способов подключения

Недостатками вышеописанных путей является следующее:

  • теряется половина от номинальной мощности
  • при питании от однофазной сети запускаются не все модели электродвигателей;
  • должны использоваться рабочая и пусковая емкости;
  • при холостом ходе ток протекает больше от двадцати до сорока процентов номинального;
  • для автоматизированного процесса отключения конденсатора пуска и замены бумажных элементов на электролитические используются дополнительные обороты.

Четвертый способ

Исключить эти недостатки можно, используя следующий способ. Как подключить трехфазный электродвигатель в сеть 220В? В трехфазном напряжении каждая кривая сдвинута на треть по сравнению с другой. Так как частота сети составляет пятьдесят герц, период будет равен двадцати микросекундам. Тогда его треть составит 6,666… микросекунд. Возьмем синусоидальное напряжение однофазное на 220В и 50 Герц. Если пропустить его через схему задержки на треть периода, получится сдвинутое напряжение, которое будет по амплитуде и частоте равно первоначальному. Если и его пропустить через такую же схему задержки, то получится сдвинутое напряжение еще на треть периода. Не знаете, как подключить трехфазный двигатель в однофазную сеть? Схема должна быть изучена вами максимально подробно. А выглядит она следующим образом.

В механизм входит БП и генератор импульсов плюсовой полярности на трансформаторе. Блок питания состоит из второй обмотки трансформатора, выпрямительного моста и стабилизатора. Генератор собран в третьей обмотке трансформатора, резисторе и выпрямителе на диодах. Стабилитрон защищает входы детали от случайного увеличения выше допустимого напряжения, то есть более двенадцати Вольт. В детали находится формирователь прямоугольных импульсов. На выходе подаются прямоугольные импульсы в пятьдесят Герц плюсовой полярности. При трансформации трехфазного тока могут быть применены три однофазных или специальные трехфазные трансформаторы с сердечником в форме стержней. Соединяться отдельные элементы должны по схеме «звезда-звезда».

Заключение

Таким образом, решение вопроса, как подключить трехфазный электродвигатель в сеть 220В, возможно несколькими путями. Какой-то из них реализовать сложнее, но при этом процесс будет проходить лучше. Другие способы проще, но и не лишены недостатков.

Замена трехфазного двигателя с 440 В на 220 В с вопросом по схеме

Заданный вопрос

Изменено
3 года, 7 месяцев назад

Просмотрено
10 тысяч раз

\$\начало группы\$

Некоторая путаница в подключении моей новой машины. Я купил шлифовальную машину, не подключенную, и парень подумал, что она подключена к 440. Мне нужно настроить ее на 220. На двигателе написано 220/440. У меня есть 220 в моем магазине с фазовым преобразователем, делающим ногу 220, которая управляет другим 3-фазным оборудованием.

В настоящее время двигатель питается от двух комплектов из 3 проводов.

Одна ножка подачи 1a соединяется с U1, одна ножка подачи 1b с V1, одна ножка подачи 1c с W1. W2 соединяется с W5, V2 и V5, U2 с U5. Как показано на рисунке справа внизу. Но W6,U6,V6 не соединены вместе, как я вижу на схеме, а присоединены второй комплект проводов. Нога 2a соединяется с W6, ветвь 2b соединяется с U6, ветвь 2c соединяется с V6

  1. Почему W6, V6, U6 не присоединены, а скорее присоединены к другим проводам питания? Он сказал, что машина работает.
  2. Как настроить на 220 В?

Вот тарелка.

На машине есть панель управления, которая регулирует мощность, поступающую на двигатель, я полагаю, синхронизированно для запуска и работы. Есть 2 комплекта проводов, питающих двигатель. L1 L2 L3 и еще один набор L1 L2 L3 оба отрываются от механических реле. Я думаю, что один набор питает старт, а другой набор питает бег, но это только предположение. Старый владелец позвонил мне сегодня и сказал, что он подключен к 440. Мне трудно понять схему, чтобы подключить его к 220.

При подключении DELTA
L1 к U1,U5,W2,W6
L2 к V1,V5,U2,U6
L3 к W1,W5,V2,V6

При этом используются все 12 проводов двигателя и 3 ножки подачи .
К чему подсоединять остальные 3 провода ножки подачи?

  • двигатель
  • асинхронный двигатель
  • фаза

\$\конечная группа\$

4

\$\начало группы\$

Трудно сказать, но вы должны посмотреть паспортную табличку двигателя, он может работать на 4 номинальных напряжениях. Если вы сказали 220/440, то должно быть 127 В (пуск 2), 220 В (пуск 2), 254 В (пуск), 440 В (пуск).

При использовании частотно-регулируемого привода двигатель должен быть подключен как НИЖНИЙ/ПУСК 2 треугольник.

РЕДАКТИРОВАТЬ:

Некоторые ошибки:
Если вы сказали 220/440, то должно быть 380 В (пуск 2), 220 В (пуск 2), 760 В (пуск), 440 В (пуск).

Черные линии обозначают перемычки, которые вы могли видеть смонтированными. Соединительные провода идут там, где изображена LINE: U1, V1, W1. Все перемычки должны быть установлены точно так, как показано на рисунке.

\$\конечная группа\$

\$\начало группы\$

У вас есть рабочий двигатель с двойным напряжением, соединенным звездой и соединенным треугольником. Диаграмма выше согласуется с вашим чертежом соединения.

Соединение звездой позволяет запускать якорь при пониженном токе и крутящем моменте для преодоления блокировки ротора, а соединение треугольником обеспечивает полную скорость и номинальный ток.

Вы должны получить 12-проводной стартер звезда-треугольник. Но если вы собираетесь игнорировать (чего не следует) большой ток при запуске, вы хотите подключить низковольтный треугольник на 220 В. Соединение Run(2Δ). Где U1, U5, W2, W6 соединены вместе (1, 7, 6, 12).

Для 220 В: катушки U1-U2 и катушки U5-U6 соединены параллельно.

Для 440 В: катушки U1-U2 и катушки U5-U6 соединены последовательно.

Где значения IEC U, V, W равны 1-12, как показано на рисунке:

Надежные решения сегодня

\$\конечная группа\$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

Однофазный ЧРП с входом/выходом 220 В

Этот документ предназначен в качестве общего руководства или учебного пособия по установке ЧРП на однофазные источники питания. Два обсуждаемых напряжения питания будут включать системы 220 В (230 В, 240 В) и 480 В с однопроводным заземлением (SWER).

Мощность однофазных частотно-регулируемых приводов включает: 1 л.с., 2 л.с., 3 л.с. и 5 л.с., такие однофазные частотно-регулируемые приводы можно купить на ATO.com .

ЧРП (преобразователь частоты) обеспечивает множество преимуществ, в том числе:

  • Мягкий пуск двигателя и нагрузка снижают механические нагрузки и снижают гидравлический удар с помощью насосов.
  • Значительно снизить пусковой ток с 600–800 % до <110–150 % для двигателей с номиналом FLC.
  • Автоматизация и управление технологическим процессом с использованием встроенной электроники для обеспечения постоянного давления/расхода в системах орошения или других насосных приложений.
  • Возможность управления скоростью двигателя.
  • Энергосбережение: Существенная экономия энергии может быть достигнута для вентиляторов и насосов.

Комбинация мощности, двигателя и преобразователя частоты

Требуемый частотно-регулируемый привод будет зависеть как от двигателя, так и от доступного источника питания. Общее правило, которое следует помнить, заключается в том, что частотно-регулируемый привод может преобразовывать однофазное питание в трехфазное, но он не может обеспечить более высокое выходное напряжение, чем то, которое вы подаете. выход. Он будет обеспечивать только 220V 3-х фазный выход. Если у вас есть источник питания на 480 В, вы можете выводить трехфазное напряжение 415 В — более низкое напряжение.

В основном у вас могут быть 4 ситуации:

Источник питания Двигатель Комментарии
220 В, одна фаза 220 В треугольник / 415 В звезда частотно-регулируемый привод 220 В; подключение двигателя для 220 В Delta
220В одна фаза 415 В Дельта Двигатель подходит только для 415 В, потребуется повышающий трансформатор для увеличения входного напряжения до > 415 В и частотно-регулируемый привод 415 В с дросселем на шине постоянного тока.
480 В, одна фаза, одножильный провод с заземлением 415 В Дельта Преобразователь частоты 480 В с дросселем звена постоянного тока; подключить двигатель для 415В Delta
480 В, одна фаза, одножильный провод с заземлением 220 В треугольник / 415 В звезда Преобразователь частоты 480 В с дросселем звена постоянного тока; подключение двигателя для 415 В Star

Преобразователь частоты

Стандартный частотно-регулируемый привод предназначен для работы как от однофазного, так и от трехфазного источника питания, что делает его идеальным для однопроводной линии заземления или однофазных систем питания.

  • Стандартный частотно-регулируемый привод может работать от однофазного источника питания 480 В переменного тока (однопроводное заземление) и обеспечивает управляемый трехфазный выходной сигнал 415 В для двигателя.
  • Стандартный частотно-регулируемый привод (или аналогичный) может работать от однофазного источника питания 220 В переменного тока и подавать на двигатель управляемый трехфазный выход 220 В.

При выборе частотно-регулируемого привода важно определить ток полной нагрузки двигателя при напряжении, при котором он будет работать. Для этого полезно знать взаимосвязь между звездными и линейными напряжениями и токами.

Это особенно важно, когда двигатель 415 В звезда / 220 В треугольник используется в однофазной системе питания 220 В.

Например. 1,5кВт; 3,4 А, 415 В, звезда

, соединение звездой:

IL = IP
VL = 3 x VP

При соединении треугольником:

VL = VP
IL = 3 x IP

Таким образом, линейный ток или ток полной нагрузки двигателя при подключении к однофазному соединению треугольником 220 В составляет 5,9 А. ЧРП, способный непрерывно выдавать 5,9Требуется Ампер.

Проблемы использования частотно-регулируемых приводов в однофазных источниках питания

Эксплуатация частотно-регулируемого привода на однофазной линии электропередачи проста, но вам необходимо знать о некоторых проблемах и способах их решения.

1. Соответствие ЭМС:
Все частотно-регулируемые приводы удовлетворяют требованиям определенных стандартов. Для достижения этих стандартов необходимо установить оборудование в соответствии с инструкциями производителя. Для этого могут потребоваться экранированные кабели ЧРП от преобразователя частоты к двигателю. Для установок, которые могут быть чувствительны к радиопомехам, могут потребоваться дополнительные меры. Доступны дополнительные меры и альтернативы экранированным кабелям VFD, такие как высокопроизводительный выходной фильтр.

2. Гармоники
Все частотно-регулируемые приводы создают некоторую форму гармоник в сети питания, которая значительно увеличивается при работе от однофазного источника питания и, в частности, при однопроводном заземлении или в сельской местности, где нагрузка на меньшие источники питания может быть относительно высокой. Дроссель звена постоянного тока обязателен для преобразователей частоты, работающих от однопроводного источника питания с обратным заземлением. При рассмотрении гармоник необходимо учитывать размер трансформатора и нагрузку преобразователя частоты/двигателя на источник питания. Влияние чрезмерных гармоник может вызвать перегрев электрических компонентов, таких как трансформаторы и кабели. Для небольших двигателей, работающих от однофазного источника питания 220 В, гармоники несколько ниже, и дроссель на шине постоянного тока может не потребоваться.

3. Температурный диапазон
Поскольку системы с однопроводной обратной линией заземления используются только в сельской местности, где возможны более высокие температуры окружающей среды, необходимо учитывать температуру окружающей среды. Некоторые производители предлагают частотно-регулируемые приводы с постоянной температурой окружающей среды 50°C. Также доступен закрытый частотно-регулируемый привод со степенью защиты IP66, поэтому оборудование можно монтировать непосредственно на стену без дополнительного ограждения. Это способствует лучшему охлаждению и снижению внутренних рабочих температур.

4. Дроссель шины постоянного тока
Дроссель звена постоянного тока обязателен для работы с однопроводной системой заземления 480 В и с некоторыми однофазными установками 220 В в зависимости от размера двигателя. Дроссель звена постоянного тока имеет множество преимуществ, в том числе:

  • Уменьшение гармоник линии электропередач
  • Улучшенный коэффициент мощности
  • Переходный фильтр
  • Уменьшить пиковые пусковые токи

5. Допустимая токовая нагрузка
Поскольку преобразователь частоты действует как инвертор и вырабатывает 3-фазное питание из 1-фазного, ожидается, что ток на входе будет выше, чем на выходе. Поэтому важно определить, какой уровень тока питания требуется для предполагаемого двигателя. Ориентировочно допустимый среднеквадратический ток сети переменного тока в 1,84 раза превышает фазный ток двигателя.

6. Рейтинг частотно-регулируемого привода
Когда частотно-регулируемый привод работает от однофазного однопроводного источника питания с заземлением, стандартный частотно-регулируемый привод должен иметь соответствующие характеристики. Другими соображениями при выборе наиболее подходящего частотно-регулируемого привода являются температура окружающей среды и тип нагрузки. Производители ваших частотно-регулируемых приводов могут помочь вам выбрать правильный частотно-регулируемый привод для вашего приложения. ЧРП следует выбирать на основе полного тока нагрузки в зависимости от способа подключения двигателя.

7. Пригодность двигателя
Двигатель должен быть пригоден для работы с частотно-регулируемым приводом и соответствовать определенным стандартам.

Однофазный частотно-регулируемый привод

ЧРП работает от однофазной линии электропередачи, подключенной к L1 и L2.

1. Однопроводное заземление 480 В. Преобразователь частоты получает однофазное питание переменного тока 480 В и преобразует его в 3-фазный выход, подходящий для стандартного 3-фазного двигателя 415 В.

2. Однофазное питание 220 В: преобразователь частоты берет однофазное питание переменного тока 220 В и преобразует его в 3-фазный выходной сигнал, подходящий для стандартного 3-фазного двигателя 220 В (см. преобразование однофазного в трехфазный частотно-регулируемый привод).

Дополнительные преимущества частотно-регулируемого привода

На самом деле частотно-регулируемый привод делает больше, чем просто преобразует 1-фазное питание в 3-фазное. Преобразователь частоты управляет формой выходного сигнала, позволяя регулировать скорость путем изменения частоты двигателя в диапазоне 0-200 Гц. Нормальная частота сети составляет 50 Гц, поэтому частотно-регулируемый привод фактически позволяет при желании увеличить скорость двигателя. Благодаря полному контролю скорости двигателя вы можете напрямую контролировать нагрузку, что позволяет вручную или автоматически управлять процессом, например, давлением или расходом воды. ЧРП также полностью контролирует скорость разгона и торможения двигателя, обеспечивая плавный контролируемый плавный пуск и остановку.

ЧРП с прочным корпусом IP66 и номиналом 50°C.

  • Возможна непосредственная установка рядом с двигателем (требуется защита от солнечного света)
  • Защита от проникновения пыли и влаги
  • Более эффективное охлаждение и снижение внутренней рабочей температуры
  • Увеличенный срок службы электронных компонентов
  • Нет воздушных фильтров, которые нужно чистить, что устраняет неприятные срабатывания из-за перегрева из-за плохой вентиляции.
  • Прочный металлический корпус

Другие типы корпусов также включают; IP30 и нержавеющая сталь IP66.

В частотно-регулируемый привод встроена технология для обеспечения автоматизированных систем управления и взаимодействия с внешними системами управления.
В том числе:

  • Цифровой и аналоговый ввод/вывод для дистанционного управления и взаимодействия с системами управления.
  • ПИД-регулятор для автоматизированного управления технологическими процессами, такими как система постоянного давления.
  • Режим «гибернации» для автоматического включения и выключения выхода по требованию.

Установка частотно-регулируемого привода

Установка частотно-регулируемого привода проста, как показано на рисунке.

Регулировать скорость можно вручную с помощью имеющихся элементов управления или дистанционного потенциометра скорости. Систему контроля давления можно легко реализовать с помощью внутреннего ПИД-регулятора частотно-регулируемого привода и внешнего датчика давления.
Подробные сведения об установке, в частности об использовании экранированных кабелей двигателя, см. в руководстве по эксплуатации.

Выбор частотно-регулируемого привода и требования к питанию

За помощью в выборе подходящего частотно-регулируемого привода обращайтесь к своим поставщикам.