Содержание

Система смазки дизельных двигателей и моторные масла


Старая истина, гласящая «не подмажешь – не поедешь», в полной мере распространяется и на дизеля. От состояния систем смазки, а также правильного выбора моторного масла зависят не только надежность и долговечность двигателя, но и пусковые качества, его топливная экономичность, а также токсичность выхлопа.


Главная задача системы смазки – создать для уменьшения износа и облегчения движения между трущимися поверхностями масляный слой. Образующее его масло кроме своей главной задачи удаляет из трущейся пары посторонние частицы и продукты износа, предотвращает коррозию деталей, охлаждает трущиеся поверхности, а в некоторых двигателях используется в качестве теплоносителя и охлаждает днище поршня.


В большинстве двигателей грузовых автомобилей масло в основные узлы кривошипно-шатунного и газораспределительного механизмов подается под давлением. Часть поверхностей трения смазывается разбрызгиванием. Основная часть масла проходит через подшипники коленчатого вала (до 80 % в новых двигателях и до 96 % – в изношенных). Чаще всего используется параллельный подвод масла к подшипникам коленчатого вала.


Как правило, двигатели грузовых автомобилей имеют двухсекционные шестеренные масляные насосы. Основная секция подает масло к подшипникам, а дополнительная – используется для прокачки масла через теплообменник, центрифугу и для охлаждения поршней. Шестерни насосов могут иметь как внешнее, так и внутреннее – эпициклоидальное или эвольвентное — зацепление.


Насосы с внутренним зацеплением более сложны в производстве, их привод требует повышенных затрат мощности, однако имеют меньшие габариты и более низкий уровень шума, а износ их шестерен меньше сказывается на производительности.


Производительность насоса выбирается из условия обеспечения заданного давления в системе смазки даже при перегреве, а также получения необходимого теплоотвода. У новых двигателей масляный насос должен иметь двух- или даже трехкратный запас по производительности, чтобы обеспечить надежную работу системы смазки при износе деталей насоса, вкладышей коренных и шатунных подшипников, а также шеек коленчатого и распределительного валов.


Охлаждение поршней особенно важно в двигателях с высокой степенью наддува и при расположении камеры сгорания в днище поршня. Реализуется оно чаще всего с помощью нескольких типовых схем.


Наиболее простая, но зато и наименее эффективная – подача масла из неподвижных распылителей, установленных в нижней части цилиндра.


Другой способ – подача масла по сверлению в шатуне в его верхнюю головку и через установленный в ней распылитель – на днище поршня. Но наиболее эффективна подача масла через отверстие в шатуне и поршневой палец в полость охлаждения, выполненную в днище поршня. Для ее получения днище делают съемным, или же заливают в него трубку или специальную вставку. Такое охлаждение поршня требует и более интенсивного охлаждения масла.


Основная неисправность системы смазки – снижение давления. Оно может возникнуть из-за износа подшипников – чаще всего коренных на коленчатом валу, залегания клапанов системы в открытом состоянии, износа шестерен насоса. Каждая из перечисленных причин предполагает серьезный ремонт, но зачастую дело обходится и без него.


Причиной уменьшения давления в системе смазки может быть снижение вязкости масла из-за перегрева или попадания конденсата топлива. Эта опасность увеличивается при коротких поездках зимой на не полностью прогретом двигателе. Так, при специальных испытаниях на коррозионный износ, проводившихся на автомобиле с бензиновым двигателем, за одну неделю уровень масла в картере двигателя увеличивался на 1…1,5 литра. Чтобы «выпарить» бензин и восстановить исходную вязкость масла, приходилось проезжать несколько сот километров с максимальными скоростями. Для дизелей подобная опасность намного меньше, зато и «выпарить» дизельное топливо из масла практически невозможно.


Уход за системой смазки предельно прост: достаточно своевременно менять масло и фильтры, а также регулярно промывать двигатель. И единственная сложность состоит в периодичности смены масла. А она определяется не только особенностями двигателя, но и маркой используемого масла. Их в последние годы появилось очень много – отечественных и импортных. Вместе с ними возникла масса вопросов о возможности и целесообразности их применения в наших условиях.


Качество масла, а следовательно, и его стоимость, определяются количеством присадок, его основой, степенью очистки. Наибольшее распространение сегодня имеют минеральные масла, основу которых составляет продукт прямой перегонки нефти. Для получения нужных свойств в основу вводится комплекс присадок. Он тщательно выверяется и балансируется изготовителями масел, а потому к различным присадкам и добавкам, кои следует лить в двигатель самому потребителю, надлежит относиться весьма осторожно.


Особое место среди присадок занимают металлоплакирующие (МП). В результате трения возникает разность потенциалов и ионы способствуют наращиванию слоя присадки на изношенных поверхностях, уменьшая зазор между трущимися парами. Это увеличивает ресурс двигателя, снижает угар масла, улучшает его экономические, мощностные и экологические показатели. Необходимо иметь в виду, что заметный эффект от добавки МП начинает проявляться лишь через десятки тысяч километров. Учитывая это, применение такого рода присадок для двигателей с повышенным расходом масла нецелесообразно, так как они выносятся из двигателя вместе с маслом, не успевая создать защитный слой.


Поршни дизелей с охлаждением днища маслом: а – со съемным днищем; б – с трубкой, заливаемой в днище; в – со вставкой, заливаемой в поршень.


Последнее время все большее распространение получают синтетические масла, основа которых создана искусственно. Они обладают хорошими вязкостными характеристиками, снижают износ двигателя, способны долго работать без смены. Однако высокая стоимость этих масел ограничивает их применение.


Целесообразность использования определяется в каждом конкретном случае в зависимости от степени износа двигателя и соответственно угара масла, а также установленной периодичности технического обслуживания. При повышенном расходе масла приходится постоянно доливать его, поэтому применение более дорогого масла приведет к неоправданным затратам.


Использование масел, обеспечивающих увеличенный пробег до его смены, также не всегда целесообразно. Периодичность замены масла согласована с периодичностью обслуживания автомобиля в целом. Поэтому менять масло нужно либо во время очередного ТО, либо проводить дополнительное обслуживание, что для большинства фирм неприемлемо.


Свойства отечественных моторных масел характеризуются прежде всего величиной вязкости при +100 °С и 0 °С (для некоторых масел – при -18 °С) и индексом вязкости – интенсивностью изменения вязкости при изменении температуры.


По эксплуатационным свойствам отечественные масла делятся на несколько групп:

  • В1 — среднефорсированные бензиновые двигатели
  • В2 — среднефорсированные дизели
  • В — универсальное масло для среднефорсированных двигателей
  • Г1 — высокофорсированные бензиновые двигатели
  • Г2 — высокофорсированные дизели без наддува
  • Г — универсальное масло высокофорсированных двигателей
  • Д — высокофорсированные дизели с наддувом


Масла зарубежного производства и некоторые новейшие отечественные классифицируются по системам SAE J-300 и АСЕА (Ассоциация европейских производителей автомобилей). У летних масел SAE 20, 30, 40, 50, 60 кинематическая вязкость при 1000С изменяется соответственно от 5,6 до 21,9 м2/с. В обозначении зимних масел добавляется буква W: SAE 0W, 5W, 10W, 15W, 20W, 25W. Их кинематическая вязкость при 100°С находится соответственно в пределах от 3,8 до 9,3 мм2/с.


Температурная зона применяемости каждой из этих марок определяется минимальной температурой проворачиваемости двигателя стартером (от -30 °С для 0W до -5 °С для 25W).


Широкое распространение получили всесезонные масла, имеющие более пологую вязкостную характеристику в зависимости от температуры масла. Низкая вязкость при отрицательной температуре обеспечивает зимний пуск двигателя. При высокой температуре необходимая вязкость поддерживается загущающими присадками. Для этих масел к обозначениям аналогичным для зимних масел добавляются цифры справа (от 20 до 50), характеризующие «горячую вязкость».


Применимость импортных масел для тех или иных двигателей обозначается по классификации API (Американский институт нефти) или АСЕА, а зачастую и по обеим. По API для дизельных двигателей применяют масла категории С, для бензиновых – категории S. Вторая буква характеризует уровень эксплуатационных свойств и их назначение: Е – дизели грузовых автомобилей с невысокой литровой мощностью, F – дизели легковых автомобилей и грузовых автомобилей выпуска до 1994 года и бензиновые двигатели, G – современные дизели с высокой литровой мощностью и бензиновые двигатели выпуска до 1993 года, Н – бензиновые двигатели выпуска до 1996 года и J – современные бензиновые двигатели. Масла с цифрой 2 предназначены для двухтактных двигателей. Универсальные масла (для дизелей и бензиновых двигателей) имеют двойное обозначение (например, API SG/CD).


При классификации по АСЕА первая буква обозначает тип двигателя: А – бензиновые, В – дизели легковых автомобилей и Е – дизели грузовиков. Следующая далее цифра характеризует моющие, противозадирные способности и вязкостные свойства. Наиболее высокие качества имеют масла категории 3. Например, категория Е3-96, кроме противоизносных свойств и предотвращения образования нагара на поршне обеспечивает сохранение вязкостных характеристик при высокой температуре и способность диспергировать сажу.


Этими основными сведениями о маслах мы и ограничимся, поскольку при существующем обилии марок выбор масла – скорее искусство, чем наука. И единственный бесспорный совет – опирайтесь на здравый смысл.

Система смазки двигателя — устройство, профилактика неисправностей

Назначение системы смазки двигателя, её устройство, элементы (поддон картера, маслозаборник, насос, фильтр, датчик давления, редукционные клапаны), профилактика неисправностей, техническое обслуживание.

Система смазки двигателя автомобиля или смазочная система двигателя (ССД) – совокупность механизмов авто, которые участвуют в снижении трения между сопряженными деталями ДВС, минимизируют затраты мощности ДВС на трение. Принцип работы системы смазки двигателя заключается в обеспечении подачи смазочных материалов (моторного масла) ко всем трущимся деталям ДВС на всех режимах его работы. ССД работает циклично.

Между двумя поверхностями движущихся тел формируется масляная пленка. Она разделяет движущиеся поверхности и уберегает трущиеся поверхности от дополнительных нагрузок.

Назначение системы смазки двигателя

Система смазки направлена на поддержание непрерывной подачи к подшипникам смазочных материалов и непосредственное решение следующих задач:

  • Уменьшение трения между сопряженными деталями. Причем компоненты системы направлены на уменьшение всех видов трения – сухого – непосредственного соприкосновения деталей друг с другом, жидкостного – с разделением масла, полужидкостного (масляный слой присутствует, но полного разделение трущихся поверхностей маслом нет). Сухое трение в чистом виде на практике – самое редкое. Его можно встретить при деформации контактирующих тел (например, подшипников), при разрушении граничных плёнок в местах повышенного давления. Гораздо же более распространённая ситуация – полужидкостное и жидностное трение. С жидкостным трением детали, например, часто встречаются при высоких окружных скоростях при попадании масла в клиновой зазор между цапфой и вкладышем подшипника скольжения.
  • Отвод тепла и охлаждение деталей двигателя. Осуществляется потоком жидкости из системы охлаждения. Сначала охлаждается масло, а затем уже сами детали ДВС.
  • Освобождение двигателя от продуктов износа механизмов в отработанном масле (в виде прямоугольников, «листочков», пыли). Наиболее распространён усталостный износ. Он возникает при трении качения и трении скольжения. Также существует адгезионный, абразивный, коррозионный износ.
  • Удаление нагара. Чаще всего нагар характерен для транспортных систем с прямым впрыском топлива (топливо идет непосредственно в камеру сгорания, отсутствует этап промывки клапанов). Также проблема нагара актуальна в ситуациях, если транспортное средство используется только время от времени, есть постоянные простои, или при использовании авто в холодное время года его владелец не прибегает к прогреву двигателя.
  • Защита деталей двигателя от коррозии. Смазочные вещества в системе помогают ей противостоять окислением под влиянием кислорода.
  • Чтобы решить поставленные задачи, давление масла в ССД должно быть достаточно высоким. Масла должно хватит для обеспечения жидкостного и отвода от поверхностей тепла.

Устройство системы смазки

Элементы системы смазки двигателя:

  • Поддон картера. Резервуар для хранения масла. Именно здесь происходит сбор и аккумуляция масла в системе смазки. Также в поддоне картера скапливаются мелкие абразивные частички при трении металлических элементов друг о друга.
  • Маслозаборник. Место сбора масла для дальнейшей циркуляции масла в системе после поддона картера. Устанавливается не на самом дне, а на некотором расстоянии от него. Благодаря этому абразивные частицы, образовавшиеся в системе, легко удалить. Достаточно просто снять поддон. Некоторые маслозаборники комплектуются магнитами. Это удобно для быстрого сбора и удаления металлической стружки.
  • Масляный насос – приспособление, главная функция которого – закачивать в систему масло. Запускаться насос может разными способами. Например, от распредвала, от коленвала. 
  • Масляный фильтр. Устройство выполняет функцию очистителя масла от продуктов нагара, загрязнений и износа.
  • Датчик давления. Он работает в связке с указателем давления в системе смазки двигателя, сигнальной лампой на панели приборов.
  • Радиатор (стоит не на всех транспортных средствах). Комплекс трубок и пластин для отвода тепла, охлаждения масла.
  • Редукционные клапаны. Помогают поддержать стабильное давление. Размещены в масляном фильтре, насосе.

На некоторых элементах остановимся более детально.

Масляные насосы

Масляные насосы в системе могут быть шестеренными, роторными, героторными (с внутренним и внешним мотором), поршневыми, шиберными крыльчатыми. Самые популярные – шестерённые модели.

На практике шестеренчатые модели показывают себя как наиболее производительные. Конструкция шестерённых насосов при этом бывает очень разной. На транспорте могут устанавливаться конструкции, где шестерни располагаются рядом (решения с наружным зацеплением) и друг в друге (шестерня в шестерне), т.е. зацепление – внутреннее. 

Насосы с шестернями наружного зацепления более компактные (их можно легко поместить в ограниченном пространстве) и износостойкие в силу небольшой величины скорости скольжения в зацеплении и, соответственно, небольшого давления на зубья. И это их существенные преимущества перед насосами с наружным зацеплением. При этом большинство производителей выпускает насосы с внешним зацеплением. Конструкция «шестерня в шестерне» более дорогостоящая, так как более сложная в исполнении, при этом производитель не может гарантировать такой же КПД, как в случае с решением с наружным зацеплением.

Масляные фильтры

Существенные различия – и в масляных фильтрах, которые могут входить в ССД. Они напрямую влияют на заправочный объем системы смазки двигателя, пропускную способность, скорость и эффективность очистки.

Наиболее быстро масло и очищают полнопроточные (часто их называют просто – проточными) фильтры. Через полнопроточные фильтры проходит всё количество масла, всасываемое насосом. Наиболее качественную очистку обеспечивают частично проточные фильтры. Через них проходит не всё масло, а только его часть.

Если же важна и скорость, и качество, помогут комбинированные фильтрующие системы. Они дороже, сложней, но фактически они представляют собой систему частичнопоточного и полнопоточного фильтров.

При этом самые практичные комбинированные системы с обратным и перепускным клапаном и двойной вальцовкой. На картинке представлен типичный фильтр такого типа (решение компании Robert Bosch GmbH).

Среди явных плюсов системы смазки двигателя – возможность обеспечить непрерывную подачу масла в ДВС даже при очень вязком масле и при низкой температуре воздуха, быстрое наращивание давление и, соответственно, оперативное смазывание при перезапуске, а также защита от холостого хода фильтра после запуска ДВС.

Виды систем смазки

Схема системы смазки двигателя может быть разной. Классификацию при этом можно провести по различным признакам.

  • По способу подачи масла: с подачей масла под давлением, с разбрызгиванием (самотёком), комбинированный вариант. Комбинированный вариант хорош тем, что детали, испытывающие большие нагрузки, можно обрабатывать максимально основательно — под давлением, а узлы, функционирующие в простых операциях – самотёком. В этом случае не страдает ни качество, ни скорость.
  • По типу вентиляции картера: картерные газы могут удаляться сразу в атмосферу (через сапун) или направляться в цилиндры на дожигание (системы с закрытой вентиляцией). Замкнутая (закрытая) система вентиляции является наиболее экологичной.
  • По способу охлаждения масла («отработки»). Охлаждение может проводиться в радиаторе, поддоне картера. Для маломощных двигателей достаточно охлаждения в поддоне, для мощных ДВС – подходящий вариант – решения с охлаждением в масляном радиаторе.
  • По типу картера. Хорошо известны схемы с «сухим» и «мокрым» картером. Решения с сухим картером более конструктивно сложные. У них есть отдельный бак для масла. Масло стекает в поддон, но не аккумулируется, а поступает в бак, и картер всегда сухой. Решение более сложное и дорогое в реализации, но зато надёжная смазка гарантировано дает при интенсивном движении по наклонным поверхностям. Поэтому популярный вариант устройства системы смазки двигателя у внедорожников, строительной спецтехники, транспортных средств для работы в горах – именно решение с «сухим» картером. Аналогичное же решение популярно у спорткаров. 

«Сухой» картер для производителя – это целый спектр преимуществ. ДВС можно установить ниже, чем обычно (идеальный вариант, чтобы снизить центр тяжести транспортного средства и упростить прохождение поворотов. В СДД оптимизируется температурное регулирование.  Масло удерживается на большом расстоянии от коленвала, и ДВС способен развивать впечатляющую мощность.

Возможные неполадки

Наиболее распространёнными неполадками, с которыми встречаются автомобилисты, является выход из строя деталей масляного насоса, фильтров (чаще – из-за износа), потеря герметичности узлов, нарушение регулировок или механические проблемы с редукционными клапанами.

Неисправности системы смазки двигателя, как правило, связаны с двумя группами неполадок.

  1. Неполадки, которые приводят к понижению давления масла. Они могут быть результатом деформации, износа, повреждения масляного насоса, низкого уровня масла, засорения фильтра, выхода из строя датчика масла, заедания редукционного клапана.
  2. Неполадки, которые приводят к повышенному расходу масла. Это результат выхода из строя газораспределительного механизма, износа прокладки насоса, засорения вентиляции картера, повреждения КШМ (кривошипно-шатунного механизма), ослабления масляного фильтра (или изначально ошибки при его закреплении).

Для выявления показателей давления используют сигнальные лампы на панели приборов транспортного средства. Пониженное давление масла – прямой сигнал, свидетельствующий о том, что на транспортном средстве нельзя ездить, и требуется ремонт или техническое обслуживание.
Для определения расхода масла у современных автомобилей с автоматикой есть специальная контрольная лампа на панели приборов. Для определения проблемы у транспортных средств без такой лампы традиционно применяют щуп. 

Износ и деформация

Если диагностика показывает, что детали износились, то есть отслужили свой срок эксплуатации, в большинстве случаев не стоит пытаться восстанавливать их. Её нужно менять. У прокладок, колпачков, сальников фильтров есть ресурс (указан в документации на детали), и, если их не заменить, количество проблем можно только увеличить. Например, несвоевременная замена фильтра приводит к критической концентрации вредных примесей, что может привести к деформации не только самого фильтра, но и корпуса. К деформации корпуса может привести, например, износ наружной поверхности втулок насоса.

Кстати, о деформации. Она может наступить гораздо раньше самого износа. Но, чтобы решить проблему, придётся не просто менять деформированную деталь, но и устранять причину, которая привела к этой неприятности.

Например, при механической деформации часто корень проблемы – в неисправностях иных узлов, взаимодействующих с ССД. В частности, деформация деталей системы смазки может быть ответной реакцией на выход из строя сайлентблоков, нарушение крепления ДВС. 
Впрочем, здесь важна именно комплексная диагностика. Сразу «обвинять» крепление ДВС или сайлентблоки не стоит. Например, в ситуации, когда деформированы детали клапанной группы ГРМ, часто виновато качество масла.

Профилактика неисправностей

Самая эффективная профилактика неисправностей – регулярное квалифицированное техобслуживание:

  1. Систематическая замена масляного фильтра.
  2. Систематическая замена моторного масла.

При это нужно четко знать сколько моторного масла требуется системе, учитывать объем системы смазки двигателя.  Недостаточное количество масла – это создание нагрузки на детали, увеличение сухого трения, ускорение износа. Переизбыток масла – риск создать избыточное давление и вывести из строя сальники распредвала, коленвала, «убить» уплотнители и нарушить герметичность.

Важно! Вместе с заменой масляного насоса всегда важно не лениться заменять масляный фильтр. 

Важный элемент профилактики – это и грамотная эксплуатация ДВС. Особенно важно корректно запускать двигатель в морозное время. При низких температурах вязкость масла густеет, и путь масла к трущимся деталям ухудшается. Прогрев двигателя перед запуском в этой ситуации – необходимая операция.

Своевременное техническое обслуживание и профилактика – это обеспечение смазочными веществами всех деталей, вступающих в трение, защита ДВС от перегрева, остаточных продуктов сгорания, гашение колебаний и подавление шумов.

Система смазки двигателя трактора

Система смазки двигателя трактора

Система смазки двигателя служит для подачи масла к трущимся поверхностям с целью уменьшения трения, удаления продуктов износа и охлаждения трущихся деталей, повышения их долговечности и износостойкости.

Во время работы двигателя на поверхностях подвижных сопряжений возникают силы трения. Различают два вида трения — скольжения и качения. Величина силы трения, возникающей при скольжении, предопределяется материалом деталей, качеством их обработки и условиями трения. Трение называют сухим, если между трущимися поверхностями отсутствует смазка. Если поверхности отделены друг от друга слоем смазки, то возникающее при этом трение называют жидкостным. При жидкостном трении повышается долговечность трущихся деталей и обеспечивается отвод от них тепла. Наряду с перечисленными видами трения в реальных условиях работы двигателей часто имеет место полужидкостное или полусухое трение. В двигателе основные трущиеся поверхности работают в условиях полужидкостного трения, при котором нет полного разделения трущихся поверхностей слоем смазки.

Подача масла к трущимся поверхностям должна быть бесперебойной. При недостаточной подаче масла теряется мощность двигателя, повышается износ деталей. Избыточная подача масла приводит к проникновению его в камеру сгорания, что увеличивает отложение нагара и ухудшает условия работы двигателя.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Система смазки включает в себя устройства для очистки и охлаждения масла. Система смешанная. К наиболее нагруженным деталям (коренным и шатунным подшипникам коленчатого вала, втулкам верхних головок шатунов, подшипникам распределительного вала, втулкам толкателей и коромысел, подшипникам турбокомпрессора) масло поступает под давлением. Остальные детали (стенки гильз цилиндров, кулачки распределительного вала, шестерни привода и подшипники привода вентилятора) смазываются разбрызгиванием.

Рис. 1. Принципиальная схема системы смазки двигателя:
1 — масляный поддон; 2 — предохранительный клапан радиаторной секции; 3 — радиаторная секция масляного насоса; 4 — маслозаборник; 5 — основная (нагнетательная) секция масляного насоса; 6 — редукционный клапан; 7 — масляный радиатор; 8 — перепускной клапан фильтра грубой очистки масла; 9 — фильтр грубой очистки масла; 10 — полость в шатунных шейках коленчатого вала; 11 — фильтр центробежной очистки масла; 12 — центральный масляный канал; 13 — компрессор пневмотормозов; 14 — ось толкателей; 15 — указатель давления масла в центральном масляном канале; 16 — указатель давления масла в корпусе подшипников турбокомпрессора; 17 — масляный фильтр турбокомпрессора; 18 — турбокомпрессор; 19 — сливной клапан масляной магистрали

Система смазки (рис. 1) состоит из резервуара (поддона) для масла, насоса, маслоподводящих трубок и каналов, фильтров очистки масла, радиатора, контрольных приборов. Поддон привернут снизу к блоку цилиндров двигателя. В нем размещен маслозаборник, который остается погруженным в масло при пониженном уровне масла и при работе трактора на склонах. Для слива масла в нижней части поддона имеется сливная пробка.

Масляный насос двухсекционного типа. Основная (нагнетательная) секция подает масло в масляную магистраль, а дополнительная (радиаторная) — в масляный радиатор. Подача основной секции насоса при номинальной частоте вращения коленчатого вала и температуре масла 85—90 °С — 140 л/мин, радиаторной секции — 25 л/мин.

Масло, засасываемое через маслозаборник нагнетательной секцией насоса, поступает под давлением в фильтр грубой очистки масла. Очищенное масло далее разветвляется на три потока. Меньшая часть (около 10%) по каналу в блоке поступает в фильтр центробежной очистки. Очищенное в этом фильтре масло сливается в поддон. Другая часть масла направляется в центральный масляный канал в блоке. Затем по сверлениям поступает к коренным подшипникам, а по сверлениям в коленчатом валу — к шатунным подшипникам. Через продольные сверления в шатунах масло подходит к втулкам верхних головок шатунов. По каналам в блоке от коренных подшипников масло поступает к подшипникам распределительного вала, через сверления в передней шейке — к оси толкателей для смазки втулок толкателей. По каналам в толкателях и полым штангам далее идет на смазку втулок коромысел.

Из центрального масляного канала по наружному маслопроводу через фильтр турбокомпрессора масло поступает к подшипникам вала турбокомпрессора. Вытекающее из шатунных подшипников масло разбрызгивается и смазывает гильзы цилиндров, кулачки распределительного вала, шестерни привода и подшипники привода вентилятора. Затем оно стекает обратно в поддон.

Остальная часть масла из фильтра грубой очистки поступает по каналу в блоке для смазки деталей пневмокомпрессора, а оттуда сливается в поддон.

Для нормальной работы двигателя температура масла в системе должна находиться в пределах 70—90 °С. При увеличении температуры более 90 °С качество масла ухудшается и, как следствие этого, повышается износ деталей двигателя и увеличивается расход масла. Для поддержания температуры масла в необходимых пределах имеется радиатор. Масло в радиатор нагнетается радиаторной секцией насоса. Охлажденное масло сливается в поддон двигателя.

На работу системы смазки оказывают влияние частота вращения коленчатого вала, температура, степень износа деталей, сопротивления фильтров и радиатора. Чтобы с изменением этих факторов не нарушалась подача масла, в системе смазки установлены клапаны.

Редукционный клапан предотвращает чрезмерное повышение Давления, создаваемого масляным насосом при пуске холодного двигателя. Клапан установлен в корпусе основной секции насоса и вступает в работу, когда давление на выходе из основной секции насоса превышает 7,0—7,5 кгс/см2 (700—750 кПа).

Перепускной клапан фильтра грубой очистки масла установлен параллельно фильтру грубой очистки. Когда разность давлений до и после фильтра, вследствие его загрязнения или нагнетания холодного масла, достигает 2,0—2,5 кгс/см2 (180—220 кПа), клапан открывается, и часть масла, мину я фильтр, подается непосредственно в магистраль.

Сливной клапан расположен в нижней плоскости блока. Он поддерживает постоянное давление в масляной магистрали и отрегулирован на начало открытия 4,7—5,0 кгс/сма (470—500 кПа).

В корпусе радиаторной секции масляного насоса установлен предохранительный клапан, отрегулированный на начало открытия при давлении 0,8—1,2 кгс/см2 (80—120 кПа).

Фильтр грубой очистки масла. Фильтр (рис. 2) состоит из корпуса, колпака и фильтрующего элемента. Для уплотнения колпака в корпусе выполнена канавка, в которую уложена прокладка из маслостойкой резины.

Фильтрующий элемент представляет собой цилиндрический гофрированный стальной каркас с натянутой на него латунной сеткой. Под латунной сеткой находится более редкая стальная сетка, предохраняющая первую от прогиба.

Масло, нагнетаемое насосом в фильтр грубой очистки, проходит через сетку, очищаясь от механических примесей, поступает во внутреннюю полость фильтра, затем проходит через щель в стержне, на котором установлены фильтрующие элементы и колпак фильтра, и далее поступает в выходной канал корпуса. В канале подвода масла имеется перепускной клапан с системой сигнализации. Когда фильтр чистый и разница в давлении до и после фильтра не достигает 2,0—2,5 кгс/см2 (180—220 кПа), клапан прижат к седлу пружиной.

При открытии клапана вместе с ним перемещается установленный в проточку клапана шток сигнализатора. Сигнализатор оповещает тракториста о том, что фильтр забит. Если масло холодное и имеет большую вязкость, то лампочка также может загореться.

Рис. 2. Фильтр грубой очистки масла
1 — болт; 2 — крышка элемента; 3 — колпак фильтра; 4 — фильтрующий элемент;. 5 — прокладка фильтрующего элемента; 6 — прокладка колпака; 7 — пробка; 8 — корпус фильтра; 9 — винт; 10 —шайба регулировочная; 11 —пробка клапана; 12 — прокладка пробки; 13 — шток сигнализатора; 14 — корпус сигнализатора; 15 — пружина сигнализатора; 16 — пружина; 17 — клапан перепускной; 18 — корпус фильтра; 19 — заглушка; 1 — от насоса; II — в систему

Рис. 3. Фильтр центробежной очистки масла:
1 — колпак фильтра; 2 — шайба; 3 — колпачковая гайка; 4 — гайка; 5 — упорная шайба; 6 — гайка ротора; 7 — шайба; 8 — сетка; 9, 16 — втулка ротора; 10 — колпак ротора; И — ротор; 12 — заборные трубки; 13 — отражатель; 14 — уплотнительное кольцо; 15 — прокладка колпака; 17 — стопорное кольцо; 18 — подшипник; 19 — ось ротора; 20 — корпус фильтра; 21 — штифт; 22 — сопло ротора

Фильтр центробежной очистки масла. Фильтр (рис. 3) состоит из корпуса, колпака, ротора, колпака ротора, оси ротора, сетки, отражателя, заборных трубок, сопл и подшипника.

Масло поступает под давлением в фильтр и поднимается по каналу в корпусе и сверлению в оси в полость между корпусом и колпаком. Заполнив ее, оно проходит через сетки 8 и вытекает через заборные трубки и тангенциально расположенные сопла, приводя во вращение ротор. Под действием центробежных сил взвешенные в масле частицы с плотностью, превышающей плотность масла, отбрасываются к стенкам колпака ротора и отлагаются на нем в виде плотного смолистого слоя. Очищенное в фильтре масло сливается в поддон двигателя.

Фильтр турбокомпрессора. Фильтр (рис. 4) состоит из корпуса, крышки, стержня и фильтрующего элемента. Нижний конец стержня имеет отверстие для прохода масла и пробку для его слива, а верхний — проточку для установки фиксатора элемента и резьбу под болт крепления корпуса.

Рис. 4. Фильтр турбокомпрессора:
1 — болт крепления корпуса; 2 — прокладка; 3 — крышка фильтра; 4 — прокладка корпуса; 5 — фиксатор элемента; 6 — стержень; 7 — корпус; 8 — фильтрующий элемент; 9 — уплотнительная гайка; 10 — уплотнитель-ное кольцо; 11 — пружина; 12— сливная пробка

Масло подводится к фильтру через канал в крышке, поступает в полость между колпаком и фильтрующим элементом и проходит через поры элемента. Механические частицы оседают на наружной поверхности. Очищенное масло из внутренней полости поступает в канал крышки и далее на смазку подшипников турбокомпрессора.

Масляный радиатор. Масляный радиатор (рис. 5) представляет собой неразборный узел, состоящий из двух бачков и приваренных к ним стальных трубок овального сечения. Радиатор крепится в общем блоке радиаторов. Для слива масла из радиатора имеются сливные пробки.

Рис. 5. Масляный радиатор:
1 — бачок; 2 — трубка; 3 — лента; 4 — сливная пробка

Масло, нагнетаемое секцией масляного насоса, поступает в нижний бачок, затем проходит по трубкам в верхний бачок, а оттуда возвращается в другую половину нижнего бачка и сливается в поддон двигателя. При прохождении по трубкам масло охлаждается продуваемым вентилятором воздухом. Для увеличения поверхности охлаждения на каждой трубке навита спираль из тонкой стальной ленты.

Смазочные масла, применяемые для двигателей внутреннего сгорания, не должны содержать механических примесей, водорастворимых щелочей, кислот и воды. Для смазки тракторных двигателей в летнее время применяется масло Дп-11, а зимой Дп-8. Другие марки масел для эксплуатации в зимних условиях не рекомендуются. Картер пускового двигателя следует заправлять в летний период маслом АК-10 или АСп-10; в зимний — маслом АСп-5 или АКЗп-6 и АКЗп-10.

Рис. 1. Удаление воздуха из корпуса фильтра тонкой очистки топлива двигателя Д-54

Рис. 2. Маслораздаточный бак (модель 133-1):
1 – колесо; 2 — корпус; 3 — наконечник шланга; 4 — кран; 5 — раздаточный шланг; 6 и 12 — скобы для переноса раздаточного шланга. 7 — крышка бака; 8 — коромысло; 9 — рукоятка; 10 — рычажный механизм; 12 — крышка; 13 — откидной болт; 14 — ручка; 15 — опорная планка; 16 — всасывающий клапан; 17 — перепускной клапан; 18 — шток; 19 — заборная труба; 20—поршень; 21 — манжет

При выборе марки масел следует учитывать их свойства: движение по трубкам неподогретого масла (в холодном состоянии) прекращается при температуре на 10—12° выше температуры застывания.

Рис. 3. Нагнетатель масла:
1 — наконечник; 2 — гибкий шланг; 3 — крышка; 4 — шток; 5—рукоятка; 6 — ручка; 7—пробка; 8 — заливная горловина; 9 — резервуар; 10 — гайка; 11 — впускной клапан; 12 — упор; 13 — нагнетательный клапан; 14 — пружина; 15 — гайка; 16 — манжет; 17 — амортизатор; 18 — цилиндр

Заливать масло в картер дизельного и пускового двигателей и топливного насоса следует при помощи заправочных маслораздаточных баков и маслонагнетателей. Допускается производить заправку ведром с носиком, снабженным сетчатым фильтром или ведром, имеющим воронку с сеткой.

Уровень масла в картере проверяют масло-мерной линейкой (щупом). Масло в картере двигателя должно быть на уровне отметки «полный», имеющейся на масломерпой линейке или выше этой отметки на 15—20 мм.

Замену масла в картере дизеля следует производить через 100 ч работы дизеля, непосредственно после окончания работы, когда масло в нагретом состоянии и большая часть осадков находится во взвешенном состоянии и стекает вместе с отработанным маслом.

Перед тем, как заменить масло, необходимо очистить и отвернуть спускные пробки нижнего картера, спускную пробку кронштейна масляных фильтров, пробку, расположенную в правой стойке масляного радиатора, и спускную пробку в трубке, подводящей масло от масляного радиатора- к фильтру. Затем отвинтить стяжные винты масляных фильтров, снять крышки кожухов и вынуть фильтрующие элементы.

Ленточные элементы фильтра грубой очистки масла необходимо промыть в дизельном топливе или керосине при помощи волосяной кисти или щетки. При сильном загрязнении ленточные фильтрующие элементы оставить в керосине или дизельном топливе на 2—3 ч.

Через 500—600 ч работы ленточный фильтр независимо от периодичности технического обслуживания проверяют, чтобы установить его сопротивление прохождению масла.

Для этого плотно закупоривают пробкой отверстие горловины секции и опускают секцию в ведро с дизельным топливом пробкой вниз.

Продолжительность заполнения внутренней полости секции до расстояния 50 мм от верхней кромки составляет 50—60 сек. Если секция заполняется дольше, необходимо произвести специальную промывку.

Рис. 4. Заправочные ведра с сетчатым фильтром и откидывающимися или съемными крышками

Для очистки сильно загрязненных ленточных элементов фильтра можно воспользоваться форсункой дизеля. Под действием струи топлива ленточные фильтры очищаются при любой степени загрязнения.

Категорически запрещается пользоваться металлическими или деревянными скребками, а также тряпками для удаления с фильтров смолистого слоя.

После 200 ч работы внутренние нитчатые элементы фильтра заменяются новыми. Если нет новых внутренних элементов фильтра, разрешается использовать старые, предварительно заменив хлопчатобумажную набивку и тканевую обмотку.

В качестве набивки следует применять путанку (спутанные концы пряжи) прядильного производства, нешлихтованную от № 20 до № 40.

Для набивки одной катушки внутреннего элемента фильтра требуется 300—325 г путанки. Для обмотки внутренней сетки следует применять миткаль (арт. 1108) или ситец (арт. 3). Путанка, применяемая для восстановления элементов фильтра, до набивки должна быть нарезана на концы длиной 100—150 мм и проверена на отсутствие скрученных в жгуты концов и комьев.

Перед сборкой масляного фильтра следует промыть корпус и крышку фильтра, спускные пробки картера, трубки, соединяющие фильтр с масляным радиатором, пробку в правой стойке масляного радиатора. Затем все пробки и трубки ставятся на место. При установке внутренних фильтрующих элементов необходимо следить, чтобы крышка элемента, прикрепленная скрепками, была обращена вверх.

Рис. 5. Проверка пропускной способности ленточного фильтра грубой очистки масла:
1 — ведро; 2 — фильтр грубой очистки

При первой смене масла у дизеля, прошедшего капитальный ремонт, необходимо снять боковые люки картера, отсоединить и промыть сетчатый элемент центрального маслоприемника. При вскрытии картера нельзя протирать тряпкой внутренние поверхности картера и блока, так как нитки от тряпки засорят сетки маслоприемников и нарушат нормальную подачу масла. При установке крышек люков на место нужно обращать особое внимание на то, чтобы прокладки были в хорошем состоянии и плотно прилегали к картеру.

Если давление масла в прогретом дизеле больше или меньше указанного, необходимо остановить дизель и отрегулировать редукционный клапан масляного насоса.

Осадки, скопившиеся в полостях шеек коленчатых валов дизелей, имеющих центробежную очистку масла, удаляют через 600— 1000 ч работы дизеля. Масло в картере пускового двигателя следует заменять через 200 ч работы дизеля. Работа проводится в следующем порядке.

Отвертывают две спускные пробки картера у прогретого пускового двигателя и дают маслу стечь. Снова ввертывают пробки и для промывки картера заливают в него через наливную горловину несколько выше нижней метки масломерной линейки смесь, состоящую из 50% автотракторного масла и 50% дизельного топлива.

Запускают пусковой двигатель и дают ему проработать в течение 3 мин при малом числе оборотов, затем спускают смесь и дают ей полностью стечь.

Заливают в картер свежее4 масло через наливную горловину до уровня верхней метки масломерной линейки (2,4 л). Запускают пусковой двигатель, после остановки проверяют уровень масла и в случае необходимости доливают масло до верхней отметки масломерной линейки.

Бензин заливают в картер двигателя, после чего двигатель должен проработать 4—5 мин без нагрузки для равномерного смешивания бензина с маслом и заполнения всех зазоров между трущимися деталями. Бензин почти полностью испаряется за 1,5—2 ч после пуска.

Понижение вязкости масла достигается его подогревом. Для этого в конце смены необходимо спустить масло в бак водомас-логрейки, а перед пуском двигателя масло, нагретое до температуры 65—85 °С, следует снова залить в картер.

Регулировка редукционного клапана масляного насоса должна производиться в таком порядке: снять крышки люков масляного картера дизеля; вывернуть редукционный клапан с пружиной из масляного насоса и промыть его керосином или дизельным топливом; обнаруженные неисправности клапана и пружины устранить; установить редукционный клапан в масляном насосе; ослабить контргайку 1 регулировочного винта 2 и, вращая регулировочный винт, установить необходимое давление пружины, после чего затянуть контргайку. Давление пружины должно быть в пределах 3,3—4 кГ/см2. Для увеличения давления регулировочный винт необходимо завинчивать, а для уменьшения — отвинчивать.

Очистка и промывка масляного фильтра грубой очистки. Работу производят в следующем порядке. После остановки дизеля спускают масло из корпуса масляных фильтров через два спускных отверстия.

Разбирают фильтр грубой очистки, сняв колпак, фильтрующий элемент, прокладку колпака и разъединив секции элемента.

Заглушают каналы в камере фильтра деревянными пробками для предохранения от загрязнения и промывают камеру дизельным топливом при помощи шприца, пока через спускные отверстия не потечет чистое топливо. Дают топливу стечь и завертывают пробки спускных отверстий. Вынимают пробки из каналов.

Рис. 6. Замер положения головки регулировочного винта редукционного клапана двигателей КДМ-100 и Д-108:
1 — контргайка; 2 — регулировочный винт (при а ф 30—32 мм)

Колпак и нажимную гайку или ось фильтра трактора ДТ-54 старого выпуска очищают и промывают в дизельном топливе. Временно устанавливают колпак и гайку или ось на место для предохранения камеры от загрязнения.

Секции элемента очищают и промывают в дизельном топливе щетинной кистью или щеткой в низком противне так, чтобы топливо не попадало внутрь секций. Пользоваться металлическими скребками или щетками, а также обтирочным материалом нельзя во избежание повреждения поверхности секций* и забивания щелей грязью.

Промытые секции необходимо продуть, сполоснуть в свежем топливе, поставить на чистое место и дать топливу стечь. Чтобы топливо стекало быстрее, нужно установить наружную секцию горловиной крышки вверх, а внутреннюю — вниз. -Далее осматривают намотку секции. Намотка не должна иметь повреждений и широких щелей между нитками. Нормальная ширина щели — 0,06—0,09 мм. Общая площадь подпайки намотки каждой секции после нескольких ремонтов не должна превышать 10 см2 на одну секцию. При необходимости секции заменяют, а неисправные отправляют на ремонт.

Войлочные кольца промывают в дизельном топливе, а затем отжимают и просушивают. Проверяют состояние колец и парани-товой прокладки корпуса фильтра. Смятые или скрученные кольца и прокладку следует заменить.

Снимают с корпуса фильтра временно установленный колпак и собирают фильтр на корпусе. Кольца и прокладку следует устанавливать без перекоса. Внутреннюю секцию элемента устанавливают в наружную до упору. Секции в сборе нужно вставить так, чтобы горловина внутренней секции вошла в отверстие камеры фильтра. При сборке фильтра с новыми увеличенными или уменьшенными по толщине прокладкой и кольцом, горловины наружной секции следует проверить расстояние между прокладкой и кольцом; оно должно быть в пределах 165—170 мм.

В конце технического обслуживания после пуска дизеля следует убедиться в отсутствии течи масла через соединения фильтра и нормальном давлении масла в магистрали.

Проверка пропускной способности секций фильтрующего элемента масляного фильтра грубой очистки двигателя ДТ-54. После спуска промывочного топлива из картера дизеля и корпуса масляных фильтров и вторичной очистки и промывки секции нужно

Рис. 7. Очистка и промывка секции фильтрующего элемента фильтра грубой очистки масла двигателя Д-54

вставить в горловину каждой секции резиновую или деревянную пробку. Пробка наружной секции не должна перекрывать отверстие во внутренней крышке.

Погружают в ведро с чистым дизельным топливом наружную секцию настолько, чтобы ее верхняя кромка была на 2—3 мм выше уровня топлива, а внутреннюю— до верхней кромки цилиндрической -поверхности (рис. 79). Замеряют время заполнения каждой секции топливом до уровня, отстоящего на 30 мм от верхней кромки. Продолжительность заполнения топливом секции, годной к эксплуатации, не должна превышать 45 сек. Секцию, которая заполняется топливом за большее время, следует заменить и отправить в ремонтную мастерскую для восстановления.

Очистка и промывка масляного фильтра тонкой очистки с реактивной центрифугой. Одновременно с разборкой масляного фильтра грубой очистки разбирают

масляный фильтр тонкой очистки, сняв колпак и ротор реактивной центрифуги в сборе, крышку и предохранительные сетки маслозаборных трубок ротора.

Камеру фильтра промывают дизельным топливом при помощи шприца. Колпак очищают и промывают в дизельном топливе и устанавливают его временно на место для предохранения камеры фильтра от загрязнения.

Рис. 8. Схема проверки пропускной способности секции фильтрующего элемента фильтра грубой очистки масла:
а — наружной секции; б— внутренней секции

Рис. 9. Снятие ротора реактивной центрифуги:
а — двигатель Д-54А; б — двигатель Д-40М

Внутренние полости крышки и корпуса ротора очищают деревянным скребком. Прочищают форсунки (сопла) ротора медной проволокой. Промывают в дизельном топливе корпус ротора в сборе, его крышку, предохранительные сетки маслозабор-ных трубок и упорное кольцо, обратив особое внимание на чистоту каналов трубок. После промывки предохранительных сеток нужно продуть их.

Проверяют состояние паранитовой прокладки, устанавливаемой между корпусом и крышкой ротора, и при необходимости заменяют прокладку.

Рис. 10. Очистка внутренней полости корпуса ротора реактивной центрифуги

Собирают ротор, установив медные прокладки под гайки крепления крыши ротора; гайки следует затягивать поочередно не более чем на 1/2 грани за один прием, чтобы масло не просачивалось между корпусом и крышкой ротора. Перетягивать гайки нельзя во избежание поломки ротора.

Снимают с корпуса фильтра временно установленный колпак. Протирают собранный ротор снаружи чистой тряпкой и устанавливают его на ось. Следует убедиться в том, что ротор вращается от руки. Устанавливают на место упорное кольцо и колпак фильтра.

В конце технического обслуживания перед пуском пускового двигателя следует снять колпак фильтра, а затем при прокручивании дизеля пусковым двигателем на II передаче редуктора убедиться в наличии вращения ротора. При этом, придерживая вращающийся ротор рукой, проверить, не подтекает ли масло из-под гаек крепления крышки ротора и прокладки между его крышкой и корпусом. Допускается легкое просачивание масла у верхней и нижней втулок ротора.

Снова устанавливают колпак фильтра на место, не затягивая сильно гайку крепления колпака, так как колпак только защищает ротор от пыли и грязи, а масло под колпаком не имеет давления. Пускать дизель при снятом колпаке запрещается.

Очистка и промывка сапуна. После промывки системы смазки следует снять сапун и разобрать его, вынув из корпуса пружинное кольцо, Сетки и проволочную набивку; очистить и промыть в дизельном топливе все детали сапуна; набивку разрыхлить равномерно по всему объему, смочить дизельным маслом, а затем дать маслу стечь; собрать сапун и установить на место.

Очистка и промывка масло-заливной трубы. Одновременно с сапуном нужно снять заливную трубу, сетку и картонные прокладки; очистить и промыть в дизельном топливе сетку и трубу и установить их на место, расположив прокладки по обе стороны сетки.

—-

Система смазки представляет совокупность механизмов и устройств, соединенных между собой маслопроводами и каналами и служащих для очистки и охлаждения масла и подачи его к трущимся деталям двигателя в необходимом количестве.

Масло, попадая в зазоры между трущимися деталями, уменьшает их износ, охлаждает детали и удаляет продукты износа с трущихся поверхностей.

Масло может подводиться к трущимся поверхностям деталей под давлением, разбрызгиванием, самотеком. В зависимости от способов подвода масла различают системы смазки разбрызгиванием и комбинированные.

основные элементы, их назначение, устройство и принцип работы

Автор Павел Александрович Белоусов На чтение 7 мин. Просмотров 922

Содержание

  1. Схема циркуляции масла в двигателе
  2. Усложнение конструкции
  3. Масляный насос
  4. Редукционный клапан
  5. Двухступенчатые масляные насосы
  6. Клапан N428
  7. Отличие мокрого картера от сухого
  8. Видео: Система смазки двигателя внутреннего сгорания (ДВС) в 3D. Как работает?
  9. Неполадки в системе смазки

Принципиальная задача системы смазки двигателя в разрезе десятилетий развития ДВС осталась неизменной – подача к трущимся элементам смазывающего и теплоотводящего материала. Но повсеместные ужесточения экологических норм заставляют конструкторов находить скрытые ресурсы для повешения КПД мотора и уменьшения вредных выбросов в атмосферу. Рассмотрим устройство системы смазки двигателя, их виды, принцип работы масляного насоса и редукционного клапана.

Схема циркуляции масла в двигателе

Моторное масло из поддона всасывается шестеренчатым насосом и подается к фильтру. Проходя через фильтрующий элемент, масло по каналам в блоке цилиндров и ГБЦ подается к шейкам коленчатого вала, кулачкам и постелям распределительного вала. Давление в системе смазки зависит от скорости вращения коленчатого вала. Минимальное давление развивается насосом на холостом ходу, а максимальное ограничивается редукционным клапаном.

Для контроля водителем исправности системы в блоке цилиндров, а иногда и в ГБЦ, вмонтирован датчик давления масла. На современных авто стрелочным указателем давления на приборной панели оборудуются лишь немногие спортивные автомобили. На большинстве авто их заменили индикатором низкого давления, который загорается лишь при падении напора в масляных магистралях.

Усложнение конструкции

На примере дизельного двигателя объемом 2,5 л от VW можно увидеть, насколько сложнее стала схема работы смазочной системы современного двигателя. Давайте рассмотрим предназначение каждого из элементов.

  • Двухступенчатый масляный насос шестеренчатого типа с внутренним зацеплением. Устанавливается в поддоне картера.
  • Клапан регулировки давления масла. С помощью электромагнитного клапана ECU (Engine Control Module) направляет масло в разные каналы, переключая тем самым режимы работы масляного насоса. При регулировании производительности учитывается нагрузка на двигатель, температура охлаждающей жидкости, обороты коленчатого вала и сигналы с АКПП. При подаче управляющего сигнала клапан открывается, пропуская масло в каналы первой ступени (давление в системе порядка 1,8 атмосфер). При отсутствии управляющей «массы» возвратная пружина возвращает клапан в исходное положение, изменяет направление протекания масла, поднимая давление в системе до 3,3-4 Атм.

Изменение производительности позволяет снизить механические потери, затрачиваемые на смазывание и охлаждение трущихся пар двигателя. Такое решение повышает общий КПД двигатели, уменьшая количество вредных выбросов.

  • Обратные клапаны в возвратных трубопроводах. Пропускают смазку только в одном направлении и предотвращают полный слив масла из каналов после остановки двигателя. Заполненные каналы позволяют избежать масляного голодания в первые секунды после запуска мотора.
  • Предохранительный клапан. Открывается при холодном запуске, когда в системе развивается чрезмерное давление.
  • Клапан малого контура циркуляции. Срабатывает при засорении фильтрующего элемента, открывая путь маслу в обход фильтра.
  • Масляный охладитель. Через корпус теплообменника циркулирует масло и охлаждающая жидкость.
  • Охладитель способствует поддержанию теплового баланса двигателя и препятствует перегреву масла.
  • Клапан масляной форсунки. Открывается при достижении в системе расчетного давления, открывая магистраль к форсункам.
  • Масляная форсунка. Разбрызгивает масло на днище поршня, отводя от него тепло.
  • Редукционный клапан. Срабатывает при достижении в системе чрезмерного давления, защищает ГБЦ от лишнего масла.

Масляный насос

Среди различных типов конструкции наибольшее распространение получили шестеренчатые и роторные масляные насосы. Устройство масляного насоса шестеренчатого типа с наружным зацеплением:

  1. Ведомая шестерня.
  2. Канал забора масла с поддона.
  3. Ведущая шестерня. Именно она посредством червячной, цепной или шестеренчатой передачи соединена с коленчатым валом двигателя.
  4. Приводной вал (в данном типе масляного насоса соединяет коленвал и ведущую шестерню).
  5. Канал нагнетания.
  6. Ось вращения ведущей шестерни.

При вращении шестерен масло всасывается из заборного канала и подается по каналам нагнетания к трущимся парам двигателя. Давление масла в системе смазки и производительность насоса напрямую связаны со скоростью вращения коленчатого вала. При превышении давления, достаточного для смазывания и отвода тепла трущихся элементов, лишняя смазка стравливается редукционном клапаном.   

В отличие от шестеренчатого насоса с наружным зацеплением, в помпах с внутренним зацеплением ведущая шестерня вращается внутри ведомой. Принцип работы смазочной системы с точки зрения нагнетания давления остается неизменным и схож с работой роторной помпы. Внутри корпуса устанавливается внешний и внутренний роторы. Вращение последнего приводит к всасыванию смазки и подаче ее под давлением в нагнетательный канал.

Редукционный клапан

Поскольку производительность нерегулируемых насосов напрямую зависит от количества оборотов двигателя, максимальное безопасное давление масла в системе смазки поддерживается редукционным клапаном. Он представляет собой запорный клапан, подпертый возвратной пружиной. Когда расчетное давление масла со стороны клапана преодолевает усилие пружины, клапан открывается, перепуская излишки масла обратно в поддон картера.

Двухступенчатые масляные насосы

Конструкцию двухступенчатого масляного насоса рассмотрим на примере агрегата роторного типа от автоконцерна VAG.

  1. Первая ступень работы определяется конструкторами, исходя из необходимого двигателю объема масла на всех режимах работы. Из полости нагнетания масло направляется в каналы двигателя и к подвижному ротору в месте его упора в регулировочную пластину. В таком режиме объем полости всасывания и, как следствие, количество прокачиваемого масла небольшое.
  2. Вторая ступень. При повышении оборотов двигателя возникает потребность в большем количестве смазки. Давление на подвижный ротор ослабевает. Теперь регулировочная пружина доворачивает статор на несколько градусов, изменяя положение ведомого ротора. Таким образом увеличивается объем полости всасывания и количество прокачиваемой смазки.

В двигателях FSI Audi объемом 2,8 и 3,2 литра переход с первой на вторую ступень происходит на оборотах коленвала свыше 4600. Благодаря двухступенчатым помпам конструкторам удалось на 1/3 снизить расход топлива.

Клапан N428

Клапан управления масляного насоса N428 предназначен для регулировки давления на управляющий поршень. В зависимости от давления на поршень, изменяется положение статора и объем камеры всасывания. Часть масла из полости нагнетания всегда подается в управляющую магистраль к клапану N428. По команде блока управления двигателя на клапан подается питание, масло подается к управляющему поршню. По своему устройству N428 представляет собой электроуправляемый гидравлический 3/2 ходовой клапан.

Отличие мокрого картера от сухого

Выше нами рассмотрен исключительно мокрый картер, когда основной объем системы смазки двигателя находится в поддоне и забирается оттуда масляным насосом.

На схеме представлены детали и приборы системы смазки мотора с сухим картером. Основное отличие в том, что поддон двигателя не используется для хранения масла. Весь стекший туда смазывающий материал откачивается специальным насосом и подается в отдельный бак. Оттуда давление в масляной системе создается уже при помощи нагнетающей помпы. Такая система смазки двигателя применяется на автомобилях повышенной проходимости и гоночных болидах. Основные преимущества:

  • уменьшается высота поддона, что позволяет установить мотор ниже. Снижение центра масс улучшает курсовую устойчивость и управляемость автомобиля;
  • сухой картер исключает масляное голодание при движении авто в больших продольных и поперечных углах, что актуально для внедорожников на пересеченной местности;
  • исключено масляное голодание вследствие отлива смазки (перетекания из одной части в другую) при длительном движении автомобиля в дуге, что актуально для кольцевых автогонок и соревнований по дрифту;
  • моторное масло лучше охлаждается.

Но не лишена система и недостатков, так как усложнение системы снижает надежность и увеличивает массу автомобиля.

Видео: Система смазки двигателя внутреннего сгорания (ДВС) в 3D. Как работает?

Неполадки в системе смазки

  • механический износ деталей масляного насоса. Происходит вследствие несвоевременной замены масла, фильтрующего элемента. При износе в зоне всасывания не создается достаточное разряжение, из-за чего падает производительность помпы;
  • коксование и засорение посторонними предметами маслоприемника. Случается при несвоевременной замене масла, разрушении пластиковых элементов натяжительных и успокоительных башмаков;
  • подвисание редукционного клапана;
  • электрическая неисправность или проблемы с проводкой клапана управления двухступенчатым насосом;
  • выход из строя датчика давления масла, из-за чего на приборной панели загорается сигнальная лампа низкого давления;
  • заклинивание обратного клапана в возвратных магистралях;
  • поломка указателя давления масла;
  • заклинивание масляного термостата, применяющегося для более быстрого прогрева смазки.

Современная смазочная система состоит из множества механических и электронных компонентов, ввиду чего надежность ее значительно снизилась. Поэтому крайне важно следить за соблюдением сервисных интервалов, качеством фильтров и моторного масла.

Печать

Реставратор для пластика и кожи

5 минут и салон авто как новый. 
Посмотрите фото до и после

1490 р.

Набор для ремонта стекла

Ремонт стекла авто своими руками.
Спасает от трещин и сколов.

1690 р.

Зеркало видеорегистратор Vehicle Blackbox DVR

видеорегистратор + зеркало заднего вида + камера заднего вида
+ датчик движения + технология Dual cam + G-Sensor…

1990 р.

Зеркало — бортовой компьютер

12в1 — видеорегистратор, GPS-навигатор,
камера, интернет, радар, FM, G-sensor. ..

1990 р.

Авточехлы из экокожи

Салон будет как новый!
Легко чистятся, не трутся, не рвутся.

3990 р.

Система смазки двигателя


Главная  /  Учебник по устройству автомобиля  /  Глава 4. Двигатель » Подраздел 4.9 Система смазки двигателя




В двигателе находится большое количество трущихся друг о друга деталей, все они металлические, и всем им требуется смазка, ибо они нагреваются и, как следствие, могут заклинить. Поэтому в двигателе есть система смазки: с каналами (магистралями), с поддоном и с масляным насосом. Упрощенная схема системы смазки приведена на рисунке 4.38.

Помимо смазывания, масло еще выполняет роль охладителя раскаленных трущихся деталей двигателя. Именно поэтому часто в дизельных, а иногда и в бензиновых двигателях устанавливают специальные распылители, направленные на нижние части поршней, но об этом позже.


Рисунок 4.38 Упрощенная схема системы смазки.

Основные элементы системы смазки

 Масляный насос

О назначении сего устройства говорит его название. Масляный насос необходим для перекачки моторного масла из масляного поддона, который находится в самой нижней части двигателя, ко всем трущимся деталям через специальные масляные каналы.

Для этой цели применяют насосы шестеренного типа с внешним и внутренним зацеплением. Насосы первого типа — сейчас большая редкость из-за своих габаритов, потому рассмотрим тип насоса, являющийся наиболее актуальным на сегодняшний день – шестеренный с внутренним зацеплением, пример которого можно увидеть на рисунке 4.39.


Рисунок 4.39 Масляный насос шестеренного типа с внутренним зацеплением.

Приводится масляный насос обычно от коленчатого вала цепью, ремнем или шестерней, в зависимости от типа привода газораспределительного механизма или непосредственно установлен на коленчатом вале. Работа насоса заключается в том, что при вращении малая шестерня перекатывается по большой, увлекая за собой моторное масло, и по каналам под давлением подводит его к трущимся деталям.

 Редукционный клапан

Редукционный клапан служит для ограничения давления масла в маслопроводах системы смазки. Давление масла может повыситься при очень больших количествах оборотов коленчатого вала двигателя или при чрезмерно густом масле, например, в холодном двигателе. Редукционный клапан обычно ставят в корпусе насоса. Он представляет собой шарик, поджатый пружиной. Пока давление масла нормальное, шарик плотно прижат к пружине, когда давление начинает чрезмерно повышаться, шарик перемещается, сжимая пружину, при этом открывается перепускной канал, по которому масло из поддона через насос снова стекает в поддон.

 Масляные фильтры

Двигатель работает, масло смазывает, однако, так или иначе, появляются продукты износа трущихся деталей. Продукты износа – это довольно мелкие частички металлической стружки, образующиеся при трении и, как следствие, износе деталей. Также масло загрязняется частицами нагара и пыли, проникающей в картер. Эти механические примеси, попадая вместе с маслом к трущимся деталям, увеличивают их износ и поэтому должны быть удалены из масла.

Примечание
Масляные фильтры служат для очистки масла от механических примесей, в результате чего увеличивается продолжительность его работы.


Рисунок 4.40 Масляный фильтр.

Зачастую в двигателе имеются два масляных фильтра: один – сетчатый – устанавливается на маслоприемнике (который показан на рисунке 4.38), а второй — в собственном корпусе в наиболее доступном месте на блоке цилиндров двигателя.

Состоит такой фильтр из корпуса и фильтрующего элемента вставленного в корпус.

 Масляный радиатор

Узнав о том, что в процессе работы все детали двигателя очень сильно нагреваются, вы могли предположить, что и масло, смазывающее эти самые детали, также нагревается, достигая приличных температур. А при сильном перегреве моторное масло начинает очень стремительно терять свои свойства — все это может вылиться в довольно плачевные последствия для двигателя.

Примечание
При работе двигателя температура моторного масла не должна сильно повышаться во избежание падения его вязкости.

Чтобы поддерживать температуру моторного масла в наиболее эффективном диапазоне, устанавливают масляный радиатор, который иногда схож с радиатором системы охлаждения (см. рисунок 4.33). При воздушном охлаждении масляный радиатор трубчатого типа, включенный в масляную магистраль, ставят перед радиатором водяной системы охлаждения двигателя.

Примечание
Если конструкция предполагает жидкостное охлаждение масла, то она называется охладителем, а не радиатором (схематически такой охладитель можно увидеть на рисунке 4.32).

Примечание
Радиатор с водяным охлаждением обеспечивает не только охлаждение масла при работе в тяжелых условиях, но и быстрый прогрев масла при пуске двигателя.

 Масляный поддон, картер

Масляный поддон — чаще всего штампованная деталь, имеющая вид чаши или кухонного противня. Это емкость, в которой находится моторное масло, оттуда оно через маслоприемник (рисунок 4.38) подается ко всем трущимся деталям и туда же стекает после смазки данных деталей. В главе «Техническое обслуживание» описан щуп, с помощью которого измеряется уровень моторного масла. Так вот, данный щуп, а точнее его тонкая пластина с нанесенными метками, вставляется именно в поддон.

Внимание
Масло необходимо наливать в поддон до определенного уровня, который должен поддерживаться в процессе работы двигателя. При переполнении картера масло чрезмерно разбрызгивается на стенки цилиндров и может попасть в камеры сгорания, при этом нагарообразование в камерах сгорания усилится. Также возможно вспенивание масла, что приводит к значительному падению давления в системе и, если вовремя не остановиться, — к выходу двигателя из строя.
Также очевидно, что недостаток масла в системе может привести к так называемому масляному голоданию, из-за чего нередки случаи проворачивания вкладышей в коренных опорах коленчатого вала.

Картер – это самая большая корпусная деталь двигателя. Может быть отлита вместе с блоком цилиндров, а может быть отдельной деталью, крепящейся к блоку цилиндров болтами.

 Вентиляция картера

В большинстве современных автомобилей установлены системы принудительной вентиляции картерных газов. В такую систему входят обычно клапаны и патрубки, соединяющие полость картера двигателя со впускным коллектором.

Сама вентиляция картера крайне важна для нормальной работы двигателя. Дело в том что, так или иначе отработавшие газы через зазоры поршневой группы попадают в картер двигателя. Так же газы образуются при контакте моторного масла с раскаленным деталями двигателя. Прорвавшиеся отработанные газы воздействуя на моторное масло, разжижают его, что приводит к уменьшению срока службы и потере эффективности. Также, в зависимости от режима работы двигателя, попавшие в картер газы могут резко повысить избыточное давление, что приведет к выдавливанию уплотнительных манжет (сальников) и прокладок. Именно для этого устанавливают клапаны, контролируемые электроникой, которые отвечают за вентиляцию картера.

Применяемые для смазки масла

Для смазки двигателей применяют масла минерального (сейчас редко), полусинтетического и синтетического происхождения.

Для повышения качества масла к нему добавляют специальные присадки (специальные химические соединения), которые повышают смазывающую способность масла, делают более стабильной его вязкость, понижают температуру застывания, уменьшают окисляющее действие масла. Присадки в масле также способствуют вымыванию смолистых отложений из зазоров трущихся деталей и т. д.

В зависимости от времени года и климатических условий для смазки двигателя следует применять масла различной вязкости. Зимой вязкость масла должна быть меньше, так как масло с большой вязкостью при низкой температуре загустеет и будет в холодном двигателе плохо проникать в зазоры трущихся деталей, а также будут затруднены заливка масла и пуск холодного двигателя.

Летом вязкость масла должна быть большей, так как масло с малой вязкостью при повышенной температуре становится еще более жидким и не обеспечивает нормальной смазки двигателя. Однако, на данный момент распространены всесезонные моторные масла.

Ниже рассмотрим обозначение вязкости масел по классификации SAE (Society of Automotive Engineers – Сообщество автомобильных инженеров).

В данном обозначении имеется две цифры, разделенные буквой W – это говорит о том, что масло всесезонное. При этом первая цифра говорит о минимальной отрицательной температуре, при которой коленвал двигателя можно будет провернуть. Так, масло 0W40 должно прокачиваться от -35°С, 15W40 – от -20°С. Вторая цифра определяет вязкость масла при температуре 100°С, а если точнее, то не саму вязкость, а допустимый диапазон ее изменения. Так, для «30» вязкость при 100°С может меняться в диапазоне от 9.3 до 12.5 сСт (сантистоксов – единиц измерения вязкости), для «40» – от 12.5 до 16.5 сСт, а для «50» – от 16.3 до 21.9 сСт. То есть кинематическая вязкость в пределах допустимого диапазона может меняться на 10…15%.

Параллельно с классификацией по SAE, характеризующей вязкость моторного масла, существует классификация по API (American Petroleum Institute – Американский институт топлива), которая определяет его применимость к конкретному мотору.

В марку масла входит индекс, состоящий из двух букв, первая из которых определяет тип двигателя: S (Service Station) – бензиновые двигатели и C (Commercial) – дизельные двигатели; вторая (A, B, C, D, E, F, G, H, J, L, M) определяет уровень эксплуатационных свойств. Марка масла может быть дробной, тогда масло с точки зрения применения универсально – для бензиновых и дизельных двигателей.

Подраздел 4.8 Система охлаждения двигателя

Система внешнего освещения

Система зажигания

Подраздел 4.10 Система впуска и выпуска


 



Please enable JavaScript to view the comments powered by Disqus.
comments powered by Disqus

Система смазки двигателя Д-245.7Е3 / Д-245.9Е3

Система смазки дизеля комбинированная

Масляный насос — шестеренного типа, односекционный

 

Привод масляного насоса осуществляется от шестерни, установленной на коленчатом валу.

Масляный насос 9 через маслоприемник 8 забирает масло из масляного картера 1 и по каналам в блоке цилиндров и каналам корпуса масляного фильтра подает в жидкостно-масляный теплообменник 10, а затем в полнопоточный масляный фильтр 12 и в масляную магистраль дизеля.

Из главной магистрали дизеля по каналам в блоке цилиндров масло поступает ко всем коренным подшипникам коленчатого и шейкам распределительного валов.

От коренных подшипников по каналам в коленчатом вале масло поступает ко всем шатунным подшипникам.

От первого коренного подшипника масло по специальным каналам поступает к втулкам промежуточной шестерни и шестерни привода топливного насоса, а также к топливному насосу.

Детали клапанного механизма смазываются маслом, поступающим от заднего подшипника распределительного вала по каналам в блоке, головке цилиндров, сверлению в IV стойке коромысел во внутреннюю полость оси коромысел и через отверстие во втулке коромысла, от которой по каналу идет на регулировочный винт и штангу.

К компрессору масло поступает из главной магистрали по сверлениям в блоке цилиндров и специальному маслопроводу. Из компрессора масло сливается в картер дизеля.

Масло к подшипниковому узлу турбокомпрессора поступает по трубке, подключенной на выходе из корпуса масляного фильтра. Из подшипникового узла турбокомпрессора масло по трубке отводится в масляный картер

Перепускные (редукционные) клапаны установлены в корпусе жидкостно-масляного теплообменника — 11 (значение давления срабатывания — 0,15…0,20 мПа) и в масляном фильтре — 13 (значение давления срабатывания 0,13…0,17 мПа).

При пуске дизеля на холодном масле, когда сопротивление прохождению масла в жидкостно-масляном теплообменнике превышает значение 0,15-0,2 мПа, перепускной клапан открывается, и масло, минуя жидкостно-масляный теплообменник, поступает в масляный фильтр, а при сопротивлении в масляном фильтре 0,13…0,17 мПа, открывается перепускной клапан масляного фильтра и масло, минуя масляный фильтр, поступает в масляную магистраль.

Перепускные клапаны нерегулируемые.

В корпусе фильтра встроен предохранительный регулируемый клапан 14, предназначенный для поддержания давления масла в главной масляной магистрали 0,25…0,35 мПа. Избыточное масло сливается через клапан в картер дизеля.

В случае чрезмерного засорения, когда сопротивление масляного фильтра становится выше 0,13-0,17 мПа перепускной клапан фильтра также открывается, и масло, минуя масляный фильтр, поступает в масляную магистраль.

Внимание! На работающем дизеле категорически запрещается отворачивать пробку редукционного клапана!

Обслуживание системы смазки заключается в ежедневном контроле уровня масла в картере двигателя, контроле давления масла, своевременной замене масла и фильтра.

Проверка уровня масла выполняется ежедневно перед пуском двигателя и не ранее, чем через 3 минуты после остановки двигателя. Автобус должен быть установлен на ровной горизонтальной площадке.

Уровень масла должен быть между нижней и верхней метками масломерного щупа. Запрещается работа двигателя с уровнем масла ниже нижней и выше верхней метки масломера.

Давление масла системы смазки двигателя контролируется по указателю, расположенному на щитке приборов.

При работе дизеля с номинальной частотой вращения и температурой охлаждающей жидкости (85-95) °С, давление масла должно находиться на уровне (0,25-0,35) МПа, допускается значение давления на непрогретом двигателе до 0,8 МПа.

При минимальной частоте вращения холостого хода давление масла в системе смазки прогретого двигателя должно быть не менее 0,08 МПа.

Замена масла производится через каждые 8000 км. Допускается замена масла через 10000 км.

Внимание! В случае применения дублирующих масел или топлива с повышенным содержанием серы замена масла должна проводиться через (4000…5000) км пробега.

К дублирующим относятся масла: М-10 Г2К и М-8 Г2К.

Замена масла в картере дизеля производится на предварительно прогретом двигателе. Для слива масла нужно отвернуть пробку масляного картера. После того, как все масло вытечет из картера, завернуть пробку на место.

Масло в дизель заливать через маслоналивной патрубок до уровня верхней метки на масломере.

Следует заливать в масляный картер только рекомендованное настоящим руководством масло, соответствующее периоду эксплуатации.

Применение масел других марок может привести к возникновению неисправностей дизеля.

Замена масляного фильтра производится одновременно с заменой масла в картере двигателя и результатам диагностики системы «COMMON RAIL» в следующей последовательности:

 

Очистите от грязи место сопряжения масляного фильтр и корпуса клапанов 1.

Отверните фильтр ФМ 009-1012005 или М5101 со штуцера 3, используя специальный ключ или другие подручные средства.

Протрите привалочную поверхность в корпусе клапанов.

Заполните новый фильтр чистым маслом и установите (наверните на штуцер) фильтр ФМ 009-101201 или М5101 в сборе с прокладкой 4, которую предварительно смажьте моторным маслом.

После касания прокладкой чашки корпуса фильтра доверните фильтр ещё на 1-1,5 оборота.

Установку фильтра производить только усилием руки

Вместо фильтра ФМ 009-1012005 и М5101 допускается установка фильтр-патронов неразборного типа: мод. X149 фирмы «АС Lelko» (Франция), мод. L37198 фирмы «Purolator» (Италия) и других фирм имеющих в конструкции противодренажный и перепускной клапаны с основными габаритными размерами: — диаметр – 95-105 мм; — высота – 140-160 мм; — резьба – 3/4-16UNF.

Регулировка предохранительного (сливного) клапана проводится при снижении давления масла в системе смазки двигателя ниже 2,5 кгс/см2.

Регулировку следует проводить на выключенном и прогретом двигателе

 

Отвернуть пробку 4 (рис. 3), снять прокладку 5.

В канале корпуса масляного фильтра 3 отверткой 7 повернуть регулировочную пробку 6 на один оборот в сторону увеличения или уменьшения значения давления (в зависимости от фактического давления).

Установить прокладку 5 и заверните пробку 4.

При необходимости повторить указанные действия по регулировке.

Как работает система смазки в двигателе?

ОБЩАЯ ИНФОРМАЦИЯ

Настоящая политика конфиденциальности определяет Lubrita Europe B.V., адрес юридического лица World Trade Center Amsterdam, Schiphol Boulevard 127, 1118 BG Schiphol, Netherlands, адрес электронной почты [email protected] (далее именуемый как «Управляющий») условия обработки персональных данных посетителей веб-сайта Lubrita. com и других субъектов данных, реализация прав субъектов данных, связанных с обработкой персональных данных.

Менеджер может в любое время просмотреть и изменить политику конфиденциальности, поэтому мы рекомендуем вам периодически проверять, знакомы ли вы с соответствующей версией политики конфиденциальности. Дата публикации текущей версии политики конфиденциальности указана в верхней части этой веб-страницы. Информация об изменении политики конфиденциальности для зарегистрированных пользователей интернет-магазинов доступна в их учетной записи интернет-магазина.

Обработка персональных данных посетителей сайта осуществляется в соответствии с действующим законодательством и обеспечением соответствующих технических и организационных мер по защите персональных данных.

Управляющий использует предоставленные им или с вашего разрешения собранные Управляющим ваши персональные данные исключительно в целях, указанных в Политике конфиденциальности, в целях обработки персональных данных, за плату или безвозмездно, передачи другим лицам, за исключением случаях, указанных в настоящей Политике конфиденциальности. Ваши личные данные могут быть раскрыты другим лицам только тогда и только в той мере, в какой это необходимо для предоставления вам услуг, выполнения вашего заказа и так далее. Например, при покупке товара и выборе курьерской доставки ваши личные данные, необходимые для доставки, будут переданы курьерской службе.
Веб-сайт содержит ссылки на неуправленческие веб-сайты. Администратор не несет ответственности за политику конфиденциальности этих сайтов, поэтому мы рекомендуем вам проявлять активность и знакомиться с политикой конфиденциальности веб-сайтов, на которые вы направляетесь.

ПЕРСОНАЛЬНЫЕ ДАННЫЕ ПОСЕТИТЕЛЕЙ САЙТА, ​​ИСПОЛЬЗОВАНИЕ ФАЙЛОВ COOKIES

просматривают веб-сайт.

Нам необходимо использовать файлы cookie на веб-сайте, чтобы:
обеспечить надлежащее функционирование веб-сайта;
обеспечить оптимальную скорость и безопасность веб-сайта;
проверять веб-сайт, его отдельные страницы и части, анализировать трафик веб-сайта (дата и время посещения, используемые браузеры, типы устройств и размеры их экранов) и, таким образом, постоянно улучшать веб-сайт, чтобы лучше соответствовать твои нужды.
Улучшите вход в свою учетную запись интернет-магазина.

Диспетчер данных использует следующие типы файлов cookie:

Сеансовые файлы cookie:
НАЗВАНИЕ: _gat | ФУНКЦИЯ: Предназначен для ускорения входа в систему. | СРОК ГОДНОСТИ: До конца посещения сайта
НАЗВАНИЕ: CMSESSIDX | ФУНКЦИЯ: Предназначен для поддержки сеанса пользователя | СРОК ГОДНОСТИ: До конца посещения сайта
НАЗВАНИЕ: CookiesAgree | НАЗНАЧЕНИЕ: предназначено для регистрации принятия посетителем файлов cookie. | СРОК ГОДНОСТИ: До конца посещения сайта
НАЗВАНИЕ: CookiesLevelx | НАЗНАЧЕНИЕ: предназначено для определения того, какой тип файлов cookie принял посетитель. | СРОК ГОДНОСТИ: До конца посещения сайта

Постоянные файлы cookie:
НАЗВАНИЕ: _ga | НАЗНАЧЕНИЕ: файл cookie Google Analytics для идентификации уникальных пользователей. | СРОК ГОДНОСТИ: 2 года
НАЗВАНИЕ: _gid | НАЗНАЧЕНИЕ: файл cookie Google Analytics для идентификации уникальных пользователей. | СРОК ГОДНОСТИ: 24 часа

Вы можете ограничить или заблокировать файлы cookie, изменив настройки своего веб-браузера. Если вы хотите, чтобы веб-сайты не сохраняли файлы cookie на вашем устройстве, настройте параметры веб-браузера так, чтобы вы получали уведомление перед размещением любого файла cookie или веб-браузером удалял все файлы cookie. Вам нужно будет индивидуально настроить параметры для каждого интернет-браузера для каждого устройства.

Запрещая любое использование файлов cookie или ограничивая их использование, вы можете не получать желаемые услуги или не можете использовать функциональные возможности веб-сайта.

Дополнительную информацию о файлах cookie, принципах их работы и настройках можно найти на веб-сайте http://www.allaboutcookies.org.

Запросы

На сайте есть форма запроса, которую вы можете заполнить с вашим запросом к менеджеру. Чтобы ответить на ваш запрос и сохранить подтверждение связи, менеджер в любом случае обработает предоставленную вами информацию: ваше имя, адрес электронной почты и запрос. Вы не сможете связаться с нами, отправив запрос без указания этой информации.

Если вы хотите, чтобы представитель Управляющего мог связаться с вами не только по электронной почте, но и по телефону, вы также можете указать свой номер телефона в запросе, а также можете отправить запрос без номера телефона.

Персональные данные, предоставленные вместе с запросом, и дальнейшая переписка между вами и агентом Управляющего будут храниться в объеме, необходимом для выполнения конкретной задачи и обеспечения реализации прав Управляющего.

ИНТЕРНЕТ-МАГАЗИН ПЕРСОНАЛЬНЫЕ ДАННЫЕ КЛИЕНТА

Только зарегистрированные пользователи интернет-магазина, соблюдающие условия покупки в интернет-магазине, могут приобретать товары в интернет-магазине менеджера.

Персональные данные, предоставленные при регистрации, используются для выполнения заказов (для реализации законного интереса Менеджера в возможности предоставления доказательств общения и договоренностей с покупателями). Помимо персональных данных, указанных при регистрации, Менеджер также хранит вашу историю покупок с той же целью и на законном основании: приобретаемые товары, их стоимость, способ и дату оплаты, способ и дату доставки. Электронная почта, предоставленная при регистрации, также будет использоваться в целях прямого маркетинга, чтобы предоставить вам информацию о товарах и услугах, предлагаемых Менеджером, проводимых акциях и практических советах, если вы не выразите возражения во время регистрации против использования вашего персональные данные для целей прямого маркетинга. Дополнительную информацию об обработке ваших персональных данных в целях прямого маркетинга вы найдете в разделе «ПРЯМОЙ МАРКЕТИНГ» Политики конфиденциальности.

Чтобы иметь возможность правильно выполнить свой заказ, вам необходимо предоставить правильную личную информацию при регистрации. Вы можете просматривать и изменять свои личные данные, войдя в свою учетную запись интернет-магазина. Пожалуйста, перед отправкой нового заказа, во всех случаях, убедитесь, что ваши личные данные, хранящиеся у Менеджера, актуальны и правильны. Менеджер не несет никакой ответственности, если ваши персональные данные будут раскрыты другим лицам, вы не получите заказанный товар или испытаете другие неудобства из-за неверного предоставления или непродления персональных данных. Никакие имущественные убытки не будут возмещены из-за предоставления неверных персональных данных.

Персональные данные лиц, зарегистрированных в Интернет-магазине, будут предоставляться компаниям, оказывающим услуги по доставке товаров, банкам, осуществляющим выставление счетов за приобретенные товары или услуги, а также обработчикам данных, используемым Управляющим (администраторам информационных систем, используемым менеджером, маркетинговыми службами агентств).

Вы можете отменить регистрацию в интернет-магазине в любое время по электронной почте [email protected]. Ваша учетная запись будет аннулирована не позднее, чем в течение 7 рабочих дней с момента получения отправленного электронного письма с подтверждением, и вы будете уведомлены по электронной почте об удалении вашей учетной записи.

Ваши персональные данные, обрабатываемые в целях электронной торговли, хранятся в течение 5 лет с момента последней покупки в интернет-магазине. Если вы не будете совершать покупки в интернет-магазине в течение 5 лет, ваша учетная запись будет удалена, а все содержащиеся в ней персональные данные будут удалены. Вы будете уведомлены о намерении аннулировать свою учетную запись не менее чем за 5 дней до ее аннулирования.

ПЕРСОНАЛЬНЫЕ ДАННЫЕ УЧАСТНИКОВ ПРОГРАММЫ ЛОЯЛЬНОСТИ

Вы становитесь Постоянным клиентом Управляющего, приобретая Карту лояльности Управляющего на условиях 9Программа лояльности 0084.

Для того, чтобы стать постоянным клиентом Управляющего и приобретать товары, распространяемые Управляющим по более выгодным ценам, Вам необходимо предоставить Управляющему следующую информацию при регистрации в программе лояльности: имя, адрес электронной почты, номер телефона и адрес. Для того, чтобы стать участником программы лояльности, вам не нужно предоставлять никакие другие личные данные.

Помимо предоставленных вами персональных данных, Менеджер также будет обрабатывать историю покупок, совершенных с помощью карты лояльности, такую ​​как: приобретенные товары, их цена, примененная скидка, дата заказа, способ и дата оплаты, способ доставки и свидание. Правовым основанием для обработки персональных данных, обрабатываемых в целях реализации программы лояльности, является желание исполнить договор об участии в программе лояльности.

Ваши личные данные будут использоваться только для предоставления вам скидок и предложений прямого маркетинга. Если Вы не желаете получать от Менеджера новости и информацию об акциях для постоянных клиентов, отметьте при регистрации в графе «дополнительная информация», что Вы не согласны на обработку своих персональных данных в целях прямого маркетинга.

Ваши персональные данные, обрабатываемые в целях выполнения программы лояльности, будут переданы обработчикам данных Управляющего (Администраторам информационных систем, используемых Управляющим, Маркетинговым агентствам).

Вы имеете право выйти из программы лояльности в любое время, отправив заявку на адрес электронной почты [email protected]. Для обработки вашего участия в Программе лояльности ваши личные данные будут удалены не позднее, чем через 7 дней после подтверждения об отправленном получении электронного письма, и вы будете проинформированы по электронной почте об удалении личных данных.

ПРЯМОЙ МАРКЕТИНГ

Каждый посетитель сайта может подписаться на последние новости о товарах и услугах, предлагаемых менеджером, акциях и практических советах (подписаться на рассылку).

Подписавшись на интернет-магазин или программу лояльности, вы также будете включены в базу данных получателей информационного бюллетеня менеджера, если вы не заявите во время регистрации, что не хотите получать предложения менеджера по прямому маркетингу.

Лица, подписавшиеся на рассылку и зарегистрированные в интернет-магазине, а значит участники программы лояльности, могут в любой момент отказаться от рассылки Менеджера, перейдя по ссылке отказа в рассылке или отправив запрос на адрес электронной почты info@ Lubrita. com.

ВИДЕОНАБЛЮДЕНИЕ

Видеонаблюдение осуществляется на территории и в помещениях физических магазинов Manager, расположенных по адресу: World Trade Center Amsterdam, Schiphol Boulevard 127, 1118 BG Schiphol, Нидерланды. Изображение контролируется с целью обеспечения безопасности активов и сотрудников Управляющего. Правовой основой для обработки этих данных является законная заинтересованность Управляющего в предотвращении возникновения ущерба, который понес бы Управляющий, если бы он потерял свое имущество или не обеспечил безопасность своих сотрудников.

Наблюдаемые участки и части помещений маркируются визуальными средствами, видимыми до входа в поле видеонаблюдения.

Мониторинг территории и помещений Общества осуществляется только в режиме реального времени; мы не записываем и не храним данные изображения, поэтому мы не сможем удовлетворить ваши запросы на доступ к данным изображения.

ЛИЧНЫЕ ДАННЫЕ КАНДИДАТОВ В СОТРУДНИКИ

Все персональные данные, представленные лицами, желающими трудоустроиться в Компании Управляющего, администрируются Управляющим только в целях подбора и найма персонала, имея законный интерес в оценке пригодности кандидата на работу по желанию.

В дополнение к дате, предоставленной в целях отбора и найма одним и тем же лицом, желающим работать в Управляющей компании, Менеджер может собирать и иным образом обрабатывать другие общедоступные данные о кандидатах, т. е. искать информацию в Интернете, проверять социальные сети кандидатов. (например, LinkedIn, Facebook, Twitter) профили и так далее.

Менеджер также может обратиться к бывшим работодателям кандидата, указанным в резюме кандидата или аккаунтах в социальных сетях, и запросить информацию о квалификации, профессиональных способностях и деловых качествах кандидата.

Предоставленные кандидатом и самостоятельно собранные данные о кандидате Руководитель хранит 4 месяца с момента истечения срока избрания конкретного сотрудника. Срок хранения персональных данных продлевается только с личного согласия кандидата. В случае неполучения согласия на хранение персональных данных кандидата более 4 месяцев после отбора, по истечении этого срока все персональные данные кандидата (как представленные кандидатом, так и собранные Руководителем) удаляются.

ИНФОРМАЦИЯ О ПРАВАХ

Все лица, чьи персональные данные обрабатываются Управляющим, должны иметь:


Право доступа к своим персональным данным, обрабатываемым Управляющим.
Право требовать исправления неправильных или неточных личных данных

Зарегистрированные пользователи интернет-магазина могут получить доступ к своим личным данным и изменить их, зарегистрировавшись в учетной записи интернет-магазина. В иных случаях право на доступ и запрос на исправление персональных данных реализуется путем подачи письменного запроса на адрес офиса Управляющего или на адрес электронной почты [email protected] (в случае заявления, подписанного е- подпись).

Право требовать от Руководителя ограничения обработки персональных данных до момента проверки достоверности персональных данных, до установления того, что интересы субъекта данных, несогласного с обработкой персональных данных, превалируют над интересами Менеджер, а также в случаях, когда персональные данные обрабатываются неправомерно, но субъект данных не согласен на удаление этих данных.
Данное право реализуется путем подачи письменного запроса на адрес офиса Управляющего или на адрес электронной почты [email protected] (в случае заявления, подписанного электронной подписью). Если заявление является обоснованным, обработка персональных данных будет ограничена в течение 5 рабочих дней с момента получения запроса.

Право на переносимость данных

Это право реализуется путем предоставления письменного запроса на адрес офиса Управляющего или на адрес электронной почты [email protected] (в случае заявления, подписанного электронной подписью). Если запрос обоснован, Управляющий направляет Вам или Вашему назначенному распорядителю данных ваши персональные данные в машиночитаемой форме не позднее, чем в течение 30 дней с момента получения запроса.

Право на несогласие с обработкой персональных данных

Зарегистрированные пользователи интернет-магазина и участники программы лояльности выражают право возражать против обработки своих персональных данных в целях прямого маркетинга, отказавшись от рассылки новостей, нажав на ссылку отказа или отправив заявку на адрес электронной почты info@Lubrita. com. . Во всех остальных случаях при выражении несогласия с обработкой ваших персональных данных Менеджер оценит, превосходит ли ваш законный интерес вышестоящий.

Право требовать удаления данных

Это право реализуется путем предоставления письменного запроса на адрес офиса Управляющего или на адрес электронной почты [email protected] (в случае, если заявление подписано электронной подписью). Распорядитель данных удаляет соответствующие персональные данные в течение 30 дней после получения запроса или отказывает в принятии заявления и письменно излагает причины отказа.

Право на обращение в надзорный орган

Это право может быть реализовано путем подачи жалобы в Государственную инспекцию по защите данных на любые действия Управляющего в отношении обработки ваших персональных данных.

В случаях, когда Вы реализуете свои права путем подачи письменного заявления в адрес Управляющего, вместе с заявлением необходимо представить копию документа, удостоверяющего личность (паспорт, удостоверение личности), нотариально заверенную.

КОНТАКТЫ

Если у вас есть вопросы относительно политики конфиденциальности, свяжитесь с нами по адресу [email protected], и мы вам поможем.

Система смазочного масла для судового дизельного двигателя

Система смазочного масла для судового дизельного двигателя



Главная || Дизельные двигатели

||Котлы||Системы подачи

||Паровые турбины ||Обработка топлива ||Насосы ||Охлаждение ||

Система смазки двигателя обеспечивает подачу смазочного масла
к различным движущимся частям двигателя. Его основная функция заключается в том, чтобы позволить
образование масляной пленки между движущимися частями, что снижает
трения и износа. Смазочное масло также используется в качестве очистителя и в
некоторые двигатели в качестве охлаждающей жидкости.

Основная система смазки двигателя Эта система подает смазочное масло к двигателю
подшипники и охлаждающее масло к поршням. Смазочное масло перекачивается из ME LO Циркуляционный
Цистерна, размещенная в двойном дне под двигателем, с помощью насоса МЭ ЛО,
к ME LO Cooler, термостатический клапан, и через полнопоточный фильтр, к двигателю,
где он распределяется по различным патрубкам. Насосы и фильтры тонкой очистки расположены
в двух экземплярах, один резервный. Из двигателя масло скапливается в масляном поддоне, из
откуда он сливается в циркуляционный резервуар ME LO для повторного использования. Центрифуга предназначена для
очистка смазочного масла в системе и чистое масло может быть предоставлено из хранилища
бак.

  • Дом
  • Дизельные двигатели
  • Морской котел
  • Кондиционер
  • Сжатый воздух
  • Батареи
  • Охлаждение
  • Судовые насосы
  • Система подачи

  • Инсинератор
  • Хладагенты
  • Редукторы
  • Губернаторы
  • Охладители
  • Пропеллеры
  • Рулевой механизм
  • Электростанции
  • Турбинный редуктор
  • Турбокомпрессоры
  • Паровые турбины
  • Теплообменники
  • Противопожарная защита

  • Измерение расхода

  • Четырехтактные двигатели
  • Двухтактные двигатели
  • Система впрыска топлива
  • Топливная система
  • Масляные фильтры
  • Двигатель MAN B&W
  • Дизельный двигатель Sulzer
  • Морские конденсаторы
  • Сепаратор маслянистой воды
  • Защита от превышения скорости
  • Поршень и поршневые кольца
  • Прогиб коленчатого вала
  • Станция очистки сточных вод
  • Система пускового воздуха
  • Аварийный источник питания
  • UMS Операции
  • Сухой док и ремонт
  • Критическое оборудование
  • Палубные механизмы
  • Контрольно-измерительные приборы
  • Безопасность машинного отделения
  • Главная

Масляная система:

Смазочное масло для двигателя хранится в нижней части картера,
известный как отстойник, или в сливном баке, расположенном под двигателем
. Масло забирается из этого резервуара через сетчатый фильтр, один из
пара насосов, в один из пары фильтров тонкой очистки. Затем он передается
через охладитель перед поступлением в двигатель и распределением по
различные патрубки.

Патрубок на конкретный цилиндр может
кормить коренной подшипник, например. Часть этой нефти проходит через
просверлил проход в коленчатом валу к нижнему концевому подшипнику и далее вверх
просверленный канал в шатуне к поршневому пальцу или крейцкопфу
несущий.

Аварийный сигнал на конце распределительной трубы гарантирует, что
Соответствующее давление поддерживается насосом. Насосы и фильтры тонкой очистки
расположены в двух экземплярах, один из которых является резервным. Фильтры тонкой очистки будут
устроен так, что один можно чистить, пока другой работает. После
использования в двигателе смазочное масло сливается обратно в поддон или слив
бак для повторного использования. Уровнемер дает локальные показания сливного бака
содержание. Центрифуга предназначена для очистки смазочного масла в
систему и чистое масло можно подавать из резервуара для хранения.

Масляный радиатор циркулирует забортной водой, находящейся под более низким давлением.
чем масло. В результате любая утечка в охладителе будет означать потерю масла и
отсутствие загрязнения масла морской водой.

Если двигатель оснащен поршнями с масляным охлаждением, они будут питаться от
система смазочного масла, возможно, при более высоком давлении, создаваемом усилителем
насосы, напр. Двигатель Sulzer RTA. Подходящий тип смазочного масла
необходимо использовать для поршней с масляной смазкой во избежание образования нагара
на более горячие части системы.

Смазка цилиндра

Цилиндровое масло перекачивается из резервуара для хранения цилиндрового масла в
Резервуар для обслуживания цилиндрового масла, расположенный мин. 3000 мм над лубрикаторами цилиндров.
масленки цилиндра установлены на корпусе роликовой направляющей и соединены между собой
с приводными валами. Каждая гильза цилиндра имеет несколько смазочных отверстий, через которые
цилиндровое масло подается в цилиндры через обратные клапаны.

Большие тихоходные дизельные двигатели снабжены отдельной смазкой
система гильз цилиндров. Масло впрыскивается между гильзой и
поршень механическими лубрикаторами, которые снабжают свой отдельный цилиндр,
Используется специальный тип масла, которое не подлежит восстановлению. А также смазка,
способствует формированию газового уплотнения и содержит присадки, очищающие
втулка цилиндра.

Уровень смазочного масла в поддоне

Уровень смазочного масла, отображаемый в поддоне при работающем основном двигателе, должен быть достаточным для предотвращения завихрения и проникновения воздуха, что может привести к повреждению подшипников.

Уровень поддона должен соответствовать инструкциям производителя/судостроителя. Объем в отстойнике всегда поддерживается на одном и том же безопасном рабочем уровне и указывается в литрах. Очень важно, чтобы цифры были математически устойчивыми и точными из месяца в месяц, с учетом потребления, потерь и пополнений, а также в отчетах.

Количество в поддоне рассчитывается при остановленном двигателе, но работающем масляном насосе, что обеспечивает циркуляцию масла в системе.

Всегда должен иметься достаточный запас смазочного масла, т. е. для полного заполнения главного отстойника, и необходимо иметь достаточное количество других смазочных материалов для покрытия предполагаемого рейса плюс 20 %.
Смазочные масла являются крупной статьей расходов, поэтому все закупки должны быть заранее спланированы с целью покупки максимальных объемов из самых дешевых источников поставок, которыми в первую очередь являются США, Европа и Сингапур.
Заявки на смазочные масла должны быть отправлены в офис не менее чем за 10 дней до предполагаемого порта покупки и четко указывать, требуется ли судну поставка наливом или в бочках.

Насосы предварительной смазки

Они составляют важную часть системы смазки многих типов двигателей, в частности вспомогательных двигателей с масляными насосами с приводом от двигателя.

Они обеспечивают подачу масла к подшипникам перед пуском и ограничивают время существования граничной смазки, а также сокращают время начала гидродинамической смазки.
Они должны обслуживаться и эксплуатироваться в соответствии с инструкциями производителя.

Дополнительная информация:

  1. График и заказы на смазку
  2. Система смазки двигателя обеспечивает подачу смазочного масла к различным движущимся частям двигателя. Его основная функция заключается в обеспечении образования масляной пленки между движущимися частями, что снижает трение и износ. Смазочное масло также используется в качестве очистителя и в некоторых двигателях в качестве охлаждающей жидкости…..

  3. Назначение масляных фильтров
  4. Фильтры для смазочного масла можно найти как на стороне всасывания, так и на стороне нагнетания масляного насоса в зависимости от установки и типа двигателя или двигателей.
    Их техническое обслуживание абсолютно необходимо для ожидаемого срока службы коленчатого вала и его подшипников, который полностью зависит от бесперебойной подачи чистого и правильно отфильтрованного масла. ….

  5. Обработка смазочного масла Смазочные масла
  6. требуют обработки перед подачей в двигатель. Это включает хранение и нагрев для разделения присутствующей воды, грубую и тонкую фильтрацию для удаления твердых частиц, а также центрифугирование……

  7. Центрифугирование смазочного масла
  8. Смазочное масло при прохождении через дизельный двигатель становится
    загрязнены частицами износа, продуктами сгорания и водой.
    центрифуга, устроенная как очиститель, используется для непрерывного удаления этих
    примеси….

  9. Смазка цилиндра и поддержание уровня поддона
  10. Уровень поддона должен соответствовать инструкциям производителей/судостроителей. Объем в отстойнике всегда поддерживается на одном и том же безопасном рабочем уровне и указывается в литрах. Очень важно, чтобы цифры были математически устойчивыми и точными из месяца в месяц, с учетом потребления, потерь и пополнений и сообщаемых …..

Морской дизельный двигатель Другие полезные статьи :

  1. Руководство по эксплуатации четырехтактных дизельных двигателей
  2. Четырехтактный цикл завершается четырьмя ходами поршня или двумя
    оборотов коленчатого вала. Для работы в этом цикле двигатель
    требуется механизм для открытия и закрытия впускных и выпускных клапанов
    Подробнее …..

  3. Руководство по эксплуатации двухтактных дизельных двигателей

  4. Двухтактный цикл завершается за два хода поршня или за один
    оборот коленчатого вала. Для работы этого цикла, где каждый
    событие выполняется за очень короткое время, движку требуется количество
    особых договоренностей.
    Подробнее …..

  5. Измерение мощности судового дизельного двигателя — Индикатор двигателя
  6. Существует два возможных измерения мощности двигателя:
    мощность и мощность на валу. Указанная мощность — это мощность, развиваемая
    внутри цилиндра двигателя и может быть измерен индикатором двигателя.
    Мощность на валу – это мощность, доступная на выходном валу двигателя.
    и может быть измерен с помощью крутильного измерителя или с помощью тормоза.
    Подробнее …..

  7. Подача свежего воздуха и удаление отработавших газов газообменником
  8. Основной частью цикла двигателя внутреннего сгорания является подача свежего воздуха и удаление выхлопных газов. это газообмен
    процесс. Продувка – это удаление выхлопных газов путем вдувания свежего
    воздуха.
    Подробнее …..

  9. Топливная система дизельного двигателя
  10. Систему подачи топлива для дизельного двигателя можно рассматривать в двух
    части системы подачи топлива и системы впрыска топлива. Поставка топлива связана с
    подача мазута, подходящего для использования системой впрыска.
    Подробнее …..

  11. Смазочная система для судового дизеля — принцип работы

  12. Система смазки двигателя обеспечивает подачу смазочного масла
    к различным движущимся частям двигателя. Его основная функция заключается в том, чтобы позволить
    образование масляной пленки между движущимися частями, что снижает
    трения и износа. Смазочное масло также используется в качестве очистителя и в
    некоторые двигатели в качестве охлаждающей жидкости.
    Подробнее …..

  13. Охлаждение судового двигателя — как это работает, требования к системе охлаждения пресной и забортной водой
  14. Охлаждение двигателей достигается за счет циркуляции охлаждающей жидкости по внутренним каналам внутри двигателя. При этом охлаждающая жидкость нагревается.
    и, в свою очередь, охлаждается охладителем с циркуляцией морской воды. Без адекватного
    охлаждение некоторых частей двигателя, подвергающихся воздействию очень высоких
    температура, в результате сжигания топлива, скоро выйдет из строя.
    Подробнее …..

  15. Пневматическая система запуска дизельного двигателя — принцип работы
  16. Дизельные двигатели запускаются подачей сжатого воздуха в цилиндры в соответствующей последовательности для требуемого направления. Поставка
    сжатый воздух хранится в воздушных резервуарах или «баллонах», готовых к немедленному использованию.
    использовать. Возможно до 12 пусков с сохраненным количеством сжатого
    воздуха.
    Подробнее …..

  17. Регулятор-Функция регулятора скорости судового дизельного двигателя
  18. Основным управляющим устройством любого двигателя является регулятор. Он регулирует или регулирует скорость двигателя при некотором фиксированном значении, в то время как выходная мощность
    изменения для удовлетворения спроса. Это достигается губернатором автоматически
    регулировка параметров топливного насоса двигателя для достижения желаемой нагрузки на
    установить скорость.
    Подробнее …..

  19. Предохранительный клапан цилиндра судового дизельного двигателя — руководство по эксплуатации
  20. Предохранительный клапан баллона предназначен для сброса давления, превышающего нормальное на 10–20 %. Срабатывание этого устройства указывает на неисправность в двигателе, которая
    должны быть обнаружены и исправлены.
    Подробнее …..

  21. Взрывозащитный клапан судового дизеля
  22. В качестве практической защиты от взрывов в картере,
    установлены предохранительные клапаны или двери. Эти клапаны служат для облегчения
    избыточное давление в картере и прекращение выхода пламени из
    картер. Они также должны быть самозакрывающимися, чтобы предотвратить возврат
    атмосферный воздух в картер.
    Подробнее …..

  23. Руководство по эксплуатации поворотного механизма
    Поворотный механизм или двигатель поворота представляет собой реверсивный электродвигатель, приводящий в движение червячную передачу, которая может быть соединена с зубчатым маховиком для
    включить большой дизель. Таким образом, предусмотрен низкоскоростной привод, позволяющий
    расположение деталей двигателя при капитальном ремонте.
    Подробнее …..
  24. Муфты, сцепления и редукторы судового дизеля
  25. Основным устройством управления любым двигателем является регулятор. Он регулирует или регулирует скорость двигателя при некотором фиксированном значении, в то время как выходная мощность
    изменения для удовлетворения спроса. Это достигается губернатором автоматически
    регулировка параметров топливного насоса двигателя для достижения желаемой нагрузки на
    установить скорость.
    Подробнее …..

  26. Дизельный двигатель MAN B&W — Основные принципы и руководство по эксплуатации
  27. Один из двигателей серии MC
    введен в 1982 году, имеет более длинный ход и увеличенный максимальный
    давление по сравнению с более ранними конструкциями L-GF и L-GB.
    Подробнее …..

  28. Детектор масляного тумана картера судового дизеля
  29. Один из серии MC
    введен в 1982 году, имеет более длинный ход и увеличенный максимальный
    давление по сравнению с более ранними конструкциями L-GF и L-GB.
    Подробнее …..

  30. Разное Теплообменник для работающих механизмов на борту грузовых судов
  31. Кожухотрубчатые теплообменники для водяного охлаждения двигателя и охлаждения смазочного масла традиционно циркулировали с морской водой. Море
    вода находится в контакте с внутренней частью труб, трубных решеток и водяных камер.
    Подробнее …..

  32. Руководство по требованиям безопасности и эксплуатации турбокомпрессоров
  33. Кожухотрубчатые теплообменники для водяного охлаждения двигателя и охлаждения смазочного масла традиционно циркулировали с морской водой. Море
    вода находится в контакте с внутренней частью труб, трубных решеток и водяных камер.
    Подробнее …..

  34. Назначение поршня и поршневых колец
  35. Поршень образует нижнюю часть камеры сгорания. Он герметизирует цилиндр и передает давление газа на шатун. Поршень состоит из двух частей; головка и юбка. Головка поршня подвержена механическим и термическим нагрузкам.
    Подробнее . ….

Судовая техника — Полезные теги

Судовые дизельные двигатели || Парогенератор || Система кондиционирования воздуха || Сжатый воздух || Морские батареи || Грузовой холодильник || Центробежный насос || Различные охладители || Аварийный источник питания || Теплообменники отработавших газов || Система подачи || Насос для отбора корма ||
Измерение расхода || Четырехтактные двигатели || Топливная форсунка || Топливная система || Обработка мазута || Редукторы || Губернатор ||
Морской мусоросжигатель ||
Масляные фильтры ||
Двигатель MAN B&W ||
Судовые конденсаторы ||
Сепаратор масляной воды ||
Устройства защиты от превышения скорости ||

Поршень и поршневые кольца ||
Прогиб коленчатого вала ||
Морские насосы ||

Различные хладагенты ||
Станция очистки сточных вод ||
Пропеллеры ||
Электростанции
||
Система пускового воздуха ||
Паровые турбины ||
Рулевой механизм ||
Двигатель Sulzer ||
Турбинный редуктор ||
Турбокомпрессоры ||
Двухтактные двигатели ||
Операции UMS ||

Сухой док и капитальный ремонт ||
Критическое оборудование ||
Палубные механизмы и грузовые механизмы
|| Контрольно-измерительные приборы

|| Противопожарная защита
|| Безопасность машинного отделения ||

Machinery Spaces. com посвящен принципам работы, конструкции и работе всего оборудования.
предметы на корабле предназначены в первую очередь для инженеров, работающих на борту, и тех, кто работает на берегу. Для любых замечаний, пожалуйста

Свяжитесь с нами

Copyright © 2010-2016 Machinery Spaces.com Все права защищены.
Условия использования

Ознакомьтесь с нашей политикой конфиденциальности|| Домашняя страница||

Система смазки двигателя: определение, детали, типы, функции

Автомобильный двигатель нуждается в смазке, поскольку он состоит из двух или более взаимодействующих движущихся частей. Эти детали создают трение и выделяют тепло, что вызывает чрезмерный износ пар.

Смазка играет жизненно важную роль в автомобилях, поскольку способствует повышению эффективности работы и долговечности двигателя.

Когда две движущиеся части покрываются смазкой, они отделены друг от друга. То есть они не вступают в физический контакт друг с другом.

В автомобилях предусмотрены световые индикаторы, которые «включаются» при низком давлении масла в двигателе. Хотя некоторые двигатели используют индикатор, чтобы показать качество масла в двигателе.

Для индикации давления масла используются электрические аналоговые и электронные цифровые манометры. Также имеется щуп для измерения уровня масла в масляном поддоне.

Сегодня мы рассмотрим определение, части, функции, типы и схему системы смазки двигателя в автомобилях.

Читайте: Компоненты двигателя внутреннего сгорания

Содержание

  • 1 Что такое смазка двигателя?
  • 2 Функции системы смазки двигателя
  • 3 Основные части системы смазки двигателя
    • 3.1 Масляный поддон/отстойник:
    • 3.2 Масляный насос:
    • 3.3 Масляный фильтр:
    • 3.4 Масляные каналы:0226
    • 3.5 Масляный радиатор:
    • 3.6 Присоединяйтесь к нашему информационному бюллетеню
  • 4 Типы системы смазки двигателя
  • 5 Система смазки двухтактных и четырехтактных двигателей
  • 6 Смазка двухтактных двигателей 902-24 ход Смазка двигателя
  • 6. 2 Пожалуйста, поделитесь!

Что такое смазка двигателя?

Смазка двигателя представляет собой процесс, при котором металлические детали ограждающего устройства разделяются потоком смазочного вещества между ними. смазочные материалы бывают жидкими, твердыми или газообразными, но жидкая форма смазки чаще всего используется в двигателях.

Функции системы смазки двигателя

Ниже приведены функции смазочного масла в двигателе:

  • Основной целью смазки двигателя является минимизация износа путем надежного закрытия зазора между движущимися частями, такими как валы, подшипники и т. д. Смазка также предотвращает прямой контакт движущихся частей друг с другом.
  • Масло

  • служит очищающим средством в двигателе, перемещая частицы грязи в масляный поддон. Более мелкие частицы отфильтровываются масляными фильтрами, а более крупные остаются в масляном поддоне.
  • Еще одно назначение смазки двигателя заключается в том, что она служит системой охлаждения. Смазочное масло охлаждает движущиеся части двигателя и переносит горячее масло в более холодное масло в масляном поддоне.
  • Масло создает уплотнение между стенками цилиндра и поршневыми кольцами. Это также уменьшает прорыв выхлопных газов.
  • Зазор между вращающимися шейками и подшипником заполнен маслом. Масло действует как амортизирующий агент, когда подшипник внезапно испытывает большие нагрузки. Масла уменьшают износ подшипников.

Основные детали системы смазки двигателя

Ниже перечислены компоненты системы смазки:

Масляный поддон/отстойник:

Масляный картер представляет собой резервуар в форме чаши, в котором хранится моторное масло. Благодаря поддону масло циркулирует внутри двигателя. Деталь расположена под картером, который является нижней частью двигателя, что позволяет легко удалять масло через нижнюю часть.

Плохие дороги часто приводят к повреждению масляного поддона. Вот почему поддон сделан из твердого материала, а под ним имеется защита от камней. Этот щиток поддона выдерживает любые удары от неровностей грунта или плохой дороги.

Масляный насос:

Масляный насос — это компонент, который помогает подавать смазочное масло ко всем движущимся частям двигателя. Он расположен в нижней части картера, рядом с масляным поддоном. Он подает масло в масляный фильтр перед отправкой дальше.

Масляные насосы могут со временем перестать работать, что может привести к повреждению двигателя. Это может быть вызвано наличием мелких частиц внутри смазочного масла, которые засоряют масляный насос и галереи.

Чтобы избежать этой проблемы, замена моторного масла и фильтра очень необходима в течение определенного периода времени.

Масляный фильтр:

Масляный фильтр помогает удерживать мелкие частицы, отделяя их от масла, чтобы чистое масло могло поступать к деталям двигателя. Масляный насос пропускает масло через масляный фильтр в галереи до того, как оно достигнет деталей двигателя.

Читать Что нужно знать о блоке цилиндров автомобиля

Масляные каналы:

Функция масляных каналов в системе смазки двигателя заключается в быстрой циркуляции масла для достижения всех движущихся частей автомобиля. Таким образом, производительность масляной галереи определяет, насколько быстро ваши детали двигателя получают масло.

Масляные галереи представляют собой серию взаимосвязанных проходов, по которым масло поступает к тем частям, которые в нем нуждаются.

Эти проходы представляют собой большие и малые отверстия, просверленные внутри блока цилиндров. Большие отверстия соединяются с меньшими, пока не дойдут до головки блока цилиндров и верхних распределительных валов.

Масляный радиатор:

Масляный радиатор — это устройство, которое работает как радиатор, охлаждая горячее масло. Охладители передают тепло от моторного масла к охлаждающей жидкости двигателя с помощью своих ребер. Масляные радиаторы стабилизируют температуру моторного масла, контролируют его вязкость, предотвращают перегрев двигателя, минимизируют износ и сохраняют качество смазочного материала

Присоединяйтесь к нашему информационному бюллетеню

В некоторых системах смазки двигателя масло циркулирует внутри двигателя в процессе рециркуляции. Ниже перечислены части, на которые подается масло в процессе:

  • Коренные подшипники коленчатого вала
  • Подшипники шатуна
  • Поршневые пальцы и малые концевые втулки
  • Поршневые кольца
  • Зубчатые передачи
  • Поршень и подшипники воздушного компрессора (в грузовых автомобилях для пневматических тормозов)
  • Распределительный вал и подшипники
  • Клапаны
  • Стенки цилиндра
  • Детали масляного насоса
  • Подшипники водяного насоса
  • Подшипники турбокомпрессора (при наличии)
  • Подшипники вакуумного насоса (при наличии)
  • Подшипники рядного топливного насоса высокого давления
  • Толкатели и толкатели

Типы системы смазки двигателя

Ниже приведены типы системы смазки двигателя:

Система смазки туманом : используется в двухтактных двигателях, в которых масло и топливо смешиваются. Смесь образуется через карбюратор.

Топливо испаряется, а масло в виде тумана поступает в цилиндр через основание кривошипа. В основании кривошипа масло смазывает шатун вместе с поршневым кольцом, поршнем и цилиндром.

Система смазки с мокрым картером : обычно располагается рядом с коленчатым валом или рядом с ним. это нижняя часть двигателя с одним масляным насосом. Этот насос перемещает масло по масляным каналам. Конструкция проще и незаметнее.

Система смазки с сухим картером : система смазки с сухим картером имеет масляный резервуар, расположенный не в нижней части двигателя. Он использует два масляных насоса, чтобы поддерживать циркуляцию масла в двигателе. Система более сложная и дорогая в разработке. Тем не менее, дизайн кастрюли более гибок, поскольку он расположен в необычном месте. Это часто встречается в двигателях производительности.

Читайте: что такое шасси автомобиля и его значение?

Система смазки двухтактных и четырехтактных двигателей

Работа двухтактных и четырехтактных двигателей сильно отличается, как и их система смазки. Эти двигатели внутреннего сгорания производят механическую энергию из химической энергии, содержащейся в углеводородном топливе. Для работы этих компонентов двигателя требуется смазка, чтобы свести к минимуму износ и повысить эффективность двигателя.

Основное различие между двигателями заключается в том, что двухтактные двигатели имеют рабочий ход или расширение в каждом цилиндре при каждом обороте коленчатого вала. Процесс выхлопа и впуска происходят одновременно, когда поршень движется через свое нижнее положение. Пока

Четырехтактному двигателю требуется два полных оборота коленчатого вала, чтобы совершить рабочий такт. отработанные газы сначала вытесняются поршнем во время хода вверх. Свежий заряд поступает в цилиндр во время следующего хода вниз.

Смазка в четырехтактном двигателе

При смазке четырехтактного двигателя масло хранится в масляном картере или поддоне. Масло циркулирует в двигателе посредством системы смазки разбрызгиванием или насосной системы смазки под давлением, что является наиболее предпочтительным выбором производителей. Хотя они могут быть представлены вместе в движке.

Смазка разбрызгиванием происходит, когда коленчатый вал частично погружен в масляный поддон. Импульс вращающегося коленчатого вала разбрызгивает масло на другие компоненты двигателя, такие как выступы кулачка, стенки цилиндра, поршневой палец и т. д.

Смазка под давлением достигается с помощью масляного насоса, который проталкивает смазочную пленку между движущимися частями, такими как коренные подшипники, шатунные подшипники и кулачковые подшипники. Он также перекачивает масло в направляющие клапанов двигателя и коромысла.

Читать Что нужно знать о механической коробке передач

Смазка двухтактных двигателей

Как правило, двухтактные двигатели изнашиваются быстрее, поскольку в них нет источника смазки. зато есть качественное масло, которое значительно снижает износ двигателя.

Двухтактные двигатели получают масло под коленчатый вал, используя систему смазки с полными потерями. Эта смазочная система сочетает в себе масло и топливо, чтобы обеспечить обе энергии для смазки двигателя.

Два агента объединяются во впускном тракте цилиндра и смазывают такие компоненты, как коленчатый вал, шатун и стенки цилиндра.

Двухтактный двигатель с впрыском масла впрыскивает масло непосредственно в двигатель, где оно смешивается с топливом. В двухтактном двигателе с премиксом масло-топливо смешивается перед заливкой в ​​топливный бак.

Посмотрите видео, чтобы лучше понять работу системы смазки двигателя:

Вот и все для этой статьи «Система смазки двигателя». Я надеюсь, что знания достигнуты, если да, пожалуйста, прокомментируйте, поделитесь и порекомендуйте этот сайт другим студентам технических специальностей. Спасибо!

Система смазки двигателя подводной лодки | Блог Turbomachinery

Даже в нынешнюю эпоху подводной ядерной энергетики большинство подводных лодок в мире по-прежнему используют дизельные двигатели в качестве основного источника механической энергии, как и с начала века. Дизельный двигатель должен работать с оптимальной производительностью, чтобы обеспечить долгий и надежный срок службы компонентов двигателя и достичь максимальной эффективности. Для работы или поддержания оптимальной работы дизельного двигателя требуется правильная смазка. Двигатель General Motors типа V16-278A обычно используется на подводных лодках флота и показан на рисунке 1. Этот двигатель имеет два ряда по 8 цилиндров, каждый из которых расположен в V-образной конструкции с углом между рядами 40 градусов. Он имеет мощность 1600 л.с. при 750 об/мин, оснащен механическим или твердотопливным впрыском и имеет унифицированную систему клапанов и портов продувки [ 1 ] .

Рис. 1. GM V16-278A, дизельный двигатель подводной лодки. ИСТОЧНИК: [ 1 ]

Отказ системы смазки является наиболее дорогостоящей и частой причиной повреждений, за которой следуют неправильное техническое обслуживание и плохое управление подачей топлива. Неправильное управление смазочным маслом в сочетании с загрязнением абразивными частицами вызывает большую часть повреждений. Поэтому эффективная система смазки необходима для сведения к минимуму риска повреждения двигателя.

Целью эффективной системы смазки дизельного двигателя подводной лодки является:

  1. Предотвращение контакта металла с металлом между движущимися частями двигателя;
  2. Способствует охлаждению двигателя за счет отвода тепла, выделяемого при трении;
  3. Образовать уплотнение между поршневыми кольцами и стенками цилиндра; и
  4. Помогает содержать внутреннюю часть двигателя в чистоте от любого мусора или загрязнений, которые попадают во время работы двигателя.

Все эти требования должны быть выполнены для эффективной системы смазки. Для этого необходимое количество смазочного масла с соответствующим давлением должно циркулировать по всей системе, включая каждый компонент, такой как подшипники, шестерни, охлаждение поршня и смазка. Если требуемое количество потока не поступает или не циркулирует должным образом к каждому углу системы или вращающимся компонентам, то из-за неблагоприятного давления возникнет кавитация, и из-за меньшего массового расхода будет генерироваться избыточное тепло. Это приведет к серьезному повреждению компонентов двигателя и сокращению срока службы.

Чтобы избежать таких проблем, проектировщики должны тщательно продумать моделирование системы смазки двигателя, чтобы обеспечить долгий и надежный срок службы различных компонентов без дополнительного ненужного расхода масла. Этот тип системы смазки двигателя может быть смоделирован очень точно и проанализирован с помощью одномерного инструмента анализа сети теплоносителя, такого как AxSTREAM NET™, разработанный SoftInWay.

Используя AxSTREAM NET™, проектировщики могут оценить необходимое количество расхода масла, необходимого для всей системы смазки, включая подшипники, шестерни, охлаждение поршней и т. д. Кроме того, проектировщики могут оценить уровни давления, температуры и тепловые потоки в системе. путем моделирования тепложидкостной сети системы смазки дизельного двигателя подводной лодки с использованием AxSTREAM NET™. Пример одной из таких конфигураций системы смазки 16-цилиндрового дизельного двигателя подводной лодки, смоделированной в AxSTREAM NET™, показан на рисунках 2 и 3.

Рис. 2. Система смазки дизельного двигателя (внутреннего двигателя), смоделированная в AxSTREAM NET™

. Во внутренней системе смазки двигателя масло подается к подшипникам, стенке цилиндра и шестерням, как показано на рис. 2. Эта система состоит из подшипников, компоненты шестерни, поршни, цилиндр и распределительный вал. Как показано на рис. 2, масло подается через впускное отверстие двигателя для смазочного масла, отмеченное красным (1), и течет через главный коллектор смазочного масла (2) для питания всех ступеней двигателя. Смазка поступает (3 и 4) к двум маслораспределительным блокам (5 и 6). Затем масло смазывает шестерни (7-10) и подшипники (11-15). Наконец, масло падает под действием силы тяжести после прохождения всей системы и вытекает в отстойник. В AxSTREAM NET™ для моделирования подшипников можно использовать различные элементы, включая определение расхода масла для обеспечения желаемого охлаждения системы.

Рис. 3. Система подачи моторного масла, смоделированная в AxSTREAM NET™

Система подачи моторного масла обеспечивает нагнетание, очистку и охлаждение масла (рис. 3). Эта система состоит из отстойника, насоса, сетчатого фильтра и охладителя. Маслосборник (1) собирает масло при атмосферном давлении после смазки двигателя, насос (2) откачивает масло из маслосборника и впрыскивает его в двигатель. Масло очищается в сетчатом фильтре (3) и охлаждается в охладителе (4), так как система закрыта. Клапаны предотвращают избыточное давление в системе подачи.

Преимущество моделирования сети смазочных трубопроводов в AxSTREAM NET™ заключается в том, что с его помощью можно определить потери давления в системе и, следовательно, определить необходимое повышение давления в насосе. Решатель также прогнозирует гидравлические потери, которые зависят от геометрии и размеров системы, таких как прямые трубы, колена, подшипники, клапан, различное сопротивление потоку и т. д. Разработчики также могут указать характеристики оборудования (включая насос) и выполнить расчет в зависимости от условия потока (карта производительности насоса). Таким образом, в AxSTREAM NET™ можно точно моделировать различные типы элементов потока и теплопередачи для системы смазки дизельного двигателя подводной лодки в достаточно сложных одномерных формах, позволяя пользователям создавать собственные компоненты, свойства и уравнения, чтобы лучше соответствовать их потребностям. Кроме того, можно исследовать различные типы масел для изучения потенциала смазки и охлаждения всей системы.

Для проектирования или анализа насосов, подобных насосу, показанному на рис. 3 в системе подачи моторного масла, SoftInWay предлагает полный инструмент для проектирования и анализа турбомашин под названием AxSTREAM®, который может создавать оптимизированные конструкции с меньшими затратами времени и усилий, исходя из спецификаций. Используя этот инструмент, дизайнеры могут создавать тысячи дизайнов с нуля с минимальными доступными данными. Гибкость этого программного обеспечения позволяет человеку, обладающему базовыми знаниями в области проектирования насосов и использующему инструменты проектирования, выполнять сложные задачи по проектированию и анализу насосов. Пример центробежного насоса, разработанного с использованием AxSTREAM®, показан на рис. 4.

Рис. 4. Центробежный насос, разработанный с использованием AxSTREAM®

Хотите узнать, как SoftInWay может помочь вам в моделировании или улучшении системы смазки вашего двигателя? или/ спроектировать или проанализировать насос с помощью платформы AxSTREAM? Свяжитесь с нами по адресу [email protected], чтобы запланировать демонстрацию или запросить пробную версию здесь

Ссылки:

  1. https://maritime.org/doc/fleetsub/diesel/chap1.htm
  2. https://maritime .org/doc/fleetsub/diesel/chap7.htm

 

Объяснение системы смазки главного двигателя корабля

Смазка необходима для любого оборудования на борту корабля. Смазка главного двигателя отвечает за смазку и охлаждение внутренних частей, которые взаимодействуют друг с другом, создавая трение и тепло, что приводит к перегреву деталей. Смазка обеспечивает не только охлаждение, но и удаление любого мусора или загрязнений.

Типы систем смазки

Существует несколько основных типов используемых систем смазки:

  • Гидродинамическая смазка: В этом типе смазки масло образует непрерывную масляную пленку достаточной толщины между движущимися поверхностями. Пленка образуется за счет движения движущихся частей и самопроизвольно создаваемого давления. Например, опорные подшипники главного двигателя имеют гидродинамическую смазку. Между коренным подшипником и шейкой коленчатого вала образуется пленка с помощью клина, образованного вращающимся валом. Упорные подшипники с наклонной конструкцией вкладыша также имеют этот тип смазки, поскольку они образуют сужающийся клин для получения гидродинамической смазки.
  • Гидростатическая смазка: Если масляная пленка не может образовываться из-за движения движущихся частей, давление масла должно подаваться извне. Такой тип смазки известен как гидростатическая смазка. Для медленно движущихся тяжелых деталей их относительного движения недостаточно, чтобы обеспечить самопроизвольное давление для смазки, поэтому давление создается извне с помощью насоса. Например, во многих конструкциях подшипников крейцкопфа требуется дополнительный смазочный насос крейцкопфа для повышения давления для смазки подшипника крейцкопфа, поскольку давление не может создаваться самостоятельно.
  • Граничная смазка: В этом типе имеется тонкая пленка между двумя трущимися поверхностями, которые могут иметь поверхностный контакт. Граничная смазка используется из-за относительно низких скоростей, высокого контактного давления и шероховатых поверхностей. Например, граничная смазка в главных двигателях возникает при пуске и останове из-за вышеперечисленных условий.
  • Эластогидродинамическая смазка: В этом типе смазки толщина смазочной пленки значительно изменяется при упругой деформации поверхностей. Это видно по линии или в точке контакта между поверхностями качения или скольжения, например, подшипниками качения и зацепляющимися зубьями шестерни 9.06:50 . Происходит упругая деформация металла и воздействие высокого давления на смазку.

Прочтите по теме:  Способы контроля состояния подшипников и уменьшения поломки подшипников в современных судовых двигателях

Главный двигатель имеет три отдельные системы смазки:

  • Основная система смазки.
  • Система цилиндрового масла.
  • Масляная система турбонагнетателя

Основной двигатель: главный подшипник, зубчатая передача и система охлаждения поршня Масляная система

Основная или картерная система смазки снабжается одним из двух насосов, один из которых будет работать, а другой находится в резерве, настроенным на автоматическое включение в случае снижения давления смазочного масла или выхода из строя основного насоса. Основные насосы LO всасывают из отстойника основного двигателя и нагнетают масло через основной охладитель LO, который отводит тепло. Блок фильтров с автоматической обратной промывкой с магнитным сердечником помогает удалить любой металлический мусор. Пластинчатый охладитель LO охлаждается от низкотемпературной системы центрального охлаждения с пресной водой.

Давление подачи в главную систему смазки зависит от конструкции и требований и обычно составляет около 4,5 кг/см2. Подача LO к охладителю осуществляется через трехходовой клапан, который позволяет некоторому количеству масла обходить охладитель. Трехходовой клапан поддерживает температуру 45°C на входе смазочного масла в двигатель. Основная система LO подает масло к коренным подшипникам, распределительному валу и приводу распределительного вала.

Связанное чтение:   8 способов оптимизации использования смазочного масла на судах  

Ветвь смазочного масла поступает к шарнирному рычагу или телескопической трубе к крейцкопфу, откуда выполняет три функции

1) часть масла проходит вверх по штоку поршня для охлаждения поршня, а затем спускается вниз,

2) некоторое количество масла смазывает подшипник крейцкопфа и направляющие башмаков

3) оставшееся масло проходит через отверстие, просверленное в штоке, соединяющемся с нижним концевым подшипником. Ветвь смазочного масла подводится к гидроагрегату привода выпускных клапанов, к упорным подшипникам, к компенсатору моментов и гасителю крутильных колебаний. Важен охлаждающий эффект масла на гасителях колебаний.

Работа системы смазки главного двигателя

  Предполагается, что двигатель остановлен, но готовится к запуску.

a) Проверьте уровень масла в отстойнике основного двигателя и при необходимости долейте

b) Убедитесь, что низкотемпературная центральная система охлаждения работает и свежая вода циркулирует через основной охладитель LO

c) Убедитесь, что все давление манометрические и контрольно-измерительные клапаны открыты и что приборы показывают правильные показания

d) Убедитесь, что паровой нагрев применяется к основному отстойнику LO, если температура LO низкая

e) Установите линию и убедитесь, что все правые клапаны открыты. Обычно предполагается, что смазочные клапаны основного двигателя оставлены открытыми

f) Выберите один главный насос LO в качестве главного (рабочего) насоса, а другой – в качестве резервного насоса

Примечание. Основные насосы LO имеют большие двигатели и обычно устанавливаются для автотрансформаторного пуска; после пуска автотрансформатору необходимо дать остыть в течение 20 минут, прежде чем предпринимать новую попытку пуска. Повторный запуск запрещен в течение 20 минут между запусками.

g) Поддерживайте циркуляцию в системе LO и дайте температуре системы постепенно повыситься до нормальной рабочей температуры

h) Проверьте потоки на выходе из отдельных блоков. Убедитесь, что температуры одинаковы и что все манометры показывают правильные значения

i) Когда температура и давление в системе смазки стабильны, двигатель можно запускать. Основная система смазки двигателя пополняется из основного бака хранения LO

См. также:  10 Чрезвычайно важные проверки перед запуском судовых двигателей

Очиститель LO главного двигателя всасывает из поддона LO главного двигателя и очищает масло. Температура подачи поддерживается на уровне около 90 градусов Цельсия (поскольку при этой температуре достигается максимальная разница в плотности), что обеспечивает эффективное разделение. LO двигателя необходимо часто проверять, чтобы определить, пригоден ли он для дальнейшей эксплуатации. Пробы следует брать из циркулирующего масла, а не непосредственно из отстойника.

Система смазки основного двигателя также имеет подсистему (зависит от того, является ли основной двигатель бескулачковым или имеет распределительный вал). В бескулачковых двигателях ответвление от входа смазочного масла к основному двигателю предусмотрено к гидроагрегату. Функция HPS заключается в гидравлическом управлении исполнительными механизмами впрыска топлива и выпускного клапана, а также в управлении блоками смазки цилиндров. В основном двигателе с распределительным валом система смазки питает роликовые направляющие и подшипники распределительного вала, которые приводят в действие выпускные клапаны и топливный насос.

Связанные материалы:  Конструкция и работа морского топливного насоса

Отстойник смазочного масла главного двигателя: Он расположен под двигателем в двойном дне и окружен коффердамами. Предусмотрена измерительная трубка для определения уровня смазочного масла в поддоне, а также измерительная трубка для коффердама, позволяющая определить наличие утечки. Коффердам необходимо регулярно осматривать, чтобы знать о любых признаках утечек. Масляный картер главного двигателя состоит из указателя уровня, измерительной трубы, воздухоотводной трубы, нагревательного парового змеевика, люков, всасывающей трубы и клапанов для насоса LO и очистителей LO.

Система смазки турбокомпрессора

Система смазки подшипников турбокомпрессора может быть полностью отделена от системы смазки основного двигателя или может подаваться через систему смазки основного двигателя, в зависимости от конструкции. Необходимо иметь отдельный фильтр для смазки ТП, который обычно представляет собой сдвоенный фильтр. Из выпускного отверстия дуплексного фильтра LO турбонагнетателя поступает во впускной коллектор, питающий турбонагнетатели. На выходе LO из турбонагнетателей есть смотровое стекло, чтобы убедиться, что поток непрерывен. В нормальных условиях на турбонагнетатели всегда подается питание LO, чтобы обеспечить их постоянную готовность для обслуживания и предотвратить повреждение. Подача A-LO должна поддерживаться при остановленном двигателе, так как естественная тяга через турбонагнетатель заставит ротор вращаться. Следовательно, подшипники должны быть смазаны.

Прочтите по теме:  Общие сведения о подшипниках турбокомпрессора и смазке на судах

Система смазки цилиндров

Смазка цилиндров в зависимости от нагрузки осуществляется отдельной системой смазки цилиндров. Смазка цилиндра необходима для смазывания поршневых колец с целью уменьшения трения между кольцами и гильзой, обеспечения уплотнения между кольцами и гильзой и уменьшения коррозионного износа за счет нейтрализации кислотности продуктов сгорания. Щелочность масла для смазки цилиндров должна соответствовать содержанию серы в дизельном топливе, подаваемом в двигатель. Если двигатель будет работать на дизельном топливе с низким содержанием серы в течение длительного времени, необходимо проконсультироваться с поставщиком цилиндрового масла и изготовителем двигателя относительно наиболее подходящего цилиндрового масла.

Прочтите по теме:  Важные свойства смазочного масла, которые необходимо учитывать при выборе судового смазочного масла для вашего судна  

Способность масла вступать в реакцию с кислотным реагентом, что указывает на щелочность, выражается как общее щелочное число. Это означает общее базовое число. Он должен соответствовать процентному содержанию серы в мазуте, чтобы нейтрализовать кислотный эффект сгорания. Если для главных двигателей используется дизельное топливо с высоким содержанием серы, необходимо использовать цилиндровое масло с высоким щелочным числом. Когда главный двигатель «переводится» на топливо с низким содержанием серы (LSFO) или морской газойль с низким содержанием серы (LSMGO), необходимо использовать цилиндровое масло с низким TBN.

В современных системах смазки используются две важные системы:

1) Система аккумулирования и иглы (двигатели Sulzer) и

2) Смазочные агрегаты цилиндра, подающие к отверстиям в гильзе (MAN B&W).

Смазочное масло для цилиндров перекачивается из резервуара для хранения цилиндрового масла в измерительный резервуар для цилиндрового масла, в котором должно быть достаточно LO для двухдневного расхода смазочного масла для цилиндров. Масло для смазки цилиндров подается в систему смазки цилиндров самотеком из мерной емкости; нагреватель расположен в самотечной линии и трубе, трубы электрически «обогреваются», т.е. внешняя поверхность трубы поддерживается при определенной температуре. Нагреватель и электронагрев поддерживают температуру 45°C в смазочном узле.

Перед запуском ГД необходимо предварительно смазать вкладыши. Предварительная смазка перед стартом может производиться вручную или последовательно в системе маневрирования мостика.

Контроль определяется следующими критериями:

  • Дозировка цилиндрового масла должна быть пропорциональна содержанию серы в топливе
  • Дозировка масла в цилиндре должна быть пропорциональна нагрузке двигателя, т. е. подаче топлива в цилиндр

Количество цилиндрового масла, впрыскиваемого в отдельные точки впрыска, контролируется системой управления смазкой цилиндра. Инжектор LO каждого цилиндра (пиноль) фактически представляет собой обратный клапан, который открывается маслом под давлением, направляемым на него системой управления лубрикатором. Скорость подачи цилиндрового масла можно регулировать, но регулировку должен производить только уполномоченный персонал.

Правильная смазка цилиндра необходима для эффективной работы двигателя, минимизации затрат на смазочное масло и оптимизации затрат на техническое обслуживание. Важно, чтобы маслораспылители цилиндров были правильно настроены и чтобы для сжигаемого топлива использовалось правильное масло для смазки цилиндров. Запрещается производить регулировку системы смазки цилиндров двигателя без разрешения главного механика.

Мерный бак цилиндрового масла пополняется из резервуара для хранения цилиндрового масла с помощью насоса переключения цилиндрового масла. На случай выхода из строя насоса переключения цилиндрового масла с электроприводом предусмотрен насос с ручным приводом. Насос переключения цилиндрового масла с электроприводом запускается вручную, но переключатель высокого уровня в измерительном резервуаре цилиндрового масла останавливает насос, когда уровень в резервуаре достигает высокого значения. Резервуар оборудован сигнализацией низкого уровня.

Также установлен отдельный бак для хранения цилиндрового масла для использования с тяжелым топливом с низким содержанием серы, и цилиндровое масло из этого бака должно использоваться при переводе основного двигателя на работу с LSHFO. Мерный бак цилиндрового масла имеет систему перелива через смотровое стекло; переливная линия имеет трехходовой клапан, который должен быть настроен для направления переливного масла в любой работающий резервуар для хранения цилиндрового масла.

Связанное чтение:  Руководство по морскому газойлю и LSFO, используемым на судах

Набивка штока поршня и дренажная система продувочного пространства

Сальник штока поршня или сальник обеспечивает уплотнение штока поршня, когда он проходит через разделительную пластину между картером и продувочным воздушным пространством. Сальник имеет два комплекта сегментных колец, контактирующих со штоком поршня; верхний набор колец очищает картерное масло от штока поршня, а нижний набор колец предотвращает попадание масляных отложений в картер картера. В середине сальниковой коробки имеется «мертвое пространство», которое обычно должно быть сухим, если кольца работают эффективно. Любая нефть или мусор из трюмного пространства, попадающие в это пространство, сливаются непосредственно в замасленный трюмный сливной танк.

Отказ от ответственности:  Мнения авторов, выраженные в этой статье, не обязательно отражают взгляды Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания Marine Insight не претендуют на точность и не несут за это никакой ответственности. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих указаний или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

Как работает система смазки двигателя? Узнайте здесь

Когда две металлические поверхности при прямом контакте движутся друг над другом, они создают трение, которое выделяет тепло. Это вызывает чрезмерный износ движущихся частей. Однако, когда пленка смазочного вещества отделяет их друг от друга, они не вступают в физический контакт друг с другом. Таким образом, смазка — это процесс, который разъединяет движущиеся части за счет подачи между ними потока смазочного вещества. Смазка может быть жидкой, газообразной или твердой. Однако в системе смазки двигателя в основном используются жидкие смазочные материалы.

Система смазки двигателя:

  1. Сводит к минимуму потери мощности за счет уменьшения трения между движущимися частями.
  2. Снижает износ движущихся частей.
  3. Обеспечивает охлаждение горячих частей двигателя.
  4. Обеспечивает амортизацию вибраций, вызванных двигателем.
  5. Выполняет внутреннюю очистку двигателя.
  6. Помогает герметизировать поршневые кольца от газов под высоким давлением в цилиндре.

Система смазки двигателя подает моторное масло к следующим деталям:

  1. Коренные подшипники коленчатого вала
  2. Подшипники шатуна
  3. Поршневые пальцы и малые концевые втулки
  4. Стенки цилиндра
  5. Поршневые кольца
  6. Зубчатые передачи
  7. Распределительный вал и подшипники
  8. Клапаны
  9. Толкатели и толкатели
  10. Детали масляного насоса
  11. Подшипники водяного насоса
  12. Подшипники рядного топливного насоса высокого давления
  13. Подшипники турбонагнетателя (если установлены)
  14. Подшипники вакуумного насоса (если установлены)
  15. Поршень и подшипники воздушного компрессора (в грузовых автомобилях для пневматических тормозов)

Типы систем смазки двигателя:

В основном в автомобильных двигателях используются четыре типа систем смазки:

  1. Бензиновая система
  2. Система брызг
  3. Система давления
  4. Система с сухим картером

Компоненты системы смазки двигателя:

  1. Масляный картер
  2. Масляный фильтр двигателя
  3. Форсунки охлаждения поршней
  4. Масляный насос
  5. Нефтяные галереи
  6. Масляный радиатор
  7. Индикатор/лампа давления масла

Масляный поддон/отстойник:

Масляный поддон/отстойник — это просто резервуар в форме чаши. Он хранит моторное масло, а затем циркулирует в двигателе. Масляный поддон находится под картером и хранит моторное масло, когда двигатель не работает. Он расположен в нижней части двигателя для сбора и хранения моторного масла. Масло возвращается в поддон под давлением/самотеком, когда двигатель не используется.

Плохие дорожные условия могут привести к повреждению масляного поддона/отстойника. Таким образом, производители предусматривают защиту от камней / защиту отстойника под отстойником. Защита картера поглощает удары от неровностей дороги и защищает картер от любых повреждений.

Масляный насос:

Масляный насос — это устройство, которое помогает циркулировать смазочному маслу ко всем движущимся частям внутри двигателя. К таким деталям относятся подшипники коленчатого и распределительного валов, а также толкатели клапанов. Обычно он расположен в нижней части картера, рядом с масляным картером. Масляный насос подает масло к масляному фильтру, который фильтрует и направляет его дальше. Затем масло достигает различных движущихся частей двигателя через масляные каналы.

Даже мелкие частицы могут засорить масляный насос и галереи. Если масляный насос заблокируется, это может привести к серьезному повреждению двигателя или даже полному заклиниванию двигателя. Чтобы этого избежать, масляный насос состоит из сетчатого фильтра и перепускного клапана. Следовательно, необходимо регулярно менять моторное масло и фильтр в соответствии с рекомендациями производителей.

Масляные галереи:

Для повышения производительности и увеличения срока службы двигателя важно, чтобы моторное масло быстро достигало движущихся частей двигателя. Для этого производители предусматривают масляные галереи внутри двигателя. Масляные каналы представляют собой не что иное, как серию взаимосвязанных каналов, по которым масло поступает в самые отдаленные части двигателя.

Система смазки двигателя: масляные каналы

Масляные каналы состоят из больших и малых каналов, просверленных внутри блока цилиндров. Большие каналы соединяются с меньшими каналами и подают моторное масло к головке блока цилиндров и верхним распределительным валам. Масляные каналы также подают масло к коленчатому валу, подшипникам коленчатого вала и подшипникам распределительного вала через просверленные в них отверстия, а также к толкателям/толкателям клапанов.

Масляный радиатор:

Масляный радиатор — это устройство, которое работает как радиатор. Он охлаждает моторное масло, которое становится очень горячим. Масляный радиатор передает тепло от моторного масла к охлаждающей жидкости двигателя через свои ребра. Первоначально производители использовали масляный радиатор только в гоночных автомобилях. Однако сегодня большинство автомобилей используют систему масляного радиатора для повышения производительности двигателя.

Система смазки двигателя: Масляный радиатор

Масляный радиатор, который помогает поддерживать температуру моторного масла, а также контролирует его вязкость. Кроме того, сохраняет качество смазки, предотвращает перегрев двигателя и тем самым спасает его от износа.