Содержание

Схема подключения электродвигателя на 220 вольт с реверсом

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Содержание

  1. Переменная сеть: мотор 380 к сети 380
  2. Переменная сеть: электродвигатель 220 к сети 220
  3. Переменная сеть: 380В к 220В
  4. Постоянный электроток: особенности
  5. Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть
  6. Принцип работы
  7. Требуемые компоненты
  8. Принципиальная схема
  9. Процесс включения
  10. Этапы подключения
  11. К трехфазной сети
  12. К однофазной сети
  13. Резюме
  14. Схема подключения однофазного двигателя через конденсатор
  15. Схема подключения трёхфазного двигателя через конденсатор
  16. Онлайн расчет емкости конденсатора мотора
  17. Реверс направления движения двигателя

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

  • Автомат;
  • Кнопочный пост;
  • Контакторы.

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).

Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.

А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.

Вот так она выглядит.

Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.

Вот как раз таки в этой кнопке имеется две пары контактов:

  • (1-2) — нормально-разомкнутый
  • (3-4) — нормально-замкнутый

В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.

Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.

Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.

Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.

Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).

Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть

Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.

В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости — МБГО-1, 20 (мкФ), напряжение 500 (В).

В моем примере взят двигатель напряжением — 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.

Для тех кто забыл, то читайте статью о схемах соединения обмоток двигателя (звезда и треугольник).

Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.

Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).

Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).

Если на Вашем двигателе отсутствует маркировка выводов обмоток, то ее можно найти самостоятельно — вот Вам в помощь моя статья об определении начала и конца обмоток электродвигателя.

Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.

Работу реверса смотрите в видеоролике:

P.S. На этом, пожалуй, все. Если у Вас возникли вопросы по материалу статьи, то пишите их в комментариях или мне на почту. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.

Принцип работы

Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:

  • ротор;
  • статор.

Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:

  • коллекторные;
  • асинхронные.

В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:

  • магнитного поля;
  • индукции.

Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.

Обратите внимание! Чаще всего асинхронные двигатели имеют трехфазное подключение. Благодаря использованию дополнительных компонентов его можно переделать на работу от сети 220 вольт.

Требуемые компоненты

Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.

Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.

Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.

Принципиальная схема

На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.

Процесс включения

Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.

Обратите внимание! На схеме хорошо видно, что два контактора не могут быть задействованы одновременно, поэтому сбоя произойти не может.

Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.

Обратите внимание! В реверсивной схеме подключения двигателя должен присутствовать дополнительный защитный модуль, который будет следить за тем, чтобы двигатель был остановлен перед началом нового цикла.

После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.

Этапы подключения

Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.

К трехфазной сети

Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.

К однофазной сети

В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.

Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.

Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.

Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.

Резюме

Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Как сделать реверс на трехфазном двигателе

Схема реверса трехфазного двигателя, подключенного в однофазную сеть

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).

Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.

А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.

Вот так она выглядит.

Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.

Вот как раз таки в этой кнопке имеется две пары контактов:

  • (1-2) — нормально-разомкнутый
  • (3-4) — нормально-замкнутый

В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.

Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.

Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.

Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.

Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).

Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть

Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.

В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости — МБГО-1, 20 (мкФ), напряжение 500 (В).

В моем примере взят двигатель напряжением — 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.

Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.

Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).

Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).

Если на Вашем двигателе отсутствует маркировка выводов обмоток, то ее можно найти самостоятельно — вот Вам в помощь моя статья об определении начала и конца обмоток электродвигателя.

Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.

Работу реверса смотрите в видеоролике:

Источник: zametkielectrika.ru

Реверс электродвигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной. Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно. В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Источник: electriktop.ru

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Источник: electricdoma.ru

Схема реверса трехфазного двигателя

Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Схема реверса трехфазного двигателя и кнопочного поста

В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.

Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.

Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).

Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.

В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.

Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.

По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.

Схема реверса трехфазного двигателя в однофазной сети

Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.

Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.

Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.

Источник: electric-220.ru

Схема реверсивного подключения электродвигателя

В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.

Принцип работы

Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:

Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:

В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:

Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.

Требуемые компоненты

Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.

Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.

Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.

Принципиальная схема

На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.

Процесс включения

Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.

Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.

После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.

Этапы подключения

Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.

К трехфазной сети

Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.

К однофазной сети

В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.

Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.

Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.

Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.

Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.

Источник: 2proraba.com

Схема реверса асинхронного двигателя — Всё о электрике

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.

Наиболее часто в станках, установках и машинах применяются три электрические схемы:

схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок “пуск” и “стоп”,

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

1. Схема управления двигателем с помощью магнитного пускателя

Схема показана на рисунке.

При нажатии на кнопку SB2 “Пуск” на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N) . Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке “Пуск”. Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки “Пуск” катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют “толчковым”. Применяется он в некоторых установках, например в схемах кран-балок.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 “Стоп”. При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку “Стоп” и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 “Пуск”. Таким образом, магнитный пускатель обеспечивает т.н. “нулевую защиту”. Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь – защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы – A , B , С, а при включении пускателя KM2 – порядок фаз меняется на С, B , A.

Схема показана на рис. 2.

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1 . При необходимости смены направления вращения необходимо нажать на кнопку SB1 “Стоп”, двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку “Стоп”.

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок “Пуск” SB2 – SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки “Пуск” включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 “Стоп”включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 – нормально-закрытый (размыкающий) контакт, в цепи КМ3 – кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 – нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку “Стоп”, что очень удобно. Кнопка “Стоп” нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B . Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Реверс асинхронного двигателя

Так вышло, что трех фазные асинхронные электродвигатели, а так же их реверс стали самой распространенной электрической машиной.

В зависимости от механизма, который приводится во вращение этим электродвигателем, может возникнуть необходимость в изменении направления вращения механизмов, а, следовательно, и вала двигателя, в нашем случаи трех фазного асинхронного электродвигателя.

Все наверняка известна вот эта схема:

Теоретически, для изменения направления вращения вала ( реверса ) электродвигателя необходимо всего на всего поменять местами две фазы. Стоит отметить, что не имеет значения какие фазы мы будим менять, но на будущее принято менять две крайние фазы, то есть фазу « А » с фазой « В ».

Для выполнения таких манипуляций с электродвигателем, выше предоставленной схеме необходимо видоизменить – переделать, доработать. Для этого понадобится еще один магнитный пускатель, или же контактор (зависит от мощности), а также кнопочная станция, состоящая из трех кнопок, или же три кнопочных контакта два нормально разомкнутых (замыкающих), и один нормально разомкнутый.

Эта схема будит выглядеть следующим образом. Реверс.

Для наглядности каждая фаза выделена своим цветом: желтым фаза «А», зеленым фаза «В» и красным фаза «С», синим цветом выделена цепь управления. Так же линии, окрашенные в черный цвет, не находятся под напряжением.

Как вы уже заметили это схема реверса существенно не отличается от простой схемы пуска асинхронного двигателя. Все изменения сводятся к магнитному пускателю КМ2 , нормально разомкнутому контакту кнопки SB2 . Стоит отметить и наличие электрической блокировки, которая выражается блок контактами магнитных пускателей, включенных в цепь управления.

Как и элементарная схема пуска асинхронного двигателя, схема этого же двигателя состоит из следующих элементов (устройств):

  • Вводной автомат АВ1 – через него подается трехфазное напряжение силовой цепи и цепи управления;
  • Два магнитных пускателя КМ1 и КМ2 через силовые контакты которых, подается питание на статор. Их блок контакты включены в цепь управления для выполнения подхвата и электрической блокировки. Катушки этих пускателей также включены в цепь управления. Нужно сказать, что каждый из магнитных пускателей отвечает за определенное вращение ротора . Например, питание подаётся через магнитный пускатель КМ1 , то вал электродвигателя будит вращаться по часовой стрелке (вперед), если же питание подаётся через силовые контакты магнитного пускателя КМ2 , то вал асинхронного двигателя будит вращаться против часовой стрелки (назад).

В данной схеме используются катушки магнитных пускателей, рассчитанные на линейное напряжение 380В. Если же катушки магнитных пускателей были рассчитаны на фазное напряжение сети 220В, то схема выглядела следующим образом:

revers dvigatela katuschka 220 volt

  • Тепловое реле КК – биметаллические пластины, которого включены последовательно в цепь статора, а блок контакт вцепи управления. Служит для защиты от перегрузки.
  • Двухполюсный автомат АВ2 – подает питание в цепь управления. Также совместно с автоматом или без него может устанавливаться ключ бирка.
  • Нормально разомкнутые контакты SB1 и SB2 – это кнопки пуск, каждая из которых соответствует направлению вращения вала электродвигателя (вперед и назад).
  • Нормально замкнутый контакт SB3 – кнопка стоп.
  • Ну и сам трех фазный асинхронный двигатель Д ;

Работа схемы

Для того, чтобы привести схему в готовность к пуску, необходимо включить вводной автомат АВ1 и автомат в цепи управления АВ2.

В таком состоянии схема реверса асинхронного двигателя готова к пуску. При этом напряжение в силовой цепи подается через вводный автоматический выключатель АВ1 на верхние губки магнитных пускателей КМ1 и КМ2 , а в цепи управления, через автомат АВ2 , через нормально замкнутый контакт кнопки SB3 подаётся напряжение на нормально разомкнутые контакты кнопок SB1 и SB2 , а также на нормально разомкнутые блок контакты магнитных пускателей КМ1 и КМ2.

Для запуска необходимо нажать одну из кнопок пуск SB1 или SB2 (допустим была нажата кнопка SB1).

После замыкания контакта кнопки SB1 , напряжение через замкнутый блок контакт блокировки магнитного пускателя КМ2, через катушку магнитного пускателя КМ1 , через блок контакт КК , через автоматы АВ2 и АВ1 выйдет на фазу «С». Образуется замкнутая цепь, по которой начнет протекать переменный ток. Проходя через катушку магнитного пускателя КМ1, она образует магнитное поле, которое втянет якорь магнитного пускателя КМ1 , при этом его силовые контакты замкнутся, вследствие чего асинхронный электродвигатель получит питание, по его обмоткам начнет протекать ток, и он запустится, ротор будит вращаться. При срабатывании магнитного пускателя, его разомкнутый контакт в цепи управления замкнется, он шунтирует кнопку SB1 , то есть ток будит протекать параллельно пусковой кнопки, так что при отпускании пусковой кнопки машина не остановится не остановится. Так же в цепи пусковой кнопки SB2 разомкнется блок контакт магнитного пускателя КМ1 , этим исключит возможность срабатывания второго магнитного пускателя КМ2 , что вызовет межфазное короткое замыкание. Все перечисленное происходило при нажатии кнопки «Пуск», замыкания контакта SB1.

Чтобы остановить двигатель, необходимо нажать кнопку «Стоп», то есть разомкнуть контакт кнопки SB3 .

Вследствие чего цепь, в которую включены катушки будит разомкнута, электрический ток не будит по ним протекать. Магнитный пускатель разомкнет свои силовые контакты, из-за чего двигатель потеряет питание и остановится. При этом нормально разомкнутый блок контакт КМ1 (подхват) разомкнется, это приведет к тому, что при возврате кнопки SB3 двигатель не запуститься снова. Так же нормально замкнутый блок контакт электрической блокировки КМ1 в цепи катушки магнитного пускателя КМ2 замкнется, обеспечивая возможность включения обратного хода. Схема вернется в состояние готовности очередному пуску двигателя.

Если же мы замкнем контакт SB2 , произойдут те же действия что и при замыкании контакта SB1 , но с другим магнитным пускателем КМ2 , и направление вращения вала асинхронного двигателя будит обратным. Мы видим, что магнитный пускатель КМ2 включен в цепи так, что фазы «А» и «С» поменяны местами, это и гарантирует изменение направления вращения вала. Для остановки необходимо так же разомкнуть контакт кнопки SB3 .

Эта схема сложнее схемы обычного пуска асинхронного двигателя, я посоветую для начала разобраться в более легкой, а затем приступать к этой.

Главной особенностью данной схемы управления двигателем является — минимум сложных манипуляций.

{SOURCE}

Оценка статьи:

Загрузка…

Adblock
detector

Пуск и реверс асинхронных двигателей

 

При включении асинхронного двигателя в сеть трёхфазного переменного тока, пусковой ток IП = (5÷7)Iном. Такое увеличение тока достигается за счет большой частоты вращающегося магнитного поля статора при неподвижном роторе, имеющим скольжение S = 1. Большая частота магнитного поля статора индуктирует большую ЭДС в цепи ротора, которая создает большой пусковой ток ротора. При увеличении частоты вращения ротора уменьшается скольжение, падает ЭДС и ток в цепи ротора.

Прямой пуск асинхронного двигателя допустим, если мощность двигателя меньше мощности источника питания. Если мощности двигателя и питающей сети соизмеримы, то необходимо использовать средства для уменьшения пускового тока.

Двигатель с фазным ротором (рис.6.11) снабжается трёхфазным пусковым реостатом ПР, который, при пуске двигателя, подключается в цепь ротора. При этом сопротивление фаз ротора увеличивается на величину сопротивлений пускового реостата, подключенных к каждой фазе ротора. При достижении двигателем достаточной частоты вращения пусковой реостат выводится, и ротор становится короткозамкнутым.

 

Рис.7.11. Электрическая схема пуска асинхронного двигателя с помощью пускового реостата

 

На рис.6.12 изображены механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата.

 

Рис.6.12. Механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата

 

Пуск двигателя начинается с точки 1 с пусковым моментом Мп и происходит по характеристике 1 – 2 при полностью введённом сопротивлении реостата. Как

только двигатель наберёт обороты (точка 2), уменьшают сопротивление реостата и двигатель переходит в режим, соответствующий второй характеристике (точка 3). При этом частота вращения двигателя увеличивается по характеристике 3 – 4. Далее опять уменьшается сопротивление пускового реостата до его закорачивания, частота вращения двигателя переходит на характеристику 5 – 6 и двигатель преобретает номинальную частоту вращения при номинальном моменте вращения.

Пуск в ход асинхронных двигателей с короткозамкнутым ротором осуществляется непосредственным включением в сеть с использованием средств уменьшения пускового тока.

На рис.6.13 изображена схема пуска асинхронного двигателя с помощью реактора. Трёхфазный реактор имеет элементы с реактивными сопротивлениями в каждой фазе. Реактор включается только в момент пуска двигателя, при этом рубильник S2 выключается, а рубильник S1 включает двигатель в сеть.

Пусковой ток при этом плавно возрастает до значения IП = 2Iном, двигатель увеличивает обороты. При достижении номинальных оборотов рубильник S2 включается.

На рис.6.14 изображена схема автотрансформаторного пуска асинхронного двигателя.

 

Рис.6.13. Схема пуска асинхронного двигателя с помощью реактора.

 

Рис.6.14. Схема автотрансформаторного пуска асинхронного двигателя.

 

В момент пуска двигателя включается рубильник S1 и постепенно увеличивают напряжение на двигателе, используя трехфазный автотрансформатор АТ. После того как ротор двигателя раскрутится, через автотрансформатор АТ подают полное напряжение сети и включают рубильник S2.

На рис.6.15 изображена схема асинхронного двигателя с переключением со звезды на треугольник.

Пуск со звезды на треугольник осуществляется в случае, когда при пуске двигателя его нагрузка не превышает 40% номинальной мощности двигателя, кроме того, подобное переключение требует, чтобы напряжение на фазной обмотке соответствовало линейному напряжению сети.

Рис.6.15. Схема асинхронного двигателя с переключением со звезды на треугольник

 

Это значит, что если линейное напряжение сети 380В, двигатель подключают в сеть звездой, а, если линейное напряжение сети 220В, то двигатель следует подключать треугольником. В первом и во втором случае на обмотку фаз подается напряжение 220В.

При пуске двигателя рубильником S1 подключют сеть, а переключатель S2 устанавливается в положение “Пуск”. Пусковой ток при этом уменьшается в три раза. Двигатель набирает обороты и при номинальных оборотах переключатель S2 устанавливается в положение “Работа”.

На рис.6.16 изображена блок-схема устройства симисторного пуска асинхронного двигателя.

 

Рис.6.16. Блок-схема устройства симисторного пуска асинхронного двигателя

 

Симисторы включаются в каждую фазу сетевого напряжения и используют положительный и отрицательный полупериоды переменного тока. Открытие симисторов осуществляется с блока управления БУ путем подачи электрических

ипульсов тока на управляющие электроды. При снятии напряжения с управляющих электродов, двигатель отключается от сети. Смещая по фазе угол импульса тока управления можно изменять сопротивление симисторов или напряжение на двигателе, а, следовательно, и вращающий момент, чем осуществлять плавный пуск двигателя.

На рис.6.17 изображена схема пуска однофазного асинхронного двигателя, имеющего две статорные обмотки, магнитные оси которых располагаются под углом в 90°.

Рис.6.17. Пуск однофазного асинхронного двигателя

Такие машины имеют небольшую мощность до (1÷2) киловатт, их особенность отсутствие пускового момента Мп. Для запуска двигателя необходимы пусковые устройства, к которым можно отнести элементы, имеющие реактивные сопротивления, например конденсатор или катушку индуктивности. На схеме таким пусковым устройством является конденсатор С, который, при пуске двигателя, включается ключом S2 в положение “Пуск”. При достижении двигателем номинальных оборотов конденсатор выключается (положение “Работа”).

На рис.6.18 изображена схема пуска трёхфазного асинхронного двигателя от однофазной сети. При пуске двигателя ключ S2 замыкается на конденсатор С. При достижении двигателем номинальных оборотов, ключ S2 размыкается.

Реверсом называют изменение направления вращения электрической машины.

Направление вращения асинхронного двигателя зависит от порядка следования фаз питающего напряжения.

Рис.6.18. Схема пуска трёхфазного асинхронного двигателя от однофазной сети

 

На рис.6.19 изображены векторные диаграммы прямого и обратного следования фаз статорных обмоток, соединенных звездой, а также указаны направления вращения электрической машины.

 

Рис.6.19. Векторные диаграммы прямого и обратного следования фаз

питающего напряжения, поясняющие реверс асинхронного двигателя

 

Существует несколько способов управления пуском, реверсом и остановкой асинхронных двигателей.

На рис.6.20 изображены схемы управления асинхронным двигателем с помощью переключателя S и магнитного пускателя МП. Реверс и остановка двигателя при управлении магнитным пускателем осуществляется кнопками “Вперед”, ”Назад” и ”Стоп”, управляющими контакторами В и Н, которые имеют силовые контакты и контакты цепи управления, осуществляющих блокировку одновременного включения контакторов.

 

Рис.6.20. Схемы управления асинхронным двигателем с помощью переключателя и магнитного пускателя

 

Асинхронные двигатели большой мощности останавливают электроторможением методами противовоключения и рекуперации. При торможении противовключением производится переключение двух фаз статора, изменяется направление вращения магнитного поля статора, скольжение становится больше единицы, и ротор двигателя останавливается. Рекуперативное торможение производится при переводе двигателя в генераторный режим. При этом частота вращения ротора становится больше частоты вращающегося поля статора, скольжение становится меньше нуля, происходит торможение и остановка машины.

 


Дата добавления: 2020-10-14; просмотров: 149; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Реверс двигателя постоянного и переменного тока: схемы подключения

Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока, асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

Схема регулятора

Схема очень простая и может быть легко собрана даже начинающими радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:

Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:

Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:

В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие. Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения — отключения схемы, так как двигатель у нас нагрузка индуктивная. Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.

При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:

Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: .

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

Принцип управления двигателем при помощи Arduino и драйвера L298N

Благодаря наличию в драйвере L298N встроенного моста данная плата позволяет осуществлять одновременное управление сразу двумя электрическими машинами от двух пар выводов. Логическая схема в данном устройстве работает от напряжения в 5В, а питание самих электрических машин можно осуществлять до 45В включительно. Максимально допустимый ток для одного канала платы составляет 2А.

Как правило, этот драйвер имеет модульное исполнение, за счет чего в комплект модуля уже включены рабочие элементы, выводы и разъемы, необходимые для передачи управляющих сигналов. Пример такого драйвера показан на рисунке ниже:

Пример драйвера L298N

Теперь разберем, как осуществляется управление двигателем с помощью драйвера L298N. Подключение двигателя производится к винтовым клеммным зажимам – по паре для питания каждого моторчика. Остальные клеммные зажимы предназначены для подачи питания плюс и минус, а также получения пониженного напряжения (на них подается определенный уровень питающего напряжения, от которого работают двигатели, а внутренний преобразователь понижает его до 5В для собственных логических цепей). Штекерные выводы платы осуществляют широтно-импульсную модуляцию при формировании рабочих сигналов.

Зажимы, куда подключать моторы

Следует отметить, что клеммный зажим с тремя выводами не только подводит к плате питающее напряжение, но и позволяет получить его уже преобразованное для собственных нужд драйвера величиной в 5В, как показано на рисунке выше. Этот выход можно использовать для запитки того же Ардуино или для любых других устройств, которые питаются от 5В.

Немаловажным моментом для получения 5В от этого клеммного вывода является установка черной перемычки, которая отвечает за преобразование отличного от 5 В уровня напряжения, при условии, что его уровень ниже 12В. Если уровень питающего напряжения выше 12В, перемычку необходимо снять, так как внутренний преобразователь на него не рассчитан, а сама плата должна запитываться от 5В через третий вывод этого же клеммника.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.

электромотор 12в . как сделать реверсивным?

мотор автомобильный с вентилятора отопителя, будет использоваться в детской игрушке-автомобильчике,тракторе. кнопка включения от шуруповёрта.

Свистунов Л. написал: мотор автомобильный с вентилятора отопителя,

Alex___dr написал: Модель? Фото?

Я бы скорее спросил: сколько проводов идет к двигателю. Я не автомобилист, к сожалению своего авто никогда не было. Но встречаться приходилось. Обычно это ДПТ с независимым возбуждением. Для реверса нужно просто поменять провода местами (+ с -).

МЭ226-б 12/40. вывод один, второй-корпус.

Если есть постоянный магнит — полярность

Если нет — будет крутится одинаково в обеих полярностях. Тогда надо вывести отдельно провода от обмотки статора и коллекторов

По любому надо вскрыть и убедится, что там коллекторы не сделаны так что они механически сломаются если крутить назад

Пуск и реверс асинхронных двигателей — Студопедия

Поделись  






При включении асинхронного двигателя в сеть трёхфазного переменного тока, пусковой ток IП = (5÷7)Iном. Такое увеличение тока достигается за счет большой частоты вращающегося магнитного поля статора при неподвижном роторе, имеющим скольжение S = 1. Большая частота магнитного поля статора индуктирует большую ЭДС в цепи ротора, которая создает большой пусковой ток ротора. При увеличении частоты вращения ротора уменьшается скольжение, падает ЭДС и ток в цепи ротора.

Прямой пуск асинхронного двигателя допустим, если мощность двигателя меньше мощности источника питания. Если мощности двигателя и питающей сети соизмеримы, то необходимо использовать средства для уменьшения пускового тока.

Двигатель с фазным ротором (рис.6.11) снабжается трёхфазным пусковым реостатом ПР, который, при пуске двигателя, подключается в цепь ротора. При этом сопротивление фаз ротора увеличивается на величину сопротивлений пускового реостата, подключенных к каждой фазе ротора. При достижении двигателем достаточной частоты вращения пусковой реостат выводится, и ротор становится короткозамкнутым.

Рис.7.11. Электрическая схема пуска асинхронного двигателя с помощью пускового реостата

На рис.6.12 изображены механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата.

Рис.6. 12. Механические характеристики пуска асинхронного двигателя с фазным ротором с помощью пускового реостата

Пуск двигателя начинается с точки 1 с пусковым моментом Мп и происходит по характеристике 1 – 2 при полностью введённом сопротивлении реостата. Как только двигатель наберёт обороты (точка 2), уменьшают сопротивление реостата и двигатель переходит в режим, соответствующий второй характеристике (точка 3). При этом частота вращения двигателя увеличивается по характеристике 3 – 4. Далее опять уменьшается сопротивление пускового реостата до его закорачивания, частота вращения двигателя переходит на характеристику 5 – 6 и двигатель преобретает номинальную частоту вращения при номинальном моменте вращения.

Пуск в ход асинхронных двигателей с короткозамкнутым ротором осуществляется непосредственным включением в сеть с использованием средств уменьшения пускового тока.



На рис.6. 13 изображена схема пуска асинхронного двигателя с помощью реактора. Трёхфазный реактор имеет элементы с реактивными сопротивлениями в каждой фазе. Реактор включается только в момент пуска двигателя, при этом рубильник S2 выключается, а рубильник S1 включает двигатель в сеть.

Пусковой ток при этом плавно возрастает до значения IП = 2Iном, двигатель увеличивает обороты. При достижении номинальных оборотов рубильник S2 включается.

На рис.6.14 изображена схема автотрансформаторного пуска асинхронного двигателя.

Рис.6.13. Схема пуска асинхронного двигателя с помощью реактора.

Рис.6.14. Схема автотрансформаторного пуска асинхронного двигателя.

В момент пуска двигателя включается рубильник S1 и постепенно увеличивают напряжение на двигателе, используя трехфазный автотрансформатор АТ. После того как ротор двигателя раскрутится, через автотрансформатор АТ подают полное напряжение сети и включают рубильник S2.

На рис.6.15 изображена схема асинхронного двигателя с переключением со звезды на треугольник.

Пуск со звезды на треугольник осуществляется в случае, когда при пуске двигателя его нагрузка не превышает 40% номинальной мощности двигателя, кроме того, подобное переключение требует, чтобы напряжение на фазной обмотке соответствовало линейному напряжению сети.

Рис.6.15. Схема асинхронного двигателя с переключением со звезды на треугольник

Это значит, что если линейное напряжение сети 380В, двигатель подключают в сеть звездой, а, если линейное напряжение сети 220В, то двигатель следует подключать треугольником. В первом и во втором случае на обмотку фаз подается напряжение 220В.

При пуске двигателя рубильником S1 подключют сеть, а переключатель S2 устанавливается в положение “Пуск”. Пусковой ток при этом уменьшается в три раза. Двигатель набирает обороты и при номинальных оборотах  переключатель S2 устанавливается в положение “Работа”.

На рис.6.16 изображена блок-схема устройства симисторного пуска асинхронного двигателя.

Рис.6.16. Блок-схема устройства симисторного пуска асинхронного двигателя

Симисторы включаются в каждую фазу сетевого напряжения и используют положительный и отрицательный полупериоды переменного тока. Открытие симисторов осуществляется с блока управления БУ путем подачи электрических ипульсов тока на управляющие электроды. При снятии напряжения с управляющих электродов, двигатель отключается от сети. Смещая по фазе угол импульса тока управления можно изменять сопротивление симисторов или напряжение на двигателе, а, следовательно, и вращающий момент, чем осуществлять плавный пуск двигателя.

На рис.6.17 изображена схема пуска однофазного асинхронного двигателя, имеющего две статорные обмотки, магнитные оси которых располагаются под углом в 90°.

Рис.6.17. Пуск однофазного асинхронного двигателя

Такие машины имеют небольшую мощность до (1÷2) киловатт, их особенность отсутствие пускового момента Мп. Для запуска двигателя необходимы пусковые устройства, к которым можно отнести элементы, имеющие реактивные сопротивления, например конденсатор или катушку индуктивности. На схеме таким пусковым устройством является конденсатор С, который, при пуске двигателя, включается ключом S2 в положение “Пуск”. При достижении двигателем номинальных оборотов конденсатор выключается (положение “Работа”).

На рис.6.18 изображена схема пуска трёхфазного асинхронного двигателя от однофазной сети. При пуске двигателя ключ S2 замыкается на конденсатор С. При достижении двигателем номинальных оборотов, ключ S2 размыкается.

Реверсом называют изменение направления вращения электрической машины.

Направление вращения асинхронного двигателя зависит от порядка следования фаз питающего напряжения.

Рис.6.18. Схема пуска трёхфазного асинхронного двигателя от однофазной сети

На рис.6.19 изображены векторные диаграммы прямого и обратного следования фаз статорных обмоток, соединенных звездой, а также указаны направления вращения электрической машины.

Рис.6.19. Векторные диаграммы прямого и обратного следования фаз питающего напряжения, поясняющие реверс асинхронного двигателя

Существует несколько способов управления пуском, реверсом и остановкой асинхронных двигателей.

На рис.6.20 изображены схемы управления асинхронным двигателем с помощью переключателя S и магнитного пускателя МП. Реверс и остановка двигателя при управлении магнитным пускателем осуществляется кнопками “Вперед”, ”Назад” и ”Стоп”, управляющими контакторами В и Н, которые имеют силовые контакты и контакты цепи управления, осуществляющих блокировку одновременного включения контакторов.

Рис.6.20. Схемы управления асинхронным двигателем с помощью переключателя и магнитного пускателя

Асинхронные двигатели большой мощности останавливают электроторможением методами противовоключения и рекуперации. При торможении противовключением производится переключение двух фаз статора, изменяется направление вращения магнитного поля статора, скольжение становится больше единицы, и ротор двигателя останавливается. Рекуперативное торможение производится при переводе двигателя в генераторный режим. При этом частота вращения ротора становится больше частоты вращающегося поля статора, скольжение становится меньше нуля, происходит торможение и остановка машины.

Частота вращения ротора асинхронного двигателя определяется из выражения:

(6.16)

где  — частота вращения магнитного поля статора в минуту,

 — скольжение ротора,

 — частота мгновенных токов в обмотках статора в секунду,

 — количество пар полюсов статора.

Исходя из выражения (6.16), регулирование частоты вращения асинхронных двигателей с короткозамкнутым ротором возможно путём изменения частоты тока , скольжения , и количества пар полюсов статора .

Регулирование частоты тока  в обмотках статора двигателя может осуществляться тиристорным регулятором частоты, конструкция которого достаточно сложна. При этом происходит плавное регулирование частоты вращения магнитного поля статора.

Регулирование скольжения  производится путём изменения подводимого напряжения в цепи статора с помощью трёхфазного автотрансформатора, либо симисторного регулятора, схемы которых приведены выше.

Регулирование частоты вращения асинхронного двигателя путём изменения количества пар полюсов статора , является ступенчатым. Так, если , то количество обмоток статора равно шести. На каждую фазу приходится по две обмотки. При последовательном соединении звездой двух обмоток, соединённых согласно (рис.6.21), получим четырёхполюсное магнитное поле с количеством пар полюсов , которое будут вращаться с чатотой в минуту , или в два раза меньше, чем у двухполюсного магнитного поля с количеством пар полюсов , у которого частота вращения магнитного поля статора в минуту .

Рис.6.21. Схема последовательного соединения обмоток статора асинхронного двигателя, соединённых звездой, и образующих четырёхполюсное магнитное поле

На рис.6.22 изображена схема параллельного соединения статорных обмоток, подключенных встречно двойной звездой. Переключение секций фазных обмоток со звезды на двойную звезду происходит при постоянных значениях вращающегося максимального момента и пускового момента.

Рис.6.22. Схема параллельного соединения обмоток статора асинхронного двигателя, соединённых двойной звездой, и образующих двухполюсное магнитное поле

Механические характеристики преключения фазных обмоток приведены на рис.6.23.

Рис.6.23. Механические характеристики асинхронного двигателя со ступенчатым регулированием частоты вращения

Для регулирования частоты вращения асинхронных двигателей с фазным ротором применяется способ реостатного регулирования скольжения ротора путём изменения активного сопротивления его фазных обмоток.



обратный мотор индукции используя Plc Mitsubishi с задержкой

26.08.2019

Электрическая схема Управление двигателем прямого хода и цепь питания заднего хода с использованием ПЛК Mitsubishi. Удобное переключение клемм двигателя для простого выполнения прямой и обратной конфигурации проводки асинхронного двигателя. Прямой контактор подключается в нормальном прямом фазировании клеммы двигателя, тогда как обратный. Цифровые входы частотно-регулируемого привода Цифровые входы используются для сопряжения частотно-регулируемого привода с такими устройствами, как кнопки, селекторные переключатели, релейные контакты и цифровые выходные модули ПЛК. Каждому цифровому входу может быть назначена предустановленная функция, такая как пуск/стоп, вперед/назад, внешняя неисправность и выбор предустановленной скорости.

Элементы в результатах поиска

  • MITSUBISHI SUPER LINE ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ SF-HRCAB

    • 350,00 $
    • Купить сейчас
    • Доставка не указана
  • НОВЫЙ трехфазный асинхронный двигатель Mitsubishi, SB-JR, 11 кВт (15 л.с.), 480 В, 1170 об/мин,

    • 650,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Трехфазный асинхронный двигатель Мицубиси СФ-ДЖР 2.

    2КВ

    • 300,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Трехфазный асинхронный двигатель Misubishi Superline 480 В, 1750 об/мин, 160LD, 25 л.с., SB-JR
    • 590,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Трехфазный асинхронный двигатель Mitsubishi 3 SF-E _ SFE

    • 650,00 $
    • или Лучшее предложение
    • Доставка не указана
  • SUMITOMO TC-F 3-ФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ, 480 В, 60 ГЦ, 1750 ОБ/МИН, СМ. ОПИСАНИЕ № 196836

    • 88,00 $
    • или Лучшее предложение
    • +561,72$ доставка
  • Трехфазный асинхронный двигатель Mitsubishi SF-JR Super Line 0,4 кВт 200/220 В

    • 39,97 $
    • Купить сейчас
    • +42,57$ доставка
  • MITSUBISHI ELECTRIC CORP SF-EB ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ USIP

    • 172,50 $
    • или Лучшее предложение
    • +1300,89$ доставка
  • MITSUBISHI ELECTRIC SF-JR SUPER LINE ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ USIP

    • 155,25 $
    • или Лучшее предложение
    • +1094,17$ доставка
  • Мицубиси супер 3-фазный асинхронный двигатель СФ-ДЖРВ с магнитным насосом
    • 849,96 $
    • Купить сейчас
    • +296,52$ доставка
  • MITSUBISHI SF-EV ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ SUPER LINE 4 POLE USIP

    • 718,75 $
    • или Лучшее предложение
    • +1669,19$ доставка
  • Трехфазный асинхронный двигатель Mitsubishi SF-JR Используется # 78494

    • 146,00 $
    • или Лучшее предложение
    • Доставка не указана
  • НОВЫЙ трехфазный асинхронный двигатель переменного тока 220 В 90 Вт

    • 40,00 $
    • Купить сейчас
    • +28,63$ доставка
  • MITSUBISHI 213T, ТРЕХФАЗНЫЙ АИНХРАННЫЙ ДВИГАТЕЛЬ, 60 ГЦ, 460 В, USIP

    • 115,00 $
    • или Лучшее предложение
    • +1423,41$ доставка
  • Трехфазный асинхронный двигатель Mitsubishi

    • 525,00 $
    • или Лучшее предложение
    • Доставка не указана
  • индукция мотора Трехфазная индукция 40В 220В ПАНАСОНИК М9МА40ГБ4И

    • 137,50 $
    • Купить сейчас
    • Доставка не указана
  • МОТОР ШПИНДЕЛЯ ПЕРЕМЕННОГО ТОКА МИЦУБИСИ 3-ФАЗНЫЙ АИНХРОНИЧЕСКИЙ МОТОР SJ-7.

    5A MAX B112M

    • 540,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Mitsubishi Super Line, трехфазный асинхронный двигатель, SF-JRF, 4 полюса, бывший в употреблении, ГАРАНТИЯ
    • 151,00 $
    • или Лучшее предложение
    • +330,96$ доставка
  • МОТОР ШПИНДЕЛЯ ПЕРЕМЕННОГО ТОКА MITSUBISHI MAZAK SJ-185 FREQROL — 3-ФАЗНЫЙ МОТОР ИНДУКЦИИ

    • 950,50 $
    • или Лучшее предложение
    • Доставка не указана
  • MITSUBISHI SF-EF 7.5HP ТРЕХФАЗНЫЙ АИНХРОНИЧЕСКИЙ МОТОР USIP

    • 172,50 $
    • или Лучшее предложение
    • +1 607,44$ доставка
  • Мицубиси СФ-ДЖР Трехфазный асинхронный двигатель 0.2Кв 4 полюс

    • 149,00 $
    • или Лучшее предложение
    • +$99. 00 доставка
  • ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ HITACHI NGF. НЕТ. B498414

    • 180,00 $
    • Купить сейчас
    • Доставка не указана
  • мотор индукции ИСДЖ7124-18 1400РПМ ИП55 380-420В

    СМК трехфазный

    • 128,21 $
    • Купить сейчас
    • Доставка не указана
  • Трехфазный асинхронный двигатель Mitsubishi, SE-JF-FV, 3,7 кВт (5 л.с.), 200 В, бывший в употреблении, гарантия
    • 250,00 $
    • или Лучшее предложение
    • Доставка не указана
  • НОВИНКА Трехфазный асинхронный двигатель переменного тока 220 В 60 Вт

    • 40,00 $
    • Купить сейчас
    • +28,63$ доставка
  • НОВЫЙ 3-ФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА MITSUBISHI SF HRCA HC-SF ELECTRICAL INDUSTRIAL

    • 599,99 $
    • или Лучшее предложение
    • Доставка не указана
  • Трехфазный асинхронный двигатель Kaijieli с коробкой передач Univario
    • 89,99 $
    • Купить сейчас
    • +152,97$ доставка
  • НОВЫЙ 3-ФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА MITSUBISHI AF SER AF NE 15KW INDUSTRIAL MOTORS

    • 799,99 $
    • или Лучшее предложение
    • Доставка не указана
  • МОТОР ШПИНДЕЛЯ АК МИЦУБИСИ СДЖ-26А СДЖ26А 3-ФАЗНЫЙ МОТОР ИНДУКЦИИ А160Л 132А
    • 880,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Трехфазный асинхронный двигатель и привод Mitsubishi 30 кВт

    • 1 950,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Mitsubishi Superline SF-HRF Трехфазный асинхронный двигатель 2,2 кВт, 2 полюса, 200/230 В, 50/60 Гц

    • 454,58 $
    • или Лучшее предложение
    • +128,47$ доставка
  • НАЦИОНАЛЬНЫЙ EM-DBF ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ, IME: 50 Гц.

    440 В, 1445 ОБ/МИН, ПОЛЮС: 60 Гц, 44

    • 300,00 $
    • или Лучшее предложение
    • +1180,16$ доставка
  • Трехфазный асинхронный двигатель повышенной безопасности Mitsubishi AF-SHR Super Line серии EX

    • 950,00 $
    • Купить сейчас
    • +1485,20$ доставка
  • SUPERLINE 220В 3-ФАЗНЫЙ АИНХРОННЫЙ ДВИГАТЕЛЬ 4-ПОЛЮСНЫЙ ТИПА SB-JR FR 71 1700 об/мин

    • 90,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Mitsubishi Superline SF-JR Трехфазный асинхронный двигатель 1,5 кВт, 2 полюса, 200/230 В, 50/60 Гц

    • 254,00 $
    • или Лучшее предложение
    • +98,35$ доставка
  • Трехфазный асинхронный двигатель Mitsubishi Super Line, тип SB-JRF, 15 кВт, 4 полюса

    • 1 299,98 $
    • или Лучшее предложение
    • Доставка не указана
  • Трехфазный асинхронный двигатель Мицубиси Супер линия 4 Поляк СФ-ЭВ _ СФЭВ

    • 685,00 $
    • или Лучшее предложение
    • +684,57$ доставка
  • AG Тормозной двигатель 0,75 кВт, 220/380 В, 4 полюса, трехфазный асинхронный двигатель

    • 221,33 $
    • Купить сейчас
    • +173,85$ доставка
  • 3-ФАЗНЫЙ АИНХОННЫЙ ДВИГАТЕЛЬ MITSUBISHI SF-ER SFER KSP-Mh20-DB-4FRT ЛОТ № 1589 Nelli

    • 399,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Mitsubishi Electric SF-JR Super Line, 3-фазный асинхронный двигатель, 3,7 кВт, полюс

    • $375,00
    • Купить сейчас
    • Доставка не указана
  • ГАРАНТИРОВАННО — Восточный двигатель TSZ6324 Трехфазный асинхронный двигатель

    • 295,00 $
    • или Лучшее предложение
    • +98,50$ доставка
  • ANELVA YTFO TYPE YTFO FORM K ТРЕХФАЗНЫЙ ИНДУСТРИАЛЬНЫЙ ДВИГАТЕЛЬ, ПРОМЫШЛЕННЫЙ СДЕЛАНО В ЯПОНИИ

    • 239,99 $
    • или Лучшее предложение
    • +1135,11$ доставка
  • Асинхронный двигатель Sesame 4IK25GN-U, трехфазный, 440 В, 4 полюса (50/60 Гц), восточный
    • 72,00 $
    • Купить сейчас
    • Доставка не указана
  • MITSUBISHI SUPER LINE 3-ФАЗНЫЙ АИНХРОННЫЙ ДВИГАТЕЛЬ ТИПА SE-JRF, ОТ MORI SEIKI AL-2
    • 350,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Hubbell 6404H 50A 480V Трехфазный Y-РАЗветвитель

    • 395,00 $
    • Купить сейчас
    • Доставка не указана
  • Трехфазные универсальные преобразователи частоты 380–480 В, 5,5 кВт

    • 260,00 $
    • или Лучшее предложение
    • +$50. 00 доставка
  • Трехфазный асинхронный электродвигатель Модель: CRT-2504 — 220 В 1/3 л.с. 1450 об/мин

    • 89,99 $
    • или Лучшее предложение
    • Доставка не указана
  • 50А 480В ТРЕХФАЗНЫЙ РАЗветвитель Y 6404M MARINCO

    • 329,00 $
    • Купить сейчас
    • Доставка не указана
  • МИЦУБИСИ ЭЛЕКТРИЧЕСКИЙ СУПЕРЛИНИЙ ТРЕХФАЗНЫЙ АИНХРОНИЧЕСКИЙ МОТОР SF-J 3.7KW 4POLE

    • 500,00 $
    • или Лучшее предложение
    • Доставка не указана
  • Инфракрасный обогреватель Dr. DR-P350 480 В, 5 кВт, трехфазный обогреватель

    • 200,00 $
    • или Лучшее предложение
    • Доставка не указана

    Автор

    Напишите что-нибудь о себе. Не надо фантазировать, просто обзор.

    Архивы

    август 2019 г.

    Категории

    Все

    Новостная лента

Схема регулятора скорости 3-фазного асинхронного двигателя

В этом посте мы обсудим создание простой схемы регулятора скорости 3-фазного асинхронного двигателя, которую также можно применять для однофазного асинхронного двигателя или буквально для любого типа двигателя переменного тока.

Когда дело доходит до управления скоростью асинхронных двигателей, обычно используются матричные преобразователи, включающие множество сложных каскадов, таких как LC-фильтры, двунаправленные массивы переключателей (с использованием IGBT) и т. д.

Все они используются для достижения конечного результата. прерванный сигнал переменного тока, рабочий цикл которого можно регулировать с помощью сложной схемы микроконтроллера, что, наконец, обеспечивает требуемое управление скоростью двигателя.

Однако мы можем поэкспериментировать и попытаться реализовать управление скоростью трехфазного асинхронного двигателя с помощью гораздо более простой концепции, используя усовершенствованные ИС оптопары детектора пересечения нуля, силовой симистор и схему ШИМ.

Содержание

Благодаря оптронам серии MOC схемы управления симисторами чрезвычайно безопасны и просты в настройке, а также позволяют без проблем интегрировать ШИМ для предусмотренных элементов управления.

В одном из моих предыдущих постов я обсуждал простую схему контроллера плавного пуска двигателя с ШИМ, в которой реализована микросхема MOC3063 для обеспечения эффективного плавного пуска подключенного двигателя.

Здесь мы также используем идентичный метод для реализации предложенной схемы трехфазного регулятора скорости асинхронного двигателя. На следующем рисунке показано, как это можно сделать:

На рисунке мы видим три идентичных каскада оптопары MOC, сконфигурированных в стандартном режиме симисторного регулятора, а входная сторона интегрирована с простой схемой ШИМ IC 555.

3 цепи MOC настроены на работу с 3-фазным входом переменного тока и подачу его на подключенный асинхронный двигатель.

Вход ШИМ на изолированной стороне управления светодиодом оптопары определяет коэффициент прерывания трехфазного входа переменного тока, который обрабатывается MOC ICS.

Использование ШИМ-контроллера IC 555 (переключение при нулевом напряжении)

Это означает, что путем регулировки ШИМ-потенциометра, связанного с 555 IC, можно эффективно управлять скоростью асинхронного двигателя.

Выходной сигнал на контакте №3 имеет переменный рабочий цикл, который, в свою очередь, соответствующим образом переключает выходные симисторы, что приводит либо к увеличению среднеквадратичного значения переменного тока, либо к его уменьшению.

Увеличение среднеквадратичного значения с помощью более широких ШИМ позволяет получить более высокую скорость двигателя, в то время как уменьшение среднеквадратичного значения переменного тока с помощью более узких ШИМ дает противоположный эффект, т. е. вызывает пропорциональное замедление двигателя.

Вышеуказанные функции реализованы с большой точностью и безопасностью, поскольку ИС имеют множество внутренних сложных функций, специально предназначенных для управления симисторами и тяжелыми индуктивными нагрузками, такими как асинхронные двигатели, соленоиды, клапаны, контакторы, полупроводниковые реле и т. д.

Микросхема также обеспечивает полностью изолированную работу каскада постоянного тока, что позволяет пользователю производить настройку, не опасаясь поражения электрическим током.

Этот принцип можно также эффективно использовать для управления скоростью однофазного двигателя, используя одну микросхему MOC вместо трех.

Конструкция на самом деле основана на теории привода симистора, пропорционального времени. Верхняя схема ШИМ IC555 может быть отрегулирована для создания 50% рабочего цикла на гораздо более высокой частоте, в то время как нижняя схема ШИМ может использоваться для реализации операции управления скоростью асинхронного двигателя посредством регулировки соответствующего потенциометра.

Рекомендуется, чтобы эта ИС 555 имела относительно более низкую частоту, чем верхняя схема IC 555. Это можно сделать, увеличив емкость конденсатора на выводе № 6/2 примерно до 100 нФ.

ПРИМЕЧАНИЕ: ДОБАВЛЕНИЕ ПОДХОДЯЩИХ ИНДУКТОРОВ ПОСЛЕДОВАТЕЛЬНО С ФАЗНЫМИ ПРОВОДАМИ МОЖЕТ СУЩЕСТВЕННО УЛУЧШИТЬ ХАРАКТЕРИСТИКИ РЕГУЛИРОВАНИЯ СКОРОСТИ СИСТЕМЫ.

Спецификация для MOC3061

Предполагаемая форма волны и управление фазой с использованием вышеуказанной концепции:

Описанный выше метод управления трехфазным асинхронным двигателем на самом деле довольно груб, поскольку он не имеет управления В/Гц .

Он просто использует включение/выключение сети с разной скоростью для получения средней мощности двигателя и управления скоростью путем изменения этого среднего переменного тока двигателя.

Представьте, что вы включаете/выключаете двигатель вручную 40 или 50 раз в минуту. Это приведет к тому, что ваш двигатель замедлится до некоторого относительного среднего значения, но будет двигаться непрерывно. Описанный выше принцип работает точно так же.

Более технический подход заключается в разработке схемы, которая обеспечивает надлежащий контроль соотношения В/Гц и автоматически регулирует его в зависимости от скорости скольжения или любых колебаний напряжения.

Для этого мы в основном используем следующие этапы:

  1. Цепь драйвера H-Bridge или Full Bridge IGBT
  2. 3-фазный каскад генератора для питания полной мостовой схемы
  3. В/Гц ШИМ-процессор

Использование схемы управления Full Bridge IGBT

Вышеупомянутая конструкция на основе симистора выглядит пугающе для вас, можно попробовать следующее управление скоростью асинхронного двигателя с полным мостом на основе ШИМ:

В схеме, показанной на рисунке выше, используется однокристальный полномостовой драйвер IC IRS2330 (последняя версия — 6EDL04I06NT). который имеет все встроенные функции для обеспечения безопасной и идеальной работы трехфазного двигателя.

Микросхеме требуется только синхронизированный 3-фазный логический вход на ее выводах HIN/LIN для создания требуемого 3-фазного колебательного выхода, который, наконец, используется для работы полной мостовой сети IGBT и подключенного 3-фазного двигателя.

ШИМ-инжекция с управлением скоростью реализована через 3 отдельных каскада полумостовых драйверов NPN/PNP, управляемых с помощью подачи ШИМ от генератора ШИМ IC 555, как показано в наших предыдущих проектах. Этот уровень ШИМ может в конечном итоге использоваться для управления скоростью асинхронного двигателя.

Прежде чем мы изучим фактический метод управления скоростью для асинхронного двигателя, давайте сначала поймем, как можно добиться автоматического управления V/Hz с помощью нескольких схем IC 555, как описано ниже

Схема автоматического процессора V/Hz PWM (Замкнутый контур)

В предыдущих разделах мы узнали о конструкциях, которые помогут асинхронному двигателю двигаться со скоростью, указанной производителем, но он не будет регулироваться в соответствии с постоянным соотношением В/Гц, если только не будет применена следующая ШИМ. процессор интегрирован с входным каналом H-Bridge PWM.

Приведенная выше схема представляет собой простой генератор ШИМ, использующий пару IC 555. IC1 генерирует частоту ШИМ, которая преобразуется в треугольные волны на выводе № 6 IC2 с помощью R4/C3.

Эти треугольные волны сравниваются с синусоидальной пульсацией на выводе № 5 микросхемы IC2. Эти выборочные пульсации получаются путем выпрямления трехфазной сети переменного тока в пульсации переменного тока 12 В и подаются на контакт № 5 микросхемы IC2 для необходимой обработки.

При сравнении двух сигналов на выводе №3 микросхемы IC2 генерируется ШИМ соответствующего размера, который становится управляющим ШИМ для сети Н-моста.

Как работает схема V/Hz

При включении питания конденсатор на выводе № 5 начинает генерировать нулевое напряжение на выводе № 5, что приводит к наименьшему значению SPWM в схеме H-моста, что, в свою очередь, включает асинхронный двигатель для запуска с медленным постепенным плавным пуском.

По мере зарядки этого конденсатора потенциал на контакте № 5 возрастает, что пропорционально увеличивает SPWM и позволяет двигателю постепенно набирать скорость.

Мы также можем видеть цепь обратной связи тахометра, которая также интегрирована с контактом № 5 микросхемы IC2.

Этот тахометр отслеживает скорость вращения ротора или скорость скольжения и генерирует дополнительное напряжение на выводе № 5 микросхемы IC2.

Теперь, когда скорость двигателя увеличивается, скорость скольжения пытается синхронизироваться с частотой статора и при этом начинает набирать скорость.

Это увеличение индукционного скольжения пропорционально увеличивает напряжение тахометра, что, в свою очередь, заставляет IC2 увеличивать выходной сигнал SPWM, а это, в свою очередь, еще больше увеличивает скорость двигателя.

Вышеупомянутая регулировка пытается поддерживать соотношение В/Гц на довольно постоянном уровне до тех пор, пока, наконец, SPWM от IC2 не сможет больше увеличиваться.

В этот момент скорость скольжения и скорость статора становятся установившимися и сохраняются до тех пор, пока входное напряжение или скорость скольжения (из-за нагрузки) не изменятся. В случае их изменения схема процессора В/Гц снова вступает в действие и начинает регулировать соотношение для поддержания оптимального отклика скорости асинхронного двигателя.

Тахометр

Схема тахометра также может быть дешево построена с использованием следующей простой схемы и объединена с описанными выше этапами схемы:

Как реализовать управление скоростью

В предыдущих абзацах мы поняли процесс автоматического регулирования, который может быть достигнут путем интеграции обратной связи тахометра в схему контроллера авторегулирования SPWM.

Теперь давайте узнаем, как можно управлять скоростью асинхронного двигателя, изменяя частоту, что в конечном итоге заставит SPWM снижаться и поддерживать правильное соотношение В/Гц.

Следующая диаграмма поясняет этап регулирования скорости:

Здесь мы видим схему трехфазного генератора, использующую микросхему IC 4035, частота фазового сдвига которой может изменяться путем изменения тактового входа на выводе № 6.

3-фазные сигналы подаются на вентили 4049 IC для создания требуемых каналов HIN, LIN для сети драйверов полного моста.

Это означает, что, соответствующим образом изменяя тактовую частоту IC 4035, мы можем эффективно изменить рабочую трехфазную частоту асинхронного двигателя.

Это реализовано с помощью простой нестабильной схемы IC 555, которая подает регулируемую частоту на контакт № 6 IC 4035 и позволяет регулировать частоту с помощью подключенного потенциометра 100K. Конденсатор C необходимо рассчитать таким образом, чтобы регулируемый диапазон частот находился в пределах правильных характеристик подключенного асинхронного двигателя.

При изменении потенциометра частоты эффективная частота асинхронного двигателя также изменяется, что соответственно изменяет скорость двигателя.

Например, при снижении частоты скорость двигателя снижается, что, в свою очередь, приводит к пропорциональному снижению напряжения на выходе тахометра.

Это пропорциональное уменьшение выходного сигнала тахометра приводит к сужению SPWM и, таким образом, пропорционально снижает выходное напряжение двигателя.

Это действие, в свою очередь, обеспечивает поддержание соотношения В/Гц при управлении скоростью асинхронного двигателя посредством управления частотой.

Предупреждение. Приведенная выше концепция разработана только на основе теоретических предположений, действуйте с осторожностью.

Если у вас есть какие-либо дополнительные сомнения относительно конструкции этого трехфазного регулятора скорости асинхронного двигателя, вы можете опубликовать их в своих комментариях.

Китай Индивидуальный двигатель 12 В постоянного тока 6 В Микродвигатель с червячной передачей Реверсивный редуктор с высоким крутящим моментом Самоблокирующийся Двигатель 12 В Электродвигатель 24 В Поставщики, производители, фабрика — оптовая цена

Китай Индивидуальный двигатель 12 В постоянного тока 6 В Микродвигатель с червячной передачей Реверсивный редуктор с высоким крутящим моментом Самоблокирующийся двигатель 12 В Электродвигатель 24 В Поставщики, производители, фабрика — оптовая цена — HILAIR

Главная/Выставочный зал / /Контент

Класс защиты: IP55

Класс изоляции: F

Способ охлаждения: IC411

Тип обязанности: S1

Отправить запрос

Описание

Мы настаиваем на производстве изысканного однофазного электродвигателя переменного тока мощностью 3 л. с., 4-полюсного трехфазного электродвигателя, однофазного конденсаторного пускового двигателя, чтобы расширить наше международное влияние и конкурентоспособность и построить памятник нашему славному и бессмертному бренду. Мы надеемся вырастить команду сотрудников, лояльных к предприятию и разделяющих одни и те же идеалы. Основываясь на бизнес-философии, ставя во главу угла интересы клиентов, наша компания предоставляет клиентам различные виды высококачественного и наиболее экономичного системного оборудования и лучший сервис.

Промышленный трехфазный двигатель для редукторов, который напрямую подключен к коробке передач, с более высоким КПД, большим пусковым моментом, низким уровнем шума и хорошими характеристиками излучения. Он принимает современное оборудование и технологии, ведущие многопрофильный персонал. Наши продукты популярны на внутреннем и внешнем рынке. Hilair Motor может предоставить полный набор оптимальных решений для различных приложений, привнести инновации и добавленную стоимость для наших клиентов, в то же время мы также можем разработать специальные решения в соответствии с различными потребностями клиента. Hilair всегда проявляет добросовестность, ответственность, осторожность и превосходство в качестве нашей философии управления, стремясь предоставлять клиентам продукцию высшего качества, каждый шаг в процессе должен быть полностью сосредоточен.

Technical parameters:

3

2,2

2,2

2,2

2,2

33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333тели

1

9065

5

Motor Type

Power

Speed ​​

Voltage

InA

Efficiency

Power factor

TLR/

Trated

Tmax/Trated

ILR/

Irated

Шум

Kw

Hp

r/min

V

A

%

Cos

LwdB(A)

D-711-2

. 0613

380

1.0

69

0.81

5.5

2.3

5.5

64

D712-2

0,55

0,75

2800

380

1,35

908

74

3

74

3

13

9000

1,35

9000

.0006

5.5

2.3

5.5

64

D-80M1-2

0.75

1.0

2830

380

1.8

77.4

0.82

6.8

2. 3

6.8

67

D-80M2-2

1.1

1.5

2830

380

2.5

79.6

0.83

7.1

2.3

7.1

67

D-90S-2

1.5

2.0

2840

380

3.5

81.3

0.84

7.3

2.3

7.3

72

D-90L-2

2.2

3.0

2840

380

4.7

83.2

0.85

7. 6

2.3

7.6

72

D-100L-2

3.0

4.0

2860

380

6.2

84.6

0.87

7.8

2.2

7.8

76

D-112M-2

4.0

5.5

2890

380

8

85.8

0.88

8.1

2.2

8.1

77

D-132S1-2

5.5

7.5

2910

380

10.9

87

0. 88

8.2

2.2

8.2

80

D-132S2-2

7.5

10

2905

380

14.5

88.1

0.89

7.8

2.2

7.8

80

D-160M1- 2

11

15

2935

380

21

89.4

0.89

7.9

2.2

7.9

86

D-160M2-2

15

20

2935

380

28,4

90,3

0,89

2,2

2

13 2,2

,3

,3

9000 9,3 9000 2 9000

2,2

9000

. 0613

86

D-160L-2

18.5

25

2830

380

33.9

90

0.9

2.2

2.3

7.5

86

D-180M-2

22

30

2940

380

41

91.3

0.89

2.2

2.3

8.1

83

D-200L1-2

30

40

2950

380

380

3

380

3

380

3

380

3

. 0006

92

0.89

2.0

2.3

7.5

84

D-710-4

0.18

0.25

1310

380

0.62

60

0.73

2.1

2.2

4.4

56

D-711-4

0.25

0.33

1330

380

0.93

65

0,74

2,1

2,2

5,2

55

913

11111111111111111111111111111111111111111111111111111111111111111113119нте0006

0. 37

0.5

1330

380

1.3

67

0.75

2.1

2.2

5.2

55

D-80M1-4

0,55

0,75

139099

.0811

380

1.6

70

0.75

2.4

2.3

6

58

D-80M2-4

0.75

1

1390

380

2

73

0.76

2.3

2.3

6

58

D-90S-4

1. 1

1.5

1390

380

2.9

75

0.77

2.3

2.3

6

61

D-90L-4

1.5

2

1390

380

3.7

78

0.79

2.3

2.3

7

61

D-100L1-4

2.2

3

1410

380

5.2

80

0.81

2.3

2.3

7

64

D-100L2-4

3

4

1410

380

6. 8

9000 9000.0006

0.82

2.3

2.3

7

64

D-112M-4

4

5.5

1440

380

8.8

84

0.82

2.3

2.3

7

65

D-132S-4

5.5

7.5

1440

380

11.8

85

0.83

2.3

2.3

7

71

D-132M-4

7.5

10

1440

380

15. 6

87

0.84

2.3

2.3

7

71

D-160M-4

11

15

1460

.0005 22.3

88

0.84

2.2

2.3

7

75

D-160L-4

15

20

1460

380

30.1

89

0.85

2.2

2.3

7.5

75

D-180M-4

18.5

25

1470

380

 

36. 1

90.5

0.86

2.2

2.3

7.5

76

D-180L-4

22

30

1470

380

42.7

91

0.86

2.2

2.3

7.5

76

D-200L-4

30

40

1470

380

57.6

92

0.86

2.2

2.3

7.2

76

D- 711-6

0,18

0,25

850

380

0,74

0,74

3

1

. 0613

0.66

1.9

2

4

52

D-712-6

0.25

0.33

850

380

0.95

59

0.68

1.9

2

4

52

D-80M1-6

0.37

0.5

885

380

1.3

62

0,7

1,9

2

4,7

54

D-80m2-6

133

D-80m2-6

133

.0613

0.75

885

380

1.8

65

0. 72

1.9

2.1

4.7

54

D-90S-6

0.75

1

910

380

2.3

69

0.72

2

2.1

5.5

57

Motor Type

Power

Скорость

Напряжение

InA

КПД

Коэффициент мощности

1

  • 11
  • Noise

    Kw

    Hp

    r/min

    V

    A

    %

    Cos

    TLR/Trated

    Tmax/Trated

    ILR/Irated

    LwdB(A)

    D-90L-6

    1. 1

    1.5

    910

    380

    3.2

    72

    0.73

    2

    2.1

    5.5

    57

    D-100L-6

    1.5

    2

    920

    380

    3.9

    76

    0.75

    2

    2.1

    5.5

    61

    D-112M-6

    2.2

    3

    935

    380

    5.6

    79

    0.76

    2

    2.1

    6.5

    65

    D-132S-6

    3

    4

    960

    380

    7. 4

    81

    0.76

    2.1

    2.1

    6.5

    69

    D-132M1-6

    4

    5.5

    960

    380

    9.8

    82

    0.76

    2.1

    2.1

    6.5

    69

    D-132M2-6

    5.5

    7.5

    965

    380

    12.9

    84

    0.77

    2.1

    2.1

    6.5

    69

    D-80M1 -8

    0.18

    0.25

    710

    380

    0. 9

    54

    0.61

    1.8

    3.3

    3.3

    52

    D-80M2-8

    0.25

    0.33

    710

    380

    1.2

    54

    0.61

    1.8

    3.3

    3.3

    52

    D-90S-8

    0.37

    0.5

    710

    380

    1.5

    62

    0.62

    1.8

    1.9

    4.0

    56

    D-90L-8

    0.55

    0.75

    710

    380

    2. 1

    63

    0.63

    1.8

    1.9

    4.0

    56

    D-100L1-8

    0,75

    1,0

    710

    38069

    3

    09

    09

    3

    09

    3

    .0005 2.4

    70

    0.67

    1.8

    1.9

    4.0

    59

    D-100L2-8

    1.1

    1.5

    710

    380

    3.4

    72

    0.69

    1.8

    2.0

    5.0

    59

    D-112M-8

    1. 5

    2.0

    710

    380

    4.4

    74

    0.7

    1.8

    2.0

    5.0

    61

    D-132S-8

    2.2

    3.0

    710

    380

    6.0

    79

    0.71

    1.8

    2.0

    6.0

    64

    D-132M-8

    3.0

    4.0

    710

    380

    7.8

    80

    0.73

    1.8

    2.0

    6.0

    64

    D-160M1- 8

    4. 0

    5.5

    720

    380

    10.3

    81

    0.73

    1.9

    2.0

    6.0

    68

    D-160M2-8

    5.5

    7.5

    720

    380

    13,6

    83

    0,74

    1,9

    2,09069

    3

    .0613

    68

    D-160L-8

    7.5

    10

    720

    380

    17.8

    85.5

    0.75

    1.9

    2.0

    6.0

    68

    D-180L-8

    11

    15

    730

    380

    25

    87

    0. 76

    2.0

    2.0

    6.5

    73

    D-200L-8

    15

    20

    730

    380

    33.3

    88

    0.76

    2.0

    2.0

    6.7

    73

    Product Properties: 

    Protection Class: IP55

    Insulation Марка: F

    Способ охлаждения: IC411

    Тип работы: S1

    Применение:

    Он широко используется в производственной линии роботов механической автоматизации, пищевой, нефтехимической, складской, трансмиссионной областях и отраслях.

    Мы продолжаем исследовать и соединять наши уникальные преимущества с потребностями пользователей, возникшими в соответствии с социальной тенденцией к созданию непревзойденного двигателя постоянного тока 12 В. Двигатель с микрочервячной передачей 6 В. Реверсивный редуктор с высоким крутящим моментом. Самоблокирующийся двигатель. Двигатель 12 В. Электродвигатель 24 В. Мы всегда обеспечиваем рентабельные продуктовые решения с четким и прозрачным составом и контролем затрат на продукцию. Мы рассматриваем послепродажное обслуживание как карьеру и предоставляем всестороннюю гарантию в четырех аспектах честности, качества, целенаправленности и безопасности.

    Hot Tags: промышленный 3-фазный двигатель для редукторов, Китай, поставщики, производители, фабрика, индивидуальные, оптовая торговля, купить, цена, прайс-лист, продажа, 3-фазный асинхронный двигатель для окантовки, алюминиевый корпус, трехфазный асинхронный двигатель, конденсаторный пуск, однофазный двигатели, тормозной асинхронный двигатель 3 фазы, 3 л.с. 3 фазы асинхронный двигатель, трехфазный двигатель Микроциклоидный редуктор

    Запрос

    Copyright © Jiangsu Hilair Electromechanical Technology Co. , Ltd. Все права защищены.

    Вращение 3-фазных асинхронных двигателей (вперед/назад)

     

    Вращение 3-фазных асинхронных двигателей (вперед/назад) — 3-фазный асинхронный двигатель является наиболее популярным или наиболее широко используемым двигателем в тяге машины в промышленности. Такие как вождение на насосах, конвейерах, компрессорах, воздуходувках и других. Вероятно, это было связано с тем, что асинхронный двигатель имеет ряд преимуществ, которых нет у двигателей других типов, таких как; контруксиня проста, долговечна, проста в обслуживании и имеет высокий КПД. Однако в этой статье не рассматривается общий асинхронный двигатель. В этой статье мы лишь немного обсудим, как изменить направление вращения трехфазного асинхронного двигателя 9.0006

    Для изменения направления вращения трехфазного асинхронного двигателя необходимо изменить полярность одного из входных напряжений на двигатель. попробуйте посмотреть на картинку ниже.

    Вращение трехфазных асинхронных двигателей (вперед/назад)

    На рисунке выше показано, что двигатель будет вращаться вправо (вперед), если на клеммную обмотку / обмотку двигателя подается напряжение RST, где R соединен с U, S соединен с V и T соединены с W. И двигатель будет вращаться в противоположном направлении (реверс), если на клеммную обмотку двигателя подается напряжение RST, где R соединен с U, S соединен с W, а T соединен с напряжением V. Другими словами, RST инвертируется в RTS. . Поменять полярность могут и другие, например, R на S или R на T.

    Для изменения или изменения полярности напряжения обычно используется схема управления RST, представляющая собой ряд механических и магнитных контакторов. А в качестве безопасности мотоциклов также установлена ​​защита двигателя (от тепловой перегрузки). Обратите внимание на рисунок основной схемы / мощность вперед следует за реверсом.

    Цепь питания прямого обратного хода. K1 ON (вперед), K2 IN (назад)

     
     
    На рисунке показано, что двигатель будет вращаться вправо (вперед), если K1 работает. В данный момент работает контактор 1, напряжение RST будет поступать на электродвигатели последовательно. И рисунок выше также поясняет, что двигатель будет вращаться влево (реверс), если сработает К2 (контактор 2). K2 работает, когда полярность входного напряжения RST, обратная кемотору, будет TSR. (См. рисунок выше). И произойдет следующее: двигатель будет вращаться влево.

    Для регулирования или управления двумя контакторами необходима цепь управления прямым обратным ходом. А ниже схема управления передним задним ходом. Рассмотрите следующую картинку и поймите, как это работает.

    Система управления цепью прямого обратного хода

    Рабочее напряжение цепи управления катушкой контактора на рисунке выше составляет 220 В переменного тока. Так что на картинке выше получиться фаза питания (R) и ноль (N).

    Но обычно также используется рабочая катушка контактора 380 В переменного тока, поэтому она должна быть подключена к линии напряжения питания (фазы). Линия напряжения здесь означает R-S, R-T или S-T.

     Это напряжение зависит от фактической выдачи катушки, также может быть контакторня, т.к. катушка рабочее напряжение 100В, 200В и так далее. На рисунке выше показано, что электрический ток будет течь и активировать K1, если нажата кнопка on1.

    Несмотря на то, что К1 с включенным контактом 1 останется активным, это происходит из-за блокировки вспомогательного нормально разомкнутого контакта (К1), который установлен параллельно контакту 1.

    Таким образом, электрический ток, протекающий через катушку контактора на вспомогательный контакт NO (K1).

     K1 активен, когда это означает, что двигатель вращается вправо (вперед).

    На рисунке выше также виден вспомогательный размыкающий контакт (К1), который установлен последовательно с катушкой К2, и наоборот, вспомогательный размыкающий контакт (К2), установленный последовательно с катушкой К1 помещения. Вспомогательные размыкающие контакты здесь служат в качестве защитной блокировки.

    Например, если нажато on1 и активен K1 (двигатель вращается вперед), несмотря на то, что нажато ON2, электрический ток не будет течь к катушке K2, потому что NC (K1) был разомкнут.

     А для обратного вращения (реверса), то кнопку OFF нужно нажать заранее, чтобы теперь можно было нажать кнопку K1 off и ON2 для активации катушки K2.

    Чтобы двигатель мог вращаться влево (реверс). А также восстановить вращение мотора вперед.

     

    Вращение 3-фазных асинхронных двигателей (вперед/назад) — 3-фазный асинхронный двигатель является наиболее популярным или наиболее широко используемым двигателем в тяговых машинах в промышленности. Такие как вождение на насосах, конвейерах, компрессорах, воздуходувках и других. Вероятно, это было связано с тем, что асинхронный двигатель имеет ряд преимуществ, которых нет у двигателей других типов, таких как; контруксиня проста, долговечна, проста в обслуживании и имеет высокий КПД. Однако в этой статье не рассматривается общий асинхронный двигатель. В этой статье мы лишь немного обсудим, как изменить направление вращения трехфазного асинхронного двигателя 9.0006

    Для изменения направления вращения трехфазного асинхронного двигателя необходимо изменить полярность одного из входных напряжений на двигатель. попробуйте посмотреть на картинку ниже.

    Вращение трехфазных асинхронных двигателей (вперед/назад)

    На рисунке выше показано, что двигатель будет вращаться вправо (вперед), если на клеммную обмотку / обмотку двигателя подается напряжение RST, где R соединен с U, S соединен с V и T соединены с W. И двигатель будет вращаться в противоположном направлении (реверс), если на клеммную обмотку двигателя подается напряжение RST, где R соединен с U, S соединен с W, а T соединен с напряжением V. Другими словами, RST инвертируется в RTS. . Поменять полярность могут и другие, например, R на S или R на T.

    Для изменения или изменения полярности напряжения обычно используется схема управления RST, представляющая собой ряд механических и магнитных контакторов. А в качестве безопасности мотоциклов также установлена ​​защита двигателя (от тепловой перегрузки). Обратите внимание на рисунок основной схемы / мощность вперед следует за реверсом.

    Цепь питания прямого обратного хода. K1 ON (вперед), K2 IN (назад)

     
     
    На рисунке показано, что двигатель будет вращаться вправо (вперед), если K1 работает. В данный момент работает контактор 1, напряжение RST будет поступать на электродвигатели последовательно. И рисунок выше также поясняет, что двигатель будет вращаться влево (реверс), если сработает К2 (контактор 2). K2 работает, когда полярность входного напряжения RST, обратная кемотору, будет TSR. (См. рисунок выше). И произойдет следующее: двигатель будет вращаться влево.

    Для регулирования или управления двумя контакторами необходима цепь управления прямым обратным ходом. А ниже схема управления передним задним ходом. Рассмотрите следующую картинку и поймите, как это работает.

    Система управления цепью прямого обратного хода

    Рабочее напряжение цепи управления катушкой контактора на рисунке выше составляет 220 В переменного тока. Так что на картинке выше получиться фаза питания (R) и ноль (N).

    Но обычно также используется рабочая катушка контактора 380 В переменного тока, поэтому она должна быть подключена к линии напряжения питания (фазы). Линия напряжения здесь означает R-S, R-T или S-T.

     Это напряжение зависит от фактической выдачи катушки, также может быть контакторня, т.к. катушка рабочее напряжение 100В, 200В и так далее. На рисунке выше показано, что электрический ток будет течь и активировать K1, если нажата кнопка on1.

    Несмотря на то, что К1 с включенным контактом 1 останется активным, это происходит из-за блокировки вспомогательного нормально разомкнутого контакта (К1), который установлен параллельно контакту 1.

    Таким образом, электрический ток, протекающий через катушку контактора на вспомогательный контакт NO (K1).

     K1 активен, когда это означает, что двигатель вращается вправо (вперед).

    На рисунке выше также виден вспомогательный размыкающий контакт (К1), который установлен последовательно с катушкой К2, и наоборот, вспомогательный размыкающий контакт (К2), установленный последовательно с катушкой К1 помещения. Вспомогательные размыкающие контакты здесь служат в качестве защитной блокировки.

    Например, если нажато on1 и активен K1 (двигатель вращается вперед), несмотря на то, что нажато ON2, электрический ток не будет течь к катушке K2, потому что NC (K1) был разомкнут.

     А для обратного вращения (реверса), то кнопку OFF нужно нажать заранее, чтобы теперь можно было нажать кнопку K1 off и ON2 для активации катушки K2.

    Чтобы двигатель мог вращаться влево (реверс). А также восстановить вращение мотора вперед.

    Трехфазный асинхронный двигатель: типы, работа и применение

    Двигатель используется для преобразования электрической формы энергии в механическую. По типу питания двигатели подразделяются на двигатели переменного тока и двигатели постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с работой и приложениями.

    Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для производства механической энергии в промышленности. Почти 80% двигателей составляют трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Таким образом, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

    Что такое трехфазный асинхронный двигатель?

    Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный ток питания создает электромагнитное поле в обмотке статора, что приводит к возникновению крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

    • По теме: Однофазный асинхронный двигатель — конструкция, работа, типы и применение

    Содержание

    Конструкция трехфазного асинхронного двигателя

    Конструкция асинхронного двигателя очень проста и надежна. Он состоит в основном из двух частей;

    • Статор
    • Ротор

    Статор

    Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

    • Рама статора
    • Сердечник статора
    • Обмотка статора

    Рама статора

    Рама статора — это внешняя часть двигателя. Функция рамы статора заключается в обеспечении поддержки сердечника статора и обмотки статора.

    Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

    Рама отливается для небольших машин и изготавливается для больших машин. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия/алюминиевых сплавов или нержавеющей стали.

    • По теме: Машина постоянного тока — конструкция, работа, типы и применение

    Сердечник статора

    Сердечник статора предназначен для переноса переменного магнитного потока, который создает гистерезис и потери на вихревые токи. Для минимизации этих потерь сердечник прокатывается штамповками из высококачественной стали толщиной от 0,3 до 0,6 мм.

    Эти штамповки изолированы друг от друга лаком. Все штамповки штампуют вместе по форме сердечника статора и закрепляют его с корпусом статора.

    Внутренний слой сердечника статора имеет несколько пазов.

    Обмотка статора

    Обмотка статора размещается внутри статорных пазов, имеющихся внутри сердечника статора. В качестве обмотки статора размещена трехфазная обмотка. И трехфазное питание подается на обмотку статора.

    Количество полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет выше. Полюса всегда парные. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в приведенном ниже уравнении 9.0006

    N S = 120 f / P

    Где;

    • f = Частота питания
    • P = общее количество полюсов
    • N с = синхронная скорость

    В качестве конца обмотки, подключенного к клеммной коробке. Следовательно, в клеммной коробке имеется шесть клемм (по две на каждую фазу).

    В зависимости от применения и типа пуска двигателей, обмотка статора соединяется звездой или треугольником и осуществляется соединением клемм в клеммной коробке.

    • По теме: Серводвигатель — типы, конструкция, работа, управление и применение

    Ротор

    Как следует из названия, ротор представляет собой вращающуюся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с фазовой обмоткой (ротор с обмоткой) / асинхронный двигатель с контактными кольцами

    Конструкция статора одинакова для обоих типов асинхронных двигателей. Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

    Типы трехфазных асинхронных двигателей

    Трехфазные двигатели классифицируются в основном на две категории в зависимости от обмотки ротора (обмотка катушки якоря), т.е. с короткозамкнутым ротором и контактным кольцом (двигатель с фазным ротором).

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с контактным кольцом или фазным ротором

    По теме: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и области применения

    Асинхронный двигатель с короткозамкнутым ротором

    Форма этого ротора напоминает клетку белки. Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

    Конструкция этого типа ротора очень проста и прочна. Таким образом, почти 80% асинхронных двигателей представляют собой асинхронные двигатели с короткозамкнутым ротором.

    Ротор состоит из цилиндрического многослойного сердечника и имеет прорези на внешней периферии. Прорези не параллельны, а скошены под некоторым углом. Это помогает предотвратить магнитную блокировку между зубьями статора и ротора. Это приводит к плавной работе и уменьшает гудящий шум. Увеличивается длина проводника ротора, за счет этого увеличивается сопротивление ротора.

    Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Стержни ротора изготовлены из алюминия, латуни или меди.

    Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полный замкнутый путь в цепи ротора. Стержни ротора приварены или закреплены с торцевыми кольцами для обеспечения механической поддержки.

    Стержни ротора закорочены. Поэтому нельзя добавлять внешнее сопротивление в цепь ротора.

    В этом типе ротора контактные кольца и щетки не используются. Следовательно, конструкция этого типа двигателя проще и надежнее.

    • Запись по теме: Шаговый двигатель — типы, конструкция, работа и применение

    Асинхронный двигатель с фазным ротором или фазным ротором

    Асинхронные двигатели с фазным ротором также известны как двигатель с фазным ротором . Ротор состоит из многослойного цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

    В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора равно числу полюсов обмотки статора. Обмотка ротора может быть соединена звездой или треугольником.

    Концевые выводы обмоток ротора соединены с контактными кольцами. Таким образом, этот двигатель известен как асинхронный двигатель с контактными кольцами.

    Внешнее сопротивление легко соединяется с цепью ротора через токосъемное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

    Электрическая схема трехфазного асинхронного двигателя с контактными кольцами и внешним сопротивлением показана на рисунке ниже.

    Внешнее сопротивление используется только для запуска. Если он останется подключенным во время работы, это увеличит потери в меди ротора.

    Высокое сопротивление ротора благоприятно для пусковых условий. Таким образом, внешнее сопротивление связано с цепью ротора в начальном состоянии.

    Когда скорость двигателя близка к фактической, токосъемные кольца замыкаются металлическим кольцом. При таком расположении щетки и внешнее сопротивление удаляются из цепи ротора.

    Уменьшает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложнее по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

    Техническое обслуживание этого двигателя больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В остальном асинхронный двигатель с короткозамкнутым ротором более предпочтителен, чем асинхронный двигатель с контактными кольцами.

    • Связанная публикация: Расчет сечения кабеля для двигателей LT и HT

    Принцип работы трехфазного асинхронного двигателя

    Обмотки статора перекрывают друг друга под углом 120˚ (электрически). Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (ВМП).

    Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).

    Согласно закону Фарадея ЭДС, индуцируемая в проводнике из-за скорости изменения потока (dΦ/dt). Цепь ротора отсекает магнитное поле статора и ЭДС, индуцируемую в стержне или обмотке ротора.

    Цепь ротора замкнута. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

    Теперь мы знаем, что проводник с током индуцирует магнитное поле. Итак, ток ротора индуцирует второе магнитное поле.

    Относительное движение между потоком статора и потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.

    Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцируемого статором.

    Здесь ток ротора создается за счет индуктивности. Поэтому этот двигатель известен как асинхронный двигатель.

    Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не ловит. Следовательно, скорость ротора немного меньше скорости синхронной скорости.

    Синхронная скорость зависит от количества полюсов и частоты сети. Разница между фактической скоростью вращения ротора и синхронной скоростью называется скольжением.

    • Запись по теме: КПД двигателя и как его повысить?

    Почему скольжение асинхронного двигателя никогда не равно нулю?

    Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю. Для асинхронного двигателя это условие никогда не наступит.

    Потому что, когда скольжение равно нулю, обе скорости равны и нет относительного движения. Следовательно, в цепи ротора не возникает ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

    Асинхронный двигатель широко используется в промышленности. Потому что преимуществ у него больше, чем недостатков.

    Преимущества и недостатки асинхронных двигателей

    Преимущества

    Преимущества асинхронных двигателей перечислены ниже:

    • Конструкция двигателя очень проста и надежна.
    • Работа асинхронного двигателя очень проста.
    • Может работать в любых условиях окружающей среды.
    • КПД двигателя очень высокий.
    • Обслуживание асинхронного двигателя меньше по сравнению с другими двигателями.
    • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник источника. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
    • Асинхронный двигатель является двигателем с автоматическим запуском. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для пуска.
    • Стоимость этого мотора намного меньше по сравнению с другими моторами.
    • Срок службы этого двигателя очень высок.
    • Реакция якоря меньше.

    Связанный пост: Прямой онлайн-пускатель — схема подключения пускателя DOL для двигателей

    Недостатки

    Недостатки двигателя перечислены ниже;

    • При легкой нагрузке коэффициент мощности очень мал. И потребляет больше тока. Таким образом, потери в меди больше, что снижает эффективность в условиях легкой нагрузки.
    • Пусковой момент данного двигателя (асинхронного двигателя с короткозамкнутым ротором) не менее.
    • Асинхронный двигатель с постоянной скоростью. Для приложений, где требуется переменная скорость, этот двигатель не используется.
    • Управление скоростью этого двигателя затруднено.
    • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.
    • По теме: Что такое стартер двигателя? Типы пускателей двигателей и методы пуска двигателей

    Применение трехфазных асинхронных двигателей

    Асинхронный двигатель в основном используется в промышленности.