Схема включения асинхронного двигателя с короткозамкнутым ротором с нереверсивным включением презентация, доклад

Слайд 1
Текст слайда:


Министерство образования и науки Республики Казахстан
КГУ «Глубоковский технический колледж» УО ВКО
   
 
ТЕМА ЭКЗАМЕНАЦИОННОЙ РАБОТЫ:

«Схема включения асинхронного двигателя с короткозамкнутым ротором с нереверсивным включением»
 
Студент 3 курса, группа 3ЭМ
Пятов Иван Юрьевич
Специальность 1115000 «Электромеханическое
оборудование в промышленности»

Квалификация 1115042 «Электромонтер по ремонту
и обслуживанию электрооборудования»


Слайд 2
Текст слайда:

ВВЕДЕНИЕ
В настоящее время перед электромонтерами стоят трудные и интересные проблемы, которые требуют глубокого знания теории, проектирования и технологии и электрических двигателей и аппаратов.

Целью письменной экзаменационной работы является сборка схемы включения асинхронного двигателя с короткозамкнутым ротором с нереверсивным включением.


Слайд 3
Текст слайда:

Схема включения асинхронного двигателя с короткозамкнутым ротором с нереверсивным включением на 380 В


Слайд 4
Текст слайда:

Схема подключения магнитного пускателя ПМА


Слайд 5
Текст слайда:

Основные характеристики асинхронного двигателя АИР 80 В4
 
Рном, кВт — 1,5
cos φ — 0,83
Sном, % — 7
Мп /Мном — 2,2
Мmax/Мном — 2,2
Iп/Iном — 5,5
Масса, кг — 12,1


Слайд 6
Текст слайда:

Устройство асинхронного двигателя


Слайд 7
Текст слайда:

Основные неисправности и способы их устранения


Слайд 8
Текст слайда:

Техника безопасности при обслуживании и ремонте асинхронного электродвигателя

При проведении планово-предупредительных работ, технического обслуживания, текущих и капитальных ремонтов электрических машин специалисту необходимо соблюдать технику безопасности при эксплуатации.
И в свою очередь должен знать следующее:
1. Выводы обмоток и кабельные воронки у электродвигателей должны быть закрыты ограждениями, снятие которых требует отвёртывания гаек или вывинчивания винтов. Снимать эти ограждения во время работы электродвигателя запрещается. Вращающиеся части электродвигателей: контактные кольца, шкивы, муфты, вентиляторы — должны быть ограждены.
2. Открывать ящики пусковых устройств электродвигателей, установленных в цехе, когда устройство находится под напряжением, разрешается для наружного осмотра лицам, имеющим квалификационную группу не ниже 4-ой.
3. Операции по включению и выключению электродвигателей пусковой аппаратурой с приводами ручного управления должны производиться с применением диэлектрических перчаток или изолирующего основания (подставки).
4. Включение и отключение выключателей электродвигателей производится дежурным у агрегатов единолично.
5. У работающего синхронного электродвигателя неиспользуемая обмотка и питающий его кабель должны рассматриваться как находящиеся под напряжением.
6. Работа в цепи пускового реостата работающего электродвигателя допускается лишь при поднятых щетках и замкнутом накоротко роторе.
Работа в цепях регулировочного реостата работающего электродвигателя должна рассматриваться как работа под напряжением в цепях до 1000В и производиться с соблюдением мер предосторожности.
Шлифование колец ротора допускается проводить на вращающемся электродвигателе лишь при помощи колодок из изоляционного материала.
7. Перед началом работы на электродвигателях, приводящих в движение насосы или тягодутьевые механизмы, должны быть приняты меры, препятствующие вращению электродвигателя со стороны механизма (насос может работать как турбина, дымосос может начать вращаться в обратную сторону за счёт засоса холодного воздуха через трубу и т. д.). Такими мерами являются закрытие соответствующих вентилей или шиберов, их заклинивание или перевязка цепью с запиранием на замок (или снятием штурвала) и вывешиванием плакатов «Не открывать — работают люди» или расцеплением муфт.
8. При отсоединении от синхронного электродвигателя питающего кабеля концы всех трёх фаз кабеля должны быть замкнуты на коротко и заземлены.
Заземление концов кабеля должно производиться посредством специально приспособленного для этой цели переносного заземления, выполненного в соответствии с общими требованиями. 


Слайд 9
Текст слайда:

ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ.
Рабочим местом называется определенный участок производственной площади цеха, мастерской, закрепленный за данным рабочим, предназначенный для выполнения определенной работы и оснащенный в соответствии с характером этой работы оборудованием, приспособлениями, инструментами и материалами.


Слайд 10
Текст слайда:

Электробезопасностью в соответствии с ГОСТ 12.1.009 называется система организационных и технических мероприятий и средств, обеспечивающих защиту людей от опасного и вредного воздействия на человека электрического тока, электрической дуги, электромагнитного поля и статического электричества


Слайд 11
Текст слайда:

Технические и организационные мероприятия, обеспечивающие безопасность персонала

Организационные мероприятия:

— оформление работ нарядом или распоряжением, перечнем работ выполняемых в порядке текущей эксплуатации;
— допуск к работе;
— надзор во время работы;
— оформление перерыва в работе, перевода на другое место, окончания работы.

Технические мероприятия:

— производство необходимых отключений коммутационных аппаратов и принятие мер, препятствующих подаче напряжения на место работы вследствие самопроизвольного их включения;
-вывешивание запрещающих плакатов;
-проверка отсутствия напряжения на токоведущих частях;
-наложение заземлений;
-вывешивание указательных плакатов.


Слайд 12
Текст слайда:

Средства защиты

Служат для защиты людей от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля. Средства защиты подразделяются на основные и дополнительные.

Основными называют такие защитные средства, изоляция которых надежно выдерживает рабочее напряжения установки.

Дополнительные защитные средства усиливают действие основного защитного средства


Слайд 13
Текст слайда:

Защитные средства, применяемые при обслуживании электроустановок


Слайд 14
Текст слайда:

Инструменты


Слайд 15
Текст слайда:

Основные причины возникновения пожаров в электроустановках

короткие замыкания в электропроводках и электрическом оборудовании;

воспламенение горючих материалов, находящихся в непосредственной близости от электроприемников, включенных на продолжительное время и оставленных без присмотра;

токовые перегрузки электропроводок и электрооборудования;

большие переходные сопротивления в местах контактных соединений;

появление напряжения на строительных конструкциях и технологическом оборудовании;

разрыв колб электроламп и попадание раскаленных частиц нити накаливания на легкогорючие материалы и др.

ПОЖАРОБЕЗОПАСНОСТЬ


Слайд 16
Текст слайда:

Работая с электрическим током сопровождается большой опасностью для жизни и здоровья человека, поэтому всегда важно помнить о пожаробезопасности и электробезопасности.

Углекислотный
огнетушитель

Кварцевый песок

!


Скачать презентацию

Схемы подключения многоскоростного трехфазного электродвигателя

Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором


Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором 

Треугольник(или звезда)\\ двойная звезда —— Д/YY.


Низшая скорость — Д(треугольник(или звезда Y ): 750 об/мин





2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение. 

Высшая скорость — YY. 1500 об мин.

1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W подается напряжение

Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1 : 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток показана на рисунке.

Средняя скорость. 1000 об мин. 

Обмотка на 1000 об мин подключается независимо от остальных своим пускателем, не участвующим в схеме Даландера.

Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения для схемы Даландера.

Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть: 

Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.

Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.

Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.

Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.

Предохранитель F5, для защиты цепей контроля.

Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.

Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой: 

а) запуск и остановка на маленькой скорости (PV).

Запуск путем нажатия на S1.

Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.

Автопитание через (К1, 13–14).

Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.

Остановка путем нажатия на S0.

б) запуск и остановка на большой скорости (GV).

Запуск путем нажатия на S2.

Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.

Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.

Автопитание через (К2, 13–14).

Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.

Остановка путем нажатия на S0.

Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.


Защита двигателя для различных типов синхронных и асинхронных двигателей.

Реле защиты (Продукты защиты и управления для распределения электроэнергии)

Защита двигателя используется для предотвращения повреждения электродвигателя, например, внутренних неисправностей двигателя. Также необходимо обнаруживать внешние условия при подключении к электросети или во время использования и предотвращать ненормальные условия. Кроме того, реле защиты предотвращает распространение возмущения обратно в сеть.

Схемы защиты двигателя имеют несколько функций защиты, которые необходимо учитывать:

  • Номинальная мощность двигателя и тип
  • Характеристики питания, такие как напряжение, фазы, метод заземления и доступный ток короткого замыкания
  • Вибрация, крутящий момент и другие механические ограничения
  • Характер процесса
  • Окружающая среда двигателя, соответствующее коммутационное устройство
  • Допустимое время блокировки ротора в горячем и холодном состоянии и допустимое время разгона
  • Кривая зависимости времени от тока при запуске двигателя
  • Частота запуска

Реле защиты обеспечивают основную защиту синхронных и асинхронных двигателей. Их можно использовать для двигателей с автоматическим выключателем и контактором в различных приводных устройствах, таких как приводы для насосов, вентиляторов, компрессоров, мельниц и дробилок.

Область применения

  • Защита и управление двигателем для различных приводов

Преимущества продукта

  • Предотвращение повреждения электродвигателей
  • Предотвращает распространение помех обратно в сеть

Характеристики продукта

  • Стандартная конфигурация для конкретного применения, позволяющая сократить время настройки и ввода реле в эксплуатацию
  • Предварительно сконфигурированные решения для распределительных сетей и промышленного применения

Наше предложение

Показано предложение для:
AlgeriaAngolaArgentinaArmeniaAustraliaAustriaAzerbaijanBahrainBangladeshBelgiumBoliviaBosnia-HerzegovinaBrazilBulgariaCanadaChileChinaColombiaCroatiaCzech RepublicDenmarkEcuadorEgyptEstoniaEthiopiaFinlandFranceGeorgiaGermanyGreeceGuatemalaHungaryIcelandIndiaIndonesiaIraqIrelandIsraelItalyJapanJordanKazakhstanKenyaKuwaitKyrgyzstanLatviaLebanonLibyaLiechtensteinLithuaniaLuxembourgMacedoniaMalaysiaMauritiusMexicoMontenegroMoroccoNetherlandsNew ZealandNigeriaNorwayOmanPakistanPalestinePanamaPeruPhilippinesPolandPortugalQatarRomaniaRussiaSaudi ArabiaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSri LankaSwedenSwitzerlandTaiwanTajikistanTanzaniaThailandTunisiaTurkiyeTurkmenistanUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States of AmericaUruguayUzbekistanVenezuelaVietnamOther countries

Загрузка документов

Сопутствующее предложение

Услуги релейной защиты

Пускатели управления промышленными двигателями | Магнитный пускатель двигателя

Знакомство с пускателями двигателей

Пускатели двигателей являются одним из основных изобретений для управления двигателями. Как следует из названия, стартер — это электрическое устройство, которое регулирует электрическую мощность для запуска двигателя. Эти электрические устройства также используются для остановки, реверсирования и защиты электродвигателей. Ниже приведены два основных компонента стартера:

  1. Контактор: Основной функцией контактора является управление подачей электрического тока на двигатель. Контактор может включить или отключить питание в цепи.
  2. Реле перегрузки: Перегрев и потребление слишком большого тока могут привести к тому, что двигатель сгорит и станет практически бесполезным. Реле перегрузки предотвращают это и защищают двигатель от любой потенциальной опасности.

Пускатель представляет собой сборку этих двух компонентов, которая позволяет включать и выключать электродвигатель или электрическое оборудование, управляемое двигателем. Стартер также обеспечивает необходимую защиту цепи от перегрузки.

Типы пускателей двигателей

Существует несколько типов пускателей двигателей. Однако двумя основными типами этих электрических устройств являются:

Ручные пускатели

Ручные пускатели — это устройства, которые приводятся в действие вручную. Эти стартеры чрезвычайно просты и просты в эксплуатации и не требуют вмешательства специалиста. На пускателе есть кнопка (или поворотная ручка), которая позволяет пользователю включать и выключать подключенное оборудование. Кнопки имеют механические связи, которые размыкают или замыкают контакты, запуская или останавливая двигатель. Следующие особенности ручного стартера делают его предпочтительным по сравнению с другими типами:

  • Эти стартеры обеспечивают безопасную и экономичную работу.
  • Компактный размер этих устройств делает их пригодными для широкого спектра применений.
  • Обеспечивают защиту двигателя от перегрузок, защищая его от любого потенциального повреждения.
  • Эти устройства поставляются с широким выбором корпусов.
  • Первоначальная стоимость ручного стартера низкая.

Магнитные пускатели двигателей

Это другой основной тип пускателей двигателей. Он управляется электромагнитным способом. Это означает, что нагрузка двигателя, подключенная к пускателю двигателя, обычно запускается и останавливается при более низком и более безопасном напряжении, чем напряжение двигателя. Как и другие пускатели двигателей, магнитный пускатель также имеет электрический контактор и реле перегрузки для защиты устройства от слишком большого тока или перегрева.

Схема пускателя двигателя и работа

В пускателе двигателя есть две цепи, а именно:

  1. Цепь питания: Цепь питания соединяет линию с двигателем. Он обеспечивает передачу электроэнергии через контакты пускателя, реле перегрузки и далее к двигателю. Ток двигателя проходит через силовые (главные) контакты контактора.
  2. Цепь управления: Это другая цепь пускателя двигателя, которая управляет контактором для его включения или выключения. Главные контакты контактора отвечают за разрешение или прерывание подачи тока на двигатель. Для этого контакты в цепи управления либо размыкаются, либо замыкаются. Цепь управления подает питание на катушку контактора, которая создает электромагнитное поле. Силовые контакты притягиваются этим электромагнитным полем в замкнутое положение. Это замыкает цепь между двигателем и линией. Таким образом, дистанционные операции становятся возможными благодаря схеме управления. Цепь управления может быть подключена двумя способами:
    1. Метод 1: Один из наиболее широко используемых методов подключения цепи управления называется «двухпроводным методом». Тип управляющего устройства с постоянным контактом, такой как датчик присутствия, термостат или поплавковый выключатель, используется в двухпроводном методе подключения цепи управления.
    2. Метод 2: В отличие от двухпроводного метода, «трехпроводной метод» подключения цепи управления использует удерживающий контакт цепи и контрольные устройства с мгновенным контактом.

Цепь управления может получать питание одним из следующих трех способов:

  • Общее управление: Этот тип управления используется, когда источник питания цепи управления такой же, как у двигателя.
  • Раздельное управление: Это самый популярный тип управления. Как следует из названия, в этой схеме схема управления получает питание от отдельного источника. Как правило, полученная мощность имеет более низкое напряжение по сравнению с источником питания двигателя.
  • Управление трансформатором: Как следует из названия, схема управления получает питание от трансформатора схемы управления. Как правило, полученная мощность имеет более низкое напряжение по сравнению с источником питания двигателя.

Типы магнитных пускателей двигателей

В зависимости от того, как они включены в цепь, существует много типов магнитных пускателей двигателей, таких как:

1. Пускатель прямого действия

Онлайн-стартер — простейшая форма пускателя двигателя, кроме ручного пускателя. Контроллер этого пускателя обычно представляет собой простую кнопку (но может быть селекторным переключателем, концевым выключателем, поплавковым выключателем и т. д.). Нажатие кнопки пуска замыкает контактор (путем подачи питания на катушку контактора), подключенный к основному источнику питания и двигателю. Это обеспечивает ток питания двигателя. Для выключения двигателя предусмотрена кнопка остановки. Для защиты от перегрузки по току цепь управления подключается через нормально замкнутый вспомогательный контакт реле перегрузки. При срабатывании реле перегрузки нормально замкнутый вспомогательный контакт размыкается и обесточивает катушку контактора, а главные контакты контактора размыкаются.

Преимущества использования пускателей двигателей прямого пуска:

  • Они имеют компактную конструкцию.
  • Они экономичны.
  • Простая конструкция.

2. Пускатель сопротивления ротора

В пускателе сопротивления ротора три сопротивления соединены последовательно с обмотками ротора. Это помогает значительно снизить ток ротора, а также увеличить крутящий момент двигателя.

Преимущества использования пускателей электродвигателей сопротивления ротора:

  • Они экономичны.
  • У них простой метод контроля скорости.
  • Они обеспечивают низкий пусковой ток, большой пусковой момент и большой пусковой момент.

3. Пускатель сопротивления статора

Пускатель сопротивления статора состоит из трех резисторов, которые соединены последовательно с каждой фазой обмоток статора. На каждом резисторе возникает падение напряжения, поэтому возникает необходимость подавать низкое напряжение на каждую фазу. Эти сопротивления устанавливаются в начальное или максимальное положение на этапе пуска двигателя. Пусковой ток в этом типе пускателя поддерживается на минимальном уровне. Кроме того, необходимо поддерживать пусковой момент двигателя.

Преимущества использования пускателей электродвигателей сопротивления статора:

  • Они подходят для использования в устройствах управления скоростью.
  • Обладают чрезвычайно гибкими пусковыми характеристиками.
  • Обеспечивают плавное ускорение.

4. Автотрансформаторный пускатель

В автотрансформаторном пускателе трансформатор подает определенный процент первичного напряжения на вторичную обмотку трансформатора. Автотрансформатор подключен по схеме звезда. В этом типе пускателя три вторичные катушки трансформатора с ответвлениями подключены к трем фазам двигателя. Это помогает снизить напряжение, подаваемое на клеммы двигателя.

Преимущества использования автотрансформаторных пускателей:

  • Их можно использовать для ручного управления скоростью, но с ограниченными возможностями.
  • Обладают чрезвычайно гибкими пусковыми характеристиками.
  • Имеют высокий выходной крутящий момент.

5.

Пускатель звезда-треугольник

По сравнению с другими типами пускателей, пускатель звезда-треугольник используется в больших масштабах. Как следует из названия, три обмотки соединены по схеме «звезда» в пускателях «звезда-треугольник». Определенное время задается таймером или любой другой схемой контроллера. По истечении этого времени обмотки соединяются треугольником. Фазное напряжение при соединении звездой снижается до 58 %, а общий потребляемый ток составляет 58 % от нормального тока. Это приводит к снижению крутящего момента.

Преимущества использования пускателей двигателей звезда-треугольник:

  • Они идеально подходят для длительного времени разгона.
  • Имеют меньший входной импульсный ток по сравнению с другими пускателями.
  • Имеют более простую конструкцию по сравнению с другими стартерами.

Характеристики пускателей двигателей

Сегодня пускатели двигателей широко используются благодаря перечню их полезных свойств. Ниже приведены некоторые особенности этих очень полезных электрических устройств:

  1. Облегчают запуск и останов двигателя.
  2. Пускатели рассчитаны по мощности (л.с., киловатт) и току (амперы).
  3. Обеспечивают необходимую защиту двигателя от перегрузки.
  4. Электрическое устройство обеспечивает дистанционное управление включением/выключением.
  5. Эти устройства позволяют быстро включать и отключать ток (подключение и толчковый режим).

Основные функции пускателей двигателей

Ниже перечислены основные функции, которые должен выполнять пускатель:

  1. Управление: Функция управления в основном выполняется компонентом контактора пускателя. Он контролирует размыкание и замыкание силовой электрической цепи. Переключение осуществляется главными контактами (полюсами) контактора. На электромагнитную катушку подается напряжение, которое размыкает или замыкает контакты. Эта электромагнитная катушка имеет номинальное управляющее напряжение и может быть напряжением переменного или постоянного тока.
  2. Защита от короткого замыкания: В промышленных применениях нормальный ток нагрузки может достигать тысяч ампер. В случае короткого замыкания ток короткого замыкания может превышать 100 000 ампер. Это может привести к серьезному повреждению оборудования. Защита от короткого замыкания отключает питание и предотвращает возможные повреждения безопасным образом. Защита от короткого замыкания обеспечивается предохранителями или автоматическими выключателями в комбинированном контроллере двигателя.
  3. Защита от перегрузки: Когда двигатель потребляет больше тока, чем он рассчитан, возникает состояние перегрузки. Основной задачей реле перегрузки является обнаружение избыточных токов. При обнаружении перегрузки вспомогательный контакт реле перегрузки размыкает цепь и предотвращает перегорание или перегрев двигателя. Электронные или электромеханические реле перегрузки используются в сочетании с контактором для обеспечения необходимой защиты от перегрузки.
  4. Отключение и прерывание: Во избежание непреднамеренного перезапуска необходимо отключить двигатель от основной цепи питания. Чтобы безопасно выполнять техническое обслуживание двигателя или пускателя, двигатель должен иметь возможность отключаться и быть изолированным от источника питания. Эту функцию выполняет выключатель цепи. Отключение и размыкание обеспечивается разъединителем или автоматическим выключателем в комбинированном контроллере двигателя (или может быть установлен удаленно от пускателя).

Стандарты и характеристики

На номинальные характеристики пускателя двигателя влияет множество факторов, таких как тепловой ток, постоянный ток, напряжение двигателя и мощность.

Тепловой ток зависит от теплопроводности (k), которая является свойством, указывающим на способность материала проводить тепло. Это означает, что тепловой ток прямо пропорционален теплопроводности.

Непрерывный ток, который также обычно называют непрерывным номинальным током, является мерой способности пускателя управления двигателем выдерживать ток в течение непрерывного времени.

Номинальная мощность пускателя двигателя зависит от типа используемого двигателя. Пускатели двигателей постоянного тока имеют рейтинг мощности постоянного тока в лошадиных силах. С другой стороны, пускатели двигателей переменного тока имеют номинальную мощность однофазной и трехфазной мощности.

Номинальные характеристики пускателя двигателя основаны на размере и типе нагрузки, для которой он был разработан. Стартеры соответствуют стандартам и рейтингам Underwriters Laboratories (UL), Канадской ассоциации стандартов (CSA), Международной электротехнической комиссии (IEC) и Национальной ассоциации производителей электрооборудования (NEMA).

Рейтинг NEMA

Рейтинг NEMA стартера во многом зависит от максимальной мощности, указанной в стандарте ISCS2 Национальной ассоциации производителей электрооборудования. Выбор пускателей NEMA осуществляется на основе их типоразмера NEMA, который варьируется от размера 00 до размера 9. и от приложений к приложениям для подключения и бега, которые более требовательны. При выборе подходящего пускателя двигателя NEMA необходимо знать напряжение и мощность двигателя. В случае значительного количества подключений и толчков, потребуется снижение номинальных характеристик устройства с рейтингом NEMA.

Рейтинг МЭК

Международная электротехническая комиссия (МЭК) определила рабочие и рабочие характеристики для устройств МЭК в публикации МЭК 60947. Стандартные размеры не указаны МЭК. Типичный рабочий цикл устройств IEC определяется категориями использования. Что касается обычных приложений для пуска двигателей, AC3 и AC4 являются наиболее распространенными категориями использования.

В отличие от типоразмеров NEMA, они обычно оцениваются по максимальному рабочему току, тепловому току, номинальной мощности в л.с. и/или кВт.

Существуют и другие параметры, которые важно учитывать при выборе пускателя электродвигателя, такие как ускорение с ограничением по времени, ускорение линии тока, управляющее напряжение, количество полюсов и рабочая температура. Мы рассмотрим их в будущем техническом документе.

Мы надеемся, что этот краткий информационный документ дал вам хорошее базовое представление о пускателях двигателей. Ищите другие документы от c3controls на c3controls.com/blog.

Заявление об отказе от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется с пониманием того, что авторы и издатели не занимаются предоставлением инженерных или других профессиональных консультаций или услуг. Практика проектирования определяется конкретными обстоятельствами, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может учесть все соответствующие факторы и желаемые результаты.