Содержание

4ех тактный бензиновый двигатель внутреннего сгорания

 

4ех тактный бензиновый двигатель стал основной рабочей «лошадкой» во многих сферах жизни человека, особенно в транспортной.

История 4ех тактного ДВС началась с французского инженер Этьена Ленуара. Он создал первый надёжно работавший двигатель в 1860 году. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. Двигатель Отто и стал основой поршневого двигателестроения. А закрепил его на рынке автомобилестроения Генри Форд и его знаменитая массовая модель Форд Т, выпускавшийся с 1908 года.

Столь успешным двигатель стал благодаря своей простой и в тоже время работоспособной конструкцией. Физика работы двигателя основана на термобарических процессах газов.

Соединение горючего и воздуха приводит к образованию смеси. Сгорающая смесь воздуха и горючего способствует образованию давления. Оно направляется на поршень. Который в свою очередь вращает коленчатый вал через кривошипно-шатунный механизм. В свою очередь с вала уже снимается полезная работа. Отмечается цикличность работы механизма в целом.

Процесс работы двигателя.

Такт 1– Впуск.

Вначале впуска поршень находится в верхнем положении, так называемая верхняя мертвая точка (ВМТ) и должен опуститься в крайнее нижнее положение – нижняя мертвая точка (НМТ). При этом впускной клапан открыт свежая порция топливной смеси засасывается внутрь цилиндра. Впускной клапан открывается деталями распределительного вала — кулачками.

Такт 2 – Сжатие.

Поршень двигается в обратном направлении. Рабочая смесь постепенно сжимается. Она становится намного горячее. Степенью сжатия можно называть отношение объемов цилиндра в НМТ и камеры сгорания в ВМТ. Если используется инжекторная система смесеобразования, то на данном этапе в цилиндр еще подается порция топлива, которое распыляется через форсунку.

Такт 3 – Рабочий такт.

Рабочий ход поршня обеспечивает сгорание топлива с дальнейшим расширением. После полного сжатия горючего свеча дает искру, которая в свою очередь, воспламеняет смесь. Воздушно-топливная смесь сгорая расширяется, создавая повышенное давление на поршень. Происходит выталкивание поршня с ускорением.

Такт 4 – Выпуск.

Когда поршень попадает в крайнее нижнее положение, выпускной клапан открыт. Поршень движется вверх и выталкивает из цилиндра уже отработанные газы. При дохождения поршня до ВМТ, выпускной клапан закрывается. С этого момента рабочий цикл из 4 тактов повторяется.
Запуск не обязательно начинается после выпуска. Открытие обеих клапанов одновременно называется перекрытием. Оно важно для того, чтобы цилиндры лучше наполнялись горючей смесью и лучше были очищены от отработанных газов.

Основные параметры ДВС

Мощность и крутящий момент двигателя

Изменяется в лошадиных силах или в Ваттах. Мощность — основной параметр двигателя. Мощность двигателя показывает то количество энергии который можно «снять» с вала двигателя при оптимальном режиме работы двигателя. Показывает, какую работу двигатель может выполнить за промежуток времени, а более точнее, сколько энергии успеет передать сгорающее топливо кривошип — шатунной системе через поршень за временной промежуток рабочего такта. Мощность находится в прямой зависимости от крутящего момента.
Крутящий момент — сила, с которой проворачивается вал двигателя. Зависит от плеча воздействия шатуна на кривошип вала двигателя. Или какое тормозное усилие нужно приложить к валу двигателя, чтобы его остановить.

Диаграмма зависимость мощности и крутящего момента от числа оборотов коленчатого вала двигателя Audi 4,2 л V8 FSI.

Объем двигателя

Объем цилиндра  — это закрытый объем, в котором рабочее тело (сгорающая топливно-воздушная смесь) действует на часть замкнутого пространства — поршень Объем двигателя складывается из всех объемов всех цилиндров.
Сложив объем углубления в головке над поршнем и объем полости цилиндра, получают объем камеры сгорания.
Рабочим объемом именуют пространство, которое высвобождается передвигающимся поршнем в цилиндре.
Полный объем равен сумме рабочего объема и объема камеры сгорания.
Литраж определяют сложением всех рабочих объемов цилиндров.

Количество цилиндров

В современных моторах количество цилиндров варьируется в широких диапазонах. Теоретически их может быть от 1 до не ограниченного количества. Но на практике в основном применяют в 4ех тактных двигателях компоновку от 4 до 12 цилиндров. Количество цилиндров зависит от мощности, степени сжатия и скорости оборота коленчатого вала. Огромную мощность, высокие обороты и высокую степень сжатия очень сложно организовать в цилиндре большого диаметра.

Мощность. Она зависит от количества и энергии рабочего тела (сгорающей газовой смеси), рабочее тело сильно нагревает поршень и цилиндр, чем больше поршень по диаметру, тем больше вероятность его нагрева и прогорания в центре. Именно с центра поршня тяжело снять излишки тепла.
Обороты коленчатого вала. Чем больше обороты, тем выше линейные и осевые скорости в кривошип-шатунном механизме и тем больше инертные силы, тем выше нагрузки действующие на поршень, шатун, вал, цилиндр. Поэтому тихоходные живут дольше своих «оборотистых собратья».
Степень сжатия. Чем больше нужно сжимать газ, тем большие нагрузки испытывает поршень и кривошип-шатунный механизм.
С выше сказанным вывод один — чем меньше диаметр цилиндра тем меньшие нагрузки испытывают элементы кривошип-шатунной группы. Но для создания большой мощности нужен больший объем камеры сгорания. Многоцилиндровость — это техническое решения, которое позволило решить главную задачу — увеличить мощность двигателя, не увеличивая при этом линейные и осевые инерционные силы и как итог механические нагрузки, а также поддержания в разумных пределах тепловых нагрузок, действующие на двигатель.

Степень сжатия

Степень сжатия очень сильно влияет на то, какое топливо следует применять для бензинового двигателя.

Степень сжатия определяют следующим способом, если разделить полный объем цилиндра на объем камеры сгорания. Она показывает уменьшение объема во время движения поршня. Степень сжатия сильно влияет на экономичность, экологичность и КПД двигателя.
Также топливная смесь может подаваться в цилиндры под давлением, что увеличивает количество свежего заряда.

Свежий заряд подаеться в цилиндры двигатели двумя способами:
• Без наддува: воздух или смесь всасывается в цилиндре под дествием разряжения и наполняет цилиндр с атмосферным давление.
• С наддувом: процесс протекает под давлением, в цилиндры подается газовая смесь с давлением в несколько раз выше атмосферного.

Дополнительные параметры ДВС

На выбор двигателя для механических средств также влияют дополнительные параметры, которые в одних системах могут прижиться, а в других создадут ряд проблем.

Способы смесеобразования

• Внешний: горючая смесь образуется за пределами цилиндров. К таким относятся карбюраторные и газовые двигатели.
• Внутренний: горючее впрыскивается непосредственно внутри цилиндров. Инжекторный тип смесеобразования.

Способы охлаждения

1. Жидкостный.
2. Воздушный.

Способ смазки

• Смешанный (масло смешивают со смесью горючих материалов).
• Раздельный (масло уже сразу заливают в картер).

Частота вращения

• Двигатели на тихом ходу.
• Двигатели, имеющие повышенную частоту вращения.
• Быстроходные двигатели.

Материал двигателя

Изготовление современных двигателей возможно из 3-х типов материалов:
• чугуна или других ферросплавов. Они наиболее прочные, но при этом имеют немалый вес.
• алюминия и его сплавов. Вес небольшой, прочность средняя.
• магниевых сплавов. По весу они самые маленькие, а вот прочностью они наделены высокой. Но цена таких двигателей огромна.

Компоновка ДВС

1. Рядный.

Все цилиндры располагаются в ряд. Такая конструкция двигателей самая простая, детали к ним имеют несложную технологию производства.

2. V- образный двигатель.
Цилиндры в таком двигателе расставлены в форме буквы V, в двух плоскостях, двумя рядами под углом 600 или 900. Образовавшийся между ними угол – это угол развала. Плюсом такого двигателя является мощность. Его габариты могут быть уменьшены за счет смещения в развал других важных компонентов. Его длина меньше, а ширина больше. Но из-за сложности таких конструкций бывает непросто определить центр их тяжести.

3. Оппозитные двигатели (маркировка В).
Они относительно уравновешены, для уменьшения вибрации все элементы располагают симметрично. Их конструктивная особенность – центральное крепление вала на жестком блоке. Это так же влияет на степень вибрации. Угол развала составляет 1800.

4. Рядно-смещенные агрегаты (маркировки VR).
Данную компоновку отличает малый угол развала (150) V-образного двигателя в содружестве с рядным аналогом. Это позволяет уменьшить размеры продольного и поперечного агрегатов. Маркировка VR расшифровывается как V – образный, R — рядный.

5. W (или дубль V) — образный.
Самый сложный двигатель. Известен двумя видами компоновки.
1) Три ряда, угол развала большой.
2) Две компоновки VR. Они компактны, несмотря на большое количество цилиндров.

 

6. Радиальный (звездообразный) поршневой двигатель.
Имеет небольшой размер длины с плотным размещение нескольких штук цилиндров. Они располагаются вокруг коленчатого вала радиальными лучами с равными углами. Ее отличает от других наличие кривошипно-шатунного механизма. В данной конструкции один цилиндр выступает главным, остальные – прицепные – крепятся к первому по периферии. Недостаток: в состоянии покоя нижние цилиндры могут пострадать от протекания масла. Рекомендуют до начала запуска двигателя проверить, что в нижних цилиндрах масло отсутствует. В противном случае возможны гидроудар и поломка. Чтобы увеличить размер и мощность двигателя, достаточно удлинить коленчатый вал образованием нескольких рядов – звезд.

Дополнительные системы двигателя внутреннего сгорания.

Запуск двигателя — Стартер

Для устойчивой работы ДВС требуются минимальные обороты 800 обр/мин. Запуск двигателя и вывод оборотов коленчатого вала, механизмов и агрегатов на нужные параметры для устойчивой и самоподдерживающей работы осуществляется стартером. Это электродвигатель для проворачивания коленчатого вала. Реже запуск двигателя осуществляется посредством подачи в цилиндры сжатого воздуха под давлением.

Топливная система

Топливная система для двигателя внутреннего сгорания состоит из следующих элементов:
— топливный бак (хранения запаса топлива, баллон, для хранения сжатого газа). Топливом для бензиновых ДВС является бензин или газ.
— топливный насос (подача и прокачка топлива по топливной системе).
— топливопровод (магистраль из стальных трубок для соединения топливного бака с системой смесеобразования).
— фильтры грубой и тонкой очистки топлива (очистка топлива от инородных частиц, которые могут засорить конструктивные элементы топливной системы).
— системя для образования газо-воздушной системы. Для образования рабочей газовой смеси из топлива и воздуха используются 2 вида систем.

Карбюраторная система

Карбюратор – один из узлов, входящих в систему питания двигателя. В нем как раз и готовится такая смесь из воздуха и горючего. Карбюратор также регулирует, сколько ее поступит в камеры сгорания. Известно несколько его видов: барботажные, мембранно-игольчатые и поплавковые.
Принцип действия основан на гидродинамических силах, создаваемых в карбюраторе конструктивно. Бензин, подаваясь в карбюратор и под действие движущегося атмосферного воздуха, принудительно испаряясь, смешивается с воздухом, образуя паровоздушную смесь. Далее смесь поступает во впускной коллектор двигателя, откуда далее в цилиндры. Пассивный принцип смесеобразования.

Инжекторная система

Инжекторные системы — это уже активная система смесеобразования. Инжекторная система состоит из управляющего электронного блока и форсунок. Форсунке подают заряд топлива (распыляя его) в засасываемый атмосферный воздух, подчиняясь командам электронного блока управления. Топливная смесь образуется либо во впускном коллекторе, либо же непосредственно в цилиндре, перед тактом сжатия смеси. Система осуществляют непосредственную дозировку нужного количества топлива.

 

Система смазки

Данный вид системы предназначен для смазки трущихся поверхностей двигателя во время работы. Смазка снижает коэффициент трения, что уменьшает потери энергии, снижает быстрый износ деталей двигателя, а также происходит удаление продуктов нагара и охлаждение поверхности деталей. Система смазки двигателя включает в себя следующие элементы:
— поддон картера двигателя с маслозаборником (предназначен для хранения масла).
— масляный насос (предназначен для перекачки масла и создания давления в системе).
— масляный фильтр (очистка масла от посторонних механических примесей).
— масляный радиатор (для охлаждения забираемого из картера масла перед подачей его в смазываемые детали).
— соединительные магистрали и каналы элементов системы смазки.

Система охлаждения

Система охлаждения нужна для отвода тепла от «горячих» элементов двигателя. При работе двигателя выделяется тепловая энергия от сгорающей рабочей смеси, только 40% данной энергии расходуется на полезную работу хода поршня, вся остальная энергия или в виде лучистой энергии оседает на стенках камеры сгорания или в виде горячих газов выходит через выхлопную систему в атмосферу.
Если не снимать эти «излишки» энергии, то в конечном итоге это приведет к выводу двигателя из строя, прогорание поршней, головы блока цилиндров, клапанов, заклинивание поршня в цилиндре. Для отвода энергии от двигателя используют теплоноситель — специальную охлаждающую жидкость, которая принудительно прокачивается через рубашку охлаждения блока цилиндров и головки цилиндров, снимая «излишки тепла», а далее по патрубкам поступает в радиатор, где часть ненужной энергии отдает окружающей атмосфере. После охлаждения жидкость вновь прокачивается через «рубашку охлаждения» двигателя. Охлаждающая система состоит:
— «рубашка охлаждения» (служит для обеспечения контакта охлаждающей жидкости с горячими элементами двигателя для снятия «излишков тепла»).
— центробежный насос (помпа) (служит для создания давления в системе и прокачки через систему жидкости).
— термостат (служит для разделения системы охлаждения на 2 контура, контур с радиатор и контур без радиатора).
— радиаторы охлаждающей жидкости и отопителя (предназначены для теплообмена между охлаждающей жидкости и окружающей средой).
— расширительный бачок (предназначен для хранения дополнительного количества охлаждающей жидкости).
— соединительные патрубки элементов системы охлаждения.

Система электропитания

Система электропитания имеет два основных источника электричества — это генератор и аккумулятор. Система электропитания предназначена для бесперебойного обеспечения электроэнергией потребителей. В первую очередь электрическая система питает элементы двигателя — это система зажигания, генератор при старте, электронную систему управления двигателя, электробензонасос, инжекторную систему. Так же в электрической энергии нуждается ряд автомобильных систем, это система освещения, габаритов, систем удобств пассажиров, электронные системы.

Аккумулятор

Аккумулятор — это первичный источник энергии в автомобили. Именно благодаря той энергии, которая запасена в нем и начинается работа всего автомобиля и двигателя в частности. Чтобы завести двигатель, стартер берет энергию именно от аккумулятора. Аккумуляторы бывают разной емкости, но напряжение, которое они выдают стандартное — 6, 12 Вольт, для мототехники и транспортных средств соответственно. Основная характеристика аккумулятора — это емкость и пусковой ток. Емкость у аккумуляторов бывает от 18 до 200 А/ч. Значение емкости показывает, сколько ампер и за какое время способен выдать аккумулятор. Пусковой ток измеряется в амперах и показывает пиковое значение по току, которое может выдать аккумулятор за короткое время, порядка 30 секунд. Важная характеристика для запуска двигателя стартером.

Генератор

Генератор — это электротехническое устройство, преобразующее механическую энергию в электрическую. При работающем двигателе генератор генератор является основным источником электрического тока, а аккумулятор вспомогательным. Генератор питает всю электрическую систему как двигателя, так и машины в целом, также от работающего генератора вырабатываемый ток заряжает аккумулятор. Генератор вырабатывает переменный ток, который в с вою очередь через диодный мост преобразуется в постоянный. Именно постоянный ток нужен в электрической системе автомобиля. Основные характеристики генератора — это напряжение и сила тока вырабатываемая им. Генераторы бывают 12 и 24 вольтные. Сила тока, вырабатываемая генератором колеблется в широких диапазонах, т.к. зависит от частоты вращения ротора.

Система зажигания

Предназначена для воспламенения горючей смеси топлива и воздуха в цилиндре от электрической искры. В зависимости от способа управления процессом зажигания различают следующие типы систем зажигания: контактная, бесконтактная (транзисторная) и электронная (микропроцессорная). Контактный способ — перераспределение электрической энергии происходит механическим путем, через прерыватель — распределитель. В бесконтактной системе прерыватель транзисторный, распределитель — механический. В электронной системе и прерыватель и распределитель — это микропроцессорный блок в котором и осуществляются процессы прерывания и распределения с помощью полупроводниковых устройств. Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания.

Система контроля и управления работы двигателя

Контроль и управление двигателем бывает 2 видов — механический и электронный. В первом случае человек управляет работой двигателя полностью и полностью ведет контроль за его работой, подбирая нужные условия работы, непосредственно воздействуя на элементы двигателя через рычаги и тросики. Во втором случае за всем следит электроника, она подбирает оптимальные условия для работы двигателя и следит за работой двигателя. Управление работой двигателя полностью ведется электроникой. человек лишь вносит управляющий сигнал в электронную система, а та в свою очередь обрабатывая сигнал, подбирает нужные условия работы двигателя. Электронная система управления контролирует работу двигателя с помощью множества датчиков, которые измеряя физические величины выдают, преобразуют их значения в электрический сигнал. Например: давления топлива, частоты вращения коленчатого вала, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Информация, получаемая от датчиков, является основой управления двигателем.

Принцип работы ДВС современного типа простыми словами

Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.

Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах. Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.

Содержание

  • Тонкости работы бензинового двигателя
  • Дизельный силовой агрегат
  • Бензиновый гибридный двигатель
  • Подводим итоги

Бензиновый двигатель внутреннего сгорания — тонкости работы

Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.

Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска. Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:

  • инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
  • смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
  • подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
  • камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
  • от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
  • с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.

Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.

Дизельный силовой агрегат — второй тип ДВС

Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга. Такие выгоды дают возможность полностью переформатировать стиль поездки, изменить привычки управления автомобилем.

Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:

  • топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
  • под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
  • создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
  • для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
  • по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
  • агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.

Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.

Бензиновый гибридный двигатель — электричество в моде

Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная. А вторая часть представлена электродвигателями в разных количествах и расположениях.

Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:

  • в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
  • когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
  • также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
  • при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
  • у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.

Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима. Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.

Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:

Подводим итоги

Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах. Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.

Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.

Понравился этот контент? Подпишитесь на обновления!

 

Фирменные турбины бензиновых двигателей

Принцип работы карбюратора – главные проблемы и возможные неполадки

Принцип работы двигателя на дизельном топливе

Устройство топливных систем автомобилей: основные элементы и неполадки

Как заводить машину правильно в зависимости от типа двигателя?

К списку статей

Социальные комментарии Cackle

Бензиновый двигатель | Эксплуатация, топливо и факты

V-образный двигатель

См. все СМИ

Ключевые сотрудники:
Зигфрид Маркус
Готлиб Даймлер
Карл Бенц
Похожие темы:
Г-образный двигатель
двигатель Отто
рядный двигатель
двигатель Ленуара
двигатель с верхним расположением распредвала

Просмотреть весь связанный контент →

Сводка

Прочтите краткий обзор этой темы

бензиновый двигатель , любой из классов двигателей внутреннего сгорания, которые вырабатывают энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого мыслимого применения силовых установок, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и небольшие внутренние морские установки, стационарные насосные станции среднего размера, осветительные установки, станки, электроинструменты. Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели менее распространены, но они используются для небольших подвесных судовых двигателей и во многих ручных садовых инструментах, таких как цепные пилы, кусторезы и воздуходувки.

Типы двигателей

Бензиновые двигатели можно разделить на несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, ходы за цикл, систему охлаждения и клапан тип и расположение. В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршне-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая совершает возвратно-поступательное или возвратно-поступательное движение по всей длине цилиндра. Эта сила отталкивает поршень от головки цилиндра и совершает работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров с возвратно-поступательными поршнями. Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

Большинство бензиновых двигателей представляют собой поршневые двигатели с возвратно-поступательным движением. Основные узлы поршневого двигателя показаны на рисунке. Почти все двигатели этого типа работают либо по четырехтактному, либо по двухтактному циклу.

Четырехтактный цикл

Из различных методов извлечения энергии из процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция которого впервые была разработана в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха всасывается в цилиндр за счет создаваемого таким образом частичного вакуума. Смесь сжимается по мере того, как поршень поднимается в такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий такт, когда оба клапана все еще закрыты, а давление газа из-за расширения сгоревшего газа давит на головку или головку поршня. Во время такта выпуска восходящий поршень вытесняет отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, для каждого цикла требуется четыре хода поршня — впуск, сжатие, рабочий ход и выпуск — и два оборота коленчатого вала.

Недостаток четырехтактного цикла состоит в том, что выполняется только половина рабочих тактов по сравнению с двухтактным циклом ( см. ниже ), и только вдвое меньше мощности можно ожидать от двигателя данного размера при заданная рабочая скорость. Однако четырехтактный цикл обеспечивает более надежную очистку от выхлопных газов (продувку) и перезагрузку цилиндров, уменьшая потерю свежего заряда в выхлопных газах.

Integrated Publishing — Ваш источник военных спецификаций и образовательных публикаций

Администрация — Навыки, процедуры, обязанности и т. д. военного персонала

Продвижение —
Военный карьерный рост
книги и т. д.

Аэрограф/метеорология
Метеорология
основы, физика атмосферы, атмосферные явления и др.
Руководства по аэрографии и метеорологии военно-морского флота

Автомобилестроение/Механика — Руководства по техническому обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным деталям, руководства по деталям дизельных двигателей, руководства по деталям бензиновых двигателей и т. д.
Автомобильные аксессуары |

Перевозчик, персонал |

Дизельные генераторы |

Механика двигателя |

Фильтры |

Пожарные машины и оборудование |

Топливные насосы и хранение |

Газотурбинные генераторы |

Генераторы |

Обогреватели |

HMMWV (Хаммер/Хаммер) |

и т. д…

Авиация — Принципы полетов,
авиастроение, авиационная техника, авиационные силовые установки, справочники по авиационным частям, справочники по авиационным частям и т. д.
Руководства по авиации ВМФ |

Авиационные аксессуары |

Общее техническое обслуживание авиации |

Руководства по эксплуатации вертолетов AH-Apache |

Руководства по эксплуатации вертолетов серии CH |

Руководства по эксплуатации вертолетов Chinook |

и т.д…

Боевой —
Служебная винтовка, пистолет
меткая стрельба, боевые маневры, органическое вспомогательное вооружение и т. д.
Химико-биологические, маски и оборудование |

Одежда и индивидуальное снаряжение |

Боевая инженерная машина |

и т.д…

Строительство —
Техническое администрирование,
планирование, оценка, планирование, планирование проекта, бетон, кирпичная кладка, тяжелый
строительство и др.
Руководства по строительству военно-морского флота |

Совокупность |

Асфальт |

Битумный корпус распределителя |

Мосты |

Ведро, Раскладушка |

Бульдозеры |

Компрессоры |

Обработчик контейнеров |

дробилка |

Самосвалы |

Землеройные машины |

Экскаваторы |

и т. д…

Дайвинг —
Руководства по водолазным работам и спасению различного снаряжения.

Чертежник —
Основы, методы, составление проекций, эскизов и т. д.

Электроника —
Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компьютерным компонентам, руководства по электронным компонентам, руководства по электрическим компонентам и т. д.
Кондиционер |

Усилители |

Антенны и мачты |

Аудио |

Батареи |

Компьютерное оборудование |

Электротехника (NEETS) (самая популярная) |

техник по электронике |

Электрооборудование |

Электронное общее испытательное оборудование |

Электронные счетчики |

и т.д…

Машиностроение —
Основы и приемы черчения, составление проекций и эскизов, деревянное и легкокаркасное строительство и т. д.
Военно-морское машиностроение |

Армейская программа исследований прибрежных бухт |

и т. д…

Еда и кулинария —
Руководства по рецептам и оборудованию для приготовления пищи.

Логистика —
Логистические данные для миллионов различных деталей.

Математика —
Арифметика, элементарная алгебра,
предварительное исчисление, введение в вероятность и т. д.

Медицинские книги —
Анатомия, физиология, пациент
уход, средства первой помощи, фармация, токсикология и т. д.
Медицинские руководства военно-морского флота |

Агентство регистрации токсичных веществ и заболеваний

Военные спецификации
Государственные военные спецификации и другие сопутствующие материалы

Музыка
Мажор и минор
масштабные действия, диатонические и недиатонические мелодии, паттерны такта,
и т.д.

Основы ядра —
Теории ядерной энергии,
химия, физика и т.