Содержание

Как определить ток электродвигателя – таблица токов

Определение:

Номинальный ток — это допустимые производителем рабочий ток трехфазного электродвигателя для токопроводящих деталей и нагрева изоляции, при котором электромеханическое устройство работает продолжительное время без перегрева обмотки.

Пусковой ток — это потребляемый электрическим устройством максимальный входной импульсный ток при запуске асинхронного двигателя с короткозамкнутым ротором. Вот почему, пусковые токи электродвигателей больше номинальных и могут превышать их в несколько и более раз.

Ток холостого хода электродвигателя — это режим работы без нагрузки на валу от присоединяемого привода. В данном режиме потребляется меньше электрической энергии и поэтому исключено повышение температур выше заявленных изготовителем, что позволит провести диагностику и определить исправность устройства. Ток асинхронного двигателя на холостом ходу в зависимости от мощности и оборотов электромотора составляет 20 — 95% от номинального.

Для того чтобы самостоятельно определить ток электродвигателя без измерений нужно на корпусе устройства найти информационную табличку о токах, мощности, оборотах и напряжению. Если шильдик поврежден — найдите паспорт электромотора. В нем производитель указывает основные параметры: номинальные и пусковые токи асинхронного двигателя.

Если информация по характеристикам отсутствует и найти ток нагрузки электродвигателя не получилось, воспользуйтесь статьей — как определить мощность и обороты электродвигателя без бирки.

Как определить ток электродвигателя если известна мощность?

Как найти номинальный ток двигателя

Зная паспортную мощность, не составит труда рассчитать значения токов электродвигателя. Допустим, нам не известен номинальный ток двигателя 45 кВт – как в таком случае определить ток двигателя по мощности? При подключении к трехфазной сети 380 Вольт определение тока производится по формуле точного расчета:

Iн = 45000/√3(380*0,92*0,85) = 45000/514,696 = 87,43А

  • — сила тока асинхронного двигателя
  • — номинальная мощность двигателя 45 киловатт
  • √3 — квадратный корень из трех = 1,73205080757
  • — напряжение сети 380В
  • η — коэффициент полезного действия 92% (в расчетах 0,92)
  • сosφ — коэффициент мощности 0,85

 

Как определить номинальный ток электродвигателя, если коэффициент мощности и КПД неизвестны? В этой ситуации, найти номинальный ток двигателя с небольшой погрешностью мы сможем по соотношению – два ампера на одни киловатт. Определить силу тока электродвигателя используя формулу:

Как определить пусковой ток двигателя

Пусковые токи электродвигателей, можно найти и рассчитать по формуле:

Iп — значение тока при запуске асинхронного двигателя, которое необходимо узнать

— уже рассчитанный номинальный ток

К — кратность пускового тока двигателя (найти в паспорте)

Как определить ток электродвигателей АИР?

Если известна маркировка, например у электромотора АИР200L4 Iн = 84,9 Ампер, а соотношение тока Iп/Iн = 7,2. Найдите значение токов в таблицах:
















Пусковые токи асинхронного двигателя 3000 об/мин – таблица 1
ЭлектродвигательIн, АIп/IнМоторIн, АIп/Iн
АИР56A20,55,3АИР160M234,77,5
АИР56B20,73АИР180S241
АИР63А215,7АИР180M255,4
АИР63B22,05АИР200M267,9
АИР71A21,176,1АИР200L282,1
АИР71B22,66,9АИР225M2100,0
АИР80A23,467АИР250S21357
АИР80B24,85АИР250M21607,1
АИР90L26,347,5АИР280S21956,6
АИР100S28,2АИР280M22337,1
АИР100L211,1АИР315S2277
АИР112M214,9АИР315M2348
АИР132M221,2АИР355S2433
АИР160S228,6АИР355M2545
















Пусковые токи электродвигателей 1500 об/мин – таблица 2
ДвигательIн, АIп/IнЭлектромоторIн, АIп/Iн
АИР56A40,54,6АИР160S4307,5
АИР56B40,74,9АИР160M436,3
АИР63A40,825,1АИР180S443,2
АИР63B42,05АИР180M457,67,2
АИР71A41,175,2АИР200M470,2
АИР71B42,056АИР225M4103
АИР80A42,85АИР250S4138,36,8
АИР80B43,72АИР250M4165,5
АИР90L45,17АИР280S42016,9
АИР100S46,8АИР280M4240
АИР100L48,8АИР315S4288
АИР112M411,7АИР315M4360
АИР132S415,6АИР355S4360
АИР132M422,5АИР355M4559

 















Номинальный ток двигателя 1000 об/мин – таблица 3
ЭлектродвигательIн, АIп/IнМоторIн, АIп/Iн
АИР63A60,84,1АИР160M631,67
АИР63B61,14АИР180M638,6
АИР71A61,34,7АИР200M644,7
АИР71B61,8АИР200L659,3
АИР80A62,35,3АИР225M671
АИР80B63,25,5АИР250S686
АИР90L64АИР250M6104
АИР100L65,66,5АИР280S61426,7
АИР112MA67,4АИР280M6169
АИР112MB69,75АИР315S6207
АИР132S612,9АИР315M6245
АИР132M617,2АИР355S6292
АИР160S624,5АИР355M6365














Номинальные токи электродвигателей 750 об/мин – таблица 4
Эл двигательIн, АIп/IнЭлектромоторIн, АIп/Iн
АИР71B81,13,3АИР180M834,16,6
АИР80A81,494АИР200M841,1
АИР80B82,17АИР200L848,9
АИР90LA82,43АИР225M8606,5
АИР90LB83,365АИР250S8786,6
АИР100L84,4АИР250M892
АИР112MA866АИР280S81117,1
АИР112MB87,8АИР280M81506,2
АИР132S810,3АИР315S81786,4
АИР132M813,6АИР315M8217
АИР160S817,8АИР355S8261
АИР160M825,56,5

 * Для перехода ко всем характеристикам товара — нажмите на маркировку.

 

Таблица токов холостого хода асинхронного электродвигателя











Ток холостого хода асинхронного двигателя – таблица 5
Мощность электродвигателя, кВтПроцентное соотношение от номинального тока
Токи асинхронного двигателя на холостом ходу при известной частоте вращения вала, об/мин
300015001000750600500
0,12 — 0,556075859095
0,75 — 1,5507075808590
2,2 — 5,5456570758085
7,5 — 11406065707580
15 — 22305560657075
30 — 5520505560 %6570
75 — 110204045505560

Чтобы рассчитать ток при холостом ходе двигателя 55 кВт — в правой колонке таблице найдите нужную мощность, а в левом номинальную скорость вращения, например 750 оборотов. Руководствуясь данными из таблицы токов холостого хода мы получаем значение в 60 процентов от номинального. Итого: ток холостого хода будет равен 4,26 Ампер.

Не получилось определить силу тока двигателя?

Если у Вас не получилось самостоятельно рассчитать ток трехфазного электродвигателя или Вы не смогли найти мотор из каталога с нужными параметрами — обратитесь к нам для получения бесплатной консультации. Мы всегда готовы помочь правильно подобрать и купить электродвигатель АИР под технический процесс Вашего производства.

Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности


Раздел недели: Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т. д.

Поиск на сайте DPVA

Поставщики оборудования

Полезные ссылки

О проекте

Обратная связь

Ответы на вопросы.

Оглавление

Таблицы DPVA.ru — Инженерный Справочник

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница / / Техническая информация/ / Оборудование/ / Электродвигатели. Электромоторы. / / Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности

Поделиться:   






Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт.

Сила тока в зависимости от мощности

Таблица составлена для моторов с частотой вращения 1450rpm с обычным коэффициентом мощности и КПД. Более быстрые моторы обычно имеют меньший ток, а более медленные — более высокий.

Однофазные электродвигатели = однофазные электромоторы



















Мощность

Лошадиных сил = HP

Приблизительный номинальный ток при полной нагрузке в зависимости от напряжения

1x110VAC

1x220VAC

1x240VAC

0. 07 kW

1/12

2.4

1.2

1.1

0.1 kW

1/8

3.3

1.6

1.5

0.12 kW

1/6

3.8

1.9

1.7

0.18 kW

1/4

4.5

2.3

2.1

0.25 kW

1/3

5.8

2. 9

2.6

0.37 kW

1/2

7.9

3.9

3.6

0.56 kW

3/4

11

5.5

5

0.75 kW

1

15

7.3

6.7

1.1 kW

1.5

21

10

9

1.5 kW

2

26

13

12

2. 2 kW

3

37

19

17

3 kW

4

49

24

22

3.7 kW

5

54

27

25

4 kW

5.5

60

30

27

5.5 kW

7.5

85

41

38

7. 5 kW

10

110

55

50

Трехфазные электродвигатели = Трехфазные электромоторы

































Мощность

Лошадиных сил = HP

Приблизительный номинальный ток при полной нагрузке в зависимости от напряжения

3x220VAC

3x240VAC

3x380VAC

3x415VAC

3x550VAC

0. 1 kW

1/8

0.7

0.6

0.4

0.4

0.3

0.12 kW

1/6

1

0.9

0.5

0.5

0.3

0.18 kW

1/4

1.3

1.2

0.8

0.7

0.4

0.25 kW

1/3

1.6

1. 5

0.9

0.9

0.6

0.37 kW

1/2

2.5

2.3

1.4

1.3

0.8

0.56 kW

3/4

3.1

2.8

1.8

1.6

1.1

0.75 kW

1

3.5

3.2

2

1.8

1. 4

1.1 kW

1.5

5

4.5

2.8

2.6

1.9

1.5 kW

2

6.4

5.8

3.7

3.4

2.6

2.2 kW

3

9.5

8.7

5.5

5

3.5

3.0 kW

4

12

11

7

6. 5

4.7

3.7 kW

5

15

13

8

8

6

4.0 kW

5.5

16

14

9

8

6

5.5 kW

7.5

20

19

12

11

8

7.5 kW

10

27

25

16

15

11

9. 3 kW

12.5

34

32

20

18

14

10 kW

13.5

37

34

22

20

15

11 kW

15

41

37

23

22

16

15 kW

20

64

50

31

28

21

18 kW

25

67

62

39

36

26

22 kW

30

74

70

43

39

30

30 kW

40

99

91

57

52

41

37 kW

50

130

119

75

69

50

45 kW

60

147

136

86

79

59

55 kW

75

183

166

105

96

72

75 kW

100

239

219

138

125

95

90 kW

125

301

269

170

156

117

110 kW

150

350

325

205

189

142

130 kW

175

410

389

245

224

169

150 kW

200

505

440

278

255

192

  • * Справочно: Таблица : средние значения силы тока холостого хода в % от номинального тока электродвигателя = электромотора в зависимости от мощности и частоты вращения



Поиск в инженерном справочнике DPVA. Введите свой запрос:

Дополнительная информация от Инженерного cправочника DPVA, а именно — другие подразделы данного раздела:


Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

Трехфазный ток — простой расчет

По
Стивен Макфадьен
on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):

что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008

 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:

или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), вырабатывающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в Вт. Для трехфазной системы умножьте ее на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Using Formulas

Derivation of Formula — Example

Balanced three phase system with total power P (W), power factor pf and line to line voltage V LL  

Convert to проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии, что В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые необходимо учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто произведение тока на напряжение, поэтому, зная это и напряжение, можно получить ток. При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и/или прибегать к формулам.

Трехфазный ток — простой расчет

По
Стивен Макфадьен
on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):

что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008

 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:

или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), вырабатывающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в Вт. Для трехфазной системы умножьте ее на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Using Formulas

Derivation of Formula — Example

Balanced three phase system with total power P (W), power factor pf and line to line voltage V LL  

Convert to проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии, что В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые необходимо учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА.