Содержание

Какое сопротивление обмоток асинхронного двигателя таблица

Какое сопротивление обмоток асинхронного двигателя таблица

Как прозвонить асинхронный трёхфазный электродвигатель?

Работая промышленным электриком по ремонту и обслуживанию электрооборудования приходилось часто менять электродвигатели вентиляции и различных станков. Для более быстрой предварительной диагностики неисправного электродвигателя выработалась методика его проверки мультиметром. Нужно измерить сопротивление его обмоток между фазными выводами А-В, А-С и В-С, оно должно быть примерно одинаковым, а так же измерить сопротивление между этими выводами и корпусом электродвигателя в пределе измерений прибора 2 МОм или 2000 кОм, оно не должно показать ничего, значит пробоя на корпус нет. Не забываем что провода прибора тоже имеют своё сопротивление, так что при сопоставлении измеренных данных с табличными, вычитайте это сопротивление. На видео показан пример измерения:

Составил таблицы сопротивлений обмоток некоторых электродвигателей по данным старых книг по перемотке, рассчитав последний столбец методом сложения сопротивления двух обмоток, так как при измерении между выводами А-В, В-С, А-С это и есть последовательное соединение двух обмоток (соединение звезда — все 3 обмотки соединены в одной точке). В таблицах указаны обороты двигателя в зависимости от числа пар полюсов, то есть 750 об/мин, 1000, 1500 и 3000, но на практике они всегда немного меньше и реальные обороты указаны на табличках электродвигателей. Старые движки уже могли быть перемотаны не один раз, и с табличными данными могут не совпадать, но в пределах этого. Так что эта информация нужна только для примерного сопоставления мощности от сопротивления обмоток, у электродвигателей других производителей сопротивление обмоток может отличаться существенно.

Источник: www.avto-elektrika-shema. ru

Проверка обмоток электродвигателя. Неисправности и методы проверок

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Способы

Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:
  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Источник: electrosam.ru

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

Источник: electrik.info

Как прозвонить электродвигатель мультиметром

Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.

Как прозвонить: условия

Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.

Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.

Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.

Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.

Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя.
    Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу».
    Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.

Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.

Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Для того чтобы правильно прозвонить данный тип двигателя, необходимо осуществить проверку возможной утечки электрического тока на «массу».

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.

Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

После того как будет произведены все диагностические мероприятия, и электродвигатель будет отремонтирован, производится испытание устройства прежде чем устанавливать его в бытовой прибор или инструмент.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

Источник: evosnab.ru

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра — 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях — 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать — снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

Источник: www.ttaars.ru

Сопротивление обмоток электродвигателя таблица — всё о электрике

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут

При образовании жгута важно обеспечит хороший контакт

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Устройство и принцип действия

Емкостное сопротивление

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Конструктивные особенности мегаомметров

Существуют разные модели мегаомметров, но все они включают в себя высоковольтный источник постоянного напряжения (генератор) и амперметр. Генератор выдает откалиброванное напряжение, величина которого выставляется заранее. По этой причине измерительную шкалу прибора можно сразу проградуировать в единицах измерения сопротивления, а не силы тока.

Виды мегаомметров

Можно выделить два основных вида приборов:

Мегаомметры, укомплектованные механическим генератором. Это приборы старого образца, в которых в качестве источника напряжения используются динамо-машины. Их нужно приводить в действие вручную с частотой примерно 2 об/сек. Они достаточно габаритные и тяжелые, но при этом не нуждаются в источнике питания. Такие приборы удобны своей автономностью.

Так выглядит мегаомметр с механическим генератором

Мегаомметры, укомплектованные электронным преобразователем. Это приборы нового поколения. В них источник постоянного напряжения работает от встроенных аккумуляторов или блока питания. Такие устройства компактные и легкие, но их работоспособность зависит от источника питания.

Так выглядит электронный мегаомметр

Проверка других деталей и прочие потенциальные проблемы

  • утечка масла из конденсатора;
  • наличие отверстий в корпусе;
  • вспученный конденсаторный корпус;
  • неприятные запахи.

Как проверить сопротивление мультиметром

Конденсатор тоже проверяют с помощью омметра. Щупами следует коснуться выводов конденсатора, а уровень сопротивления должен сначала быть небольшим, а затем постепенно увеличиваться по мере зарядки конденсатором напряжением от батареек. Если сопротивление не растет или конденсатор короткозамкнутый, то, скорее всего, его пора менять.

Перед проведением повторной проверки конденсатор нужно разрядить.

Переходим к следующему этапу проверки двигателя: задней части картера, где устанавливаются подшипники. В этом месте ряд электродвигателей оснащается центробежными переключателями, которые переключают пусковые конденсаторы или цепи для определения количества оборотов в минуту. Также нужно проверить контакты реле на предмет пригорелости. Кроме этого, их следует почистить от жира и грязи. Механизм выключателя проверяется посредством отвертки, пружина должна нормально и свободно работать.

И заключительный этап – это проверка вентилятора. Мы рассмотрим его на примере проверки вентилятора двигателя TEFC, который целиком закрыт и имеет воздушное охлаждение.

Посмотрите, чтобы вентилятор был надежно прикреплен и не был забит грязью и прочим мусором. Отверстия на металлической решетке должны быть достаточными для свободной циркуляции воздуха, если это не будет обеспечено, то может случиться перегрев двигателя и впоследствии он выйдет из строя.

Нормы сопротивления изоляции электрических машин

Реактивное сопротивление

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности. Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины

При 20°С она составляет:

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Виды тестеров

При эксплуатации электрических устройств широко используются цифровые мегомметры модели: Ф4101/4102 от 100. 0 до 1000.0 В. Наладчики до сих пор работают с марками тестеров М4100/1, 4100/5 и МС-05 м от 100.0 до 2500.0 В. Выбор типоразмера мегомметра базируется по номинальному сопротивлению тестируемого устройства: силовые кабели и трансформаторы, машины и изоляторы. Для определения состояния изоляции в электроустановках до 1000.0 В допускается применять мегомметры от 100.0-1000.0 В, а в установках более 1000.0 В — 1000.0-2500.0 В.

Устройства также классифицируются по генерируемому напряжению и пределам сопротивления в МОм:

  • 500.0 В — 500.0;
  • 1000.0 В — 1000.0;
  • 2500.0 В — 2500.0.

Дополнительная информация. Приборы также разнятся классами точности. У популярной модели М4100 погрешностью не более 1%, а у марки Ф4101 до 2,5%. Выбор приборов тестирования электроустановок выполняют с учетом допустимых эксплуатационных показателей.

Электронный измеритель

Электронный измеритель

Цифровой или электронный тестер — современный вид оборудования, оснащен производительным генератором с полевыми транзисторами. Замеры выполняются путем сопоставления падения напряжения в эталонной цепи с фиксированным сопротивлением. Результаты демонстрируются на панели. Функция сохранения результатов тестирования накапливает данные для последующего анализа. Эта модель отличается от аналоговых приборов компактными размерами и малым весом.
Преимущества цифрового тестера:

  • Высокий уровень точности, позволяет определять сопротивление на больших участках цепи;
  • удобная легко читаемая цифровая панель;
  • технологическая доступность для измерения одним пользователем;
  • прекрасно работает даже в очень загруженном пространстве;
  • удобный и безопасный в использовании.

Недостатки электронного типа мегомметра:

  • Требуется внешний источник энергии;
  • высокие цены на изделия.

Электромеханический измеритель

Электромеханический прибор

Эти модели имеют аналоговый дисплей на передней панели тестера и ручную рукоятку, используемую для вращения и выработки напряжения, которое проходит через электрическую систему.

Преимущества ручного мегомметра:

  1. Остается важным в современном высокотехнологичном мире, оставаясь самым старым методом определения значения сопротивления.
  2. Для работы не требуется внешний источник.
  3. Низкие цены на рынке.

Недостатки ручного мегомметра:

  1. Для работы требуется не менее 2 человек, один для вращения ручки, другой для подключения мегомметра к проверяемой электрической системе.
  2. Низкая точность измерения.
  3. Требует большое свободное место для размещения.
  4. Предоставляет аналоговый результат измерения.
  5. Высокие требования к безопасности при использовании.

Особенности конструкции схемы:

  1. Отклоняющая и управляющая катушка — подключены параллельно генератору, установлены под прямым углом друг к другу и поддерживают полярность таким образом, чтобы создавался крутящий момент в противоположном направлении.
  2. Постоянные магниты, создают магнитное поле для отклонения указателя с помощью магнитного полюса «Север-Юг».
  3. Указатель — один конец, связанный с катушкой, другой отклоняется по шкале от бесконечности до «0».
  4. Масштаб предоставляется в верхней части мегомметра от диапазона «ноль» до «бесконечности» и позволяет пользователю прочитать значение.
  5. Подключение источника постоянного тока (DC) или аккумулятора.
  6. Испытательный режим вырабатывается генератором для мегомметра с ручным управлением. Аккумулятор или электронное зарядное устройство предусмотрено для цифрового мегомметра с той же целью.

Обратите внимание! Сопротивление токовой катушки помогает защитить тестер от любых повреждений при испытании из-за низкого внешнего электросопротивления

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности. Делая начало работы, следует осуществить проверку прибора на исправность

Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо — снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это — явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите — Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте

Оцените статью:

Какое сопротивление обмоток 3 х фазного двигателя

Содержание

  1. Проверка электродвигателей разного вида с помощью мультиметра
  2. Какие электродвигатели можно проверить мультиметром
  3. Какие неисправности в электродвигателе позволяет выявить мультиметр
  4. Проверка на обрыв или целостность обмотки
  5. Проверка на короткое замыкание
  6. Проверка на межвитковое замыкание
  7. Как проверить электродвигатель мультиметром: обзор 5 конструкций двигателей переменного тока с фото
  8. Что следует знать о двигателе перед его проверкой: 2 важных момента
  9. Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте
  10. Особенности конструкций, влияющие на технологию поиска дефектов
  11. Как проверить обмотку электродвигателя на статоре: общие рекомендации
  12. Личный опыт: проверка статорных обмоток асинхронного электродвигателя
  13. Как проверить якорь электродвигателя: 4 типа разных конструкций
  14. Синхронные модели с фазным ротором
  15. Якорь асинхронного электродвигателя
  16. Коллекторные электродвигатели: 3 метода анализа обмотки
  17. Двигатели постоянного тока
  18. Заключительный этап: особенности проверок двигателей под нагрузкой
  19. Сопротивление обмоток электродвигателя таблица – советы электрика
  20. Сопротивление обмоток электродвигателя и особенности измерения
  21. Значение сопротивления и основные правила эксплуатации машин
  22. Способ правильного проведения замера целостности изоляции
  23. Онлайн-консультация
  24. Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками
  25. Какой должна быть намотка
  26. Возможные неполадки
  27. Как определить неисправность
  28. Метод с шариком
  29. Как произвести обмотку
  30. Фото обмотки электродвигателя
  31. Сопротивление обмотки электродвигателя | Полезные статьи – Кабель.РФ
  32. Измерение сопротивления изоляции обмоток электродвигателя
  33. разделы начинающим
  34. Видео

Проверка электродвигателей разного вида с помощью мультиметра

Повседневная жизнь человека неразрывно связана с электродвигателями различной конфигурации, на работе которых основано действие различных приборов и оборудования. Таким оборудованием мы пользуемся постоянно и достаточно часто возникают различные неполадки в их работе, что зачастую связано с неисправностью электродвигателя. Для того, чтобы привести прибор в работоспособное состояние нужно знать, каким образом прозвонить электродвигатель. Об этом будет рассказано в данной статье.

Какие электродвигатели можно проверить мультиметром

Если двигатель не имеет очевидных внешних повреждений, то есть вероятность того, что произошел внутренний обрыв цепи или произошло короткое замыкание. Но не все электродвигатели можно просто проверить на эти дефекты мультиметром.

Например, может возникнуть сложности в диагностике электродвигателей постоянного тока, так как их обмотка имеет практически нулевое сопротивление и его можно проверить только косвенным методом по специальной схеме: одновременно снимают показания с амперметра и вольтметра с вычислением результирующего значения сопротивления по закону Ома.

Таким образом проверяют все сопротивления обмоток якоря и замеряют значения между пластинами коллектора. Если сопротивления обмоток якоря различаются, то имеется неполадки, так как в исправной машине эти значения одинаковые. Разность в значениях сопротивления между соседними пластинами коллектора должна быть не больше 10%, тогда двигатель будет считаться исправным (но если в конструкции предусмотрена уравнительная обмотка, то это значение может достигать до 30%).

Электрические машины переменного тока разделяют на:

Все эти типы двигателей доступны для диагностики с помощью измерительных приборов, в том числе с помощью мультиметров. В целом, двигатели переменного тока достаточно надежные машины и неисправности в них возникают достаточно редко, но все же такое случается.

Какие неисправности в электродвигателе позволяет выявить мультиметр

Достаточно часто для проверки электродвигателей переменного тока используется мультиметр – многофункциональный электронный измерительный прибор. Он имеется в наличии практически у каждого домашнего мастера и позволяет выявить некоторые виды неисправностей в электрических приборах, в том числе и в электродвигателях.

Самыми распространенными неисправностями, которые возникают в электрических машинах такого типа являются:

Рассмотрим каждую из этих проблем подробнее и разберем методы выявления таких неисправностей.

Проверка на обрыв или целостность обмотки

Обрыв обмотки достаточно распространенное явление при обнаружении неправильной работы электродвигателя. Обрыв в обмотке может случиться как в статоре, так и в роторе.

Если была оборвана одна фаза в обмотке, соединенной по схеме «звезда» – то ток в ней будет отсутствовать, а в других фазах значения тока будет завышено, двигатель при этом работать не будет. Также может быть обрыв параллельной ветви фазы, что приведет к перегреву исправной ветви фазы.

Если была оборвана одна фаза обмотки (между двумя проводниками), соединенной по схеме «треугольник» — то ток в двух других проводниках будет значительно меньше, чем в третьем проводнике.

Если возник обрыв в обмотке ротора, то будут происходить колебания тока с частотой, равной частоте скольжения и колебания напряжения, при этом проявится гудение и обороты двигателя будут снижены, также возникнет вибрация.

Эти причины указывают на неисправность, но выявить саму неисправность можно при помощи прозвонки и измерения сопротивления каждой обмотки электродвигателя.

В двигателях, рассчитанных на переменное напряжение 220 В, прозваниваются пусковая и рабочая обмотки. Значение сопротивления пусковой обмотки должно быть больше, чем рабочей в 1,5 раза.

В электродвигателях на 380 В, которые подключаются по схемам «звезда» или «треугольник» всю схему необходимо разобрать и проверить каждую обмотку по отдельности. Сопротивление каждой из обмоток такого электродвигателя должно быть одинаковым (с отклонением не более пяти процентов). Но при обрыве дисплей мультиметра будет показывать высокое значение сопротивления, которое стремится к бесконечности.

Проверка на короткое замыкание

Также распространенной неисправностью в электродвигателях является короткое замыкание на корпус. Для выявления этой неисправности (или её отсутствия) совершают следующие действия:

Результатом таких действий при исправном двигателе будет высокое сопротивление (несколько сотен или тысяч мегаом). «Прозвонкой» мультиметра проверить пробой на корпус даже удобнее: нужно осуществить в режиме прозвонки все те же действия, описанные выше и наличие звукового сигнала будет означать нарушение в целостности изоляции обмоток и короткое замыкание на корпус. К слову сказать, данная неисправность не только негативно влияет на работу самого оборудования, но и является опасной для жизни и здоровья человека при отсутствии специальных защитных устройств.

Проверка на межвитковое замыкание

Ещё одним видов неисправностей является межвитковое замыкание – короткое замыкание между разными витками одной катушки двигателя. При такой неполадке мотор будет гудеть и заметно снизится его мощность.

Выявить такую неисправность можно несколькими способами. Например, можно воспользоваться токовыми клещами или мультиметром.

При диагностике с помощью токовых клещей измеряют значения тока каждой из фаз обмотки статора и если значение тока в одной из них будет завышено, то там и находится замыкание.

Источник

Как проверить электродвигатель мультиметром: обзор 5 конструкций двигателей переменного тока с фото

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Используя этот способ, учитывайте, что:

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

Источник

Сопротивление обмоток электродвигателя таблица – советы электрика

Сопротивление обмоток электродвигателя и особенности измерения

На металлической табличке, прикрепленной к корпусу оборудования, производители указывают основные характеристики двигателя. Важно знать, что при соединении «звездой» ток указывается в знаменателе. В числителе он будет указан при соединении «треугольником».

Фазный ток всегда меньше номинального более чем в 1,5 раза. Поэтому, важным условием будет подбор сечения проволоки для обмоток двигателя и поддержание номинального значения сопротивления цепи.

При условии, что наружный диаметр подвижной обмотки свыше 20 см, применяется намотка двухслойным методом с более коротким шагом между витками.

Значение сопротивления и основные правила эксплуатации машин

При проведении электромонтажных работ, особенно при использовании долгое время неиспользованных электродвигателей, очень важно проверить целостность обмоток и отсутствия на них короткого межвиткового замыкания.

При неправильном хранении старого и нового электрооборудования в помещениях с повышенным уровнем влажности, изоляция проводов может повредиться и выйти из строя.

В этом случае произойдет понижение величины сопротивления обмотки. Поэтому важно перед включением проверить эту характеристику на каждой обмотке агрегата, и произвести замер сопротивления между всеми выводами проводов.

Все результаты замеров должны соответствовать требованиям и нормативам ГОСТа и технических условий.

При этом важно учитывать температуру при замерах.

Согласно требованиям правил проведения работ, температуры изоляционного слоя и окружающей среды должны соответствовать друг другу. При этом значение сопротивления обмоток для оборудования с малым вольтажом должно быть менее 1 МОма. Для обмоток электродвигателей постоянного тока сопротивление обмоток не должно превышать 5 МОм.

Способ правильного проведения замера целостности изоляции

Для проведения измерений применяется мегаомметр. Это современный компактный прибор, включающий в себя омметр и магнитоэлектрический генератор постоянных токов. При номинальном значении напряжения агрегата в 600 В, сопротивление изоляции оборудования следует производить, подавая на него нагрузку в 500 В.

При работах с оборудованием с номиналом менее 3000 В, на него подается ток не более 1000 В. В случае замеров катушек двигателей с номинальным напряжением свыше 3000В, на мегаомметре выставляется значение более до 2500 В.

При соединении обмотки через конденсатор, перед выполнением замеров потребуется отключить емкость из сети.

Для получения достоверных результатов, требуется выполнять следующие условия:

Только при выполнении этих условий можно приступать к измерению сопротивления. В этом случае данные будут достоверными и у вас появиться возможность раннего обнаружения поломок и нарушений целостности изоляции проводки.

Не забудьте после проведения замеров снять остаточное напряжение с электродвигателя.

Онлайн-консультация

На компрессоре NSN 7471-75-40P при включении отключается тепловое реле. Напишите сопротивление обмоток эл. двигателя.

28 07 2011 // Литвинов Сергей Александрович

Электродвигатель компрессора HSN7471-75-40P состоит из 6 обмоток, имеющих соединение, обозначаемое, как Δ/ΔΔ.

Схему их соединения можно образно описать так. Представьте себе равнобедренный треугольник, в каждой грани которого находится по две поседовательно соединённые обмотки.

В вершинах этого треугольника находятся точки контактов 1 (L1), 2 (L2), 3(L3) (по часовой стрелке) – это PW1.

В каждой грани этого треугольника между двумя поседовательно соединёнными обмотками находятся точки контактов 9 (L3), 7 (L1), 8 (L2) (по часовой стрелке от вершины 1) – это PW2.

См. таблицу сопротивлений мотора компрессора HSN7471-75-40P. Обращаю Ваше внимание, что сопротивление одной обмотки меньше 1 Ом. Для его корректного замера необходим специальный тестер.

Компрессор CSH 8551-110-40P при включении сильно перегревается в течении 10мин. При этом ток совпадает с таким же в точности, нормально работающем компрессором. Напишите сопротивление обмоток эл. двигателя.

Можно предположить следующие тому причины:

Проверьте все фуекциональные рабочие параметры перегревающегося компрессора ещё раз. Токи в пределах нормы, а производительность его?

08 08 2012 // Евгений

Масло не пойдёт. Там, куда у полугерметичных винтовых компрессоров БИТЦЕР серий HS/OS ввёрнут датчик температуры, масла быть не должно.

Здравствуйте. Можете ли вы дать данные по сопротивлениям обмоток компрессора hsk7451-70-40p.

Нет данных, но где-то рядом с HSN7471-75-40P.

На компрессор CSH 7551-70 сер.номер 16240684 Напишите сопротивления обмоток эл. двигателя. Требуются для проведения диагностики.

23 04 2014 // Вячеслав

Я запрошу в ГмбХ сертификат выпускных испытаний этого компактного винтового компрессора, изготовленного в апреле 2002г.

Имейте только в виду, что сопротивление его обмоток меньше 1Ом – требуется специальный прибор.

Как правило, со временем эксплуатации сопротивление обмоток не меняется. При зверской эксплуатации компрессора меняется сопротивление изоляции эмальпровода обмоток из-за пагубного воздействия на него перегрева мотора из-за перегрузок и недостаточного расхода всасываемых холодных паров, из-за воздействия кислоты масла, из-за бурно кипящего в моторном отсеке жидкого хладагента и т.д.

Добрый день. При замере рабочих токов электродвигаиеля компрессора CSH8563-125Y-40P токи в точках 1-2-3 в зависимости от загрузки составляли след. значения: 1L1=50-90А, 2L2=1-10А, 3L3=50-90А.

токи в точках 7-8-9 в зависимости от загрузки составляли след. значения: 7L1=50-100А, 8L2=90-180А, 9L3=50-100А.

Чем может быть обусловлена такая авария? И как возможно проверить целостность и сопративление изоляции каждой из 6-и обмоток в отдельности? Спасибо!

17 06 2014 // Максим

Проверить целостность изоляции эмальпровода в обмотках можно специальным прибором мегометром, замеряя сопротивление между корпусом компрессора и клеммами 1,2,3,7,8,9. Сопротивление должно быть

2МОм у новых моторов, и не ниже 0,5МОм у б/у моторов.

Схема соединения всех обмоток мотора Вашего компрессора показана выше. Замеряя сопротивление на различных парах клемм можно определить (вычислить) сопротивление каждой из шести обмоток мотора.

При замерах сопротивлений между любой парой клемм всегда будет параллельно-последовательное соединение 6 резисторов. Имейте также ввиду, что сопротивление обмоток меньше 1 Ом.

Нужен специальный омметр!

Если в результате корректного замера сопротивлений всех обмоток выяснится, что все они прибл. одинаковы, то проблема у Вас видимо с контактами пускателей. Проверьте их на целостность пятна контакта на каждой фазе. Если сопротивления получатся разные, то проблема уже в моторе. Какая-то обмотка на грани прогара.

Добрый день. Следуя Вашим рекомендациям провели замер целостности изоляции между клеммами 1,2,3,7,8,9. Замеры показали что сопротивление между корпусом и клеммами 1,3,7,8,9 примерно равно 2Мом, а между корпусом и клеммой 2 сопротивление равно бесконечности.

Также были произведены замеры сопротивления между клеммами 1,2,3,7,8,9 попарно. Результаты показали что сопротивление между клеммами 1,3,7,8,9 в любых вариациях пар составило примерно 0,6 Ом, а в клемме 2 сопротивление также равно бесконечности с любой из клемм.

Наше предположение, что обрыв произошел в проводнике соединяющим клемму 2 непосредственно с двигателем. Можем ли мы это как либо проверить самостоятельно разобрав барно и (или) сняв кожух двигателя.

Также прошу, если есть такая возможность, прислать схему компрессора с акцентом на его электрическую часть. Заранее благодарен!

18 06 2014 // Максим

Да, похоже, что пропал контакт между клеммой 2 на плите и его проводом. Попробуйте предварительно перекрыв все запорные вентили и сбросив давление внутри комипрессора до атмосферного демонтировать клеммную коробку, а потом и клеммную плиту и проверить на целостность контактов клемм и подходящих от обмоток проводов (они промаркированы).

Смотрите что бывает иногда внутри моторного отсека компрессора при длительном и бурном кипении в нём жидкого хладагента! Провода кипящий фреон с маслом треплет как макароны!

Да действительно, при вскрытии клеммной плиты обнаружили обрыв проводника, причем обрыв не на месте спаек, а посредине(см. фото). Что могло послужить причиной такого обрыва?

23 06 2014 // Максим

Не вижу Вашего фото.

Я же написал выше, что при бурном кипении в морторном отсеке жидкого хладагента (см. “Влажный” ход в винтовых компрессорах) провода от мотора к клеммной плите треплятся и трутся о кромку внутренней поверхности корпуса моторного отсека компрессора. Через какое-то время контакт обрывается и компрессор останавливается (к.з. или перегрузка мотора).

просим написать какое сопротивление должно быть у электродвигателя компрессора 4TES-9 и как его нужно измертять

22 01 2015 // Дмитрий

Здравствуйте! У нас полугерметичные компрессоры битцер 8FC-70.2Y-40P. В систему попало влага. После непродолжительной работы частотный преобразователь выдал ошибку о высоком напряжений со стороны компрессора. Мы прозвонили все фазы на корпус, замкнуто. Как правильно проверить обмотку на целостность? Подскажите?

Определить целостность обмотки этого компрессора можно только замером сопротивлений, но после демонтажа статора и его полной просушки. Кроме того, стоит проверить целостность изоляции эмальпроводов омоток высоковольтным тестом. Сопротивление изоляции должно быть не ниже 0,5 мОм.

Моторы у поршневых компрессоров серии С(Е)-8 имеют схему подключения аналогично моторам винтовых компрессоров БИТЦЕР (см. самый первый вопрос этой ветки), причём соотношение мощностей в первой и второй группе подключаемых обмоток не одинаковое, как у винтов, а 60/40

Добрый день! Где можно найти информацию об обмотках электродвигателя компрессора 6G-30.2Y-40P? Сколько их? Каково их сопротивление?

16 02 2015 // Всеволод

Здравствуйте! Какое сопротивление обмоток электродвигателя у компрессора CSH 9563-160Y. И возможно получить данные на все винтовые компрессора.

21 10 2015 // Дмитрий

У этих компрессоров серии CSH95 моторы 40D содержат только 3 обмотки, соединённые в клемной коробке треугольником на 400В. Т.е. на моторе указанного Вами компрессора Вы можете специальным прибором замерить сопротивление каждой обмотки в отдельности. Сопротивление каждой обмотки прибл.

0,4 Ом, и для измерения такого малого сопротивления требуется специальный тестер. Обращаю Ваше внимание на то, что какие-то функциональные повреждения обмоток такого мотора отследить замером сопротивления обмоток практически невозможно.

Уверенно можно констатировать только явновыраженное межвитковое кз или кз оботкок на корпус.

Т.о. в случае сомнения замеряйте сопротивление изоляции мегометром или состояние обмоток мотора каким-то специальным диагностическим прибором, например ИДО-07, см. выше в ответе на вопрос КОМПРЕССОР CSH-6561-60Y-40P

Доброго времени суток если есть возможность можно ли скинуть данные заводских испытаний сопротивлений в обмотках мотора “double delta” винтового компрессора HSK7461-80-40P.

29 03 2016 // Дмитрий

См. выше данные по мотору HSN7471-75-40P. Для HSK7461-80-40P будут чуть меньшие сопротивления обмоток.

Здравствуйте! Можно узнать сопротивление обмоток и их схему их соединения на компрессоре CSH 8591-140Y-40D. Про специальный тестер уже прочёл, при попытке прозванивать простым тестером звонятся 1-8, 2-9 и 3-7, сопротивление 1 Ом. Какой рабочий ток должен быть на обмотках?

10 06 2016 // Виталий

Здравствуйте! См. расчёты по программе BITZER Software.

21 07 2017 // Сергей

Какой компрессор (тип, модель) и с каким встроенным электронным защитным устройством вы запускаете? Может при питании от маломощной дэс происходит при включении компрессора сильная просадка напряжения и рост рост пусковых и рабочих токов? Какое электронное устройство отключает питание на магнитные пускатели компрессора?

Заполните форму, чтобы задать вопрос

Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками

Электрический двигатель постоянно работает на больших мощностях, поэтому неудивительно, что механизм часто выходит из строя. Больше всего страдает так называемая обмотка — расположенная в пазах и соединенная на концах заворачивающими кольцами медная, алюминиевая или бронзовая проволока.

При скачках напряжения, гидравлических ударах, перегревах из-за превышения допустимой нагрузки изоляция на обмоточном слое нарушается, а происходящее замыкание плавит металлические стержни.

Однако не всегда после подобной поломки необходима дорогостоящая замена, так как разобравшись в технологии обмотки электродвигателей, можно самостоятельно снизить причиненный урон. Также своими руками рекомендуется регулярно проверять состояние проволоки и вовремя производить локальный ремонт.

А вся необходимая для этих действий информация — вплоть до пошаговой инструкции — представлена ниже.

Какой должна быть намотка

Обмотка — это кусок проводника, зафиксированный кольцами в корпусе двигателя. Ее установка требует соблюдения ряда условий:

Если хоть одно из требований нарушено, то происходящие в двигателе процессы работают на износ, теряя мощность, обороты и ломаясь.

В большинстве случаев схема соединения обмоток двигателя представлена в виде звезды или треугольника, однако существуют и другие варианты. Концы проводников подключают на специальные внешние колодки с клеммами, редко соединения наблюдаются внутри корпуса.

Возможные неполадки

Обмотка достаточно хрупкий элемент мотора, поэтому его нестабильная работа может вылиться во многие неисправности:

Как определить неисправность

На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.

Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние «симптомы». Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:

Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).

Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.

Метод с шариком

Как произвести обмотку

Пошаговая инструкция для обмотки двигателя выглядит следующим образом:

Обмотка электродвижка — это важный элемент системы, обеспечивающий непрерывную и равномерную подачу тока от стартера до всех остальных частей мотора. Ее повреждение ставит под угрозу всю работоспособность устройства, а несвоевременный ремонт способен и вовсе погубить механизм.

Регулярная диагностика позволит сразу определить неполадку, устранить ее, тем самым повысив срок службы двигателя.

Фото обмотки электродвигателя

Сопротивление обмотки электродвигателя | Полезные статьи – Кабель.

РФ

Электродвигатели, выпускаемые сегодня промышленностью, являются надежными силовыми агрегатами. Они способны работать десятки лет при своевременном обслуживании и ремонте.

Для этого необходимо регулярно контролировать состояние электродвигателей, измеряя сопротивление обмотки электродвигателя.

Даже в том случае, если оборудование не работало какое-то время, необходимо обязательно проконтролировать состояние изоляции, которая является гигроскопичной и может изменить свои свойства под воздействием влажности воздуха.

Измерение сопротивления изоляции электродвигателя позволит определить, требуется ли просушка или в обмотке есть дефект, требующий немедленного устранения. Если удалось установить, что имеет место понижение сопротивления, двигатель должен быть остановлен и предоставлен в распоряжение мастера для выявления неисправности.

Проверка сопротивления изоляции электродвигателя перед пуском

В последнее время приходится регулярно сталкиваться с запуском оборудования, простоявшего на складе или законсервированного до лучших времен. За время вынужденного или планового простоя изоляция обмотки мотора под воздействием влаги могла потерять свои эксплуатационные характеристики.

Снижение сопротивление может быть довольно чувствительным, поэтому прежде чем включать машину в сеть, должна быть произведена проверка сопротивления изоляции электродвигателя. Должна быть проверена каждая обмотка относительно корпуса, а также сопротивление между обмотками.

Полученные результаты должны соответствовать нормативам ГОСТа, ТУ с обязательным учетом температуры, при которых производилось измерение сопротивления обмоток электродвигателя.

Правила технической эксплуатации машин с электродвигателя гласят, что при температуре изоляции, равной по значению температуре окружающего воздуха, сопротивление обмотки низковольтного оборудования должно не превышать 1 МОм. Сопротивление обмотки электродвигателя машины постоянного тока – не менее 0,5 МОм.

Для изменений используется мегомметр, удобный и компактный прибор, состоящий из омметра и магнитоэлектрического генератора постоянного тока. Сопротивление изоляции электродвигателя, имеющего номинальное напряжение до 660В, следует измерять при напряжении в 500В.

Если производится контроль сопротивления обмоток машины с номинальным напряжением до 3000 В, то применяют мегаомметры с напряжением в 1000В. Измерение сопротивления обмотки электродвигателя с номинальным напряжением более 3000В используются приборы со значением в 2500В.

В том случае, если исследуемый двигатель имеет обмотку, соединенную через конденсатор с корпусом, то перед измерением необходимо конденсатор отключить от обмотки.

Как правильно производить измерение сопротивления изоляции

Для того чтобы данные имели смысл – необходимо правильно производить измерение сопротивления изоляции электродвигателя. Работы должны производиться при температуре не ниже +5ºС. Должны быть выполнены следующие условия:

Только в этом случае полученный результат можно считать достоверным. После произведенного замера испытываемый двигатель необходимо обязательно разрядить.

Измерение сопротивления изоляции обмоток электродвигателя

Если электродвигатель не будет пущен в эксплуатацию сразу же после поставки, необходимо организовать его защиту от воздействия внешних факторов, таких как влажность, температура и загрязнения, чтобы не допустить повреждения изоляции. Прежде чем включить электродвигатель после длительного хранения, следует измерить сопротивление изоляции.

Если электродвигатель хранится в условиях высокой влажности, должны проводиться регулярные измерения.

Измерение сопротивления изоляции выполняется с помощью мегаомметра – омметра с диапазоном высокого сопротивления. Измерение сопротивления производится: между обмотками и «землёй» электродвигателя на которые подаётся постоянное напряжение в 500 или 1000 В. В ходе измерения и сразу же после него на клеммах может присутствовать опасное напряжение, к ним

Минимальное сопротивление изоляции новых обмоток или обмоток после чистки или ремонта относительно «земли» составляет 10 МОм или более.

Минимальное сопротивление изоляции, R, вычисляется умножением номинального напряжения, U

n, на постоянный множитель 0,5 МОм / кВ. Например: если номинальное напряжение составляет 690 В = 0,69 кВ, минимальное сопротивление изоляции: 0,69 кВ ½ 0,5 мегом / кВ = 0,35 мегом

Минимальное сопротивление изоляции обмоток относительно земли измеряется с 500 В постоянного тока. Температура обмоток должна быть 25°C +/– 15°C.

Если сопротивление изоляции нового электродвигателя, электродвигателя после чистки или ремонта, который не которое время не эксплуатировался, составляет меньше 10 МОм, это можно объяснить тем, что в обмотки попала влага и их необходимо просушить.

Если электродвигатель эксплуатируется в течение долгого промежутка времени, минимальное сопротивление изоляции может упасть до критического уровня. Двигатель сохраняет работоспособность, если сопротивление его изоляции упало до минимального расчетного значения. Однако, если зарегистрировано такое падение сопротивления,

разделы начинающим

Зачастую, найдя какой-нибудь трехфазный двигатель, мы не можем его запустить по той простой причине, что правильно не определены начала и концы трех обмоток. Восполним этот пробел и применим для этого некоторые способы.
Способ первый: инструмент – батарейка на от 1,5В до 4,5В(или аналогичный блок питания постоянного тока), милливольтрметр постоянного тока.

Допустим, мы вызвонили омметром обмотки и у нас имеются несколько пар проводов. Нам надо определить, где у этих пар начало обмотки, а где конец. Возьмем любую пару проводов, принадлежащих одной из обмоток. Помечаем произвольно один из выводов обмотки как начало (Н), а второй как конец (К).

Подключаем милливольтметр постоянного тока на пределе единицы или десятки милливольт постоянного тока(чем меньше напряжение батареи – тем меньше предел)к паре проводов другой обмотки. Минус батарейки присоединяем к нашему условному концу (К) первой обмотки, плюс – к началу. Наблюдаем за показаниями милливольтметра.

Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка». Если стрелка прибора отклоняется влево за ноль, то переключаем полярность присоединения прибора ко второй обмотке, и снова замыкаем батарейку на первую обмотку. Теперь отклонения прибора в момент замыкания должны быть в положительную(правую) сторону.

Тот вывод обмотки, который соединен с плюсом милливольтметра, будет началом второй обмотки, а с минусом – концом (см. рис.1). Таким же образом определяем начало и конец третьей обмотки.

Способ второй: инструменты – понижающий трансформатор, выключатель, вольтметр.

Выбираем любую обмотку и подаем на нее напряжение с трансформатора величной, например, 6В. Это будет обмотка №1.

Если при измерении вольтметром, к примеру, между обмоткой №1 и №2 вольтметр покажет, скажем, 8В – значит эти обмотки соединены одноименными концами(можно принять их за начала).

Если это измерение между №1 и №2 покажет 4В – значит соединены они разноименными выводами и одну из обмоток надо развернуть концами. Аналогично определяюся концы 3-ей обмотки.

Способ третий: инструменты – лампа накаливания на 220В, выключатель, амперметр.

Две любые обмотки двигателя, лампу, выключатель и амперметр соединяем последовательно. Измеряем и запоминаем показание. Затем концы одной из обмоток меняем местами, снова измеряем и запоминаем. Большему показанию прибора будет соответствовать соединение двух обмоток одноименными выводами. Обозначаем их концы. То же самое проделываем с третьей обмоткой.

Источник

Видео

Прозвонка 3 х фазного электродвигателя на работоспособность

Как проверить электродвигатель?Настоящий прозвон асинхронного электродвигателя!

Как электродвигатель проверить мультиметром.

Как проверить трехфазный асинхронный электродвигатель?

ВАЖНО!Проверка сопротивления между обмотками электродвигателя мультиметром. электрика для начинающих

Проверка асинхронного трехфазного двигателя на КЗ и обрыв обмотки

Расположение контактов трехфазного двигателя и прозвонка обмоток

Как узнать параметры трехфазного двигателя если нету бирки

Измерение сопротивления изоляции электродвигателя

Определение начала и конца обмоток трехфазного электродвигателя (простой способ)

Как проверить обмотку электродвигателя мультиметром

Электродвигатели сопровождают конструкции разных устройств и оборудования. Если оно дало сбой, возможно, причина именно в поломке мотора, который является сердцем всей системы. Иногда убедиться в этом можно, просто взглянув на движок. Если же явных видимых повреждений нет, скорее всего, внутри оборвана цепь или случилось короткое замыкание. Обнаружить проблему можно с помощью тестера. Мы расскажем вам, как проверить обмотку электродвигателя мультиметром на исправность.

Contents

  • 1 Правила безопасности
  • 2 Общая инструкция, как проверить двигатель мультиметром
    • 2.1 Проверяем обрыв
    • 2.2 Тестируем на замыкание между витками
    • 2.3 Проверяем на короткое замыкание
  • 3 Проверка асинхронных движков
  • 4 Проверка коллекторных движков
    • 4.1 Вопрос — ответ

Правила безопасности

Перед проверкой движка убедитесь в исправности вилки и шнура всего прибора. Если в устройство поступает электроток, контрольная лампочка будет светиться. Если с подачей тока все в порядке, приступаем к проверке мотора, который сначала нужно демонтировать из корпуса агрегата. Выполнять эту операцию можно только при его полном обесточивании!

Не лишним будет проверить исправность мультиметра. Чаще всего уменьшается заряд батареек, из-за чего показания могут быть неточными.

Общая инструкция, как проверить двигатель мультиметром

Не все движки можно протестировать мультиметром. К примеру, сложно проверять электродвижки постоянного тока, потому что их обмотка с нулевым сопротивлением. Для исследования применяется такой способ: одновременно проверяются значения с вольтметра, амперметра и вычисляются результаты по закону Ома.

Так нужно протестировать все сопротивления якорных обмоток, измеряя показания между коллекторными пластинами. Различия в значениях указывают на неисправность. Отличия между соседними коллекторными пластинами в исправном механизме составляют максимум 10%. Только если имеется уравнительная обмотка, эта цифра может подняться до 30% в норме.

Электромашины переменного тока делятся на синхронные, асинхронные (например, трехфазные) и коллекторные. Их можно протестировать обычным измерителем. Советуем прочитать статью о правильном использовании мультиметра.

Итак, узнаем, как прозванивать двигатель мультиметром.

Проверяем обрыв

Если произошел обрыв одной фазы в обмотке, которая соединена “звездочкой”, в ней не будет тока, а в иных фазах его значение завышенное. В такой ситуации мотор не функционирует. Ещё может произойти обрыв параллельной фазной ветви, из-за чего перегревается исправная ветвь.

При обрыве одной обмоточной фазы (меж двух проводников), которая соединена “треугольником”, в других проводниках будет намного меньше тока по сравнению с третьим. Обрыв роторной обмотки приводит к снижению оборотов движка, появляется вибрация, гудение.

Мультиметром важно прозвонить каждую обмотку, прозвания её и тестируя сопротивление. Несколько общих моментов, как прозвонить электродвигатель мультиметром:

  1. Если мотор функционирует от 220 В, важно прозвонить рабочую или пусковую обмотки. Показания последней должны быть больше первой в полтора раза.
  2. В движках, которые работают от 380 В, подключаемых “треугольничком” или “звездочкой”, схема разбирается и отдельно проверяются все обмотки. Омы должны быть практически равные (отличия максимум 5%). Если произошел обрыв, тестер покажет слишком большие Омы, то есть бесконечное сопротивление.

Кроме того, можно использовать режим прозвонки на мультиметре, благодаря чему проверка осуществляется быстрее, потому что при обрыве нет звука, а он указывает на исправность обмотки.

Тестируем на замыкание между витками

Такое замыкание вызывает гудение мотора, который становится менее мощным. Для его выявления лучше использовать мультиметр, дающий самую малую погрешность.

Всё, что нужно сделать для измерений, — подключить наконечники щупов тестера к кончикам различных витков и проверить, есть ли контакт при прозвонке или в режиме тестирования сопротивления. Отличие больше 10% говорит о возможности замыкания.

Проверяем на короткое замыкание

Проверка электродвигателя мультиметром осуществляется так:

  1. Выбрать на измерителе максимальный диапазон сопротивления.
  2. Соединить щупы между собой, чтобы убедиться в работоспособности тестера.
  3. Один наконечник соединить с корпусом движка.
  4. Другой наконечник по очереди присоединить к выводам всех фаз.

Работоспособный мотор показывает высокие значения на мультиметре, это могут быть сотни и тысячи МОм (мегаомы).

Ещё удобнее прозванивать корпус. Для этого нужно сделать всё то же самое, но в режиме прозвона. Если слышите звук, значит, обмоточная изоляция нарушена и произошло замыкание.

Теперь немного подробнее поговорим о том, как мультиметром прозвонить моторчики разных видов.

Проверка асинхронных движков

Именно асинхронные движки чаще всего эксплуатируются в бытовых агрегатах, которые функционируют от 220 В. После того, как вынули мотор из оборудования, нужно замерить сопротивление между моторными выводами:

  1. Выбрать функцию измерения сопротивления и диапазон до 100 Ом.
  2. Соединить наконечники с выводами подключаемой обмотки. Между средним и крайним в норме значение 30-50 Ом, между средним и другим крайним 15-20.

Также важно проверить утечку тока:

  1. Выбрать функцию измерения сопротивления с диапазоном 2000 кОм.
  2. По очереди соединять каждую клемму с корпусом движка.
  3. На дисплее не должно быть значений. Если вы используете аналоговый мультиметр, стрелка не отклоняется.

Если выявляются проблемы, придется разбирать устройство, чтобы провести более тщательные исследования. Часто возникает межвитковое замыкание. Для их выявления выбирается диапазон 100 Ом, после чего прозванивается каждый контур статора. Сильное отклонение одного показания от другого говорит о замыкании обмотки.

Видео о том, как прозвонить двигатель мультиметром:

Проверка коллекторных движков

Такие моторы применяют в цепи постоянного тока. Перед тем, как прозванивать электродвигатель мультиметром, лучше всего полностью разобрать мотор.

На мультиметре выбирается функция измерения сопротивления с диапазоном 200 Ом. Обычно статор движка данного типа имеет две независимые обмотки, их и нужно протестировать.

Какой показатель считается нормальным, написано в технической документации к двигателю, но на исправность указывает невысокое сопротивление. Если движок очень мощный, сопротивление статора будет совсем маленьким. В моторах с обычной мощностью сопротивление обмотки может быть в пределах 5-30 Ом. Для прозвонки необходимо наконечниками щупов мультиметра дотронуться до выводов обмоток. Если хотя бы в одном контуре нет сопротивления, использовать устройство не нужно.

У ротора коллекторного движка много обмоток, но тестировать якорь легко. Проверка мультиметром двигателя коллекторного типа:

  1. Выбрать функцию измерения сопротивления и диапазон в 200 Ом.
  2. Поместить наконечники щупов на коллекторе так, чтобы они были как можно дальше друг от друга.
  3. Если на дисплее тестера показываются какие-то цифры, без снятия щупов нужно немного провернуть ротор, чтобы другая обмотка соединилась с щупами.
  4. Если показания почти равные, с якорем всё в порядке.

Также полезно проверить устройство на утечку электротока.

Подробное видео о том, как проверить мультиметром моторчик коллекторный:

Теперь вы знаете, как проверить обмотку электродвигателя мультиметром и сможете тестировать разное оборудование. Даже если вы захотите узнать, как прозвонить мультиметром насос, вам будет полезна эта статья, ведь у бензонасосов тоже есть электромотор. Также вы сможете проверить движок домашней стиральной машины. Словом, умея пользоваться тестером, можно “дружить” с самым разным оборудованием.

Желаем безопасных и точных измерений!

Вопрос — ответ

Вопрос: Как прозвонить электродвигатель цифровым мультиметром?

Имя: Максим

Ответ: Перед проверкой движка убедитесь в исправности вилки и шнура всего прибора. Если с подачей тока все в порядке, мотор нужно демонтировать из корпуса агрегата. Выполнять эту операцию можно только при его полном обесточивании. Затем можно приступать к проверке асинхронного или коллекторного мотора.

 

Вопрос: Как проверить электродвигатель на обрыв мультиметром?

Имя: Алексей

Ответ: Если мотор функционирует от 220 В, важно прозвонить рабочую или пусковую обмотки. Показания последней должны быть больше первой в полтора раза. В движках 380 В, подключаемых “треугольничком” или “звездочкой”, схема разбирается и отдельно проверяются все обмотки.

 

Вопрос: Как проверить асинхронный электродвигатель на исправность мультиметром?

Имя: Даниил

Ответ: Чтобы замерить сопротивление между моторными выводами, нужно выбрать функцию измерения сопротивления и диапазон до 100 Ом. Затем соединить наконечники с выводами подключаемой обмотки. Между средним и крайним в норме значение 30-50 Ом, между средним и другим крайним 15-20.

 

Вопрос: Как проверить моторчик на короткое замыкание мультиметром?

Имя: Тагир

Ответ: Выбрать на измерителе максимальный диапазон сопротивления. Один наконечник от мультиметра соединить с корпусом движка. Другой по очереди присоединить к выводам всех фаз. Ещё можно прозвонить корпус.

 

Вопрос: Как проверить коллекторный двигатель мультиметром?

Имя: Егор

Ответ: На мультиметре выбирается функция измерения сопротивления с диапазоном 200 Ом. Обычно статор движка данного типа имеет две независимые обмотки, их и нужно протестировать. У ротора коллекторного движка много обмоток, но тестировать якорь не сложно.

 

Сопротивление обмоток электродвигателя таблица — Всё о электрике

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.8. Нормы приемо-сдаточных испытаний

Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Напряжение мегаомметра, кВ

Обмотка статора напряжением до 1 кВ

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

4. Измерение сопротивления постоянному току: ¶

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

Таблица 1. 8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Испытательное напряжение, кВ

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

Реостат и пускорегулировочный резистор

Резистор гашения поля синхронного электродвигателя

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶

Синхронная частота вращения электродвигателя, Гц

Допустимая вибрация, мкм

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение “мегаомы”;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около “0”;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора “звезда” или “треугольник” необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

{SOURCE}

Измерение сопротивления изоляции обмоток электродвигателей и внутренних соединений машин переменного тока

Цель работы: измерения сопротивления изоляции обмоток двигателя методом вольтметра; выполнение внутренних соединений обмоток статора трехфазного асинхронного двигателя с короткозамкнутым ротором.

Краткие теоретические сведения

Применяемая для изоляции обмоток электрических машин и трансформаторов изоляция не является идеальным диэлектриком. Нагрев и воздействие внешних факторов приводят к тому, что в изоляции появляются микротрещины, которые способствуют появлению тока утечки между фазами, что приводит к коротким замыканиям между фазами или фазой и землей.

Нормы значения сопротивления изоляции при приемосдаточных испытаниях регламентированы «Правилами устройства электроустановок» (ПУЭ).

Таблица 1. Допустимое сопротивление изоляции электродвигателей переменного тока

Испытуемый

объект

Напряжение

мегомметра,

кВ

Сопротивление изоляции

Обмотка  статора  напряжением до 1 кВ

1

Не менее 0,5 МОм при температуре 10-300С

Обмотка     ротора     синхронного электродвигателя и электродвигателей с фазным ротором

0,5

Не менее 0,2 МОм при температуре 10-300С (допускается не ниже 2 кОм  при  +750С  или  20  кОм  при

+200С  для  неявнополюсных  роторов)

Сопротивление изоляции обмоток вновь вводимых в эксплуатацию электрических машин до 500 кВт на номинальное напряжение до 10,5 кВ должно соответствовать нормам, приведенным в таблице 2.

Таблица 2. Допустимое сопротивление изоляции обмоток R  оС

электродвигателей мощностью до 5000 кВт

Температура обмотки, 0С

R60, МОм, при номинальном напряжении машины, кВ

3-3,15

6-6,3

10-10,5

10

20

60

100

20

30

40

70

30

15

30

50

40

10

20

35

50

7

15

25

60

5

10

17

75

3

6

10

Для машин мощностью выше 5000 кВт, а также для машин на номинальное напряжение выше 10,5 кВ наименьшее сопротивление изоляции, измеренное при температуре 750С, определяется по формуле:

R60

=          U ном             ,

1000 + Р ном  ⋅ 0,01

где Uном – номинальное линейное напряжение, В;

Рном – номинальная мощность, кВт

Если  сопротивление  изоляции,  вычисленное  по  этой

формуле, ниже 0,5 МОм, то наименьшее допустимое значение принимают равным 0,5 МОм.

Для температур 10-750С наименьшее значение сопротивления изоляции обмоток машины определяют, умножая значения, полученные по формуле, на температурный коэффициент Кт, значения которого приведены в таблице 3.

Таблица 3. Значения температурного коэффициента (Кт)

Температура, 0С

Кт

Температура, 0С

Кт

10

9,4

50

2,4

20

6,7

60

1,7

30

4,7

70

1,2

40

3,4

75

1

При измерении сопротивления изоляции обмоток электродвигателей с номинальным напряжением до 500 В включительно рекомендуется применять мегомметр до 500 В, а для кнопку SB2 («НАЗАД»). В результате должен произойти прямой пуск двигателя Ml с обратным направлением вращения, о чем должна будет сигнализировать загоревшаяся красная лампа HLR2 («НАЗАД»). Стрелки вольтметра PV1 и амперметра РА1 укажут напряжение и ток двигателя Ml. Зеленая лампа HLG1 («ГОТОВ») погаснет. На мониторе А4 высветится увеличенное в 100 раз текущее значение тока двигателя Ml в выбранной фазе. Для наблюдения значения тока в другой фазе нажмите и отпустите кнопку «    ».

• Нажмите и удерживайте не менее 2 секунд кнопку SB2 («СТОП»). В результате произойдет отключение   двигателя Ml от электрической сети и последующий его останов. Двигатель Ml будет готов к очередному пуску, о чем будет сигнализировать загоревшаяся зеленая лампа HLG1 («ГОТОВ»). Красная лампа HLR1 («ВПЕРЕД») погаснет.

•  Вновь пустите двигатель Ml нажатием кнопки SB1  («ВПЕРЕД»).

• Смоделируйте обрыв фазы двигателя M1 выниманием перемычки, например, в фазе «В» на его терминальной панели. Стрелки вольтметра PV1 и амперметра РА1 укажут напряжение и увеличившийся ток двигателя Ml. Зеленая лампа HLG1 («ГОТОВ») погаснет. На мониторе А4 высветится увеличенное в 100 раз текущее значение тока двигателя Ml в выбранной фазе. Двигатель Ml начнет издавать характерный гудящий звук. Через время t3 = 5 с двигатель Ml должен аварийно отключиться от электрической сети и остановиться. Об этом будет сигнализировать надпись «OL3», которая должна появиться па мониторе блока А4.

• Устраните искусственно созданный обрыв фазы «В» двигателя

Ml.

• Отключите шкаф от сети электропитания лаборатории.

• Откройте дверь шкафа.

• Отключите выключатели QF1 и SF1.

• Вставь ранее вынутый проводник в гнездо «В».

• Создайте механический момент сопротивления на валу двигателя M1, исключающий его пуск. Для этого снимите кожух, ной на двери шкафа, с аппаратурой внутри шкафа используйте в   качестве   промежуточных  контактов   блоки   зажимов   Х5, Х6 расположенные на шасси шкафа.

• Включите выключатели QF1 и SF1.

• Закройте дверь шкафа ключом.

• Подайте на шкаф электропитание от сети лаборатории. О наличии последнего должна сигнализировать загоревшаяся зеленая лампа HLG1 («ГОТОВ»), На мониторе тока двигателя А4 (далее мониторе) высветится надпись «А.000», означающая увеличенное в 100 раз текущее (равно нулю) значение тока в фазе «А» двигателя Ml, a также загорится светодиод около надписи «СТОП».

• Проверьте, что в мониторе А4 заданы следующие значения параметров управления асинхронного двигателя: токи I1  = 0,42 А (во всех фазах). I2 = 50%, I3 = 70% и времена t0 = 10 с, tl = 3 с,

t2 = 5 с, t3 = 5 с. Если это не так, то восстановите их или измените на свои желаемые значения этих параметров. (Порядок проверки, восстановления и  изменения параметров  приведен в разделе «Программирование монитора тока двигателя» настоящего руководства).

• Нажмите и удерживайте не менее 2 секунд кнопку SB1 («ВПЕРЕД»). В результате произойдет прямой  пуск  двигателя Ml, о чем  должна  будет  сигнализировать  загоревшаяся       красная лампа HLR1 («ВПЕРЕД»). Стрелки вольтметра PV1 и амперметра РА1 укажут напряжение и ток двигателя Ml. Зеленая лампа HLG1 («ГОТОВ») погаснет. На мониторе А4 высветится увеличенное в 100 раз текущее значение тока двигателя Ml  в выбранной фазе. Для наблюдения значения тока в другой фазе нажмите

и отпустите кнопку «    ».

• Нажмите и удерживайте не менее 2 секунд кнопку SB2 («СТОП»). В результате произойдет отключение двигателя Ml от электрической сети и последующий его останов. Двигатель Ml будет готов к очередному пуску, о чем будет сигнализировать загоревшаяся зеленая лампа HLG1 («ГОТОВ»). Красная лампа HLR1 («ВПЕРЕД») погаснет.

• Дважды с интервалом времени не менее t0 = 10 с нажмите электродвигателей напряжением выше 500 В – мегомметр на

1000 В. Ручку мегомметра рекомендуется вращать равномерно с частотой около 150 об/мин. Измерение следует проводить при установившемся положении стрелки по истечении 60с после начала вращения ручки мегомметра.

Для электродвигателей, у которых выведены концы и начала всех фаз, измерение сопротивления изоляции производят между каждой фазой и корпусом. В этом случае допустимое минимальное сопротивление изоляции должно быть повышено в 3 раза.

При измерении сопротивления изоляции каждой из электрических цепей все другие цепи должны быть соединены с корпусом машины. По окончании измерения сопротивления изоляции каждой электрически независимой цепи следует разрядить ее на заземленный корпус электродвигателя.

Измерение сопротивления изоляции можно производить также сетевым мегомметром и методом вольтметра. Схемы соединений при измерении сопротивлений изоляции методом вольтметра при питании сетей постоянным и переменным током изображены на рисунках 1 и 2.

Рис. 1. Измерение сопротивления изоляции вольтметром от сети постоянного тока

Ф         QF

~   N

HL TV

SA VD            V

I           II C

M

Рис.2. Измерение сопротивления изоляции вольтметром от сети переменного тока

Методические указания

Для получения большей точности измерений вольтметр выбирают  с  большим  собственным  сопротивлением  (3000050000 Ом). Измерения производят на одном пределе вольтметра.

При измерении от электрической сети, один полюс которого может быть заземлен (рис.1), во избежание короткого замыкания следует подключить заземленный корпус электродвигателя таким образом, чтобы он оказался заземленным с заземленным полюсом сети.

При питании измерительной схемы от сети переменного тока (рис. 2), если выпрямительный мост включен в сеть не непосредственно, а через трансформатор, отделяющий сеть переменного тока от цепи выпрямленного напряжения, заземленный корпус электродвигателя может быть присоединен к любому из зажимов выпрямительного моста.

Метод вольтметра основан на известном в электротехнике положении: напряжения на последовательно соединенных сопротивлениях распределяются пропорционально этим сопротивлениям.

Для  подачи  напряжений  могут  использоваться лабораторные автотрансформаторы.

Для проведения испытаний необходимо включить автоматический выключатель QF, при этом загорается сигнальная лампочка HL. При установке переключателя SA в положении I вольтметром V  измеряется напряжение испытаний U1, B. После перевода переключателя в положение II измеряется показание вольтметра U2. Таким образом, падение напряжения в изоляции U1-U2, В. Так как в положении II переключателя  SA сопротивление вольтметра Rв  (указанное на шкале вольтметра или приведенное в его паспорте) и измеряемое сопротивление изоляции Rиз  соединены последовательно, то падение напряжения в них распределяются прямо пропорционально значениям их сопротивлений:

R         U

в          =          2     ,

R         U  − U

1          2

Материал взят из книги Монтаж и эксплуатация электрооборудования предприятий и установок (Амирова С.С.)

Tuhorse Motor Pessance

Тухорс.
 
      Линейное сопротивление (Ом)    
  кВт Вольт БЛ-ИЛ YL — КРАСНЫЙ ЧЕРНЫЙ — КРАСНЫЙ

Соединение обмотки

Автоматический выключатель , используемый в панели обслуживания электропитания

3 дюйма, однофазный, 3-проводной
3/4 л. с. 0,55 230 4,6 11,3 16 3-жильный 15
1 л.с. 0,75 230 3,7 8,3 12 3-жильный 15
4 дюйма, одна фаза, 230 В, 3 провода              
1 л.с. 0,75 230 2,7 5. 1 7,8 3-жильный 15
1,5 л.с. 1,1 230 2,2 3,6 5,8 3-жильный 20
2HP — 2015 г. и ранее 1,5 230 1,5 3,7 4.1 3-жильный 25
2HP — 2016 г. и позже 1,5 230 1,5 2,6 4. 1 3-жильный 25
3HP — 2015 г. и ранее 2,2 230 1,1 2,7 3,8 3-жильный 30
3HP — 2016 г. и позже 2,2 230 1,1 2.1 3,3 3-жильный 30
5 л.с. 3,7 230 0,9 2,2 3. 1 3-жильный 50
4 дюйма, однофазный, 2-проводной              
1 л.с. 0,75 230 2,7 2-жильный 20
1,5 л.с. 1,1 230 2.1 2-жильный 25
4 дюйма, 3 фазы, 230 В              
2HP 1,5 230 2,5 2,5 2,5 Дельта 20
3HP 2,2 230 1,5 1,5 1,5 Дельта 25
5,5 л. с. 4 230 0,9 0,9 0,9 Дельта 30
4 дюйма, 3 фазы, 460 В              
3HP 2,2 460 6.1 6.1 6.1 Уай 15
5,5 л.с. 4 460 3,6 3,6 3,6 Уай 20
6 дюймов, 3 фазы, 230 В              
10 л. с. с масляным охлаждением 7,5 230 0,5 0,5 0,5 Дельта 60
10 л.с. с водяным охлаждением 7,5 230 0,4 0,4 0,4 Дельта 60
20 л.с. с масляным охлаждением 15 230 0,2 0,2 0,2 2-треугольник 100
20 л. с. с водяным охлаждением 15 230 0,2 0,2 0,2 2-треугольник 100
6 дюймов, 3 фазы, 460 В              
10 л.с. с масляным охлаждением 7,5 460 2 2 2 Уай 35
10 л.с. с водяным охлаждением 7,5 460 1,7 1,7 1,7 Уай 35
20 л. с. с масляным охлаждением 15 460 0,8 0,8 0,8 Дельта 60
20 л.с. с водяным охлаждением 15 460 0,8 0,8 0,8 Дельта 60
30 л.с. с масляным охлаждением 22 460 0,5 0,5 0,5 Дельта 80
30 л. с. с водяным охлаждением 22 460 0,6 0,6 0,6 Дельта 80
Солнечная              
1000 Вт 110 В 4 дюйма 1 110 0,6 0,6 0,6 Дельта Н/Д
500 Вт 48 В 3 дюйма 0,5 48 0,4 0,4 0,4 Дельта Н/Д
210 Вт 36 В 3 дюйма 0,21 36 0,5 0,5 0,5 Дельта Н/Д

Схема обмотки трехфазного двигателя и значения сопротивления

Обмотка трехфазного двигателя. Значения сопротивления обмотки трехфазного двигателя , 3-фазный двигатель M Таблица сопротивления обмотки , 3-фазный двигатель Таблица сопротивления обмотки pdf,
формула обмотки трехфазного двигателя, 3-фазная схема обмотки двигателя Pdf Данные обмотки . В этом посте мы показали, как настроить размер катушки трехфазного двигателя мощностью 1 л.с. . Таблица значений сопротивления также представлена ​​в этой таблице.

Таблица значений сопротивления двигателя.

Это очень простой способ узнать таблицу значений сопротивления двигателя

и настроить размер катушки двигателя. вы можете взять это в качестве примера и сделать это со всеми типами двигателей, такими как однофазные и трехфазные. так что друг наблюдает и наслаждается этим.

Таблица значений сопротивления двигателя

4

Таблица значений сопротивления двигателя от MotorCoilWindingData. Com
250 500 25
600 1,000 100
1,000 1,000 100
2,500 1,000 500
500 2,500 1,000
8000 2500 2000
15000 2500
0025

25 000 5000 20 000
34 500 15 000 100 000

9003

3 3

3 3 3. 3. 9002.

9003

3 3.

. вы, как перемотать и обновить старый трехфазный электродвигатель . Если вы ищете перемотку однофазного двигателя, вы можете найти это здесь.

В этих инструкциях я заработаю шаг вперед. В следующих шагах я покажу вам, как проанализировать скручивание двигателей, разобрать двигатель, устранить подшипники, рассчитать свежую обмотку, перемотать двигатель, собрать его с новыми подшипниками и исследовать двигатель.

Перемотка — очень долгая процедура. На его перемотку, замену всех предыдущих деталей и сборку ушло около двух недель. Если у вас есть какие-либо вопросы, вы можете легко написать мне.

Таблица значений сопротивления обмотки трехфазного двигателя.

В этом типичных значениях сопротивления обмотки для трехфазного двигателя вы можете получить полное значение сопротивления обмотки , какие показания должны давать обмотки трехфазного двигателя и земля.

Значения сопротивления обмотки трехфазного двигателя

4″2-WiRE 244504 ​​ 1/2 0. 37 115 60 1.6 10 670 12 960 10-1.3
4″2-WiRE 244505 1/2 0.37 230 60 1.6 5.0 670 6.0 960 4.2-5.2
4″2- Wire 244507 3/4 0.55 230 60 1.5 6.8 940 8.0 1310 3.0-3.6
4″2- Wire 244508 1 0.75 230 60 1.4 8.2 1212 10.5 1600 2.2-2.7
4″2- Wire 244309 1.5 1.0 230 60 1. 3 10.6 1770 13.1 2280 1,5-2.1

Ом 3 Фазовый моторный карта0022 Диаграмма сопротивления обмоток трехфазного двигателя. Как измерить сопротивление трехфазного двигателя.

Ом Обмотки трехфазного двигателя

Значения сопротивления обмотки двигателя по данным обмотки катушки двигателя .Com
4″3-WiRE 214504 1/2 0.37 115 60 1.6 Y10.0, B10.0, R0 670 Y12.0.B12. 0, R0 960 M1.0-1.3, S4.1-5.1
4 «3» 3 «3» 3 «3» 3 «3» 3 «3» 3 » -WiRE 244505 1/2 0.37 230 60 1.6 Y5.0,B5.0,R0 670 Y6.0,B6.0,R0 960 M4,2-5,2, S16,7-20,5
4 дюйма, 3 провода 244507 3/4 0,55 230 60 1,5 Y6,8, B6,8, R0 940 Y8,0, B8.0, R0 1310 M3.0-3.6, S10.7-13.13.13.13.1341 1310 M3.0-3.6, S10.7-13.13.134141414 M3.0-3.6, S10.7-13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1.13.1341.
4″3- Wire 244508 1 0.75 230 60 1.4 Y8.2,B8.2,R0 1212 10.4,10.4,R0 1600 M2.2-2.7,S9. 9-12.1

Видео обмотки трехфазного двигателя здесь

 

Всю информацию о типе старой обмотки вы можете получить в разделе «намоточная головка». Обмотка представляет собой часть обмотки, в которой создаются все соединения. По виду скрутки (Тип намотки), количеству тросов в каждом разрыве и толщине троса можно перематывать новые двигатели скруткой, не производя расчетов на следующем шаге.

 

 

Схема обмотки трехфазного двигателя

A Трехфазный асинхронный двигатель i — самый распространенный двигатель на земле. Он обладает достаточно хорошей эффективностью и низким производством, а также экономит затраты. Двумя основными секциями двигателя являются ротор и статор.

Ротор обычно выполнен в виде короткозамкнутого ротора и вставляется в отверстие статора. Статор изготовлен из железного сердечника и скручивания. Статор используется для создания магнитного поля. 3 ступени генерируют вращающееся магнитное поле, поэтому нам не нужен конденсатор на трехфазном двигателе .

Вращающееся магнитное поле «уменьшает» беличью клетку, где оно индуцирует напряжение. Поскольку клетка замкнута накоротко, напряжение создает поток электрического тока. Присутствие в магнитном поле создает силу.

Так как магнитное поле должно вращаться быстрее, чем ротор, чтобы индуцировать напряжение в роторе. Поэтому скорость двигателя немного меньше скорости магнитного поля ((3000 об/мин [Магнитное поле] — 2800 об/мин [Электродвигатель])). Вот почему мы называем их трехфазным АСИНХРОННЫМ электродвигателем.

ПАНЕЛЬ ДЛЯ ДВИГАТЕЛЯ.

  1. На табличке с надписями о двигателях мы можем найти самую полезную информацию о двигателе:
  2. Номинальное напряжение двигателей (для подключения двигателя звезды (Y) и клапана (D)) [В]
  3. Номинальный ток двигателей (для звезды (Y) и треугольника (D)
  4. подключение двигателя) [А]Мощность электродвигателя [Вт]
  5. Коэффициент мощности cos Fi Скорость вращения [об/мин] Номинальная частота [Гц]

Значение сопротивления обмотки трехфазного двигателя.

Проверка на замыкание на землю с помощью омметра.

Значения сопротивления обмотки трехфазного двигателя , Использование омметра: Отключите все питание от системы. Проверьте все три провода по отдельности Т1, Т2, Т3 (три фазы) на заземляющий провод. Чтения должны быть бесконечными.

Если он равен нулю или показывает некоторую непрерывность, значит проблема в двигателе или кабеле. Если он идет непосредственно к двигателю, отсоедините кабель и проверьте двигатель и кабель по отдельности.

Убедитесь, что провода на обоих концах не соприкасаются ни с чем, включая другие провода. Многие короткие замыкания серводвигателя могут быть считаны с помощью обычного измерителя качества. Убедитесь, что вы используете измеритель качества до 10 МОм.

Оцените все 3 провода отдельно T1, T2, T3 (три фазы) к заземляющему кабелю. Показания часто находятся в диапазоне от 600 до 2000 МОм. Большинство коротких замыканий будет ниже 20 МОм.

Будьте осторожны, не прикасайтесь проводами к чему-либо при снятии показаний. Это может дать ложные и неповторимые прочтения, заставляющие продолжать ваше повествование. Вышеприведенное — это именно то, что я нашел типичным для 230 В переменного тока 3-фазных двигателей.

Несмотря на то, что 230 мегабайт для схемы на 230 В переменного тока, судя по моему опыту, это слишком мало. Просто используйте это как ориентир. Просто имейте в виду, что от 230 мегабайт до 600 мегабайт часто показывает некоторое ухудшение изоляции кабелей или двигателя.

Проверка на обрыв и короткое замыкание в обмотке двигателя.

Разместите измеритель на омах: от T1 до T2, от T2 до T3, от T1 до T3. Обычно ожидаемый диапазон составляет от 0,3 до 2,0 Ом, хотя большинство из них составляют около 0,8 Ом. Если вы читаете ноль, между фазами существует короткое замыкание. Обычно, если он разомкнут, он бесконечен или значительно превышает 2 кОм.

Кабель и вилка Примечание Часто в разъем кабеля к двигателю попадает охлаждающая жидкость. Подумайте о том, чтобы высушить его и протестировать повторно. Если все же ужасно, то сами вкладыши будут время от времени покрываться подгоревшими в них следами, вызывающими легкий бриз.

В таких случаях вставки следует заменить. Кроме того, ищите места, где кабель перемещается по трекингу. Провода со временем изнашиваются. Если это двигатель постоянного тока , оценивает щетки.

Вокруг двигателя нужно снять 3-4 круглых колпачка. Под ними вы обнаружите пружину с квадратным блоком (кистью). Посмотрите, сколько осталось, возможно, нужно заменить. Также оцените износ коллектора, на котором ездят щетки; попробуйте протереть поверхность.

3 Фазовые соединения моторной ветки

3 Фазовый мотор

इस पोस में हमने दिख दिख है है कि 1 л.с.

इसका बहुत आस आस| आप इसे उदाहरण के 000 प पшить प प प प प प Вивра क हैं औ औ सभी प प्रकार की मोट के स स क सकते जैसे एकल च च औ च च च।। सकते जैसे च च च औ च च च।। क सकते जैसे च च औ च च च च।।।।। च च च च च।।।।। च च च च।।।।।।।।।।।।।।।।।।।।।। तो दोस्त देखते रहें और इसका आनंद लें।

Откройте крышку распределительной коробки. Перед измерением устраните все звенья в токопроводящей коробке. Измерьте сопротивление для каждой обмотки, сопротивление между двумя отдельными обмотками и сопротивление между скручиванием и корпусом двигателя.

Сопротивление обмотки трехфазного двигателя должно быть одинаковым (+/- 5%). Сопротивление двух обмоток и обмотки-каркаса должно быть более 1,5 МОм. Определить сгоревшую обмотку двигателя можно по характерному запаху (пахнет горелым лаком).

फॉर मोरे इनफार्मेशन सर्च — ( Electricals Trendz ) на YouTube
для получения дополнительной информации Поиск электрических электроотдеров (канал) на YouTube

Как проверить ваши обмотки 101

Автомобильные настройки — это проводящие провода, обернутые вокруг магнитного ядра; они обеспечивают путь для протекания тока, чтобы затем создать магнитное поле для вращения ротора. Как и любая другая часть двигателя, обмотка может выйти из строя. Когда обмотки двигателя выходят из строя, очень редко выходят из строя сами проводники, скорее выходит из строя полимерное покрытие (изоляция), окружающее проводники. Полимерный материал является органическим по своему химическому составу и подвержен изменениям в результате старения, карбонизации, нагревания или других неблагоприятных условий, вызывающих изменение химического состава полимерного материала. Эти изменения невозможно обнаружить визуально или даже с помощью традиционных электрических контрольно-измерительных приборов, таких как омметры или мегомметры.

Внезапный выход из строя любой части двигателя приведет к потере производительности, увеличению затрат на техническое обслуживание, потерям или повреждению капитала и, возможно, к травмам. Поскольку в большинстве случаев повреждение изоляции происходит со временем, технология MCA обеспечивает измерения, необходимые для выявления этих небольших изменений, определяющих состояние системы изоляции обмоток. Знание того, как проверить ваши обмотки, позволит вашей команде действовать упреждающе и предпринять соответствующие действия, чтобы предотвратить нежелательный отказ двигателя.

Как проверить изоляцию заземления

Замыкание на землю или короткое замыкание на землю происходит, когда значение сопротивления изоляции заземления уменьшается и позволяет току течь на землю или открытую часть машины. Это создает проблему безопасности, поскольку обеспечивает путь для подачи напряжения питания от обмотки к раме или другим открытым частям машины. Для проверки состояния заземления изоляции стены производят замеры от выводов обмотки Т1, Т2, Т3 до земли.

Наилучшие методы проверки извилистого пути к земле. Этот тест обеспечивает подачу постоянного напряжения на обмотку двигателя и измеряет, какой ток протекает через изоляцию на землю:

1) Проверьте двигатель в обесточенном состоянии с помощью исправно работающего вольтметра.

2) Заземлите оба измерительных провода прибора и убедитесь в надежном соединении провода прибора с землей. Измерьте сопротивление изоляции относительно земли (IRG). Это значение должно быть 0 МОм. Если отображается какое-либо значение, отличное от 0, повторно подключите измерительные провода к земле и повторите проверку, пока не будет получено показание 0.

3) Отсоедините один из тестовых проводов от земли и подключите к каждому из проводов двигателя. Затем измерьте значение сопротивления изоляции каждого провода относительно земли и убедитесь, что значение превышает рекомендуемое минимальное значение для напряжения питания двигателей.

NEMA, IEC, IEEE, NFPA предоставляют различные таблицы и рекомендации по рекомендуемым значениям испытательного напряжения и минимальной изоляции относительно земли в зависимости от напряжения питания двигателей. Этот тест выявляет любые слабые места в системе изоляции грунтовых стен. Коэффициент рассеяния и измерение емкости относительно земли обеспечивают дополнительную индикацию общего состояния изоляции. Процедура тестирования для этих тестов одинакова, но вместо приложения постоянного напряжения подается сигнал переменного тока, чтобы обеспечить лучшую индикацию общего состояния изоляции заземления.

Как проверить обмотки на наличие проблем с подключением, обрыва или короткого замыкания

Проблемы с подключением: Проблемы с подключением создают дисбаланс тока между фазами в трехфазном двигателе, что вызывает чрезмерный нагрев и преждевременный выход из строя изоляции.

Размыкание : Размыкание происходит при обрыве или разделении проводника или проводников. Это может помешать запуску двигателя или заставить его работать в «однофазном» режиме, что приводит к избыточному току, перегреву двигателя и преждевременному выходу из строя.

Короткие замыкания: Короткие замыкания возникают, когда изоляция вокруг проводников обмотки выходит из строя между проводниками. Это позволяет току течь между проводниками (короткими), а не через проводники. Это создает нагрев в месте повреждения, что приводит к дальнейшему ухудшению изоляции между проводниками и в конечном итоге приводит к выходу из строя.

Проверка обмоток на наличие неисправностей требует выполнения серии измерений переменного и постоянного тока между выводами двигателя и сравнения измеренных значений, если измерения сбалансированы, обмотка в порядке, если они несимметричны, указываются неисправности.

Рекомендуемые измерения:

1) сопротивление

2) Индуктивность

3) Импеданс

4) Фазовый угол

5) Текущая частота.

  • от Т1 до Т3
  • от Т2 до Т3
  • от Т1 до Т2
  • Значение должно находиться в пределах от 0,3 до 2 Ом. Если это 0, есть короткое замыкание. Если оно больше 2 Ом или бесконечно, есть обрыв. Вы также можете высушить разъем и повторно протестировать его, чтобы получить более точные результаты. Проверьте вставки на следы прогара и тросы на износ.

    Несбалансированность сопротивлений указывает на проблемы с подключением. Если эти значения отклоняются от среднего значения более чем на 5%, это указывает на неплотное соединение, высокое сопротивление, коррозию или другие отложения на клеммах двигателя. Очистите провода двигателя и повторите проверку.

    Обрывы обозначаются бесконечным значением сопротивления или импеданса.

    Если фазовый угол или текущие частотные характеристики отличаются от среднего более чем на 2 единицы, это может указывать на короткое замыкание обмотки. На эти значения может повлиять положение ротора с короткозамкнутым ротором во время испытаний. Если импеданс и индуктивность не сбалансированы более чем на 3% от среднего значения, рекомендуется повернуть вал приблизительно на 30 градусов и провести повторную проверку. Если дисбаланс следует за положением ротора, дисбаланс может быть результатом положения ротора. Если дисбаланс остается прежним, это указывает на неисправность статора.

    Традиционные приборы для проверки двигателей не могут эффективно тестировать или проверять обмотки двигателя

    Традиционными приборами, используемыми для проверки двигателей, являются мегомметр, омметр или иногда мультиметр. Это связано с наличием этих инструментов на большинстве заводов. Мегаомметр используется для проверки безопасности электрического оборудования или систем, а мультиметр используется для выполнения большинства других электрических измерений. Однако ни один из этих инструментов сам по себе или в сочетании не дает информации, необходимой для правильной оценки состояния системы изоляции двигателя. Мегаомметр может выявить слабые места в изоляции заземления двигателя, но не позволяет определить общее состояние системы изоляции. Он также не дает информации о состоянии системы изоляции обмоток. Мультиметр выявит проблемы с соединением и обрывы в обмотках двигателя, но не предоставит информации об изоляции между обмотками.

    Тестирование обмоток с анализом цепи двигателя (MCA™)

    Анализ цепи двигателя (MCA™)  — это метод обесточивания, позволяющий тщательно оценить состояние двигателя путем проверки обмоток и других деталей. Он прост в использовании и быстро дает точные результаты. ALL-TEST PRO 7™, ALL-TEST PRO 34™ и другие продукты MCA™ можно использовать на любом двигателе для выявления потенциальных проблем и предотвращения дорогостоящего ремонта. MCA полностью проверяет систему изоляции обмоток двигателей и выявляет преждевременную деградацию системы изоляции обмоток, а также неисправности внутри двигателя, которые приводят к отказу. MCA также диагностирует слабые и неисправные соединения, когда тесты выполняются с контроллера мотора.

    Запросите цену на оборудование для тестирования двигателей сегодня

    Испытания двигателей необходимы, поскольку двигатели выходят из строя, и тестирование может выявить проблемы, которые предотвратят отказ. В ALL-TEST Pro у нас есть широкий выбор продуктов для тестирования двигателей, подходящих для многих отраслей промышленности. Мы работали с техниками из пищевой промышленности, небольших автомастерских, ремонтных мастерских и т. д. По сравнению с конкурентами наши машины являются самыми быстрыми и легкими, обеспечивая при этом ценные результаты без необходимости дополнительной интерпретации данных.

    Получить предложение

    Запросите предложение на нашем веб-сайте сегодня, чтобы получить информацию о ценах на наши продукты для тестирования двигателей. Для получения дополнительной информации о том, как проверить ваши обмотки, , свяжитесь с нашей командой онлайн.

    Получить предложение

    Как проверить сопротивление обмотки двигателя

    Чтобы быстро просмотреть эту тему, нажмите  по этой ссылке . Мы расскажем о тестировании изоляции заземления, о том, как проверить ваши обмотки на наличие проблем с подключением, включая обрыв и короткое замыкание.

    Что такое проверка сопротивления обмотки двигателя?

    Проверка обмоток трехфазного двигателя очень проста с помощью Motor Circuit Analysis™ (MCA™) . Измерения сопротивления обмотки выявляют различные неисправности в двигателях, генераторах и трансформаторах: короткие и разомкнутые витки, ослабленные соединения, обрыв проводников и проблемы с резистивными соединениями. Эти проблемы могут быть причиной износа или других дефектов двигателя с фазным ротором. Измерения сопротивления обмотки выявляют проблемы в двигателях, которые не могут быть обнаружены другими тестами. Такие приборы, как мегомметры и омметры, обнаружат прямые замыкания на землю, но не укажут на нарушение изоляции, межвитковые замыкания, дисбаланс фаз, проблемы с ротором и т. д. Если двигатель заземлен, мегомметр и омметр решат вашу проблему, когда вы Ом двигателя, но если проблема с двигателем не связана с заземлением, вам потребуется использовать другой инструмент или инструмент для устранения проблемы, поскольку двигатель может все еще работать, но возникают проблемы, такие как отключение ЧРП или автоматического выключателя, перегрев или неэффективно и т.  д.

    Motor Circuit Analysis™ (MCA™) — это метод тестирования, который определяет истинное состояние 3-фазных и однофазных электродвигателей. MCA™ проверяет катушки двигателя, ротор, соединения и многое другое. MCA™ может проверять сопротивление обмотки двигателя переменного тока, а также сопротивление двигателя постоянного тока и определять его состояние.

    Асимметрия сопротивления обмотки двигателя или проблемы с подключением

    Приборы MCA™ выводят результаты на экран, а выполнение теста занимает менее 3 минут и не требует дополнительной интерпретации или расчетов. Состояние двигателя определяется быстро, с высокой точностью и легкостью. Все компоненты однофазных и трехфазных двигателей оцениваются для определения состояния всего двигателя.

    Получить предложение

    Проблемы с подключением создают дисбаланс токов между фазами в трехфазном двигателе, что приводит к чрезмерному нагреву и преждевременному выходу из строя изоляции. Асимметрия сопротивлений указывает на проблемы с подключением, которые могут быть вызваны ослаблением контактов, коррозией или другими отложениями на клеммах двигателя. Также могут возникать соединения с высоким сопротивлением, которые могут вызвать чрезмерный нагрев в точке соединения, что может привести к пожару, повреждению оборудования и созданию угрозы безопасности. Если первоначальная проверка проводилась в центре управления двигателем (MCC), для точного определения проблемы требуется вторая проверка проводов двигателя. Этот прямой тест на выводах двигателя подтвердит состояние двигателя и либо выведет двигатель из строя, либо определит связанные с ним кабели как основную проблему. Многие исправные двигатели перематываются и возвращаются в работу только для того, чтобы не решить ту же предварительную проблему.

    Технология испытаний MCA™ дает подробную информацию о состоянии компонентов двигателя, включая изоляцию и обмотки. Кроме того, он работает с однофазными и трехфазными двигателями и тестирует переменный и постоянный ток.

    Получить предложение

    Проверка обмоток электродвигателя переменного тока

    Инструкции на экране прибора AT34™ и AT7™ помогут вам выполнить процесс. Измерения выполняются автоматически, и измерительные провода не нужно перемещать после подключения. Это означает, что вы можете точно проверять однофазные и трехфазные двигатели без дополнительных шагов для выполнения теста. Пакеты программного обеспечения (доступны пакеты от одного пользователя до корпоративного), которые просты в использовании, позволяя вам управлять, отслеживать и обмениваться информацией обо всех ваших транспортных средствах и дополнительном оборудовании.

    Получить предложение

    Испытание обмоток двигателя постоянного тока

    Двигатели постоянного тока могут иметь обмотки, расположенные последовательно , шунтирующие или составные конфигурации.

    При тестировании двигателя постоянного тока с помощью стандартного омметра обычно требуется несколько тестов, чтобы обеспечить точные и непротиворечивые результаты. Технический специалист должен сравнить значения, полученные в результате теста, со значениями, опубликованными производителем двигателя, чтобы определить, существует ли проблема. При использовании технологии MCA™ тестирование обмоток не требует знания конкретных опубликованных значений двигателя или обширной электрической информации. Фактически, продукты MCA™ позволяют техническим специалистам начального уровня получать точные и четкие результаты за три минуты, не требующие какой-либо интерпретации. Процедура проверки обмотки двигателя постоянного тока аналогична процедуре проверки двигателя переменного тока. Рекомендуемый метод — провести базовый тест нового или только что отремонтированного двигателя. После того, как двигатель будет переустановлен, базовый тест может быть сопоставлен с будущими тестами, чтобы определить изменение в системе двигателя, которое в конечном итоге перерастет в неисправность двигателя. Линейка обесточенных приборов ALL TEST Pro имеет простые экранные инструкции и функции сохранения данных, которые исключают ошибки, расчеты и контрольные значения, необходимые для устранения неполадок и отслеживания тенденций двигателей. ATP использует Test Value Static™ (TVS™) в качестве индикатора для отслеживания жизненного цикла отдельных двигателей. Это значение отслеживает двигательный актив от колыбели до могилы (от установки до вывода из эксплуатации). Это значение изменяется по мере старения актива и поможет вам определить тенденции двигателя и его текущее состояние здоровья.

    Тестирование цепи двигателя — это метод обесточивания, позволяющий тщательно оценить состояние вашего двигателя. Он прост в использовании и быстро дает точные результаты. ALL-TEST PRO 7™, ALL-TEST PRO 34™ и другие продукты MCA™ можно использовать на любом двигателе для выявления потенциальных проблем и предотвращения дорогостоящего ремонта. MCA™ полностью проверяет систему изоляции обмоток двигателей и выявляет раннее ухудшение состояния системы изоляции обмоток, а также неисправности в двигателе, которые приводят к отказу. MCA™ также диагностирует ослабленные и неисправные соединения, когда тесты выполняются с контроллера мотора. Узнайте больше  MCA превосходит другое испытательное оборудование в нашем видео.

    ALL-TEST PRO 7™

    ALL-TEST PRO 7™ проводит тестирование однофазного или трехфазного двигателя в обесточенном состоянии. Благодаря широкому спектру возможностей тестирования это портативное устройство может тестировать двигатели переменного и постоянного тока, двигатели выше и ниже 1 кВ, генераторы, трансформаторы и любое другое оборудование на основе катушек.

    Получить предложение

    THE ALL-TEST PRO 34™

    ALL-TEST PRO 34™  идеально подходит для испытаний без напряжения асинхронных двигателей переменного тока с короткозамкнутым ротором, рассчитанных на менее 1 кВ. Эта модель предлагает те же высококачественные и простые возможности тестирования, что и ALL-TEST PRO 7™, включая удобный для чтения экран, на котором отображаются инструкции и оценка состояния компонентов двигателя.

    Оба агрегата оснащены запатентованным ATP динамическим тестом ротора для определения состояния ротора и статическим тестовым значением (TVS™) для отслеживания состояния двигателя от первоначального запуска до остановки или ремонта. Характеристики включают  портативность, полевой дизайн (не требуется питание от сети переменного тока, не требуется дополнительный ноутбук, вес менее 2 фунтов, защита от атмосферных воздействий, простота в использовании, длительное время работы от батареи, безопасность и простота в эксплуатации. 

    Получить предложение

    Купить оборудование для испытаний двигателей MCA сегодня

    ALL-TEST Pro ONLY разрабатывает, проектирует и производит оборудование для испытаний двигателей. Мы обслуживаем все отрасли промышленности по всему миру, в которых используются электрические двигатели. Нашими клиентами являются как небольшие магазины, так и компании из списка Fortune 100 и 500, государственные органы, военные и производители автомобилей. Узнайте, почему наши клиенты полагаются на ALL-TEST Pro для точного определения проблемы и в качестве последнего слова, когда речь идет о состоянии двигателя.

    Менее чем за три минуты вы получите ответы, необходимые для поиска и устранения неисправностей однофазных и трехфазных двигателей, а также возможности анализа тенденций. Посмотрите наше видео , чтобы узнать больше о наших продуктах для тестирования обмоток двигателей.

    Чтобы получить информацию о ценах на любой из наших вариантов тестирования двигателей,  запросите предложение сегодня  или  свяжитесь с нашей командой онлайн  в ALL-TEST Pro

    Получить предложение

    Поиск и устранение неисправностей трехфазных электродвигателей — журнал Water Well

    Часть 2. Поиск и устранение неисправностей трехфазного двигателя.

    Эд Баттс, PE, CPI

    Мы начали обсуждение поиска и устранения неисправностей трехфазных двигателей в прошлогоднем выпуске журнала Engineering Your Business с обзора различных счетчиков, контроллеров и подсистем, связанных с трехфазными системами питания. В этом месяце мы завершим эту серию обсуждением фактического поиска и устранения неисправностей трехфазного двигателя.

    Поиск и устранение неисправностей трехфазного двигателя

    Рис. 1a: Проверка сопротивления изоляции трехфазного двигателя.

    После того, как источник питания, приводное оборудование и контроллер/элементы управления двигателем устранены как причины проблемы, следующим шагом является поиск и устранение неисправностей подозрительного трехфазного двигателя, которые обычно включают следующие этапы.

    В первую очередь необходимо убедиться, что все питание отключено и изолировано от двигателя, используя соответствующие процедуры блокировки/маркировки, а также отключение, замыкание накоротко или отсоединение любых конденсаторов коррекции коэффициента мощности, которые могут присутствовать.

    Далее выполняется проверка сопротивления изоляции двигателя, поскольку эта проверка устраняет необходимость в дополнительной проверке, если обмотки двигателя заземлены. Процедура проиллюстрирована на рисунке 1а. Процедура проверки сопротивления изоляции двигателя погружного насоса показана на рис. 1б.

    Когда это возможно, сопротивление изоляции следует проверять как можно ближе к двигателю, чтобы исключить возможные ложные показания от офсетного кабеля или фидеров двигателя. Заземленный двигатель является распространенным повреждением обмотки и требует перемотки или замены двигателя.

    При заземлении двигателя обмотка замыкается либо на многослойный сердечник, либо на корпус двигателя. Это положение относится как к надземным, так и к погружным двигателям. Проблема обычно находится в слоте, где пробита изоляция слота.

    Вода является наиболее распространенной причиной заземления обмотки. Некоторыми причинами пробоя изоляции паза являются перегрев, проводящие загрязнения, молния, возраст, давление при плотной посадке катушки, горячие точки, вызванные повреждением ламинирования (из-за предыдущего отказа обмотки) и чрезмерное движение катушки.

    Рисунок 1б. Испытание сопротивления изоляции внутрискважинного погружного электродвигателя.

    Для получения оптимальных показаний этот тест следует проводить с помощью мегомметра с испытательным напряжением не менее 500 В постоянного тока (для двигателей на 230 В) и до 1000 В постоянного тока (для двигателей на 460 В), хотя аналоговый омметр с Rx100, Часто используется шкала 000 Ом. При использовании мегомметра с высоким выходным напряжением имейте в виду, что устройства могут генерировать опасно высокое напряжение для поражения электрическим током — никогда не используйте их, присоединяя провода к людям или животным.

    Для получения наилучших результатов испытание следует проводить сразу же после выключения двигателя, когда двигатель имеет рабочую температуру или чуть ниже ее. Очевидно, что это невозможно, если двигатель не работает.

    Показания сопротивления изоляции для всех типов двигателей, напряжения от 0 до 1000 В переменного тока, фазы и мощности должны соответствовать стандарту IEEE 43-200/43-2013 и, как правило, находиться в пределах диапазонов, указанных в таблице 1.

    Проверка сопротивления изоляции на исправность двигателей следует проверять не реже одного раза в год для создания исторической базы данных и отслеживания состояния двигателя, чтобы предсказать надвигающийся отказ задолго до его возникновения.

    Общее практическое правило: система изоляции электродвигателя считается в хорошем состоянии, если измеренное сопротивление изоляции больше или равно (≥) 10 000 000 Ом.

    Рис. 2. Проверка сопротивления обмотки трехфазного двигателя по схеме «звезда».

    При проверке сопротивления изоляции двигателя значения будут почти одинаковыми для всех показаний, поскольку цепь одинаково проходит через три обмотки и возвращается к измерителю.

    Хотя показание бесконечности (∞) желательно, для большинства двигателей это недостижимо. Сопротивление изоляции должно быть примерно 1 МОм на каждые 1000 вольт рабочего напряжения с минимальным значением 1 миллион Ом (1 МОм).

    Однако важно отметить, что минимальное общепринятое сопротивление изоляции в 1 миллион Ом может оказаться недостаточным для многих условий эксплуатации. Это может быть особенно актуально для погружных насосов/двигателей, поскольку некоторые переменные, такие как проводимость воды, падение напряжения через отводной кабель и пусковые токи двигателя, могут вызвать ложное срабатывание автоматических выключателей или перегрузку. Поэтому для определенных условий могут потребоваться более высокие значения сопротивления изоляции.

    Рис. 3. Отказ двигателя из-за перегрузки.

    Следующим шагом является проверка сопротивления обмотки. Сопротивление обмотки указывает на состояние и целостность обмоток. Проверка сопротивления обмотки обычно проводится с помощью омметра с настройкой Rx1.

    В отличие от испытания сопротивления изоляции, сопротивление обмотки зависит от мощности двигателя, фазы, соединения (треугольник или звезда) и напряжения и должно включать удельное сопротивление в двух направлениях по длине кабеля от контроллера двигателя или устье скважины к двигателю. Это важное различие с погружными двигателями, которые могут использовать несколько тысяч футов опускаемого и / или офсетного кабеля.

    На рис. 2 показано испытание сопротивления обмотки двигателя, соединенного по схеме «звезда». Значения сопротивления обмотки могут различаться, но обычно они доступны для всех двигателей у производителей двигателей, в технических паспортах или руководствах по обслуживанию.

    Три обмотки трехфазного двигателя должны отображать одинаковые показания с низкими показаниями, но не равными 0. Чем меньше мощность двигателя, тем выше будут эти показания, но они не должны указывать на обрыв цепи и обычно равны 30 Ом или меньше.

    Если эти данные недоступны, можно использовать эмпирическое правило, так как для большинства трехфазных двигателей показание между фазами должно быть в пределах от 0,30 до 2 Ом. Если он читает 0, вероятно, есть короткое замыкание. Если показание больше 2 Ом или бесконечно (∞), вероятно, имеется обрыв цепи.

    Проверка сопротивления обмотки двигателя часто может выявить несколько проблем с двигателем, включая короткое замыкание или заземление обмотки или витков. Короткое замыкание витков возникает из-за надрезанного провода катушки, скачков высокого напряжения, проводящих загрязнений, перегрева обмоток, старения изоляции, а также ослабленных и вибрирующих проводов катушки.

    Рис. 4. Отказ двигателя из-за однофазного состояния.

    Большая часть сопротивления току в двигателе переменного тока обеспечивается индуктивным реактивным сопротивлением. Сопротивление провода в обмотке составляет небольшой процент от полного сопротивления двигателя (т. е. сопротивление плюс индуктивное сопротивление). Индуктивное реактивное сопротивление делает каждый виток значительным в амперном потреблении двигателя, поскольку каждый виток обеспечивает гораздо большее индуктивное реактивное сопротивление, чем сопротивление.

    Теперь из фазной обмотки исключается только сопротивление провода (т. е. количество витков) в замкнутом контуре. Без потребности в амперах циркулирующего тока разница между амперами неисправной фазы и амперами нормальных фаз уменьшается. Небольшая разница в сопротивлении – это все, что нужно для определения неисправной фазы.

    Обратите внимание: по возможности во время этого теста ротор следует проворачивать, чтобы исключить его влияние. Закороченные витки в любой обмотке переменного тока обычно видны. Они быстро обугливаются из-за высокого циркулирующего тока, который в них трансформируется.

    Междуфазное короткое замыкание вызвано пробоем изоляции на концах катушки или в пазах. Этот тип неисправности требует перемотки или замены двигателя. Напряжение между фазами может быть высоким. При коротком замыкании шунтируется большая часть обмотки. Обе фазные обмотки обычно оплавлены, поэтому проблема легко обнаруживается. К числу причин межфазного пробоя относятся загрязнения, плотная посадка в пазы, возраст, механические повреждения и высоковольтные всплески.

    Катушки, образующие полюса для каждой фазы, располагаются друг над другом во всех трехфазных двигателях. Распространенной причиной обрыва обмотки являются слишком маленькие свинцовые наконечники. Обгоревшие соединения в соединительной (клеммной) коробке двигателя являются надежным признаком этой проблемы.

    Открытые обмотки также вызваны короткими замыканиями витков, междуфазными короткими замыканиями, короткими замыканиями между землей и корпусом, неисправными внутренними соединениями между катушками, сильными перегрузками и физическими повреждениями катушек. Эти неисправности также требуют перемотки или замены двигателя.

    Разомкнутая обмотка имеет несколько различных признаков в зависимости от внутреннего соединения двигателя. Двигатель, соединенный звездой, с разомкнутой обмоткой будет испытываться иначе, чем двигатель, соединенный треугольником. Разомкнутая одноцепная обмотка будет однофазной. Его мощность упадет примерно до половины, и двигатель не заведется. Если внутреннее соединение двигателя многоконтурное, он запустится, но его мощность будет снижена. Разомкнутая цепь приведет к разбалансировке магнитной цепи. Таким образом, при нормальной нагрузке двигатель будет работать медленнее и перегреваться.

    Визуальный осмотр неисправных двигателей

    Всегда важно определить истинную причину сгоревших обмоток, а не просто заменить электродвигатель. Обмотки двигателя выглядят иначе, чем в обычных ситуациях отказа, включая перегорание одной фазы, перегрузку, несбалансированное напряжение и скачки напряжения.

    Визуальный осмотр обмоток двигателя часто может помочь в определении причины отказа и поиске решения. Двумя наиболее распространенными проблемами трехфазных двигателей являются перегрузка и однофазность.

    Каждое состояние перегорания отображается по-разному. На рис. 3 показана сгоревшая обмотка двигателя из-за перегрузки, а на рис. 4 показан сгоревший двигатель из-за однофазного состояния.

    Повреждения от скачков напряжения чаще возникают в двигателях, управляемых частотно-регулируемыми приводами. Таким образом, проверьте приложенное напряжение как можно ближе к полностью нагруженному двигателю, чтобы убедиться в равномерности приложенных напряжений.

    Асимметрия напряжения двигателя не должна превышать 5% напряжения сети. Для двигателя на 460 вольт это до 23 вольт линейного отклонения. Если напряжение нельзя измерить вблизи двигателя, рассмотрите длину участка и размер провода, чтобы оценить фактическое падение напряжения на двигателе. Если междуфазные напряжения одинаковы, но перекос токов по-прежнему превышает 10%, то, скорее всего, произошло короткое замыкание обмотки, и двигатель следует отремонтировать или заменить.

    Руководство по регулярному тестированию электродвигателя и устранению неисправностей

    Регулярное тестирование электродвигателя в рамках программы технического обслуживания также снижает вероятность отказа из-за перегрева. Многие двигатели, используемые сегодня, рассчитаны на повышение температуры до 60°C (140°F). В сочетании с температурой окружающей среды 40°C (104°F) результирующая температура двигателя может подняться до 244°F! Это выше точки кипения воды и может привести к преждевременному выходу двигателя из строя, особенно в случаях с недостаточной циркуляцией охлаждающего воздуха.

    Не оценивайте температуру двигателя, просто ощупывая его внешнюю поверхность рукой. Прикосновение не является отличным или надежным датчиком тепла, поскольку то, что кажется горячим одному, другому кажется прохладным. Используйте соответствующие методы тестирования, такие как инфракрасный датчик температуры, для обнаружения горячих точек внутри обмоток двигателя, поскольку такие чрезмерно горячие точки сокращают срок службы двигателя.

    Убедитесь, что двигатели имеют надлежащую защиту. Эта защита должна включать термостаты и защиту от перегрузки. Эти устройства являются лишь одним из элементов эффективного плана технического обслуживания и гарантируют, что двигатель не будет работать в условиях перегрузки или вредных температур.

    В таблице 2 перечислены четыре наиболее вероятные проблемы с трехфазным двигателем с возможными причинами. становится немного легче.

    ________________________________________

    На этом мы завершаем этот выпуск журнала Engineering Your Business и серию статей по поиску и устранению неисправностей электродвигателей. Надеюсь, информация окажется полезной и будет вам полезна в будущем.

    До следующего месяца, работайте безопасно и разумно.

    Узнайте, как добиться успеха в своем бизнесе

      Проектирование вашего бизнеса: серия статей, служащих руководством по работе с подземными водами. ИПЦ. Для получения дополнительной информации нажмите здесь.


    Эд Баттс, PE, CPI , главный инженер компании 4B Engineering & Consulting, Салем, Орегон. Он имеет более чем 40-летний опыт работы в сфере бурения скважин, специализируясь на проектировании и управлении бизнесом. С ним можно связаться по адресу [email protected].

    Как преобразовать сопротивление линии в сопротивление фазы

    Что такое сопротивление обмотки постоянного тока и как оно проверяется?

    Сопротивление постоянному току является важным параметром обмоток двигателя или трансформатора, оно связано со многими факторами, такими как конструкция обмотки двигателя или трансформатора, материал используемого магнитного провода и температура окружающей среды. В процессе проверки двигателей и трансформаторов и типовых испытаний определение сопротивления постоянному току является обязательным элементом; для компаний по производству двигателей и трансформаторов, которые стандартизируют производство, определение сопротивления постоянному току будет выполняться до того, как сердечник обмотки будет погружен в краску, чтобы избежать попадания плохого продукта на последующую производственную линию.

    Определение сопротивления постоянному току также является важной частью испытания двигателя или трансформатора. Путем анализа измеренного значения сопротивления можно предварительно определить, соответствуют ли требованиям количество витков, диаметр провода, количество параллельных обмоток, способ и качество проводки испытуемых обмоток, а также имеется ли серьезное короткое замыкание. замыкание между витками обмотки. Сопротивление обмотки постоянному току используется при расчете потерь и повышения температуры двигателя или трансформатора, что напрямую влияет на оценку производительности двигателя или трансформатора. Следовательно, при измерении сопротивления обмотки постоянному току следует выбирать испытательный прибор с более высокой точностью и стремиться к более высокой точности данных обнаружения.

    При измерении сопротивления обмотки постоянному току при испытании двигателя или трансформатора прибор для измерения сопротивления постоянному току (например, тестер сопротивления, мост постоянного тока и т. д.) обычно используется для прямого измерения, а иногда используются методы напряжения и тока. (обычно не используется).

    Если
    фазное сопротивление обмотки равно фазе R, а сопротивление линии равно R
    линии, расчет сопротивления линии можно рассчитать в соответствии с
    последовательно-параллельный принцип резистора.

    ●Линия
    сопротивление по сопротивлению фазы

    Когда
    обмотка двигателя соединена звездой, схема показана на рис. 1, а
    линия R = фаза 2R.

    Когда
    обмотка двигателя находится под углом, схема показана на рис. 2, а
    R линия = 2R фаза / 3.


    сопротивление фазы преобразуется в сопротивление линии

    Формула для расчета сопротивления линии по сопротивлению фазы может быть
    математически преобразованы при различных соединениях.

    Когда
    обмотка двигателя соединена звездой, схема показана на рис. 1, R
    фаза = линия 0,5R

    Когда
    обмотка двигателя расположена под углом, схема показана на рис. 2, а R
    фаза = линия 1,5R.


    Преобразование значений сопротивления при различных температурах

    В общем,
    сопротивление постоянному току металлического проводника находится в постоянной зависимости от его
    температура. Это отношение выражается как:

    R1=R2×(К+t1)/(К+t2)………(1)

    Где:
    R1 — сопротивление постоянному току (Ом) при температуре t1°С;

    R2——постоянный ток
    сопротивление (Ом) при температуре t2°C;

    К —
    постоянный (обратный температурному коэффициенту сопротивления проводника
    при 0°С), для медных обмоток К=235, для алюминиевых обмоток К=225.


    Эталон сопротивления при различных условиях испытаний

    В
    в отчете о типовых испытаниях значение удельного сопротивления указано в соответствии с
    различная степень изоляции двигателя, например сопротивление класса B
    изолированный двигатель при 75 °C, в то время как изолированный двигатель F-класса имеет сопротивление
    при 95 °C, а изолированный двигатель класса H выдерживает сопротивление при 105 °C.