Регулятор частоты вращения двигателя

Регулятор частоты вращения двигателя

  Регулятор частоты вращения двигателя, стабилизирующий его скорость при изменении нагрузки, существенно повышает эксплуатационные возможности таких бытовых приборов, как электродрель, электропила, кухонный комбайн и г. д. Известен простой и эффективный однополупериодный регулятор коллекторного электродвигателя последовательного возбужде-ния, стабилизирующий скорость вращения за счет обратной связи по величине противо-ЭДС, возникающей на роторе двигателя и зависящей от его нагрузки. К сожалению, такому регулятору свойствен существенный недостаток — в нем используется высокочувствительный тиристор с током открывания менее 100 мкА. Подобрать ему замену практически невозможно. В публикуемой статье автор предлагает свой вариант схемотехнического решения регулятора, в котором сняты ограничения на параметры тиристора. Прежде чем перейти к описанию модернизированного регулятора электропривода, остановимся коротко на принципе действия простого регулирующего устройства [1].

  Его принципиальная схема приведена на рис, 1, Это — мост, левое плечо которого образовано делителем напряжения сети R1 — R2C1 —VD1, а правое—тиристором VS1 и двигателем М1. Управляющий переход тиристора включен е диагональ моста. Открывающий тиристор сигнал представляет собой сумму складывающихся в противофаэе сигналов; напряжения сети, устанавливаемого движком резистора R2f и противо-ЭДС с ротора электродвигателя- При неизменности напряжений мост сбалансирован и частота вращения двигателя также не меняется. Увеличение нагрузки на валу двигателя снижает его обороты и уменьшает соответственно величину противо-ЭДС, что приводит к разбалансу моста, В результате сигнал, поступающий на управляющий переход тиристора, возрастает, и в следующем положительном полупериоде он открывается с меньшей задержкой, увеличивая таким образом подводимую к двигателю мощность.

  В итоге снижение частоты вращения двигателя из-за увеличения нагрузки оказывается существенно меньшим, чем было бы при отсутствии регулятора. поскольку сравнение напряжений от резистора R2 и противр-ЭДС возможно только при отсутствии тока через двигатель. Конденсатор С1 в делителе напряжения сети расширяет зону регулирования в сторону малых скоростей, а конденсатор С2 в цепи управляющего электрода тиристора понижает чувствительность регулятора к искрению щеток двигателя.

  Однополупериодный режим двигателя приводит к снижению отдаваемой мощности. Для достижения максимальных мощности и скорости следует зашунтировать тиристор, нажав на кнопку SA1. В этом случае на двигатель будут подаваться обе полуволны сетевого напряжения. Как уже указывалось, основной недостаток рассмотренного регулятора состоит в необходимости использования высокочувствительного тиристора с током открывания менее 100 мкА, который практически нечем заменить. Введение транзисторного аналога тиристора позволяет снять ограничения на параметры открывания VS1 при сохранении тех же регулировочных характеристик. Установка стабилитрона в делитель напряжения сети понижает изменения скорости двигателя при колебаниях питающего напряжения.

  Схема модернизированного регулятора представлена на рис, 2. Как и рассмотренное выше устройство, регулятор работает только при положительной полуволне сетевого напряхения. Напряжение рассогласования моста через диод VD2 и резистор R10 поступает к переходу база — эмиттер транзистора VT2, Чувствительность данного устройства и качество его регулирования выше, так как напряжение открывания транзисторов существенно меньше* чем у тиристоров. Ток управления по аналогии с регулятором, представленным на рис. 1, выбран равным 0,1 мА путем шунтирования перехода транзистора резистором R7. Если напряжение, поступающее с движка резистора R2, выше напряжения на роторе двигателя, то транзистор VT2 открывается и открывает VT1, Эти приборы образуют аналог тиристора и при включении формируют мощный импульс разрядного тока конденсатора СЗ, который через токоограничивающий резистор R9 поступает на управляющий электрод симистора VS1, Симистор включается, на двигатель подается напряжение, и число его оборотов увеличивается. Если же напряжение на резисторе R2 ниже, чем на роторе двигателя, симистор не включится, число оборотов сократится.

  Накопительный конденсатор СЗ заряжается от сети через резистор R5. Стабилитрон VD4 ограничивает напряжение на конденсаторе на уровне, несколько превышающем возможное напряжение открывания симисторов или тиристоров. Кроме того, стабилитрон исключает появление обратного напряжения на транзисторах усилителя. Конденсатор С4, помимо снижения помех от искрения щеток двигателя, выполняет функцию интегрирования в цепи обратной связи. Увеличение его емкости повышает устойчивость регулятора, что бывает нужно в случае плохого контакта щеток, сопровождающегося их сильным искрением, или при установке предельно малых скоростей, когда может возникнуть так называемое «качание» оборотов. Однако следует помнить, что с увеличением емкости конденсатора С4 динамические характеристики привода ухудшаются и качество стабилизации скорости снижается. Постоянная цепи R5C3 такова, что конденсатор СЗ заряжается быстрее заряда конденсатора C4. Это сделано для того, чтобы в любой возможный момент открывания транзистора VT2 на конденсаторе СЗ уже присутствовало рабочее напряжение, необходимое для выработки пускового импульса. Иногда такое условие может быть нарушено при резком разбалансе моста — при заторможенном двигателе (низкое сопротивление ротора) и максимальном напряжении на движке резистора R2 (большой открывающий ток с делителя). В результате транзисторы открываются до завершения зарядки конденсаторе СЗ, напряжение на нем отсутствует, импульс разрядного тока не формируется. Ток, протекающий через резистор R5, достаточен для удержания открытого состояния транзисторов, но мал для включения симистора, и поэтому двигатель не вращается. Подобную возможность можно расценить как положительную, поскольку в этом случае и при заклинивании привода двигатель отключается, Если же она нежелательна, ее устраняют некоторым снижением сопротивлений резисторов R5 — R7 и (или) повышением сопротивления резистора R1. Величина и форма напряжения на резисторе R2 практически не зависят от изменения сетевого напряжения благодаря наличию ограничителя R4 — VD1. В результате колебания питающего напряжения не приводят к нестабильности устанавливаемого фазового угла открывания симистара. Существенно снижается и нестабильность по напряжению сети устанавливаемой скорости двигателя. При неизменном фазовом угле скорость меняется только за счет изменения амплитуды напряжения на двигателе.

  Особенность описываемого регулятора заключается в применении симистора. Дело в том, что коммутация максимальной скорости замыканием цепи «анод-катод» предполагает наличие контактов SA1 мгновенного действия с достаточной разрывной мощностью. При ином исполнении контактов в них может возникать искрение или электрическая дуга. Послед няя крайне нежелательна, так как приводит к подгару контактов и печатной платы и, следовательно, пожароопасна. Симис-тор позволяет перенести коммутацию в цепь управляющего электрода, что полностью исключает искрение в контактах, упрощает их конструкцию и привязку к регулировочному резистору R2. При регулировании симистор работает как тиристор, а при замыкании контактов пропускает на двигатель переменный ток. Транзисторы во время открытого состояния симистора блокируются и не функционируют.
Показанное на схеме регулятора включение статарной и роторной обмоток оптимально для двигателей с раздельно выведенными концами обмоток. При применении двигателей с внутренним соединением роторной и статорной обмоток их подключают на место показанной на схеме роторной обмотки, а цепь статорной обмотки заменяют перемычкой. Однако из-за наличия статорной обмотки в цепи обратной связи последний вариант регулятора имеет несколько худшие характеристики регулирования скорости. Конденсаторы С2, С6 устраняют помехи, а цепочка R11C5 подавляет искрение щеток. Резистор R1 ограничивает пределы регулирования открытого состояния симистора началом положительного полупериода. При возрастании нагрузки на валу про-тиво-ЭДС двигателя дополнительно сдвигает момент отпирания симистора к началу полупериода относительно положения, задаваемого регулировочным резистором R2 на холостом ходу. Если резистор R1 был выбран на холостом ходу, та под нагрузкой противо-ЭДС как бы переносит момент открывания симистора за начало полупериода. В результате он открывается через период и возникает «провал-(уменьшение) скорости в верхнем положении движка резистора R2, Это явление устраняется увеличением сопротивления резистора R1.

  Во время разработки регулятор испытывался с различными коллекторными электродвигателями: ДК77 (для бытовых электроприборов и электроинструмента), МШ-2 (для швейных машин) и даже с двигателем параллельного возбуждения СЛ261М. Управление такими существенно различными двигателями не потребовало внесения каких-либо изменений в регулятор. При использовании двигателя с параллельным возбуждением следует иметь в виду, что его статорная обмотка должна запитываться от отдельного внешнего источника и притом до подачи напряжения через регулятор на якорь.

  Возможности регулятора иллюстрируют нагрузочные характеристики (сплошной линией без VD1, штриховой с VD1), снятые с двигателем ДК77-280-12 при устанавливаемой на холостом ходу скорости 1500 об/мин и различном напряжении сети (рис, 3). Этот двигатель мощностью 400 Вт при скорости 1200 об/мин легко тормозится положенной на его вал рукой вплоть до полной остановки в том случае, если питание на чего подавать через автотрансформатор, устанавливая на холостом ходу ту же скорость 1500 об/мин.

  При незначительном усложнении относительно прототипа регулятор совершенно некритичен к разбросу параметров элементов. В качестве симисторов применимы ТС, ТС2, 2ТС112иТС106 на токи 6,3-10-16 А, а также КУ208Г или 2У208Гна 5 А. Можно также использовать тиристоры КУ201Л, 2У201Л, КУ202Н-М, 2У202Н-М, КУ228И и другие при условии установки замыкателя по цепи «анод-катод». Необходимость теплоотвода определяется величиной тока нагрузки. Транзисторы должны допускать ток не ниже 250 мА и напряжение не менее 15В, Функции VT1 могут выполнять КТ350А, КТ209 (А-М), КТ501А, КТ502А (Б-Е), КT661A, КТ681А и другие, a VT2 — КT503A (Б-Е), КТ645А, КТ660А (Б), КТ684А (Б) и другие с аналогичными характеристиками. Диоды могут быть на ток не ниже 10 мА и напряжение не менее 400 В —КД105(Б-Г), КД209 (А-В), КД221 (В-Г), КД226 (В-Д), Д209,Д210,Д211,Д226,Д237(Б-В). Стабилитрон VD1 подойдет на напряжение стабилизации 120…180 В (КС630А, КС650А, KC680A, 2C920A, 2C950A, 2С980А) и может быть заменен цепочкой последовательно включенных маломощных стабилитронов на суммарное напряжение 150 В. Стабилитрон VD4 — любой маломощ-ный с напряжением стабилизации 9…11 В, кроме термокомпенсированных. Конденсаторы С1—С4 — керамические КМ, КМ-6, К10-17 или пленочные К73-17. Конденсаторы С5, С6 — К73-17 с номинальным напряжением 630 В (конденсаторы иных типов и К73-17 на меньшее номинальное напряжение использовать нельзя).
Постоянные резисторы — МЛТ или любые другие. Резистор R2 — РП1-64А, он может быть заменен любым непроволочным переменным резистором с линейной характеристикой (СПЗ-4М, СПЗ-6, СП3-9 и др.). Выбор резистора с обратнолога-рифмической характеристикой (В) позволит расширить плавность регулирования в зоне малых скоростей двигателя, Подст-роечный резистор R3 — СПЗ-27, СПЗ-38. Его можно заменить подобранным постоянным резистором. Замыкатель максимальной скорости SA1 выполнен в виде подвижного пружинного пластинчатого контакта и неподвижной стойки на плате регулятора. Между резистором R2 и подвижным контактом находится переходная пластмассовая втулка с кулачком, обеспечивающим замыкание подвижного контакта со стойкой в верхнем по схеме положении переменного резистора R2.

  При налаживании регулятора движок резистора R2 следует установить в нижнее по схеме положение и подстроенным резистором R3 выставить желаемую минимальную скорость вращения двигателя. Далее, изменяя положение движка резистора R2, следует проверить изменение оборотов от минимальных до максимальных, отсутствие «качания» оборотов на минимальной скорости без нагрузки, отсутствие «провала» в оборотах на максимальной скорости однополупериодного режима под нагрузкой, а также срабатывание контактов максимальной скорости. Качание устраняется увеличением емкости конденсатора С4, а провал — увеличением сопротивления резистора R1, после чего вновь уточняют положение движка резистора R3.
В заключение необходимо отметить, что в регуляторах данного типа таходатчи-ксм является исполнительный электродвигатель и напряжение обратной связи определяется остаточной намагниченностью магнитопровода двигателя и стабильностью щеточного контакта. По этой причине качество регулирования напрямую зависит от указанных характеристик применяемого двигателя. Однако предельная простота устройства управления и хорошие нагрузочные характеристики вполне компенсируют этот недостаток.

В. ЖГУЛЕВ
г. Серпухов




Источник: shems.h2.ru


Стабилизатор частоты вращения коллекторных двигателей

Cтабилизатор частоты вращения — регулятор с положительной обратной связью по току. Информацию о частоте
вращения
коллекторного двигателя можно извлечь из потребляемого им тока. Этот ток содержит переменную составляющую,
первая
гармоника которой имеет частоту, равную частоте вращения двигателя, умноженную на число пластин коллектора.
Двигатели,
которые чаще всего применяются в магнитофонах, имеют три пластины коллектора. Поэтому эта частота равна
утроенной
частоте вращения двигателя. Именно на этом принципе и построен описываемый регулятор.

Принципиальная схема стабилизатора частоты вращения

Для получения сигнала обратной связи в цепь питания двигателя включен датчик тока R1. Ток, потребляемый
двигателем,
создает на этом резисторе падение, которое имеет переменную составляющую около 100 мВ peak-to-peak (график
1). Основная
гармоника выделяется с помощью простейшего ФНЧ R2C1 и через разделительный конденсатор C2 поступает на вход
усилителя,
собранного на ОУ U1A. Коэффициент усиления задан резисторами R4R5 так, чтобы усилитель работал в режиме
ограничения. На
его выходе формируетя практически прямоугольный сигнал с частотой, равной утроенной частоте вращения
двигателя (график
2). Этот сигнал дифференцируется с помощью цепочки C3R6R7R8 (график 3). Отрицательный выброс ограничивается
диодом VD1.
Далее сигнал поступает на компаратор, в роли которого использован ОУ U1B. Опорное напряжение задается с
помощью делителя
R9R10. На выходе компаратора формируются прямоугольные импульсы постоянной длительности (график 4).
Постоянная
составляющая такой импульсной последовательности пропорциональна частоте следования импульсов, т.е. частоте
вращения
двигателя. Импульсная последовательность интегрируется с помощью цепочек R11R12C5 и R13C6. Постоянное
напряжение,
пропорциональное частоте вращения, поступает на пропорционально-интегрирующий регулятор, собранный на ОУ
U1C. Для
получения образцового напряжения применен регулируемый стабилитрон U2. Нужную частоту вращения устанавливают
регулировкой этого напряжения с помощью переменного резистора R19. Выход ОУ U1C умощнен комплементарным
эмиттерным
повторителем на транзисторах VT1VT2. Казалось бы, направление тока питания двигателя всегда одно и то же и
достаточно
было бы одиночного эмитерного повторителя, который обеспечивал бы вытекающий ток. Но на самом деле с
двухтактным
эмиттерным повторителем гораздо лучше поведение системы во время переходных процессов (при пуске двигателя
или при
резких колебаниях нагрузки на валу).

Форма сигналов в контрольных точках

Нужно отдельно остановиться на проблеме устойчивости системы автоматического регулирования. В данной
ситуации дело
усложняется тем, что на устойчивость влияют и механические параметры системы, которые количественно учесть
очень трудно.
Поэтому в некоторых случаях придется подобрать АЧХ регулятора с помощью элементов R16C7 или даже ограничить
коэффициент
усиления, включив параллельно этой цепочке резистор. Подбор нужно вести по критерию устойчивости регулятора
как в
установившемся режиме, так и во время переходных процессов. Для этого нужно с помощью осциллографа
контролировать
напряжение питания двигателя. При включении оно должно плавно достичь номинального значения, причем без
колебательного
процесса. Если при работающем я такждвигателе изменить нагрузку на валу, напряжение питание должно принять
новое
значение без колебательного процесса.

Полную версию этой статьи можно найти в журнале «Схемотехника», №4 за 2001 год. Автор — Л.Ридико

Методы управления скоростью различных типов двигателей с регулированием скорости

Скачать PDF

Kazuya SHIRAHATA

Компания Oriental Motor Co., Ltd. предлагает широкий выбор двигателей с регулированием скорости. Наши блоки управления скоростью включают в себя двигатель, привод (контроллер) и потенциометр, который позволяет легко регулировать скорость. Существует три группы двигателей с регулированием скорости. «Моторный блок управления скоростью переменного тока», в котором используется самый популярный однофазный асинхронный двигатель с конденсатором, небольшой и высокоэффективный «Бесщеточный двигатель постоянного тока» и «Инверторный блок», который сочетает в себе трехфазный асинхронный двигатель с маленький инвертор. В этой статье объясняется структура, принцип управления скоростью и особенности каждой группы продуктов, а также представлены наши стандартные продукты.

1. Введение

Большое количество двигателей используется для общих целей в нашем окружении от бытовой техники до станков на промышленных предприятиях. Электродвигатель в настоящее время является необходимым и незаменимым источником энергии во многих отраслях промышленности. Функции и характеристики, необходимые для этих двигателей, очень разнообразны. Если сосредоточить внимание на сегменте управления скоростью на рынке двигателей, серводвигатели и шаговые двигатели регулируют свою скорость с помощью последовательности импульсов, в то время как асинхронный двигатель и бесщеточный двигатель постоянного тока регулируют скорость с помощью внешнего резистора и/или напряжения постоянного тока.
В этой статье объясняется структура, принцип управления скоростью и характеристики следующих трех групп продуктов, которые могут относительно легко управлять скоростью с помощью аналогового входа.

  • Двигатель переменного тока и мотор-редуктор
  • Бесщеточный двигатель постоянного тока и мотор-редукторы
  • Инверторный блок

2. Методы управления скоростью различных двигателей с регулированием скорости

Способ управления выходом схемы управления скоростью можно условно разделить на две группы: фазовое управление и управление инвертором, которые составляют группы продуктов, показанные на рис. 1.

Рис. 1 Классификация двигателей с регулируемой скоростью

2.1. Двигатели переменного тока с регулируемой скоростью

2.1.1. Конструкция двигателя

Как показано на рис. 2, конструкция однофазных и трехфазных асинхронных двигателей включает в себя статор, на который намотана первичная обмотка, и литой из цельного алюминия ротор в форме корзины. Ротор недорогой, потому что конструкция проста и не использует магнит.

Рис. 2 Конструкция асинхронного двигателя

Когда скорость этого двигателя должна регулироваться, для определения скорости используется тахогенератор, который крепится к двигателю, как показано на рис. 3. Тахогенератор состоит из магнита, подключенного непосредственно к вал двигателя и катушка статора, которая обнаруживает магнитные полюса и генерирует переменное напряжение с частотой 12 циклов на оборот. Поскольку это напряжение и частота увеличиваются с увеличением скорости вращения, скорость вращения двигателя регулируется на основе этого сигнала.

Рис. 3 Система управления двигателем переменного тока

 

2.1.2. Принцип управления скоростью
Скорость вращения N асинхронного двигателя можно выразить выражением (1). Когда напряжение, подаваемое на двигатель, увеличивается и уменьшается, скольжение с изменяется, а затем изменяется скорость вращения N.
N = 120· ·(1- s )/ P  · · · · · · · · · · (1)

N : Скорость вращения [об/мин]
F : Частота 〔Hz〕 
P : Число полюсов двигателя
S : Скольжение

В случае асинхронного двигателя, как показано на рис. 4, существует стабильный и нестабильный диапазоны на кривой Скорость вращения — Крутящий момент. Поскольку невозможно надежно работать в нестабильном диапазоне, простое управление напряжением (управление без обратной связи) ограничивается управлением скоростью в узком диапазоне, подобном N1~N3 на рис. 5. Чтобы обеспечить надежную работу даже в В вышеупомянутом нестабильном диапазоне необходимо определить скорость вращения двигателя и использовать механизм управления напряжением (управление с обратной связью), который уменьшает ошибку скорости по сравнению с заданным значением.

Рис. 4 Скорость вращения – характеристики крутящего момента асинхронных двигателей

Рис. 5 Простое управление напряжением

Доступные методы управления напряжением включают управление с помощью трансформатора или фазового управления. На рис. 6 показано, когда напряжение регулируется с помощью трансформатора. Этот метод не так просто реализовать с двигателем переменного тока с регулируемой скоростью. В качестве альтернативы, напряжение переменного тока можно регулировать, устанавливая время включения/выключения каждого полупериода напряжения переменного тока (50 или 60 Гц), подаваемого на двигатель, с помощью переключающего элемента (тиристора или симистора), который может напрямую включать и выключать переменный ток. напряжения, как показано на рис. 7 и рис. 8. Управление скоростью достигается методом фазового управления путем управления среднеквадратичным значением. значение переменного напряжения.

Рис. 6 Изменение напряжения с помощью трансформатора

Рис. 7 Изменение напряжения с помощью фазы управления

Рис. управление фазой с обратной связью даже в нестабильном диапазоне.
На рис. 9 в виде блок-схемы показана конфигурация системы управления скоростью для двигателя переменного тока с регулированием скорости.

Рис. 9 Блок-схема системы управления двигателем переменного тока

Рис. 10 Форма волны для каждого блока

На рис. 10 показаны формы волны для каждого блока. Заданное значение скорости d и обнаруженное напряжение e скорости, генерируемой тахогенератором, сравниваются в блоке усилителя сравнения. Затем определяется уровень сигнала напряжения a .
Сигнал напряжения a низкий, когда обнаруженное значение скорости достигает заданного значения скорости, и выше, когда заданное значение скорости снижается. Поскольку триггерный сигнал выводится в точке, где треугольная волна b  пересекается с сигналом напряжения a , определяется время (фазовый угол) включения симистора с уровнем сигнала напряжения a  . Когда это время медленное, напряжение, подаваемое на двигатель, становится низким, и скорость вращения двигателя уменьшается. Пониженная скорость вращения снова возвращается, и управление повторяется, так что разница между обнаруженным значением скорости и заданным значением скорости всегда может быть постоянной.
На рис. 11 показан внешний вид вышеупомянутого регулятора скорости. На рис. 11 рабочая точка двигателя рисует петлю Q-R-S-T-Q с центром в точке O, а скорость вращения поддерживается между N1 и N2. Эта петля максимально уменьшена за счет повышения точности определения скорости.

Рис. 11 Работа регулятора скорости

Электродвигатель регулятора скорости переменного тока имеет следующие особенности при использовании фазового регулирования с обратной связью.
1) Поскольку напряжение переменного тока регулируется напрямую, схема управления скоростью может быть сконфигурирована просто потому, что сглаживающая схема не нужна, что позволяет получить компактную конструкцию по низкой цене.
2) Точно так же возможна конструкция с длительным сроком службы, поскольку не нужен большой алюминиевый электролитический конденсатор.
3) Переключение выполняется только один раз в каждом полупериоде стандартного источника питания переменного тока, что снижает уровень создаваемого шума.

2.1.3. Характеристики
Двигатели переменного тока с регулированием скорости вращения обычно имеют характеристики скорости вращения и крутящего момента, показанные на рис. 12.

Рис. 12. «Линия безопасной эксплуатации» представляет собой ограничение, при котором двигатель может работать в непрерывном режиме без превышения максимально допустимой температуры.

2.2. Бесщеточный блок управления скоростью постоянного тока
2.2.1. Конструкция двигателя
Что касается конструкции бесщеточного двигателя, то катушка соединена звездой (звездой) с тремя фазами: U, V и W и расположена в статоре, а ротор состоит из магнитов. намагничены в многополюсной конфигурации, как показано на рис. 14.
Внутри статора три ИС Холла расположены как магнитные элементы, так что разность фаз выходного сигнала от каждой ИС Холла будет составлять 120 градусов на каждый оборот ротор.

Рис. 14 Конструкция бесщеточного двигателя постоянного тока

2.2.2. Принцип управления скоростью
Как показано на рис. 15, характеристики скорости вращения бесщеточного двигателя постоянного тока имеют отрицательный наклон, когда его скорость не регулируется, что аналогично характеристике коллекторного двигателя постоянного тока.

Рис. 15 Характеристики вращательного момента бесщеточного двигателя постоянного тока скорость N1. Когда приложен момент нагрузки T1, рабочая точка смещается к Q, а скорость вращения уменьшается до N2, однако скорость вращения возвращается к N1, если напряжение повышается до V3. Следовательно, поскольку скорость вращения изменяется всякий раз, когда изменяется крутящий момент нагрузки, механизм управления скоростью должен будет изменять входное напряжение только всякий раз, когда наблюдается изменение скорости, чтобы поддерживать постоянную скорость на линии PR.
Это управление напряжением осуществляется инвертором в выходной части схемы управления (драйвер). Этот инвертор генерирует трехфазное переменное напряжение из постоянного тока путем включения и выключения, как показано на рис. 16 (b), с помощью шести переключающих элементов (FET или IGBT), показанных на рис. 16 (a).

Рис. 16 (a) Выходная часть цепи управления (драйвер)

Рис. 16 (b) Последовательность переключения

Переключающие элементы подключены к обмотке двигателя, как показано на рис. 16 (а), а состояние ВКЛ/ВЫКЛ переключающего элемента определяет, какая катушка статора находится под напряжением и в каком направлении будет течь ток, то есть какая катушка становится полюсом N или полюсом S.
Фактически, положение магнитного полюса ротора определяется интегральной микросхемой Холла, и соответствующий переключающий элемент включается или выключается, как показано на рис. 16 (b). Например, в случае шага 1 транзисторы Tr1 и Tr6 включены, и ток течет из фазы U в фазу W. В это время U-фаза возбуждается как полюс N, а W-фаза становится полюсом S, и ротор поворачивается на 30 градусов, переходя к шагу 2. Один оборот ротора выполняется путем повторения этой операции 12 раз (шаг 1). ~ 12).
На рис. 17 показана конфигурация для управления скоростью бесщеточного двигателя постоянного тока в виде блок-схемы.

Рис. 17 Блок-схема системы бесщеточного двигателя постоянного тока

Последовательность переключения инвертора определяется сигналом от микросхемы Холла в части определения положения блок-схемы, и двигатель вращается.
Затем сигнал от IC Холла отправляется на детектор скорости, чтобы стать сигналом скорости, и он сравнивается с сигналом задания скорости в блоке усилителя сравнения, который затем генерирует сигнал отклонения. Значение входного тока двигателя определяется блоком настройки ШИМ на основе сигнала отклонения.
Бесщеточные двигатели постоянного тока имеют следующие особенности.
1) Он имеет высокий КПД, поскольку используется ротор с постоянными магнитами, а вторичные потери малы.
2) Инерция ротора может быть уменьшена, и достигается высокая скорость отклика.
3) Двигатель можно уменьшить, поскольку он очень эффективен.
4) Небольшие колебания скорости при изменении нагрузки.

На рис. 16 показана типичная последовательность переключения (метод подачи напряжения на 120 градусов). Еще более эффективная система бесщеточного двигателя постоянного тока использует метод синусоидального привода, получая информацию о положении ротора с высоким разрешением от программного обеспечения из сигнала Холла IC. Этот метод приводит к малошумному приводу, поскольку ток, который течет к двигателю, не изменяется быстро. (2)

Рис. 18 Сравнение напряжений, прикладываемых методом синусоидального привода и методом 120-градусного привода

2.2.3. Характеристики
Характеристики скорости вращения бесщеточного двигателя постоянного тока имеют ограниченный рабочий диапазон в дополнение к непрерывному рабочему диапазону.
Зона ограниченного режима работы очень эффективна при запуске инерционной нагрузки. Однако, когда работа в ограниченном режиме продолжается в течение пяти секунд или более, активируется функция защиты привода от перегрузки, и двигатель замедляется до полной остановки.

2.3. Блок управления скоростью инвертора

2.3.1. Принцип управления скоростью

Инверторный блок регулирует скорость трехфазного асинхронного двигателя путем изменения частоты f напряжения, подаваемого на двигатель. Инверторный блок изменяет частоту f путем изменения цикла ВКЛ/ВЫКЛ шести переключающих элементов, а скорость вращения (N) двигателя изменяется пропорционально выражению в формуле (1).

N = 120· ·(1- s )/ P ·· · · · · · · · · (1)

N : Скорость вращения [об/мин]
F : Частота 〔Гц〕 
P : Число полюсов двигателя
S : Скольжение

Кроме того, чтобы напряжение, подаваемое на обмотку, имело синусоидальную форму, инвертор регулирует рабочий цикл ВКЛ/ВЫКЛ, как показано на рис. 21. Время ВКЛ/ВЫКЛ регулируется таким образом, чтобы среднее напряжение, двигатель приобретает синусоидальную форму путем сравнения треугольной волны, называемой несущей, с синусоидальной формой сигнала. Этот метод называется ШИМ-управлением.

Рис. 19 Управление работой ВКЛ/ВЫКЛ

Метод управления скоростью наших инверторных блоков делится на два типа: управление без обратной связи, которое просто изменяет скорость, и управление с обратной связью, которое снижает скорость изменение при изменении нагрузки двигателя.
1) Управление без обратной связи
На рис. 22 показана конфигурация системы управления в виде блок-схемы.

Рис. 20 Блок-схема управления без обратной связи

Этот метод используется для изменения входного напряжения и частоты двигателя в соответствии с заданной частотой. Этот метод подходит для изменения скорости и может достигать высоких скоростей (частота может быть установлена ​​до 80 Гц) просто тогда, когда регулирование скорости при различных нагрузках не так важно.
Создаваемый крутящий момент T двигателя отображается по формуле (2). Из этого соотношения можно сказать, что крутящий момент также будет постоянным, если V/f, отношение напряжения V к частоте f, будет постоянным.

   I・V   ・・・1 (9200)

: крутящий момент [N · M]
: напряжение питания [V]
: Моторный ток [A]
: Частота [Гц]
0004

Однако, чем ниже скорость, тем труднее поддерживать постоянным входное сопротивление асинхронного двигателя при изменении f. Следовательно, чтобы получить постоянный крутящий момент от низкой скорости до высокой, необходимо отрегулировать отношение V/f на низкой скорости в соответствии с характеристиками двигателя, как показано сплошной линией на рис. 23.

Рис. 21 Управление V/f

2) Управление с обратной связью
На рис. 24 показана конфигурация блок-схемы системы управления с обратной связью, используемой в нашей серии BHF.

Рис. 22 Блок-схема управления с обратной связью

Этот метод определяет разность фаз между напряжением выходного блока инвертора и первичным током, который вычисляет частоту возбуждения, соответствующую нагрузке, используя данные характеристик. таблице (рис. 25), подготовленной заранее, и регулирует частоту преобразователя без необходимости использования датчика скорости на двигателе.

Рис. 23 Характеристики Таблица

С помощью этой таблицы характеристик и обнаруженного времени разности фаз t инвертор вычисляет выходную частоту инвертора, которая соответствует команде скорости вращения Nset, установленной потенциометром скорости, и выводит ее как выходную частоту инвертора. После получения выходной частоты блок управления V/f вычисляет напряжение, подаваемое на двигатель, соответствующее выходной частоте f, и выполняет управление скоростью, управляя инвертором PWM. В результате при приложении нагрузки выходная частота инвертора повышается, так что можно компенсировать снижение скорости вращения. (3)

2.3.2. Характеристика s

Характеристики скорости вращения и крутящего момента инверторного блока показаны на Рис. 26 и Рис. 27. Как поясняется в разделе, посвященном двигателю с регулированием скорости переменного тока, на характеристике крутящего момента нарисована «линия безопасной работы». Эта линия представляет собой предел непрерывной работы, а область под этой линией называется областью непрерывной работы.

Рис. 24. Характеристики скорости вращения для управления без обратной связи

) для использования в широком диапазоне приложений управления скоростью. Подходящий продукт для управления скоростью можно выбрать в соответствии с функцией, производительностью, стоимостью и целью, необходимой для вашего приложения.
Oriental Motor продолжит работу над разработкой продукции, чтобы в будущем мы могли предлагать продукцию, которая наилучшим образом отвечает различным потребностям наших клиентов.

Ссылки

(1) Исследовательская группа по технологиям двигателей переменного тока: «Книга для понимания малых двигателей переменного тока», Kogyo Chosakai Publishing (1998) 163, стр. 19-25 (2003)
(3) Коджи Намихана, Масаёси Сато: «Новый метод управления трехфазным асинхронным двигателем», RENGA № 159, стр. 23-28 (1999)

Kazuya Shirahata
Завод Tsuruoka, ACIX Operations
Circuit Technology Division
Секция разработки схемы

Что делает регулятор скорости двигателя? — 4QD

Справочная техническая информация » Что делает регулятор скорости двигателя?

По сути, контроллер скорости двигателя (также известный как драйвер двигателя) просто регулирует скорость и направление вращения электродвигателя, манипулируя приложенным к нему напряжением, но на самом деле он должен делать намного больше;

Но они могут делать некоторые или все из следующих действий….

  • Обеспечить управляемый пуск [или плавный пуск]. Заглохший двигатель может потреблять до 20 раз больше нормального рабочего тока, если вы внезапно подключите аккумулятор к двигателю, может возникнуть очень высокий начальный скачок тока. Мы видели, как корпус двигателя разорвался на части, а зубья шестерни сорваны из-за высокого крутящего момента, создаваемого неконтролируемым включением. Двигатель с регулятором скорости может ограничить этот начальный скачок крутящего момента, чтобы обеспечить плавный [мягкий] пуск.
  • Реверс; чтобы сделать это безопасно, контроллер сначала должен остановить двигатель — реверсирование с полной скорости может стать захватывающим, если не сделать это должным образом!
  • Защита от обратной полярности на тот случай, если кто-то подключит плюс к минусу.
  • Защита от сбоев в цепи, контроллер должен безопасно реагировать в случае обрыва управляющих проводов и т. д.
  • Обеспечивает все другие функции, необходимые для различных приложений, такие как плавное ускорение и торможение, настройка максимальной скорости, ограничение тока, пропорциональное управление и т. д.

Все контроллеры 4QD работают путем включения и выключения подключения аккумулятора к двигателю примерно 20 000 раз в секунду с использованием метода, называемого широтно-импульсной модуляцией [ШИМ]. Напряжение на двигателе выглядит следующим образом…..

Двигатель усредняет эти импульсы, так как скорость переключения слишком высока для обнаружения двигателем. Если батарея подключена только в течение половины общего времени [B], то двигатель воспринимает батарею 24 В, как если бы она была только 12 В, и работает на половинной скорости. Кроме того, поскольку переключение очень быстрое, индуктивность двигателя, которая действует как электрический маховик, поддерживает постоянный ток в двигателе. Но этот ток течет от батареи только половину времени, поэтому ток батареи будет вдвое меньше тока двигателя.