Подключение трехфазного двигателя схема


Трехфазный электродвигатель при пуске контактами магнитного пускателя подключается к трёхфазной сети переменного тока напряжением 380 вольт. 

На рис 1. показан вариант схемы пуска с питанием катушки магнитного пускателя переменным током напряжением 220 вольт. Напряжение для схемы управления снимается с двух проводов: с фазного провода и провода нейтрали (на схеме рис.1 это провода «C» и «N»).



При нажатии кнопки «Пуск» напряжение 220 вольт через нормально замкнутые контакты кнопки «Стоп» поступает на обмотку магнитного пускателя. Сердечник обмотки втягивается и замыкает соединенные с ним три группы мощных контактов, подающие трехфазное напряжение на выводы обмоток электродвигателя.


Кроме трёх групп мощных контактов, магнитный пускатель замыкает группу маломощных нормально разомкнутых контактов (К1), включенных параллельно кнопке «Пуск». Контакты замыкаются и последующее отпускание кнопки «Пуск» уже не изменяет состояние схемы. Процесс пуска завершен.


Нейтральный провод (N) не участвует в питании электродвигателя, но, в соответствии с требованиями правил электробезопасности, при отсутствии заземления обязательно подсоединяется к корпусу электродвигателя. Если корпус электродвигателя по какой-то причине окажется под напряжением (например, фазная обмотка статора электродвигателя замкнёт на его корпус), то резко возрастёт потребляемый электродвигателем ток (идущий по цепи «фаза-нейтраль») и сработавшая схема защиты отключит электродвигатель от питающей сети, исключая тем самым поражение электрическим током человека, случайно прикоснувшегося к его корпусу.


Схема пуска может работать с магнитными пускателями рассчитаными на переменное напряжение напряжение 220 и 380 вольт. Выбор типа магнитного пускателя определен только конкретными условиями монтажа схемы. Если провод «нейтраль» недоступен, то дешевле применить магнитный пускатель с питающим напряжением обмотки катушки электромагнита пускателя 380 вольт, чем прокладывать дополнительно провод «нейтрали» для питания пускателя с обмоткой на 220 вольт. Такой вариант схемы пуска показан ниже на Рисунке 2.



Токовая защита трехфазного электродвигателя


Трехфазный электродвигатель следует защищать от выхода из строя, что может случитьсяАвтоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.


Кроме того, автоматические выключатели питания быстро срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов. Такие токи возникают при коротких замыканиях электрических цепей. Экстра ток — это такой ток, который превышает номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.


На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.при повышеннии напряжения источника питания, при перегреве элементов конструкции электродвигателя и при аварийной остановке вращения ротора электродвигателя. Внешнюю электрическую цепь, питающую трехфазный электродвигатель, следует защищать от токовых перегрузок, которые возникают при коротком замыкании электрических проводов схемы между собой или внутреннем замыкании токоведущих компонентов электродвигателя.



Простейшая токовая защита трехфазного электродвигателя выполнена посредством включения в цепь питающих проводов токовых тепловых датчиков, входящих в состав типового устройства токовой защиты. Превышение тока, потребляемого электродвигателем, в течении небольшого времени времени вызывает размыкание исполнительных контактов датчика тока, последовательно включенных в цепь питания катушки магнитного пускателя.


Существует линейная зависимость времени срабатывания устройства токовой защиты от кратности превышения тока. Токовая защита с паспортным значением 100А сработает через 1,5 минуты после пропускания по любой одной фазе (или по двум или трём фазным проводам сразу) тока в 100 ампер. При превышении тока в два раза, защита сработает в два раза быстрее, чем при номинальном токе, т.е. через 45 секунд и т.д. Устройство токовой защиты имеет возможность регулировки в небольших пределах (в 1.5-2 раза) номинального тока срабатывания защиты.


При срабатывании устройства токовой защиты размыкаются исполнительные контакты теплового датчика тока, что вызывает обесточивание и отпускание сердечника катушки магнитного пускателя, включенного последовательно с этими контактами (рис.3) и, соответственно, отключение электродвигателя от источника питающего напряжения. После остывания датчика, для приведения устройства в исходное состояние, нажимается кнопка возврата. При этом исполнительные контакты токового датчика вновь замыкаются. Теперь кнопкой «Пуск» можно вновь запустить электродвигатель.


Автоматический выключатель питания трехфазного электродвигателя


Подключение трехфазного электродвигателя обеспечивается достаточно сложной схемой. Для защиты питающих проводов от перегрева, для защиты помещения от пожара в случае возгорания электропроводки при коротком замыкания, на входе схемы подключения трехфазного электродвигателя применяются автоматические выключатели электропитания. Схема с применением такого автомата токовой защиты изображена ниже на Рис.4



Автоматические выключатели питания функционально выполнены как обычные выключатели электропитания. Автоматические выключатели осуществляют токовую защиту коммутируемых ими электрических цепей. При превышении тока срабатывает тепловая защита и выключатель размыкает электрическую цепь, в которой произошла неисправность. Срабатывание автомата происходит с точно такой же токово-временной зависимостью, как и в описанном выше устройстве токовой защиты: чем выше аварийный ток, тем быстрей отключится автомат.


Кроме того, автоматические выключатели питания быстро срабатывают при возникновении в защищаемой цепи, так называемых, экстра-токов. Такие токи возникают при коротких замыканиях электрических цепей. Экстра ток — это такой ток, который превышает номинальный (для данного конкретного типа выключателя) в 100 раз. Например, для выключателя SN45 с номинальным током срабатывания в 10А, экстра-током считается ток в 1000А.


На схеме подключения трехфазного электродвигателя к трехфазной электрической сети 380 вольт, изображенной на рис. 4, выключатель ВА является автоматическим выключателем питания.

Схема Подключения Электродвигателя 380 — tokzamer.ru

В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии.

Использование частотного преобразователя

Схемы подключения

Они рекомендованы к подключению в наши сети вольт только методом треугольника. На основной K1 — подключаются питание с обмотками статора.

Схемы подключения Когда трехфазный двигатель подключен к сети , тогда каждая его обмотка запитана от одной фазы.

Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. Аналогично поступают на остальных выводах.

При пуске асинхронного двигателя первая и вторая группы замыкаются. За реверс отвечает переключатель SA1. Здесь есть два варианта: Номинальное напряжение 3хВ — вам повезло, и используйте приведенные выше схемы. Существует две схемы подключения: Звезда.

Теперь вы знаете, как подключить трехфазный двигатель на и Вольт, а также что для этого нужно. Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.

11 комментариев

Средний должен быть постоянно подключен к рабочему конденсатору. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Фазное питание подсоединяется к точкам узлов концов обмоток. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата.

Это тоже самое, если скрутить алюминиевый провод с медным. В этой статье мы рассмотрим способы подключения электромотора для достижения его максимальной мощности и производительности, при этом будет обеспечена его сохранность с технической точки зрения.

Использование схемы «звезда-треугольник»

Общие правила подключения электродвигателя через конденсатор.

Подключение электродвигателя В на В выполняется через конденсатор. Но иногда нужно произвести электрические измерения.

При этом не имеет особого значения, какая из них замкнёт контакты первой. Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. При варианте треугольник все концы обмоток последовательно соединяются между собой. К свободным концам обмоток подаются разноименные фазы.

См. также: Что означает буква l на выключателе

Подключение электродвигателя 380 на 220 своими руками: схема

Нумерация концов обмоток на схемах идет слева направо. Именно этой теме и посвящена статья. Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего?

Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. В таком случае можно будет добиться лишь процентного падения мощности.

Возможные схемы подключения обмоток электродвигателей

Подбор конденсатора Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. За осуществлением задуманных параметров пользования применяется ряд пускателей K1, K2, K3.

MK Diamond — Схемы подключения двигателя

Главная > Руководства/Документы

MK Diamond Схемы подключения электродвигателя

Нажмите, чтобы загрузить в формате PDF.

Часть МК # Модель   Характеристики двигателя   Номер схемы
06-550-10 Балдор Проводка 1 л. с., 1725 об/мин, 120 В, 1 фаза ВТС-50  
152759 Балдор Проводка 5 л.с., 2850 об/мин, 1 фаза, 50 Гц Скарификаторы 36Дж655И994Г1
154197 Балдор Проводка 5 л.с., 2850 об/мин, 3 фазы, 50 Гц   М3613Т-50
154292 Балдор Проводка 3/4 л. с. 110 В 60 Гц МК-660 Б31138Х
154633 Милуоки Проводка 20 А, 2 скорости Манта IV  
155350 Балдор Проводка 50 Гц МК-101 34К363И984Г1
155540 Милуоки Проводка 20 А, 2 скорости Манта IV  
157801-C-WD   Проводка   ВХ-4  
157801-C-WH   Привязь   ВХ-4  
157801-С Чанг     БХ-3, БХ 4, БД-1270, СДГ-7, ТХ-3  
157801-ИС Санко Проводка      
157801-Р Риоби Характеристики 120 В/15 А    
157801-TX3   Привязь 115 В, 15 А, переменный ток ТХ-3  
160107-М   Сборка МОТОР, 5 л. с., 230 В МК-ДДГ  
160107 Балдор Проводка 5 л.с., 3450 об/мин, 1 фаза, 60 Гц МК-ДДГ 36K686-2895G1
160501 Балдор Проводка 5 л.с., 230/360/480 В, 3 фазы, 50 Гц    
161099 Балдор Проводка 1,5 л. с., 1725 об/мин, 1 фаза, 60 Гц МК-2000, HP18-24 19E126W211G1
161099 Балдор Проводка 1,5 л.с., 1725 об/мин, 1PH, 60 Гц МК-2000 Одновольтовый 35U127L924G1
161179 Балдор Электропроводка 3 л.с., 1725 об/мин МК-СДГ 36Л397Т574Г1
161666 Лисон Проводка 0,75 л. с., 1800 об/мин, 115/208-230 В    
161672 Балдор Проводка .33 л.с., 1725 об/мин, 1 фаза, 60 Гц Комбинированная кабина, GP6, TS6, BD10  
161678 Лисон Проводка 0,33 л.с., 1 фаза, 1500 об/мин    
162077 Сога Характеристики 2 л. с., 220 В, 50 Гц    
162078 Сога Проводка 2 л.с. 115 В, 60 Гц МК-212  
163929 Балдор Проводка 1,5 л.с., 1140 об/мин, 1 фаза, 60 Гц   35U026P084G1
165675 Балдор Проводка 10 л. с. 230 В 60 Гц 1 фаза МК-1600 Л3712Т
165676 Балдор Проводка 10 л.с., 208–230/460 В, 3 фазы МК-5000 ЭМ3714Т
166785 Балдор Проводка 10 л.с. 575 В 60 Гц 3 фазы   ЭМ3714Т-5
167488 Балдор Проводка 20 л. с., 3520 об/мин, 3 фазы, 60 Гц   ЭМ4106Т
167489 Балдор Проводка 30 л.с., 1760 об/мин, 3 фазы, 60 Гц МК-4000Б  
167538 Балдор Проводка 10 л.с., 1460 об/мин, 3 фазы, 50 Гц    
167909 Балдор Электропроводка . 75 л.с., 1425 об/мин, 1PH, 50 Гц    
168022 Балдор Проводка 1,5 л.с., 3400 об/мин, 1PH, 60 Гц MK-100, MK-101, торцовочная пила BD, MK-1080 17E949X279G1
168022G-BRK Балдор Проводка 1,5 л.с., 3400 об/мин, 1PH, 60 Гц MK-100, MK-101, торцовочная пила BD, MK-1080, MK-2000 4F897R405G1
168022Г Балдор Проводка 1,5 л. с., 3400 об/мин, 1PH, 60 Гц   34F818R006G1
168022GH Дом на холме Проводка 1,5H МК-2000 ХХАК56008
168022ГР Лисон Проводка 1,5 л.с.   М6К34ФЗ5А
168022GW Вег Проводка 1,5 л. с. 2P 56C 1 фаза 115/208-230 В 60 Гц   00156ES1B56C-S
168092 Балдор Проводка 2 л.с., 1725 об/мин, 1 фаза, 60 Гц    
168501 Балдор Характеристики 2 л.с., 230 В, 60 Гц, 3450 об/мин   34Л610С595Г1
168504 Балдор Проводка . 5 л.с. ГП8, ХП14 34Л621С602Г1
168773 Балдор Характеристики .33 л.с.    
169223G-WD Балдор Проводка     34М300Р006Г1
169223G_IR Балдор Проводка 1,5 л. с., 3400 об/мин, 1PH, 60 Гц МК-101Про24 ИР_34М300Р006Г1
169556 Балдор Проводка 1/3 л.с., 60 Гц, 1800 об/мин ГП6  
169745 Сога Проводка 115 В 60 Гц BD7, Откидная пила  
170063 Лисон Проводка 15 л. с. Масонатор  
170400 Балдор Проводка 10 л.с., 1425 об/мин, 1PH, 50 Гц   37М293Т233Г1
170990 Балдор Характеристики 9 л.с. 380 В 60 Гц    
171179 Лисон Проводка 1-1/2 л. с. 115 В 60 Гц 1725 об/мин СХ-3 113938
171256 Балдор Проводка 1HP, 1425 об/мин, 1PH, 50 Гц, ВТС-50 35Л593Т980Г1
172414-RW Балдор Проводка 5 л.с., 230 В, 1 фаза, 3450 об/мин   Л3608ТМ
172414   Сборка 5 л. с., 230 В, 1 фаза, 3450 об/мин МК-1605  
172422 Балдор Проводка 5 л.с. 230 В 1 фаза 1725 об/мин   Л3612ТМ
172424 Балдор Проводка 5 л.с., 230/460 В, 3 фазы, 1725 об/мин МК-5000 ЭМ3615Т
172426 Балдор Проводка 7,5 л. с., 230/460 В, 3 фазы, 1725 об/мин МК-5000 ЭМ3710Т
172554 ВЭГ Сборка 0 л.с. 230 В 60 Гц 1 фаза 1725 об/мин МК-5010  
172555   Проводка 10 л.с. 230 В 60 Гц 1 фаза 1725RP МК-1600  
172556   Сборка 10 л. с., 208–230/460 В, 3 фазы, 1725 об/мин МК-5010 Суперматик  
172557 ВЭГ Сборка 5 л.с., 208–230 В, 1 фаза, 1730 об/мин МК-5005  
172558 ВЭГ Сборка л.с., 230/460 В, 3 фазы, 1725 об/мин МК-5005Т  
172559 ВЭГ Сборка 7,5 л. с., 230/460 В, 3 фазы, 1725 об/мин МК-5007Т  
172561 ВЭГ Сборка 10 л.с., 208–230/460 В, 3 фазы, 1725 об/мин МК-1610Б  
172578 Балдор Проводка 1 л.с., 1725 об/мин, 1 фаза, 60 Гц   ВЛ3510Т
172660 Балдор Проводка 5 л. с., 220 В/50 Гц, 1 фаза, 1450 об/мин    
172661   Сборка 5 л.с., 220 В/50 Гц, 1 фаза, 1450 об/мин МК-5005S 50 Гц  
172707 Балдор Проводка 1/2 л.с., 115/230 В, 1725 об/мин Пила BD EL11206
172708   Сборка 1/2 л. с., 115/230 В, 1725 об/мин, Откидная пила BD  
172709 Балдор   5 л.с., 3450 об/мин, 1 фаза, 60 Гц   КЛ3608ТМ
172721   Сборка 10 л.с., 400 В/50 Гц, 3 фазы, 1460 об/мин МК-5010Т  
172724 Балдор Проводка 10 л. с., 1460 об/мин, 3 фазы, 50 Гц,   ЭМ3714Т-58
172728 Балдор Проводка 2 л.с., 3450 об/мин, 1 фаза, 60 ч МК-1280 Л3515М
172729 ВЭГ Проводка 2 л.с. 230 В 3450 об/мин Л3515М МК-2002  
172760 Дом на холме Характеристики 3/4 л. с. 120 В    
172773 ВЭГ Характеристики 10 л.с. 4P 213/5T 1 фаза 230 В 60 Гц   01018ES1DFD215T-W22
172774 ВЭГ Проводка 5HP 2P 182/4TC 1 фаза 208-230/460 В 60 Гц   00536ES1E184TC-W22
172775 ВЭГ Характеристики 5 л. с., 230/460 В, 3 фазы, 1725RP   00518ET3E184T-S
172776 ВЭГ Проводка 7,5 л.с., 230/460 В, 3 фазы, 1725 об/мин   00718ET3E213T-S
172777 ВЭГ Проводка 10 л.с., 230/460 В, 3 фазы, 1725 об/мин   01018ET3E215T-S
172796 Балдор Проводка 10 л. с., 1725 об/мин, 1 фаза, 60 Гц   Л1512Т
172900 ВЭГ Сборка ССО, 10 л.с., 575 В, 3 фазы, 1725 об/мин МК-5010Т  
172902 ВЭГ Проводка 10 л.с. 575 В 3 фазы 1725 об/мин   01018ЭТ3х315Т-С
172923 ВЭГ Сборка 1,5 л. с. 115/208-230 В 1 фаза 3500 об/мин МК-2001СВ  
173045-RW Дом на холме Характеристики 1/2 л.с., 90 В постоянного тока ЦУР-7  
173148 Балдор Проводка 1,5 л.с., 2850 об/мин, 1 фаза, 50 Гц   Л3513-50

М.Г.М. » Электрические схемы

M.G.M. » Схемы подключения

6 Вт: 6 проводов / 9 Вт: 9 проводов

Тип тормоза

Соединение тормоза

Подключение двигателя

Схема

Номинальное напряжение двигателя

Номинальное напряжение тормоза

1

AC – 3 фазы (только BA(X))

Δ/Y(6w)

Δ/Y (6 Вт)

Диаграмма

265 В/460 В/60 Гц, 330 В/575 В/60 Гц, 220 В/380 В/60 Гц,…

265 В/460 В/60 Гц, 330 В/575 В/60 Гц, 220 В/380 В/60 Гц,…

2

ГГ/Г(9н)

Диаграмма

230 В/460 В/60 Гц,…

230 В/460 В/60 Гц,…

3

Однофазный выпрямленный постоянный ток (BA(X) и BM(X))

Выпрямитель

Δ/Y (6 Вт)

Диаграмма

265 В/460 В/60 Гц, 330 В/575 В/60 Гц, 220 В/380 В/60 Гц,…

1~110 В, 1~230 В,…

4

ГГ/Г(9н)

Диаграмма

230 В/460 В/60 Гц,…

1~110 В, 1~230 В,…

5

24 В пост. тока (BA(X) и BM(X))

Напряжение постоянного тока

Δ/Y (6 Вт)

Диаграмма

265 В/460 В/60 Гц, 330 В/575 В/60 Гц, 220 В/380 В/60 Гц,…

24 В постоянного тока

6

ГГ/Г(9н)

Диаграмма

230 В/460 В/60 Гц,…

24 В постоянного тока

6w: 6 проводов / 9w: 9 проводов

Соединение двигателя

Схема

Номинальное напряжение двигателя

7

Δ/Y (6 Вт)

Диаграмма

265 В/460 В/60 Гц, 330 В/575 В/60 Гц, 220 В/380 В/60 Гц,…

8

ГГ/Г(9н)

Диаграмма

230 В/460 В/60 Гц,…

 

Тип двигателя

Тип соединения

Схема

9

БАД/БМД
СМД

Обмотка Singe – Dhalander

Диаграмма

10

БАДА
БМДА
СМДА

Двойная обмотка

Диаграмма

Если у вас есть какие-либо вопросы, пожалуйста, свяжитесь с M.