Содержание

Паровой мотоцикл своими руками / Хабр

Паровой мотоцикл Лёхи Романтика

Введение

Этот проект «Паровой Мотоцикл» создавался с целью заглянуть в прошлое, ощутить дух того времени, прикоснуться к технологиям 18-19 веков, ощутить романтику паровой эпохи и просто из инженерного интереса. Хотелось понять свойства и качества настоящей паровой машины, а также технические нюансы, тонкости и возможность реального применения старых технологий. Иными словами, хотелось создать паровой двигатель, посмотреть, на что это будет способно и просто насладиться его работой.

Над проектом трудился несколько лет. Мотоцикл пережил не одну глобальную модернизацию, и в итоге получился уникальный аппарат, с рекордными, (для своего типа) параметрами. Максимальная скорость по ровной дороге  60 км/ч. А запас хода 15 км. Что является абсолютным рекордом для паровых мотоциклов с классическим типом двигателя. Мотоцикл сделан вручную, из металлолома, без применения каких-либо промышленных мощностей.

Ну а теперь, давайте разберём всё поподробнее.

Шасси

Этот мотоцикл планировался быть сделанным на базе мопеда «Карпаты». Как-то раз, сосед по гаражу подарил мне сломанный  мопед со словами, мол, ты занимаешься всякими железками, может, что то и с ним придумаешь. Я посмотрел его, и понял, что двигатель там совершенно безнадёжен. Так и родилась идея сделать паровой мотоцикл. Но начав его анализировать, я понял, что рама там такая слабая, что это, ну просто никуда не годится. Поэтому раму пришлось сварить полностью новую из металлолома. От мопеда там осталось только колёса, вилка и крылья. 

Рама «сухарь»

Раму пришлось сделать по типу «сухарь». Это означает, что у мотоцикла нет заднего амортизатора. Такое решение вызвано техническим ограничением. Дело в том, что паровому двигателю необходим маховик с жёстко обусловленным центром вращения. А поскольку колесо и является маховиком, то его движения относительно двигателя пришлось полностью исключить. Для того что бы можно было хоть как то ездить без амортизаторов, пришлось сделать подпружиненое сидение с очень большим ходом.  

Котёл

Котёл с горелкой и топливными бочками

Котёл был сделан из баллона для газа со стенкой 4 мм. По паспорту эта ёмкость рассчитана на давление 56 атм. Поскольку паровозы ездили при 16 атм., я решил тоже использовать именно это давление. Котёл в своей конструкции очень прост. В баллон была вварена топка и реализован сухопарник (выход для пара). Топка, это всего-навсего труба, пронизанная более тонкими, поперечными трубками. Смысл её работы заключается в следующем: Пламя и горячие газы, проходя по топке, обтекают вваренные в неё тонкие трубки, в которых находится вода. Вода закипает, и приготавливается пар. По своему функционалу такую топку можно назвать «теплообменником».

После изготовления котла, я его опрессовал на 25 атм., с помощью самодельного насоса сделанного из газлифта (доводчика от капота автомобиля). Котёл выдержал бы давление и выше, но больше 25 атм. я просто не смог накачать. И после удачной гидравлической проверки, ввернул предохранительный клапан, который настроил на 18 атм. После проверки работы давлением воды, котёл был обмотан 2 слоями утеплителя, обтянут тканью, и покрашен чёрной краской для создания стиля.

Сейчас котёл выглядит как средневековый клепаный артефакт. И смотрится это так правдоподобно, что люди иногда дают совет, покрыть котёл утеплителем, что бы не растрачивать тепло напрасно. Хотя по сути, они видят как раз именно утеплитель, а не сам котёл.

Котёл парового мотоцикла

Но не всё так гладко.  Котёл, в этом мотоцикле, сейчас самое слабое звено. Он очень маленький для такого двигателя.  Изначально в топку было врезано 2 поперечные трубки. Параметры котла оказались просто ужасными. Поэтому я вырезал топку, и вварил 12 поперечных трубок.

Топка водотрубного котлаТопка, вид внутрь

Стало намного лучше, но всё равно, мотоцикл не способен ехать постоянно без остановок с максимальной скоростью. По идее, нужно бы врезать в трубку 50-80 поперечных трубок, но из-за  небольшой длины всего котла, не удастся осуществить такую плотность упаковки трубок, что бы при этом не затормозить поток пламени до недопустимых значений.

Горелка

Энергетическая система данного мотоцикла состоит из баллонов для топлива, крана подачи топлива и горелки. Бачки для топлива объединены в параллель, и имеют как горловину для залива жидких видов топлива, так и терминал для заправки газами.

Топливные бачки

Система мультитопливная и может питаться практически любым газообразным или жидким топливом. Метан, гексан, этилен, бутан пропан и прочие газы. Из жидких: бензин, керосин, ацетон, растворитель, сольвент, соляра и другие. Проблемы возникли только со спиртом, его пламя постоянно уносит наружу, и с тяжёлыми углеводородами, такими как подсолнечное масло, отработка, сырая нефть. От них остаётся очень много кокса, который забивает испарительную камеру.  Сама горелка, по своему устройству, ничем не отличается от обычной паяльной лампы. Принцип её работы заключается в том, что топливо, вначале подаётся в некую полость (испарительную камеру), там испаряется, и в виде пара подаётся в камеру сгорания, которая заодно является стенками испарительной камеры. Такая конструкция позволяет использовать в виде топлива и газ, и жидкости, так как они всё равно превращаются в пар (газ).

Пламя горелки работающей на газу

Единственное, что должен подметить, что для каждого вида топлива необходимо подобрать свою форсунку. Так как у всех энергоносителей разные свойства и время сгорания. Я предусмотрел это, и заказал полный набор сопел от 3D-принтера, в качестве сменных форсунок. Экспериментально подобрал, что для пропана подходит форсунка с отверстием 0.8 мм, а для керосина с диаметром 0,6 мм., а для бензина 0,5 мм.

С газообразным топливом работать удобнее всего, но у жидкого топлива есть два очень серьёзных преимущества.  Его можно заправить очень много, хоть прям по горлышко, что с газами сделать невозможно. И большинство жидких топлив серьёзно превосходят газы по теплотворной энергии.

Горелка совмещённая с пароперегревателем

На этом мотоцикле горелка несёт ещё одну функцию. Половина горелки является пароперегревателем. Это нужно что бы осушить пар, подаваемый в двигатель и поднять его температуру, что в итоге экономит воду.  

Двигатель

Изначально я решил сделать самый простой тип паровой машины двустороннего действия, которую изобрёл Джеймс Уатт ещё в 1774 году.

В этом двигателе выглядело всё очень просто, при этом поршень уже мог совершать работу, когда шёл в обоих направлениях. Что увеличивало мощность двигателя в два раза. Суть работы такого двигателя заключается в следующем: Парораспределительный блок, при помощи золотникового клапана направляет пар в полость рабочего цилиндра.

Пар, давит на поршень, и совершается работа. Когда поршень дойдёт до своей «мёртвой точки», клапан смещается, и выпускает отработавший пар на улицу, при этом начинается подача свежего пара с другой стороны поршня.  И поршень, и золотниковый клапан механически завязаны на колесо, поэтому процесс зацикленный и бесконечный.

Поскольку запчастей для паровых двигателей сейчас не производят, пришлось всё делать самому. Я взял какую-то нержавеющую трубу и облил её снаружи расплавленным алюминием, так получился рабочий цилиндр.

А парораспределительный блок, это вообще, кусок алюминия, в котором была проделана продольная дыра. Все остальные тяги, дышла и прочее, это штоки от автомобильных амортизаторов. Поскольку в данном двигателе отсутствует какая либо смазка, все уплотнения я делал из фторопласта. У него отличный коэффициент скольжения, температура разрушения  400 °С, и он отлично герметизирует.

С таким двигателем мотоцикл мог разгоняться до 34 км/ч, и потреблял просто безумное количество пара. Покатавшись некоторое время, я понял, что так дело не пойдёт. Я чувствовал, что мотоцикл способен на большее. Почитав умные книжки и изучив устройство последних паровозов, я решил провести модернизацию двигателя. Во-первых я расточил все каналы, что бы пар мог быстрее наполнять цилиндр и быстрее покидать его. Во-вторых, я решил применить двух золотниковую систему клапана. И в этом было очень много смысла.

Этот клапан состоит из двух отдельных цилиндрических клапанов, но не всё так просто. За этой простой конструкцией кроются многие годы изучений испытаний, открытий и упорного труда. И вот в чём смысл:

1. Поскольку оба клапана находятся друг от друга на некотором расстоянии, это позволяет значительно сократить длину паровых каналов, а значит сделать двигатель более быстрым.

2. Клапан удлинён на некоторое значение, которое называется «перекрышей впуска». Это позволяет сделать так называемую «отсечку» пара. Дело в том, что не обязательно впускать пар в цилиндр всё время. Достаточно его впустить некоторое небольшое количество, а дальнейшую работу он сделает за счёт своего расширения. Это позволяет существенно экономить пар (воду), и в итоге делает паровую машину ещё быстроходней, так как расширенный (отработанный) пар получается проще и быстрее выпустить наружу.

3. С другой стороны клапан тоже обзавёлся удлинением, которое называется «перекрышей выпуска». Это удлинение клапана позволяет перекрывать пар раньше, чем поршень дойдёт до своей «мёртвой точки». В этом случае остатки пара сжимаются, и формируют некую паровую подушку, об которую, как от пружины поршень отбивается, и начинает свой ход в другую сторону. Это позволяет смягчить переходные процессы и скомпенсировать инерцию массивных железных частей. Кроме того обеспечивает более мягкий впуск свежего пара, так как разница давлений будет не велика .

4. Поскольку между двумя золотниковыми клапанами оказывается много пространства, Подходящий пар не придавливает их к задней стенке. Нагрузка распределяется равномерно и благодаря этому, серьёзно уменьшается износ всего механизма.

Когда я ввёл в конструкцию все эти изменения, получился совершенно иной двигатель. Изменения почувствовал сразу, когда сделал первые опробования на воздухе. Изменился звук работы двигателя, он стал мягче. Двигатель гораздо легче стартовал, и при том же давлении работал вдвое быстрее. После этого я выехал на шоссе, что бы собрать данные и удивился. Двигатель стал «любить» быструю езду.  Теперь мотоцикл разгонялся уже до 60 км/ч. При этом расходовал пара примерно на 60% меньше. У него появился, просто шикарный паровозный звук и пропали удары в двигателе при прохождении «мёртвых точек».  

Заключение

Начал этот проект я чисто из инженерного интереса. Хотелось сделать паровой двигатель, всё там подогнать, отстроить, настроить, и посмотреть, как оно работает. Но чем больше я погружался в это дело, тем интересней становилось. А когда начались первые испытания, сперва двигателя, а затем и самого мотоцикла, остановиться было уже не возможно. После первых проеханых метров Я начал ощущать  нечто совершенно иное, чем просто инженерный интерес. Я почувствовал что, как говорят машинисты паровозов, паровая техника живая. С того момента как все «органы» объединились и стали работать как одно целое, в него ещё поселился дух или душа, не знаю как уж выразиться. Он стал чем-то большим, чем изделие. Тогда я начал создавать ему внешний вид и стиль.

Эта культура «Стимпанк» дарит, что-то необъяснимо приятное. И даже имея у себя в гараже настоящий паровой двигатель, я понимаю, что только-только приближаюсь к пониманию этого духа, этой романтики той эпохи. Представляю, как горели глаза и сверкали идеи в головах у инженеров и энтузиастов того парового мира. Насколько они были счастливы, когда появлялась новая идея или изобретение.

Как-то раз мне довелось увидеть, как подъезжал настоящий паровоз. Я ощутил, что то совершенно необычное. Передо мной было не железо, а существо, организм. Там внутри всё, что-то булькало, щёлкало, парило, что-то цокало, шевелилось. Оно было точно живое. Такого я никогда не ощущал рядом с современными электрическими или дизельными электровозами. Мне тогда пришло понимание, что был целый удивительный загадочный мир, который мы просто забыли.

Просматривая видео, как едет этот паровой мотоцикл, восторгаюсь моментами, когда он шумит, прям как настоящий паровоз. Его двигатель бьётся как сердце, создавая ритмичный мягкий шум. Эти моменты меня так завораживают, что я пересматриваю их по много, много раз. И почему-то у меня в голове была только одна, очень яркая и чёткая мысль, что я хочу себе точно такой же, во что бы это не встало. А потом вспоминаю, что он у меня и так уже есть. Но всё равно не верю, что у меня в гараже есть такое.

Краткое видео по созданию мотоцикла и видео его испытаний можно посмотреть здесь:

Или на Яндекс Дзень

Краткое видео о создании парового мотоцикла

Испытания парового мотоцикла 

Самодельные паровые двигатели чертежи

Мастер сделал сам паровой двигатель

Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.

В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.

От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.

Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты

Как сделать рабочую модель парового двигателя на дому

Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно. Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop.com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.

Как создать свой собственный паровой двигатель?

Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.

Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.

в книге О.Курти «Постройка моделей судов», которую полностью можно скачать тут depositfiles.com/files/3b9jgisv9 есть пара интересных чертежей машин для привода моделей пароходов.
Вот они:

ПАРОВАЯ МАШИНА С КАЧАЮЩИМСЯ ЦИЛИНДРОМ ПРОСТОГО ДЕЙСТВИЯ И ПАРОРАСПРЕДЕЛИТЕЛЬНОЙ ПЛИТОЙ (С КЛАПАННЫМ УПРАВЛЕНИЕМ)

Машины этого типа наиболее часто применяют в судомоделизме (рис. 562, а, b). Обычно детали изготовляют из латуни; цилиндр, чтобы не смазывать, — из фосфористой бронзы, а поршень — из стали. Крепят машину на квадратном или прямоугольном фунда­менте в зависимости от места установки в корпусе. На фундамент ставят L-образную стойку, к которой прикрепляют парораспреде­лительную плиту с отверстиями (окнами) для впуска и выпуска пара. Эти окна располагают по дуге, длина которой равна круго­вому пути, проходимому качающимся цилиндром. Цилиндр выпол­няют из куска латунной трубки и припаивают к опорной плите. Посредине плиты и цилиндра имеется отверстие, через которое впускается и выпускается пар. Болт в плите, служащий осью ка­чания цилиндра, имеет пружину. Ее натяжение регулируется гайкой, благодаря чему удается достичь хорошего прилегания опорной плиты к парораспределительной плите.
В поршень, изготовленный из круглого куска бронзы, ввинчи­вают шток и присоединяют его к мотылю болтом с гайкой.
Приводной вал выполняют из круглого стерженька латуни, на концах которого делают нарезку. Один конец вала ввертывают в мотыль, затем вал пропускают через пустотелый винт, поддержи­вающий его в L-образной стойке, а на второй конец навинчивают маховик.
Паровые трубки для подвода и отвода пара делают из латунных или медных трубок и крепят к небольшим штуцерам, которые, в свою очередь, припаяны к парораспределительной плите. Детали паровой машины такого типа имеют следующие средние размеры:
цилиндр: внутренний диаметр — 12—15 мм, длина — 30— 45 мм;
стойка: высота — 40—60 мм, ширина — 40—50 мм;
маховик: диаметр — 35—45 мм, толщина — 12—15 мм;
трубопроводы: 5хб мм (внутренний и внешний диаметры).
На рис. 562, c и d приведена паровая машина, подобная опи­санной, но с цилиндром двойного действия, поэтому на парорас­пределительной плите просверлены еще два небольших отверстия для впуска и выпуска пара, а на цилиндре — второе небольшое отверстие.

Рис. 562. Паровая машина с качающимся цилиндром для модели: a) -конструктивный чертеж; b) – вид по деталям; c) – вид машины с цилиндром двойного действия; d) – принципиальная работа машины с цилиндром двойного действия.
1 – фундаментная плита; 2 – стойка; 3 – плита парораспределительных окон; 4 – деталь крепления впускной и выпускной трубок; 5 – опорная плита крепления цилиндра; 6 – цилиндр; 7 – крышка цилиндра; 8 – поршень; 9 – шток; 10 – мотыль; 11 – пустотелый винт; 12 – приводной вал; 13 – маховик; 14 – пружина с гайкой; 15 – трубка для подвода пара; 16 – трубка для отвода пара; 17 – штуцер для соединения с трубкой подвода пара от котла; 18 – контрольный болт на цилиндре; 19 – выход пара; 20 – подвод пара.

ПАРОВАЯ МАШИНА С НЕПОДВИЖНЫМ ЦИЛИНДРОМ ПРОСТОГО ДЕЙСТВИЯ И ЗОЛОТНИКОВЫМ ПАРОРАСПРЕДЕЛИТЕЛЕМ

Машина сконструирована так, что ее можно устанавливать как в горизонтальном, так и вертикальном положениях (рис. 563, а). Цилиндр укреплен на фундаментной плите и представляет собой прямоугольный латунный брусок со сквозными отверстиями для поршня, а также для впуска и выпуска пара. В верхней части цилиндра находится парораспределительная коробка с золотни­ком. Сбоку цилиндр закрывают крышкой, устанавливаемой на че­тырех болтах.
Поршень выполняют из куска круглой бронзы. Внутри пор­шень полый. Один конец шатуна соединяют с поршнем при помощи поршневого пальца и двух опорных колец; другой — с цилиндри­ческим латунным мотылем.
Приводной вал вращается в двух опорных латунных подшипни­ках, которые при помощи сквозных болтов закреплены на фунда­менте. На приводном валу кроме мотыля установлен эксцентрик, соединенный со штоком золотника вилкой, причем движение экс­центрика сдвинуто по фазе относительно движения поршня. На конце приводного вала находится маховик. Выполнить золотник, как видно из рис. 563, несложно.
Входные и выходные паровые трубопроводы обычно изготов­ляют из медных или латунных трубок.
Средние размеры деталей машины:
цилиндр: длина — 45—55 мм, высота — 35—45 мм, ширина — 35—45 мм;
фундаментная плита: длина — 100—120 мм, ширина — 65— 85 мм;
маховик: диаметр — 45—50 мм, толщина — 12—15 мм.
трубопроводы: 5×6 мм.
Изменить направление вращения у паровой машины легко, для этого достаточно применить реверсивный клапан (рис. 563, b).

Рис. 563. Паровая машина с золотниковым парораспределителем: а — контруктивный чертеж; b — реверсивный клапан для изменения направления вращения машины; с — детали.
1 — цилиндр; 2 — крышка цилиндра; 3 — поршень; 4 — шатун; 5 — маховик с соединительным болтом для крепления на приводном валу; 6 — цилиндрический мотыль; 7 — крепление опорного подшипника коленчатого вала; 8 — эксцентрик; 9 — поршневой палец; 10 — парораспределительная камера; 11 — золотник; 12 — сальник для уплотнения штока золотника;
13 — уплотнительное кольцо; 14 — шток золотника; ментная плита для горизонтального расположения машины; 15 — приводной вал; 16 — вилка для соединения штока с эксцентриком; 17 — фундаментиая плита для горизонтального расположения машины; 18 — дополнительная опорная плита для вертикального расположения машины;19 — поступление пара; 20 — назад; 21 — вперед; 22 — выход пара.

Самодельный паровой двигатель. Сложное положение с модельными микродвигателями в нашей стране, а также с трудом поддающееся Объяснению, но весьма привлекательное стремление некоторых конструкторов-моделистов всего мира снабжать свои аппараты нетрадиционными моторами приводят иногда к очень интересным результатам.

Журнал «Моделист-конструктор» старается знакомить своих читателей со всеми новинками в этой области. Так, мы неоднократно публиковали материалы по перспективным, получившим сегодня уже всеобщее признание двигателям, работающим на сжиженном углекислом газе. Не обходим мы и тему паровых машин, которыми, правда, занимаются в основном судомоделисты. Сегодня мы знакомим приверженцев «пароходов» с занятной конструкцией, эскизы которой в редакцию прислал из города Симферополя В. Абрамов, методист Крымской облСЮТ.

Построенная им паровой двигатель легко воспроизводима практически в любых условиях. Ее достоинство — отсутствие сложных, требующих прецизионной обработки и сборки элементов распределения впуска и выпуска пара из полости рабочего цилиндра. Основные требования, предъявляемые к качеству изготовления узлов этого двигателя,— легкость хода всех движущихся деталей, отсутствие заеданий, а также хорошая подгонка поршня к рабочей поверхности цилиндра.

Особо внимательно нужно отнестись к притирке трущихся плоскостей припаянной к цилиндру пластины и рамы в зоне впускных и выхлопных отверстий. Здесь можно рекомендовать решение, предложенное в книге «Техническое творчество» (издательство «Молодая гвардия», Москва, 1956 год), где были опубликованы чертежи и описание именно такой конструкции (лишь немного меньших размеров и работающей на сжатом воздухе).

Там на цилиндр напаивалась не просто пластина, а специальная призма, имеющая два сравнительно узких, разнесенных по высоте пояска трения. Это обеспечивает не только улучшение притирки и меньшие механические потери, но и более качественный прижим зон, выполняющих функции золотника и находящихся под влиянием давления пара (чем больше давление, тем сильнее должны быть сжаты трущиеся детали).

Данная паровая машина может устанавливаться на модели судов в любом положении, удобном для компоновки. Передача вращающего момента — резиновым пасиком или с помощью шестерен; в зависимости от этого за маховиком на валу закрепляется шкив или шестерня. Такой паровой мотор неплохо работает при питании его от спаянной жестяной баночки-котла, нагреваемого таблетками сухого спирта. При этом, однако, необходимо строго соблюдать правила безопасности, предъявляемые к парообразующим установкам среднего давления.

Поршневой паровой двигатель с качающимся цилиндром: 1 — патрубок впуска пара (медная трубка, паять в отверстии В детали 2; аналогичный патрубок паять в отверстии Г выпуска пара), 2 — рама двигателя (стальной лист толщиной 4 мм), 3 — гайка М4,4 — пружина прижима пластины 6 к раме 2,5 — ось качания цилиндра (стальная проволока диаметром 4 мм с резьбой М4), 6 — пластина (бронза, паять на детали 16), 7 — маховик, 8 — ось кривошипа (стальная проволока диаметром 4 мм), 9 — бронзовая втулка-подшипник, 10 — палец кривошипа (стальная проволока диаметром 4 мм, прессовать в детали 11), 11 — щека кривошипа (стальной лист толщиной 5 мм, прессовать и заклепать на детали 8), 12 — пластина балансира, 13 —шток поршня, 14 — нижняя крышка цилиндра с направляющим отверстием под шток поршня (выполнить четыре отверстия диаметром 2 мм для продувки подпоршневого пространства), 15 — поршень (подогнать к внутреннему размеру цилиндра, выполнить две уплотнительных канавки в соответствии с рисунком), 16 — цилиндр (металлическая трубка диаметром 16 1 мм длиной 50 мм), 17 — верхняя глухая крышка цилиндра (паять в детали 16 после сборки, как и деталь 14). Внизу показана призма, устанавливаемая вместо пластины в соответствии с рекомендациями книги «Техническое творчество».

Двигатель своими руками паровой: подробное описание, чертежи

Паровой двигатель начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Устройство двигателя очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем алюминиевую банку из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.

Кроме такой конструкции, можно собрать паровой двигатель Стирлинга своими руками, но это материал для совершенно отдельной статьи.

Роторный паровой двигатель. Современный паровой двигатель. Конструкция и механизм действия паровой машины

Поршневые машины давно не устраивают прогрессивное человечество. И всем известный изобретатель Феликс Ванкель, первым создавший реальный образец роторного двигателя был, оказывается, далеко не первым человеком, поставившим себе задачу избавиться от привычной и надежной, но, тем не менее, изначально порочной схемы поршневой машины с классическим кривошипно- шатунным механизмом. Были и другие, не менее гениальные изобретатели, среди которых есть и наши соотечественники.Разумеется в этой статье при всем желании не удастся рассказать все, представленные машины- лишь малая толика известных конструкций. Итак, знакомьтесь: роторные паровые машины, существовавшие как в чертежах, так и в металле, неудачные и реально работавшие.

ПАРОВАЯ МАШИНА БРАМЫ И ДИКЕНСОНА

Всем хороша схема шиберной паровой машины- и надежна, и герметизацию хорошую обеспечивает. Только вот… неработоспособна она на мало- мальски серьезных оборотах. Перегрузки создают усилия, намного превышающие предел прочности не только древних, но и современных материалов. Потому и нашла она применение лишь в качестве… водяного насоса. А вот работающей паровой машины по этой схеме создать так и не удалось…

ПАРОВОЙ ДВИГАТЕЛЬ КАРТРАЙТА

Попробовал схитрить изобретатель- сделал шиберы откидными. Только и проблему ударов этим не решил, и уплотнение еще более ухудшил. Плохо!

РОТОРНАЯ МАШИНА ФЛИНТА

Здесь проблема «исчезновения» шиберов в момент прохождения лопасти решается уже более красиво и рационально- поворотными заслонками в виде полумесяцев- i и k на схеме. Но улучшив одно, создатель сего девайса не смог справиться с другой проблемой- уплотнение рабочих полостей здесь просто отвратительное! Точность обработки в те времена была не ахти, материалы также не блистали ни прочностью, ни износостойкостью. Поршневая схема этот «букет» со скрипом, но прощала, а вот роторная машина не смогла. В итоге- неработоспособная конструкция.

РОТОРНЫЙ ДВИГАТЕЛЬ ТРОТТЕРА

Еще одна попытка уйти от проблем за счет… дальнейшего усложнения конструкции. Здесь роторов уже не один, а два- лопасть и кольцо. В итоге и новые уплотнения, и новые трущиеся поверхности, и несбалансированные инерционные нагрузки. Результат предсказуем…

ПАРОВОЙ ДВИГАТЕЛЬ ДОЛГОРУКОВА

А вот это уже реальная машина- работала, крутила генератор и даже успела побывать на Международной Выставке d»Electricit. Где и была оценена по достоинству. Оно и понятно- схема ее даже на сегоднящний день вполне современна: это классический двухроторный объемный нагнетатель.

Пара синхронизированных роторов взаимно «обкатывает» друг друга, поджимая рабочее тело и перемещая его от нагнетательной полости к выпускной. Уплотнение терпимое, рывков и ударов нет. Ну чего ей не работать!

Все изображения и отчасти материалы взяты с сайта npopramen. ru/information/story
При наличии интереса эту тему можно продолжить, а пока рекомендую заглянуть и на этот сайт. Не пожалеете!

Современный мир заставляет многих изобретателей снова возвращаться к идее применения паровой установки в средствах, предназначенных для перемещения. В машинах есть возможность использовать несколько вариантов силовых агрегатов, работающих на пару.


Поршневой мотор

Современные паровые двигатели можно распределить на несколько групп:

Конструктивно установка включает в себя:

  • пусковое устройство;
  • силовой блок двухцилиндровый;
  • парогенератор в специальном контейнере, снабженный змеевиком.

Процесс происходит следующим образом. После включения зажигания начинает поступать питание от аккумуляторной электробатареи трех двигателей. От первого в работу приводится воздуходувка, прокачивающая воздушные массы по радиатору и передающая их по воздушным каналам в смесительное устройство с горелкой.

Одновременно с этим очередной электромотор активирует насос перекачки топлива, подающий конденсатные массы из бачка по змеевидному устройству подогревательного элемента в корпусную часть отделителя воды и подогреватель, находящийся в экономайзере, в паровой генератор.
До начала запуска пару нет возможности пройти к цилиндрам, так как путь ему перекрывают клапан дросселя или золотник, которые приводятся в управление кулисной механикой. Поворачивая ручки в сторону, необходимую для передвижения, и приоткрывая клапан, механик приводит в работу паровой механизм.
Отработанные пары по единому коллектору поступают на распределительный кран, в котором разделяются на пару неодинаковых долей. Меньшая по объему часть попадает в сопло смесительной горелки, перемешивается с воздушной массой, воспламеняется от свечи. Появившееся пламя начинает подогревать контейнер. После этого продукт сгорания переходит в водоотделитель, происходит конденсирование влаги, стекающей в специальный бак для воды. Оставшийся газ уходит наружу.

Паровая установка может напрямую соединяться с приводным устройством трансмиссии машины, и с началом ее работы машина приходит в движение. Но с целью повышения кпд специалисты рекомендуют использовать механику сцепления. Это удобно при буксировочных работах и разных проверочных действиях.

Аппарат отличается способностью работать практически без ограничений, возможны перегрузки, имеется большой диапазон регулировки мощностных показателей. Следует добавить, что во время любой остановки паровой двигатель перестает работать, чего нельзя сказать про мотор.

В конструкции нет необходимости устанавливать коробку переключения скоростей, страртерное устройство, фильтр для очистки воздуха, карбюратор, турбонаддув. Кроме этого, система зажигания в упрощенном варианте, свеча только одна.

В завершении можно добавить, что производство таких машин и их эксплуатация будут обходиться дешевле, чем автомобили с двигателем внутреннего сгорания, так как топливо будет недорогим, материалы, применяемые в производстве – самыми дешевыми.

12 апреля 1933 г. Уильям Беслер стартовал с муниципального аэродрома города Окленд в Калифорнии на самолете с паровым двигателем.
Газеты написали:

«Взлет был нормальным во всех отношениях, за исключением отсутствия шума. Фактически, когда самолет уже отделился от земли, наблюдателям казалось, что он не набрал еще достаточной скорости. На полной мощности шум был заметен не более, чем при планирующем самолете. Можно было слышать только свист воздуха. При работе на полном паре винт производил только небольшой шум. Можно было различать через шум винта звук пламени…

Когда самолет шел на посадку и пересекал границу поля, то винт останавливался и пускался медленно в обратную сторону с помощью перевода реверса и последующего малого открывания дросселя. Даже при очень медленном обратном вращении винта снижение заметно становилось круче. Немедленно после касания земли пилот давал полный задний ход, который вместе с тормозами быстро останавливал машину. Краткий пробег особенно был заметен в этом случае, так как во время испытания была безветренная погода, и обычно пробег при посадке достигал нескольких сот футов».

В начале XX века рекорды высоты, достигнутой самолетами, ставились чуть ли не ежегодно:

Стратосфера сулила немалые выгоды для полета: меньшее сопротивление воздуха, постоянство ветров, отсутствие облачности, скрытность, недосягаемость для ПВО. Но как взлететь на высоту, например, 20 километров?

Мощность [бензинового] мотора падает быстрее, чем плотность воздуха.

На высоте 7000 м мощность мотора уменьшается почти в три раза. С целью повышения высотных качеств самолетов еще в конце империалистической войны делались попытки применять наддув, в период 1924-1929 гг. нагнетатели еще больше внедряются в производство. Однако обеспечить сохранение мощности двигателя внутреннего сгорания на высотах свыше 10 км становится все труднее.

Стремясь поднять «предел высоты», конструкторы всех стран все чаще и чаще обращают свои взоры на паровую машину, имеющую ряд преимуществ в качестве высотного двигателя. Отдельные страны, как, например, Германию, толкнули на этот путь и стратегические соображения, а именно — необходимость на случай большой войны добиться независимости от привозной нефти.

За последние годы были сделаны многочисленные попытки установить паровой двигатель на самолет. Быстрый рост авиационной промышленности накануне кризиса и монопольные цены на ее продукцию позволили не спешить с реализацией опытных работ и накопившихся изобретений. Эти попытки, принявшие особый размах в период экономического кризиса 1929-1933 гг. и наступившей затем депрессии, — не случайное явление для капитализма. В печати, в особенности в Америке и Франции, часто бросались упреки крупным концернам о наличии у них соглашений об искусственной задержке реализации новых изобретений.

Наметились два направления. Одно представлено в Америке Беслером, установившим на самолет обычную поршневую машину, другое же обусловлено применением турбины в качестве авиационного двигателя и связано, главным образом, с работами немецких конструкторов.

Братья Беслер взяли за основу поршневую паровую машину Добля для автомобиля и установили ее на биплан Тревел-Эр [описание их демонстрационного полета приведено в начале поста].
Видео того полета:

Машина снабжена реверсивным механизмом, при помощи которого можно легко и быстро изменять направление вращения вала машины не только в полете, но и при посадке самолета. Двигатель помимо пропеллера приводит в движение через соединительную муфту вентилятор, нагнетающий воздух в горелку. При старте пользуются небольшим электрическим моторчиком.

Машина развивала мощность в 90 л.с., но в условиях известной форсировки котла ее мощность можно довести до 135 л. с.
Давление пара в котле 125 aт. Температура пара поддерживалась около 400-430°. В целях максимальной автоматизации работы котла был применен нормализатор или прибор, помощью которого вода впрыскивалась под известным давлением в перегреватель, как только температура пара превышала 400°. Котел был снабжен питательным насосом и паровым приводом, а также первичным и вторичным подогревателями питающей воды, обогреваемыми отработанным паром.

На самолете были установлены два конденсатора. Более мощный переделан из радиатора мотора ОХ-5 и установлен сверху фюзеляжа. Менее мощный сделан из конденсатора парового автомобиля Добля и расположен под фюзеляжем. Производительность конденсаторов, как утверждали в печати, оказалась недостаточной для работы паровой машины на полном дросселе без выпуска в атмосферу «и приблизительно соответствовала 90% крейсерской мощности». Опыты показали, что при расходе 152 л горючего необходимо было иметь 38 л воды.

Общий вес паровой установки самолета составлял 4,5 кг на 1 л. с. По сравнению с мотором ОХ-5, работавшим на этом самолете, это давало лишний вес в 300 фунтов (136 кг). Не подлежит сомнению, что вес всей установки мог быть значительно снижен при облегчении деталей двигателя и конденсаторов.
Топливом служил газойль. В печати утверждали, что «между включением зажигания и пуском на полный ход прошло не более 5 мин.».

Другое направление в развитии паросиловой установки для авиации связано с использованием паровой турбины в качестве двигателя.
В 1932-1934 гг. в иностранную печать проникли сведения о сконструированной в Германии на электрозаводе Клинганберга оригинальной паровой турбине для самолета. Автором ее называли главного инженера этого завода Хютнера.
Парообразователь и турбина вместе с конденсатором здесь были объединены в один вращающийся агрегат, имеющий общий корпус. Хютнер замечает: «Двигатель представляет силовую установку, отличительная характерная особенность которой состоит в том, что вращающийся генератор пара образует одно конструктивное и эксплоатационное целое с вращающейся в противоположном направлении турбиной и конденсатором».
Основной частью турбины является вращающийся котел, образованный из целого ряда V-образных трубок, причем одно колено этих трубок соединено с коллектором для питательной воды, другое — с паросборником. Котел показан на фиг. 143.

Трубки расположены радиально вокруг оси и вращаются со скоростью в 3000-5000 об/мин. Поступающая в трубки вода устремляется под действием центробежной силы в левые ветви V-образных трубок, правое колено которых выполняет роль генератора пара. Левое колено трубок имеет ребра, нагреваемые пламенем от форсунок. Вода, проходя мимо этих ребер, превращается в пар, причем под действием центробежных сил, возникающих при вращении котла, происходит повышение давления пара. Давление регулируется автоматически. Разность плотностей в обеих ветвях трубок (пар и вода) дает переменную разность уровней, являющуюся функцией центробежной силы, а следовательно, и скорости вращения. Схема такого агрегата показана на фиг. 144.

Особенностью конструкции котла является расположение трубок, при котором во время вращения создается разрежение в камере сгорания, и таким образом котел выполняет как бы роль всасывающего вентилятора. Таким образом, как утверждает Хютнер, «вращением котла обусловливаются одновременно и питание его, и движение горячих газов, и движение охлаждающей воды».

Пуск турбины в ход требует всего 30 сек. Хютнер рассчитывал получить к. п. д. котла 88% и к. п. д. турбины 80%. Турбина и котел нуждаются для запуска в пусковых моторах.

В 1934 г. в печати промелькнуло сообщение о разработке проекта большого самолета в Германии, оборудованного турбиной с вращающимся котлом. Два года спустя во французской прессе утверждали, что в условиях большой засекреченности военным ведомством в Германии построен специальный самолет. Для него сконструирована паросиловая установка системы Хютнера мощностью в 2500 л. с. Длина самолета 22 м, размах крыльев 32 м, полетный вес (приблизительный) 14 т, абсолютный потолок самолета 14000 м, скорость полета на высоте в 10000 м — 420 км/час, подъем на высоту 10 км — 30 минут.
Весьма возможно, что эти сообщения в печати значительно преувеличены, но несомненно, что германские конструкторы работают над этой проблемой, и предстоящая война может здесь принести неожиданные сюрпризы.

В чем же заключается преимущество турбины перед двигателем внутреннего сгорания?
1. Отсутствие возвратно-поступательного движения при высоких скоростях вращения позволяет сделать турбину довольно компактной и меньших размеров, нежели современные мощные авиационные моторы.
2. Важным преимуществом является также относительная бесшумность работы парового двигателя, что важно как с точки зрения военной, так и в смысле возможности облегчения самолета за счет звукоизолирующего оборудования на пассажирских самолетах.
3. Паровая турбина, не в пример моторам внутреннего сгорания, почти не допускающим перегрузки, может быть перегружаема на короткий период до 100% при постоянной скорости. Это преимущество турбины дает возможность уменьшить длину разбега самолета и облегчает его подъем в воздух.
4. Простота конструкции и отсутствие большого количества подвижных и срабатывающихся деталей составляют также немаловажное преимущество турбины, делая ее более надежной и долговечной по сравнению с двигателями внутреннего сгорания.
5. Существенное значение имеет также отсутствие на паровой установке магнето, на работу которого можно воздействовать с помощью радиоволн.
6. Возможность использовать тяжелое топливо (нефть, мазут) помимо экономических преимуществ обусловливает большую безопасность парового двигателя в пожарном отношении. Создается к тому же возможность теплофицировать самолет.
7. Главное же преимущество парового двигателя заключается в сохранении его номинальной мощности с подъемом на высоту.

Одно из возражений против парового двигателя исходит, главным образом, от аэродинамиков и сводится к размерам и возможностям охлаждения конденсатора. Действительно, паровой конденсатор имеет поверхность в 5-6 раз большую, нежели водяной радиатор двигателя внутреннего сгорания.
Вот почему, стремясь снизить лобовое сопротивление такого конденсатора, конструкторы пришли к размещению конденсатора непосредственно по поверхности крыльев в виде сплошного ряда трубок, следующих точно контуру и профилю крыла. Помимо придания значительной жесткости это уменьшит и опасность обледенения самолета.

Имеется, конечно, еще целый ряд других технических трудностей в эксплоатации турбины на самолете.
— Неизвестно поведение форсунки на больших высотах.
— Для изменения быстрой нагрузки турбины, что является одним из условий работы авиационного двигателя, необходимо иметь либо запас воды, либо паросборник.
— Известные трудности представляет и разработка хорошего автоматического устройства для регулировки турбины.
— Неясно также и гироскопическое действие быстро вращающейся турбины на самолете.

Все же достигнутые успехи дают основания надеяться, что в ближайшее время паровая силовая установка найдет свое место в современном воздушном флоте, в особенности на транспортных коммерческих самолетах, а также на больших дирижаблях. Самое трудное в этой области уже сделано, и практики-инженеры сумеют добиться конечного успеха.

ПАРОВОЙ РОТОРНЫЙ ДВИГАТЕЛЬ и ПАРОВОЙ АКСИАЛЬНО- ПОРШНЕВОЙ ДВИГАТЕЛЬ

Паровой роторный двигатель (паровая машина роторного типа) является уникальной силовой машиной, развитие производства которой до настоящего времени не получило должного развития.

С одной стороны- разнообразные конструкции роторных двигателей существовали ещё в последней трети 19-го века и даже неплохо работали, в том числе и для привода динамо-машин с целью выработки электрической энергии и электроснабжения всяких объектов. Но качество и точность изготовления таких паровых двигателей (паровых машин) было весьма примитивным, поэтому они имели малый КПД и невысокую мощность. С тех пор малые паровые машины ушли в прошлое, но вместе с действительно малоэффективными и бесперспективными поршневыми паровыми машинами в прошлое ушли и имеющие хорошую перспективу паровые роторные двигатели.

Главная причина- на уровне технологий конца 19-го века сделать действительно качественный, мощный и долговечный роторный двигатель не представлялось возможным.
Поэтому из всего многообразия паровых двигателей и паровых машин до нашего времени благополучно и активно дожили лишь паровые турбины огромной мощности (от 20 мВт и выше), на которых сегодня осуществляется около 75% выработки электроэнергии в нашей стране. Еще паровые турбины большой мощности дают энергию от атомных реакторов в боевых подводных лодках-ракетоносцах и на больших арктических ледоколах. Но это все огромные машины. Паровые турбины резко теряют всю свою эффективность при уменьшении их размеров.

….
Именно поэтому силовых паровых машин и паровых двигателей мощности ниже 2000 — 1500 кВт (2 — 1,5 мВт), которые бы эффективно работали на паре, получаемом от сжигания дешевого твердого топлива и различных бесплатных горючих отходов, сейчас в мире нет.
Вот в этой –то пустой сегодня области техники (и абсолютно голой, но очень нуждающейся в товарном предложении коммерческой нише), в этой рыночной нише силовых машин небольшой мощности, могут и должны занять своё очень достойное место паровые роторные двигатели. И потребность в них только в нашей стране — на десятки и десятки тысяч… Особенно такие малые и средние по мощности силовые машины для автономное электрогенерации и независимого электроснабжения нуждаются малые и средние предприятия в отдаленных от больших городов и крупных электростанций местностях: — на малых лесопилках, отдаленных приисках, на полевых станах и лесных делянках, и пр. и др.
…..

..

Давайте рассмотрим показатели, из-за которых паровые роторные двигатели оказываются лучше, чем их ближайшие сородичи — паровые машины в образе поршневых паровых двигателей и паровых турбин.

— 1)

Роторные двигатели являются силовыми машинами объемного расширения – как поршневые двигатели. Т.е. они обладают небольшим потреблением пара на единицу мощности, потому что пар подается в их рабочие полости время от времени, и строго дозированными порциями, а не постоянным обильным потоком, как в паровых турбинах. Именно поэтому паровые роторные двигатели гораздо экономичнее паровых турбин на единицу выдаваемой мощности.
— 2)

Роторные паровые двигатели имеют плечо приложения действующих газовых сил (плечо крутящего момента) значительно (в разы) больше, чем поршневые паровые двигатели. Поэтому развиваемая ими мощность гораздо выше, чем у паровых поршневых машин.
— 3)

Паровые роторные двигатели имеют гораздо большее рабочий ход, чем поршневые паровые двигатели, т.е. имеют возможность переводить большую часть внутренней энергии пара в полезную работу.
— 4)
Паровые роторные двигатели могут эффективно работать на насыщенном (влажном) паре, без затруднений допускать конденсацию значительной части пара с переходом её в воду прямо в рабочих секциях парового роторного двигателя. Это так же повышает КПД работы паросиловой установки с использованием парового роторного двигателя.
— 5

) Паровые роторные двигатели работают на оборотах в 2-3 тыс. оборотов в минуту, что является оптимальной частотой вращения для выработки электричества, в отличие от слишком тихоходных поршневых двигателей (200-600 оборотов в минуту) традиционных паровых машин паровозного типа, или от слишком быстроходных турбин (10-20 тыс. оборотов в минуту).

При этом технологически паровые роторные двигатели относительно просты в изготовлении, что делает затраты на их изготовление относительно невысокими. В отличие от крайне дорогостоящих в производстве паровых турбин.

ИТАК, КРАТКИЙ ИТОГ ЭТОЙ СТАТЬИ
— паровой роторный двигатель является весьма эффективной паровой силовой машиной для преобразования давления пара от тепла сгорающего твердого топлива и горючих отходов в механическую мощность и в электрическую энергию.

Автором настоящего сайта, уже получены более 5 патентов на изобретения по разным аспектам конструкций паровых роторных двигателей. А так же произведено некоторое количество небольших роторных двигателей мощностью от 3 до 7 кВт. Сейчас идет проектирование паровых роторных двигателей мощностью от 100 до 200 кВт.
Но у роторных двигателей есть «родовой недостаток» — сложная система уплотнений, которые для маленьких по размерам двигателей оказываются слишком сложными, миниатюрными и дорогими в изготовлении.

При этом автором сайта ведется разработка паровых аксиально поршневых двигателей с оппозитным — встречным движением поршней. Данная компоновка является наиболее энерго — производительной по мощности вариацией из всех возможных схем применения поршневой системы.
Данные двигатели в малых размерах получаются несколько дешевле и проще роторных моторов и уплотнения в них использхуються самые традиционные и самые простые.

Внизу размещено видео использования маленького аксиально-поршневого оппозитного двигателя с встречным движением поршней.

В настоящее время идет изготовление такого аксиально-поршневого оппозитного двигателя на 30 кВт. Ресурс двигателя ожидается в несколько сотен тысячах моточасов ибо обороты парового двигателя в 3-4 раза ниже оборотов двигателя внутреннего сгорания, в пара трения «поршень- цилиндр» — подвергнута ионно -плазменному азотированию в вакуумной среде и твердость поверхностей трения составляет 62-64 ед по HRC. Подробно о процессе упрочения поверхности методом азотирования смотри .

Вот анимация принципа работы похожего по компоновке такого аксиально- поршневого оппозитного двигателя с встречным движением поршней

Паровая машина за всю свою историю имела много вариаций воплощения в металл. Одним из таких воплощений — был паровой роторный двигатель инженера-механика Н.Н. Тверского. Этот паровой роторный двигатель (паровая машина) активно эксплуатировался в различных областях техники и транспорт. В русской технической традиции 19-го века такой роторный двигатель назывался — коловратная машина. Двигатель отличался долговечностью, эффективностью и высоким крутящим моментом. Но с появлением паровых турбин был забыт. Ниже представлены архивные материалы, поднятые автором этого сайта. Материалы весьма обширны, поэтому пока здесь представлена только часть их.

Пробная прокрутка сжатым воздухом (3,5 атм) парового роторного двигателя.
Модель расчитана на 10 кВт мощности при 1500 об/мин на давлении пара в 28-30 атм.

В конце 19-го века паровые двигатели — «коловратные машины Н.Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении паровых турбин справдливо лишь в их больших массо-габаритных размерах. Действительно — при мощности болше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у паровых турбин есть другой недостаток. При масштабировании их массо-габаритных парамеров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются. Именно поэтому — в области мощностей менее 1,5 тыс. кВт (1,5 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины» — роторные паровые двигатели. А между тем — эти паровые машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают средней частотой вращения главного вала на полных оборотах от 1000 до 3000 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (автомобиля- грузовика, трактора, тягача) — не будут требовать редуктора, счепления и проч., а будут своим валом на прямую содиняться с динамо-машиной, колесами парового автомобиля и проч.
Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр и др.
Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилицации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизирыется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 3.5 — 5 кВт (зависит от давления в пара), если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей. Т.е вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

Но, кроме средних и относительно крупных паросиловых установок, паросиловые схемы с малыми паровыми роторными двигателями будут востребованы и в малых силовых установках.
Например- одно из моих изобретений- «Походно-туристический электрогенератор на местном твердом топливе».
Ниже представлено видео, где испытывается упрощенный прототип такого устройства.
Но маленький паровой двигатель уже весело и энергично крутит свой электрогенератор и на дровах и прочем подножном топливе выдает электроэнергию.

Основное направление коммерческого и технического применения паровых роторных двигателей (коловратных паровых машин) — это выработка дешевого электричества на дешевом твердом топливе и горючих отходах. Т.е. малая энергетика- распределенная электрогенерация на паровых роторных двигателях. Представьте, как будет отлично вписываться роторный паровой двигатель в схему работы лесопилки- пилорамы, где нибудь на Русском Севере или в Сибири (Дальнем Востоке) где нет центрального электроснабжения, электричество дает задорого дизель-генератор на привозной издалека солярке. Зато сама лесопилка производит в день минимум полтонны щепы- опилок — горбыля, который девать некуда…

Таким древесным отходам — прямая дорога в топку котла, котел дает пар высокого давления, пар приводит в действие роторный паровой двигатель и тот крутит электрогенератор.

Точно так же можно сжигать безграничные по объемам миллионы тонн пожнивных отходов сельского хозяйства и проч. А есть еще дешевый торф, дешевый энергетический уголь и проч. Автор сайта посчитал, что затраты на топливо при выработке электричества через малую паросиловую установку (паровую машину) с паровым роторным двигателем мощностью в 500 кВт будут от 0,8 до 1,

2 рубля за киловатт.

Еще интересный вариант применения парового роторного двигателя — это установка такой паровой машины на паровой автомобиль. Грузовик — тягач паровой автомобиль, с мощным крутящим моментом и применяющий дешевое твердое топливо — очень нужная паровая машина в сельском хозяйстве и в лесной отрасли. При применении современных технологий и материалов, а так же использование в термодинамическом цикле «Органичесокго цикла Ренкина» позволят довести эффективный КПД до 26-28% на дешевом твердом топливе (или недорогом жидком, типа «печного топлива» или отработанного машинного масла). Т.е. грузовик — тягач с паровой машиной

и мощностью роторного парового двигателя около 100 кВт, будет расходовать на 100 км около 25-28 кг энергетического угля (стоимость 5-6 руб за кг) или около 40-45 кг щепы- опилок (цена которых на Севере- забирай даром)…

Есть еще много интересных и перспективных областей применения роторного парового двигателя, но размеры этой странички не позволяют все их подробно рассмотреть. В итоге- паровая машина может занять еще очень заметное место во многих областях современной техники и во многих отраслях народного хозяйства.

ЗАПУСКИ ОПЫТНОЙ МОДЕЛИ ПАРОСИЛОВОГО ЭЛЕКТРОГЕНЕРАТОРА С ПАРОВЫМ ДВИГАТЕЛЕМ

Май -2018г. После длительных экспериментов и опытных образцов сделан малый котел высокого давления. Котел опрессован на 80 атм давления, так что будет держать рабочее давление в 40-60 атм без затруднений. Запущен в работу с опытной моделью парового аксиально-поршневого двигателя моей конструкции. Работает прекрасно- смотри видео. За 12-14 минут от розжига на дровах готов давать пар высокого давления.

Сейчас я начинаю готовиться к штучному производству таких установок- котел высокого давления, паровой двигатель (роторный или аксиально-поршневой), конденсатор. Установки будут работать по замкнутой схеме с оборотом «вода- пар- конденсат».

Спрос на такие генераторы весьма большой, ибо 60% теорритории России не имеют центрального электроснабжения и сидят на дизельгенерации. А цена солярки все время растет и уже достигла 41-42 руб за литр. Да и там где электричество есть- энергокомпании тарифы все поднимают, а за подключение новых мощностей требуют больших денег.

Паровой двигатель — первый выезд

содержание видео

Рейтинг: 4.5; Голоса: 2

Паровой двигатель — первый выезд
Gregory: Ну вы блин даёте. Не, это всё хорошо и весело, но я удивлён, как вы вообще поехали. Четырёхтактный двигатель в принципе не способен работать по паровому циклу. Смотрите, что у вас происходит: 1-й такт: в ВМТ открывается впускной клапан и в цилиндр начинает поступать пар из котла. Это происходит на протяжении всего движения поршня из ВМТ в НМТ. То есть пар не расширяется, он тупо нагнетается в цилиндр, поэтому вы так быстро теряете давление (котёл столько пара производить не может. Смысл в том, что у паровой машины есть понятие отсечки, когда в цилиндр подаётся порция пара (где-то на 10-20 градусов вращения коленвала, который начинает расширяться, совершая работу. У вас же на поршень давит только котловое давление. И вот когда закрывается впускной клапан и пар вроде бы готов совершить работу, вы начинаете его СЖИАМАТЬ (2-й такт — сжатие, то есть совершать работу ПРОТИВ его желания расширяться и совершать работу (а он так хотел, его папа, старик Ватт, обещал ему, что всё будет хорошо. Видимо, это происходит потому, что в других цилиндрах заканчивается 1-й такт, и там на поршень всё ещё давит котловое давление. Потом поршень опять начинает ехать от ВМТ к НМТ и тут сжатый в предыдущей серии нашего фильма пар таки имеет гешефт совершить работу, что он и делает. Но тут открывается выпускной клапан и вконец офигевший от таких раскладов пар выбрасывается в атмосферу с криком порости оно повидлом. О чём свидетельствует дикая реактивная струя из выхлопной трубы. В общем без серьёзных изменений фаз газораспределения вы в горку точно не заедете. Похоже, грозит вам изготовлеие настоящей паровой машины.
Дата: 2020-04-27

← Крутые AMG диски из штамповки своими руками

5 камер в 1 покрышку — непробиваемое колесо →

Похожие видео

Дешевый параллельный импорт всё — Халява кончилась!

• Клубный сервис

#буднисервиса топливные коррекции +100% что делать трафик глохнет на горячую, не тянет и плохо едет

• Ремонт Рено

Кто из водителей нарушает правила, остановившись для высадки пассажира?

• Клуб Дорог

Автомобиль для Сталина: Паккард 180 и его импортозамещение / Packard 180 и ЗИС-110

• За рулем

Как маркировка автомобиля защищает от угона и кражи? Часть 1.

• Угона.нет — защита от угона

Как правильно отрегулировать противотуманные фары на машине. Устанавливаем led птф valeo и тестируем

• Ремонт Рено

Комментарии и отзывы: 9

My
Для повышения эффективности было бы неплохо создать нестандартный выпускной коллектор, который идет зигзагообразно, т. е. из цилиндра 1 в цилиндр 2 и из цилиндра 4 в цилиндр 3, а затем из цилиндров 2 и 3 направлять пар в выхлопная труба. Это особенно полезно для бензинового двигателя с большим перекрытием клапанов. Для дальнейшего повышения эффективности вы можете использовать этот пар повторно. Еще одна вещь, которую вы можете сделать, это поставить турбо на нее. Он может быть электрическим (требуется меньше размышлений) или типичным турбонаддувом от случайной машины, достаточно малой для правильного наматывания (хотя у меня есть сомнения. Но кто знает, может быть, это обеспечит достаточный поток воздуха. С турбонаддувом вы можете установить клапан в самом начале, чтобы ограничить огонь, который предотвратит перегрев, если не используется накопившийся пар. Также с турбонаддувом вы будете нагнетать воздух и теоретически будете терять меньше тепла, делая паровой двигатель более эффективным. Я также рекомендовал бы расточить цилиндры, чтобы обеспечить большее смещение. При большем смещении больше пара будет проглочено, и будет меньше сопротивления для попадания пара в цилиндры. Также с большими цилиндрами будет относительно меньше потерь тепла, что сделает его более эффективным. Я надеюсь, что вы примете этот совет во внимание и опробуете хотя бы несколько из них. И извините, если что-то звучит странно, я использую Google Translate, потому что у меня нет русской клавиатуры.

Отто
Сделайте нормальный котёл для начала. Зачем было сваривать два баллона и портить прекрасную цилиндрическую форму, которая изначально в стоке держит спокойно 16 бар без раздутия? Чтобы иметь пар надо иметь достаточную площадь теплопередающих поверхностей котла, у вашего котла она просто смехотворна для потребностей такой прожорливой и неэффективной паровой машины. Делайте водотрубный котел с площадью теплопередачи не менее 5-7м2 на давление хотя бы 25-30 бар. Чтобы использовать напрямую родные клапана, надо усиливать пружины впускных, иначе нормального давления в машину не подать, клапан всегда будет открыт. Кулачки должны подавать пар не более четверти хода поршня. Впускной коллектор так же надо делать на повышенное давление. В пар обязательно надо подавать масло, иначе двигатель каюкнется через полчаса работы. Но вообще такие конверсии долго не живут, поскольку образуется майонез в картере и накрывается вся смазка машины. Чтобы этого не происходило один из способов греть картер до чуть больше 100С, чтобы вода испарялась и уходила в атмосферу. А вообще подход у вас несерьёзный, для комедийного шоу, не более.

мАпед
Всё как бы хорошо, но чтобы такой двигатель работал на пару с нормальным кпд нужно исключить такт сжатия, так как пар запускается в цилиндр опускает поршень и когда он идёт в верх должен быть открыт выпускной клапон и выходить пар, а а этот момент все клапана в цилиндре закрыты и идёт такт сжатия, тем самым возникает сопротивление и кпд данной конструкции стремится вниз, по этому вы нормально не могли проехать. Правда я думаю наврятле мой комент прочитают, но вдруг)

StasUliya
Сколько смотрю сплошь и рядом чушь. Мотор этот долго не проработает без смазки. А масло в поддоне быстро станет эмульсией. Длинноходные должны быть поршни для паровой машины и скорей всего другой конструкции без наборных колец. Скорее как насос поршень металлом не должен касаться стенок цилиндра. И это я понимаю без изучения литературы по построению парового двигателя. Ваша работа просто мусор.

Денис
Для парового двигателя использовались массивные маховики, больше тянет не сам двиг, а энерция моховика. По-моему так, даже одно поршневые двигателя работали с очень прям массивными маховиками, поршень раскочегаривал этот маховик несколько минут до определённых оборотов, и двигался машину уже маховик, а поршень помогал чтоб обороты маховика не падали. Вроде как то так.

Tank
В 19 веке были паровозы не сжатом паре. В огромный балон маневрового паровоза закачивали пар под давлением и паровоз тягал в пределах железнодорожной станции вагоны с грузом, прицеплял и отцеплял вагоны и т п) Такм ожно сделать балон в который будет закачиваться под давлением пар и потом его подавать на паровой двигатель)

Константин
Можно, было меньше котел сделать примерно на 45л, объемом. А трубу на дроссель от котла на подачу вывести трубой 3. 5 дюйма перед соединением установить муфту с клапаном паровым механическим. Кулибины собираете паровозы. За чем же такие грамоздкие делаете сложнее. Тут простота нужна маленькие размеры.

Владимир
Вот именно, скорее всего надо сделать чтоб пар шол не не два цилиндра одновременно а как бы через разпределитель на каждый в своё время, ну как бы по порядку зажигания, и расход давления будет меньше, правда мощность как будет вопрос. Ну раз вы этим занялись пробуйте и все получится

Сандживан
Такой переделанный движок плохо для пара подходит, лучше с нуля паровой 2х цилиндровый сделать это не сложно и тогда тяга бомбическая будет. Еще рекомендую автомобиль Добля рассмотреть, это была лучшая машина, сейчас даже аналогов нет

Паровой двигатель своими руками. Как сделать реально работающий магнитный двигатель Сделать самодельный двигатель

статью о том, как сделать
реактивный двигатель своими
руками
.

Внимание
! Строительство собственного реактивного двигателя может быть опасным. Настоятельно рекомендуем принять все необходимые меры предосторожности при работе с поделкой
, а также проявлять крайнюю осторожность при работе с инструментами. В самоделке
заложены экстремальные суммы потенциальной и кинетической энергии (взрывоопасное топливо и движущие части), которые могут нанести серьёзные травмы во время работы газотурбинного двигателя. Всегда проявляйте осторожность и благоразумие при работе с двигателем и механизмами и носите соответствующую защиту глаз и слуха. Автор не несёт ответственности за использование или неправильную трактовку информации, содержащейся в настоящей статье.

Шаг 1: Прорабатываем базовую конструкцию двигателя

Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.

Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки
и значительно повысит шансы на удачный результат.

Шаг 2:

Будьте внимательны при выборе турбокомпрессора! Вам нужен большой «турбо» с одной (не разделенной) турбиной. Чем больше турбокомпрессор, тем больше будет тяга готового двигателя. Мне нравятся турбины с крупных дизельных двигателей.

Как правило, важен не столько размер всей турбины, как размер индуктора. Индуктор – видимая область лопаток компрессора.

Турбокомпрессор на картинке – Cummins ST-50 с большого 18 колесного грузовика.

Шаг 3: Вычисляем размер камеры сгорания

В шаге приведено краткое описания принципов работы двигателя и показан принцип по которому рассчитываются размеры камеры сгорания (КС), которую необходимо изготовить для реактивного двигателя.

В камеру сгорания (КС) поступает сжатый воздух (от компрессора), который смешивается с топливом и воспламеняется. «Горячие газы» выходят через заднюю часть КС перемещаясь по лопастям турбины, где она извлекает энергию из газов и преобразует её в энергию вращения вала. Этот вал крутит компрессор, что прикреплён к другому колесу, что выводит большую часть отработанных газов. Любая дополнительная энергия, которая остаётся от процесса прохождения газов, создаёт тягу турбины. Достаточно просто, но на самом деле немного сложно всё это построить и удачно запустить.

Камера сгорания изготовлена из большого куска стальной трубы с крышками на обеих концах. Внутри КС установлен рассеиватель. Рассеиватель – эта трубка, что сделана из трубы меньшего диаметра, которая проходит через всю КС и имеет множество просверленных отверстий. Отверстия позволяют сжатому воздуху заходить в рабочий объём и смешиваться с топливом. После того, как произошло возгорание, рассеиватель снижает температуру воздушного потока, который входит в контакт с лопастями турбины.

Для расчета размеров рассеивателя просто удвойте диаметр индуктора турбокомпрессора. Умножьте диаметр индуктора на 6, и это даст вам длину рассеивателя. В то время как колесо компрессора может быть 12 или 15 см в диаметре, индуктор будет значительно меньше. Индуктор из турбин (ST-50 и ВТ-50 моделей) составляет 7,6 см в диаметре, так что размеры рассеивателя будут: 15 см в диаметре и 45 см в длину. Мне хотелось изготовить КС немного меньшего размера, поэтому решил использовать рассеиватель диаметром 12 см с длиной 25 см. Я выбрал такой диаметр, прежде всего потому, что размеры трубки повторяют размеры выхлопной трубы дизельного грузовика.

Поскольку рассеиватель будет располагаться внутри КС, рекомендую за отправную точку взять минимальное свободное пространство в 2,5 см вокруг рассеивателя. В моём случае я выбрал 20 см диаметр КС, потому что она вписывается в заранее заложенные параметры. Внутренний зазор будет составлять 3,8 см.

Теперь у вас есть примерные размеры, которые уже можно использовать при изготовлении реактивного двигателя. Вместе с крышками на концах и топливными форсунками – эти части в совокупности будут образовывать камеру сгорания.

Шаг 4: Подготовка торцевых колец КС

Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.

Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).

Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.

12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.

Шаг 5: Привариваем торцевые кольца

Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.

Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.

Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.

Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.

Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть. Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.

Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.

Шаг 6: Изготавливаем заглушки

Для завершения работ по КС нам понадобится 2 торцевые крышки. Одна крышка будет располагаться на стороне топливного инжектора, а другая будет направлять горячие газы в турбину.

Изготовим 2 пластины того же диаметра что и КС (в моём случае 20,32 см). Просверлите 12 отверстий по периметру для болтов и выровняйте их с отверстиями на конечных кольцах.

На крышке инжектора нужно сделать только 2 отверстия. Одно будет для топливного инжектора, а другое для свечи зажигания. В проекте используется 5 форсунок (одна в центре и 4 вокруг неё). Единственное требование – инжекторы должны располагаться таким образом, чтобы после окончательной сборки они оказались внутри рассеивателя. Для нашей конструкции – это означает, что они должны помещаться в центре 12 см круга в середине торцевой крышки. Просверлим 12 мм отверстия для монтажа форсунок. Сместимся чуть-чуть от центра, чтобы добавить отверстие для свечи зажигания. Отверстие должно быть просверлено для 14 мм х 1,25 мм нити, которая будет соответствовать свече зажигания. Конструкция на картинке будет иметь 2 свечи (одна про запас, если первая выйдет из строя).

Из крышки инжектора торчат трубы. Они изготовлены из труб диаметром 12 мм (внешний) и 9,5 мм (внутренний диаметр). Их обрезают до длины 31 мм, после чего на краях делают скосы. На обеих концах будет 3 мм резьба. Позже они будут свариваться вместе с 12 мм трубками, выступающими с каждой стороны пластины. Подача топлива будет осуществляться с одной стороны а инжекторы будут вкручены с другой.

Для того, чтобы сделать вытяжной колпак, нужно будет вырезать отверстие для «горячих газов». В моем случае, размеры повторяют размеры входного отверстия турбины. Небольшой фланец должен иметь те же размеры, что и открытая турбина, а также, плюс четыре отверстия для болтов, чтобы закрепить его на ней. Торцовый фланец турбины может быть сварен вместе из простого прямоугольного короба, который будет идти между ними.

Переходный изгиб следует сделать из листовой стали. Свариваем детали вместе. Необходимо, чтобы сварные швы шли по наружной поверхности. Это нужно для того, чтобы воздушный поток не имел никаких препятствий и не создавалась турбулентность внутри сварных швов.

Шаг 7: Собираем всё вместе

Начните с закрепления фланца и заглушек (выпускного коллектора) на турбине. Тогда закрепите корпус камеры сгорания и, наконец, крышку инжектора основного корпуса. Если вы всё сделали правильно, то ваша поделка
должна быть похожа на вторую картинку ниже.

Важно отметить, что турбинные и компрессорные секции можно вращать относительно друг друга, ослабив зажимы в середине.

Исходя из ориентации частей, нужно будет изготовить трубу, которая соединит выпускное отверстие компрессора с корпусом камеры сгорания. Эта труба должна быть такого же диаметра, как выход компрессора, и в конечном счёте крепиться к нему шлангом соединителем. Другой конец нужно будет соединить заподлицо с камерой сгорания и приварить его на место, как только отверстие было обрезано. Для своей камеры, я использовать кусок согнутой 9 см выхлопной трубы. На рисунке ниже показан способ изготовления трубы, которая предназначена для замедления скорости воздушного потока перед входом в камеру сгорания.

Для нормальной работы нужна значительная степень герметичности, проверьте сварные швы.

Шаг 8: Изготавливаем рассеиватель

Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.

Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.

  • Основные отверстия подают воздух, который смешивается с топливом.
  • Вторичные отверстия подают воздух, который завершает процесс сгорания.
  • Третичные отверстия обеспечивают охлаждения газов до того, как они покинут камеру, таким образом, чтобы они не перегревали турбинных лопаток.

Чтобы сделать процесс расчета отверстия легким, ниже представлена , что будет делать работу за вас.

Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.

Шаг 9:

Теперь у вас есть готовый рассеиватель, откройте корпус КС и вставьте его между кольцами, пока он плотно не войдет. Установите крышку инжектора и затяните болты.

Для топливной системы необходимо использовать насос, способный выдавать поток высокого давления (по меньшей мере 75 л/час). Для подачи масла нужно использовать насос способный обеспечить давление в 300 тис. Па с потоком 10 л/час. К счастью, один и тот же тип насоса можно использовать для обеих целей. Мое предложение Shurflo № 8000-643-236.

Представляю схему для топливной системы и системы подачи масла для турбины.

Для надежной работы системы рекомендую использовать систему регулируемого давления с установкой обходного клапана. Благодаря ему поток, который прокачивают насосы всегда будет полным, а любая неиспользованная жидкость будет возвращена в бак. Эта система поможет избежать обратного давления на насос (увеличит срок службы узлов и агрегатов). Система будет работать одинаково хорошо для топливных систем и системы подачи масла. Для масляной системы вам нужно будет установить фильтр и масляный радиатор (оба из них будут установлены в линию после насоса, но перед перепускным клапаном).

Убедитесь, что все трубы, идущие к турбине выполнены из «жесткого материала». Использование гибких резиновых шлангов может закончиться катастрофой.

Ёмкость для топлива может быть любого размера, а масленый бак должен удерживать по меньшей мере 4 л.

В своей масляной системе использовал полностью синтетическое масло Castrol. Оно имеет гораздо более высокую температуру воспламенения, а низкая вязкость поможет турбине в начале вращения. Для снижения температуры масла, необходимо использовать охладители.

Что касается системы зажигания, то подобной информации достаточно в интернете. Как говорится на вкус и цвет товарища нет.

Шаг 10:

Для начала поднимите давление масла до минимума 30 МПа. Наденьте наушники и продуйте воздух через двигатель воздуходувкой. Включите цепи зажигания и медленно подавайте топливо, закрывая игольчатый клапан на топливной системе до тех пор, пока не услышите «поп», когда камера сгорания заработает. Продолжайте увеличивать подачу топлива, и вы начнете слышать рёв своего нового реактивного двигателя.

Спасибо за внимание

И сегодня расскажем о том, как сделать двигатель из батарейки, медной проволоки и магнита. Такой мини электродвигатель может использоваться, как подделка на столе у домашнего электрика. Собрать ее довольно просто, поэтому если Вам интересен данный вид занятий, далее мы предоставим подробную инструкцию с фото и видео примерами, чтобы сборка простейшего моторчика была понятной и доступной каждому!


Шаг 1 – Подготавливаем материалы

Чтобы сделать самый простой магнитный двигатель своими руками, Вам понадобятся следующие подручные материалы:

Подготовив все нужные материалы можно переходить к сборке вечного электродвигателя. Сделать маленький электрический моторчик в домашних условиях не сложно, в чем Вы сейчас и убедитесь!

Шаг 2 – Собираем самоделку

Итак, чтобы инструкция была для Вас понятной, лучше рассмотрим ее поэтапно с картинками, которые помогут визуально понять принцип работы мини электродвигателя.

Сразу же обращаем Ваше внимание на то, что Вы можете по-своему изобрести конструкцию самодельного маленького двигателя. Для примера ниже мы Вам предоставим несколько видео уроков, которые, возможно, помогут Вам сделать свою версию двигателя из батарейки, медной проволоки и магнита.

Что делать, если самоделка не работает?

Если вдруг Вы собрали вечный электродвигатель своими руками, но он не вращается, не спешите расстраиваться. Чаще всего причиной отсутствия вращения мотора является слишком большое расстояние между магнитом и катушкой. В этом случае Вам нужно всего лишь самому немного подрезать ножки, на которых держится вращающаяся часть.

Вот и вся технология сборки самодельного магнитного электродвигателя в домашних условиях. Если Вы просмотрели видео уроки, то наверняка убедились, что сделать двигатель из батарейки, медной проволоки и магнита своими руками можно разными способами. Надеемся, что инструкция была для Вас интересной и полезной!

Это будет полезно знать:

Поскольку нефтепродукты постоянно растут в цене (ведь нефти свойственно заканчиваться), стремление к экономии на горючем вполне понятно, и мини-двигатель
мог бы стать неплохим решением.


Насколько экономичен мини-двигатель внутреннего сгорания?

Как известно, ДВС делятся на бензиновые и дизельные, причем как первые, так и вторые сегодня претерпевают значительные изменения. Причиной модернизации, как самих механизмов, так и топлива, является значительно ухудшившаяся экология, на состояние которой влияют и выхлопы техники, работающей на жидком горючем. Так, к примеру, появился эко-бензин, разведенный спиртом в пропорции от 8:2 до 2:8, то есть спирта в таком топливе может содержаться от 20 до 80 процентов. Но на этом модернизация и закончилась. Тенденция уменьшения бензиновых двигателей в объеме практически не наблюдается. Самые маленькие образцы устанавливаются в авиамодели, более крупные используются на газонокосилках, лодочных моторах, снегоходах, скутерах и другой подобного рода технике
.

Что же касается , сегодня действительно сделано немало для того, чтобы этот двигатель стал по-настоящему микроскопическим. В настоящее время концерном Toyota
созданы самые маленькие микролитражки Corolla II, Corsa и Tercel
, в них установлены дизельные двигатели 1N
и 1NT
объемом всего 1. 5 литра. Одна беда – срок службы таких механизмов чрезвычайно низкий, и причина тому – очень быстрая выработка ресурса цилиндро-поршневой группы. Существуют и совсем крошечные дизельные ДВС, объемом всего 0.21 литра. Их устанавливают на компактную мототехнику и строительные механизмы, но мощности большой ожидать не приходится, максимум, что они выдают – 3.25 л.с. Впрочем, и расход топлива у таких моделей небольшой, о чем говорит объем топливного бака – 2.5 литра.

Насколько эффективен самый маленький двигатель внутреннего сгорания?

Обычный ДВС, действие которого основано на возвратно-поступательном движении поршня, теряет производительность по мере уменьшения рабочего объема. Все дело в значительной потере КПД при преобразовании этого самого движения ЦПГ во вращательное, столь необходимое для колес. Однако еще до Второй Мировой Войны механик-самоучка Феликс Генрих Ванкель создал первый действующий образец роторно-поршневого ДВС, в котором все узлы только вращаются. Логично, что данная конструкция, очень напоминающая электромотор, позволяет сократить количество деталей на 40 %, по сравнению со стандартными двигателями.

Несмотря на то, что до сегодняшнего дня не решены все проблемы данного механизма, срок службы, экономичность и экологичность соответствуют установленным мировым стандартам. Производительность же превосходит все мыслимые пределы. Роторно-поршневой ДВС с рабочим объемом 1.3 литра позволяет развить мощность в 220 лошадиных сил
. Установка же турбокомпрессора увеличивает этот показатель до 350 л.с., что очень даже существенно. Ну, а самый маленький двигатель внутреннего сгорания из серии «ванкелей», известный под маркой OSMG 1400
, имеет объем всего 0.005 литра, однако при этом выдает мощность в 1.27 л.с. при собственном весе 335 граммов.

Основное преимущество роторно-поршневых двигателей – отсутствие шумов, сопровождающих работу механизмов, благодаря низкой массе работающих узлов и точному балансу вала.

Самый маленький дизельный двигатель как источник энергии

Если говорить о полноценном , то на сегодняшний день самые небольшие размеры имеет детище инженера Йесуса Уайлдера. Это 12-цилиндровый двигатель V-образного типа, полностью соответствующий ДВС Ferrar
i и Lamborghini
. Однако на деле механизм является бесполезной безделушкой, поскольку работает не на жидком топливе, а на сжатом воздухе, и при рабочем объеме в 12 кубических сантиметров имеет очень низкий КПД.

Другое дело – самый маленький дизельный двигатель, разработанный учеными Великобритании. Правда, в качестве горючего для него требуется не солярка, а особая самовозгорающаяся при увеличении давления смесь метанола с водородом. При тактовом движении поршня в камере сгорания, объем которой не превышает одного кубического миллиметра, возникает вспышка, приводящая механизм в действие. Что любопытно, микроскопических размеров удалось добиться путем установки плоских деталей, в частности, те же поршни являются ультратонкими пластинами. Уже сегодня в ДВС с габаритами 5х15х3 миллиметра крошечный вал вращается со скоростью 50.000 об/мин, вследствие чего производит мощность порядка 11,2 Ватта.

Пока перед учеными стоит ряд проблем, которые необходимо решить перед тем, как выпускать дизельные мини-двигатели на поточное производство. В частности, это колоссальные теплопотери из-за чрезвычайно тонких стенок камеры сгорания и недолговечность материалов при воздействии высоких температур. Однако, когда все-таки крошечные ДВС сойдут с конвейера, всего нескольких граммов топлива хватит, чтобы заставить механизм при КПД в 10 % работать в 20 раз дольше и эффективнее аккумуляторов таких же размеров.

Паровой двигатель

Сложность изготовления: ★★★★☆

Время изготовления: Один день

Подручные материалы: ████████░░ 80%

В этой статье я расскажу вам о том, как сделать паровой двигатель своими руками. Двигатель будет небольшой, однопоршневой с золотником. Мощности вполне хватит, чтобы вращать ротор небольшого генератора и использовать этот двигатель в качестве автономного источника электричества в походах.

  • Телескопическая антенна (можно снять со старого телевизора или радиоприёмника), диаметр самой толстой трубки должен составлять не менее 8 мм
  • Маленькая трубка для поршневой пары (магазин сантехники).
  • Медная проволока с диаметром около 1,5 мм (можно найти в катушке трансформатора или радиомагазине).
  • Болты, гайки, шурупы
  • Свинец (в рыболовном магазине или найти в старом автомобильном аккумуляторе). Он нужен, чтобы отлить маховик в форме. Я нашёл готовый маховик, но вам этот пункт может пригодиться.
  • Деревянные бруски.
  • Спицы для велосипедных колёс
  • Подставка (в моём случае из листа текстолита толщиной 5 мм, но подойдёт и фанера).
  • Деревянные бруски (куски досок)
  • Банка из под оливок
  • Трубка
  • Суперклей, холодная сварка, эпоксидная смола (стройрынок).
  • Наждак
  • Дрель
  • Паяльник
  • Ножовка

    Как сделать паровой двигатель

    Схема двигателя

    Цилиндр и золотниковая трубка.

    Отрезаем от антенны 3 куска:
    ? Первый кусок 38 мм длиной и 8 мм диаметром (сам цилиндр).
    ? Второй кусок длиной 30 мм и 4 мм диаметром.
    ? Третий длиной 6 мм и 4 мм диаметром.

    Возьмём трубку №2 и сделаем в ней отверстие диаметром 4 мм посередине. Возьмем трубку №3 и приклеим перпендикулярно трубке №2, после высыхания суперклея, замажем все холодной сваркой (например POXIPOL).

    Крепим круглую железную шайбу с отверстием посредине к куску №3 (диаметр — чуть больше трубки №1), после высыхания укрепляем холодной сваркой.

    Дополнительно покрываем все швы эпоксидной смолой для лучшей герметичности.

    Как сделать поршень с шатуном

    Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.

    Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.

    Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).

    Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.

    Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.

    Спицу с двух концов подклеиваем, чтобы не выпала.

    Шатун треугольника

    Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.

    Треугольник и золотник

    Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.
    Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.

    Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника — 4 мм.

  • Паровой котёл

    Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.
    Вот фото:

    Фото двигателя в сборе

    Собираем двигатель на деревянной платформе, размещая каждый элемент на подпорке

    Видео работы парового двигателя

  • Версия 2.0

    Косметическая доработка двигателя. Бак теперь имеет свою собственную деревянную площадку и блюдце для таблетки сухого горючего. Все детали покрашены в красивые цвета. Кстати в качестве источника тепла лучше всего использовать самодельную

Самодельный двигатель можно изготовить несколькими способами. Обзор начнем с биполярного или шагового варианта, который представляет собой электрический мотор с двойным полюсом без щеток. Он имеет питание постоянного тока, разделяет полный оборот на равные доли. Для функционирования данного прибора потребуется специальный контроллер. Кроме того, в конструкцию приспособления входит обмотка, магнитные элементы, передатчики, сигнализаторы и узел управления с панелью приборов. Основное предназначение агрегата — обустройство фрезеровочных и шлифовальных станков, а также обеспечение работы различных бытовых, производственных и транспортных механизмов.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

  • Варианты с магнитом постоянного действия.
  • Комбинированная синхронная модель.
  • Переменный двигатель.

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант — это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.

Монополярные модификации

Самодельный двигатель этого типа состоит из единой обмотки и центрального магнитного крана, влияющего на все фазы. Каждый отсек обмотки активируется для обеспечения определенного магнитного поля. Так как в подобной схеме полюс в состоянии функционировать без дополнительного переключения, коммутация пути и направления тока имеет элементарное устройство. Для стандартного мотора со средней мощностью хватает одного транзистора, предусмотренного в оснащении каждой обмотки. Типичная схема двухфазного двигателя предполагает шесть проводов на выходном сигнале и три аналогичных элемента на фазе.

Микроконтроллер агрегата может использоваться для активизации транзистора в автоматически определенной последовательности. При этом обмотки подключаются посредством соединения выходных проводов и постоянного магнита. При взаимодействии клемм катушки вал блокируется для проворачивания. Показатель сопротивления между общим проводом и торцовой частью катушки пропорционален аналогичному аспекту между торцами проводки. В связи с этим длина общего провода в два раза больше, чем соединительная половина катушки.

Биполярные варианты

Самодельный шаговый двигатель этого типа оборудован одной обмоткой фазы. Поступление тока в нее осуществляется переломным способом при помощи магнитного полюса, что обуславливает усложнение схемы. Она обычно агрегирует с соединяющим мостом. Имеется пара дополнительных проводов, которые не являются общими. При смешивании сигнала такого мотора на повышенных частотах эффективность трения системы снижается.

Создаются также трехфазные аналоги, имеющие узкую специализацию. Они применяются в конструкции станков с ЧПУ, а также в некоторых автомобильных бортовых компьютерах и принтерах.

Устройство и принцип работы

При передаче напряжения клеммам щетки двигателя приводятся в непрерывное вращение. Установка на холостом ходу уникальна, поскольку преобразовывает входящие импульсы в заранее определенную позицию имеющегося ведущего вала.

Любой импульсный сигнал воздействует на вал под конкретным углом. Такой редуктор максимально эффективен, если ряд магнитных зубцов размещен вокруг центрального зубчатого железного стержня или его аналога. Электрические магниты активируются от наружной контрольной цепи, состоящей из микрорегулятора. Для начала поворота вала двигателя один активный электромагнит притягивает к своей поверхности зубчики колеса. При их выравнивании по отношению к ведущему элементу они немного перемещаются к очередной магнитной детали.

В шаговом электродвигателе первый магнит должен включаться, а следующий элемент — деактивироваться. В результате шестерня начнет вращение, постепенно выравниваясь с предыдущим колесиком. Процесс повторяется поочередно требуемое число раз. Такие обороты и получили название «постоянный шаг». Скорость вращения мотора можно определить путем подсчета количества шагов для полного оборота агрегата.

Подключение

Подсоединение мини-двигателя, сделанного своими руками, осуществляется по определенной схеме. Основное внимание обращается на количество проводов привода, а также предназначение прибора. Моторы шагового типа могут оснащаться 4, 5, 6 или 8 проводами. Модификация с четырьмя элементами проводки может эксплуатироваться исключительно с биполярным приспособлением. Любая фазная обмотка имеет два провода. Для определения необходимой длины подключения в пошаговом режиме рекомендовано использовать обычный метр, позволяющий достаточно точно установить необходимый параметр.

На мощном шестипроводном двигателе предусмотрена пара проводов для каждой обмотки и центрирующий кран, который может подключаться к моно или биполярному устройству. Для агрегации с одиночным приспособлением используются все шесть проводов, а для парного аналога достаточно будет одного конца провода и центрального крана каждой обмотки.

своими руками?

Для создания элементарного мотора потребуется кусок магнита, сверло, фторопласт, проволока из меди, микрочип, провод. Вместо магнита можно использовать ненужный виброзвонок сотового телефона.

В качестве детали вращения используется сверло, поскольку инструмент оптимально подходит по техническим параметрам. Если внутренний радиус магнита не соответствует аналогичному аспекту вала, можно использовать медную проволоку, намотав ее таким образом, чтобы убрать люфт вала. Такая операция дает возможность увеличить диаметр вала в точке соединения с ротором.

В дальнейшем создании самодельного двигателя потребуется сделать втулки из фторопласта. Для этого возьмите подготовленный лист и проделайте отверстие диаметром 3 мм. Затем сконструируйте трубку-втулку. Вал необходимо отшлифовать до диаметра, обеспечивающего свободное перемещение. Это позволит избежать излишнего трения.

Финальная стадия

Далее производится намотка катушек. Каркас требуемого размера зажимается в тисах. Чтобы намотать 60 витков, понадобится 0,9 метра провода. После проведения процедуры катушка обрабатывается клеевым составом. Лучше всего эту деликатную процедуру проводить с микроскопом или увеличительным стеклом. После каждой двойной обмотки каплю клея внедряют между втулкой и проволокой. Один край каждой обмотки спаивается между собой, что даст возможность получить единый узел с парой выходов, которые паяются к микрочипу.

Параметры технического плана

Мини-двигатель, сделанный своими руками, в зависимости от конструкционных особенностей, может иметь различные характеристики. Ниже приведены параметры самых популярных шаговых модификаций:

  1. ШД-1 — обладает шагом 15 градусов, имеет 4 фазы и крутящий момент 40 Нт.
  2. ДШ-0,04 А — шаг составляет 22,5 градуса, количество фаз — 4, оборотистость — 100 Нт.
  3. ДШИ-200 — 1,8 градуса; 4 фазы; 0,25 Нт крутящего момента.
  4. ДШ-6 — 18/4/2300 (значения указаны по аналогии с предыдущими параметрами).

Зная, как сделать двигатель в домашних условиях, необходимо помнить о том, что скорость крутящего показателя шагового мотора будет трансформироваться прямо пропорционально аналогичному параметру тока. Понижение линейного момента на высоких скоростях напрямую зависит от схемы привода и индуктивности обмоток. Двигатели со степенью защиты IP 65 рассчитаны на суровые условия работы. По сравнению с серверами, шаговые модели работают намного дольше и продуктивнее, не требуют частого ремонта. Однако у серводвигателей немного другая направленность, поэтому сравнение этих типов не имеет особого смысла.

Делаем самодельный ДВС

Мотор своими руками также можно сделать на жидком топливе. При этом не потребуется сложное оборудование и профессиональный инструментарий. Необходима которую можно взять из тракторного или автомобильного топливного насоса. Цилиндр плунжерной втулки создается путем обрезки утолщенного элемента шлефа. Затем следует проделать отверстия для выхлопного и перепускного окна, припаять пару гаек в верхней части, предназначенных для свечей зажигания. Тип элементов — М-6. Поршень вырезается из плунжера.

Самодельный дизель-двигатель потребует установки картера. Он делается из жести с припаянными подшипниками. Дополнительную прочность позволит создать ткань, покрытая эпоксидной смолой, которой покрывается элемент.

Коленчатый вал собирается из утолщенной шайбы с парой отверстий. В одно из них необходимо запрессовать вал, а второе крайнее гнездо служит для монтажа шпильки с шатуном. Операция также производится методом прессовки.

Завершающие работы по сборке самодельного дизельного мотора

Ниже приведен порядок сборки катушки зажигания:

  • Используется деталь от авто или мотоцикла.
  • Устанавливается подходящая свеча.
  • Монтируются изоляторы, фиксируемые при помощи «эпоксидки».

Альтернативой мотору с системой ДВС может служить бесконтактный мотор замкнутого типа, устройство и принцип работы которого представляют систему обратного обмена газов. Он устроен из двухсекционной камеры, поршня, коленвала, передаточной коробки, системы зажигания. Зная, как сделать двигатель своими руками, вы можете существенно сэкономить и получить в хозяйстве нужную и полезную вещь.

паровой двигатель | Определение, история, влияние и факты

паровой двигатель

Посмотреть все СМИ

Ключевые люди:
Роберт Фултон
Джеймс Ватт
Оливер Эванс
Ричард Тревитик
Джордж Стефенсон
Похожие темы:
кочегар
отдельный конденсатор
паровая машина высокого давления
паровая машина ватт
составной двигатель

Просмотреть весь соответствующий контент →

Резюме

Прочтите краткий обзор этой темы

паровая машина машина, использующая силу пара для выполнения механической работы за счет тепла.

Далее следует краткое описание паровых двигателей. Для полного описания энергии и производства пара, а также паровых двигателей и турбин, см. Преобразование энергии: Паровые двигатели .

Британская викторина

Викторина по вооружению, энергетике и энергетическим системам

Какой английский инженер и изобретатель построил и запатентовал первую паровую машину? Кто разработал первый процесс недорогого производства стали? Проверьте свои знания. Пройди тест.

В паровой машине горячий пар, обычно подаваемый котлом, расширяется под давлением, и часть тепловой энергии превращается в работу. Остальному теплу можно позволить уйти, или, для максимальной эффективности двигателя, пар можно сконденсировать в отдельном аппарате, конденсаторе, при сравнительно низких температуре и давлении. Для достижения высокой эффективности пар должен проходить через широкий диапазон температур в результате его расширения в двигателе. Наиболее эффективная работа, т. е. наибольшая производительность по отношению к подведенному теплу, обеспечивается за счет использования низкой температуры конденсатора и высокого давления в котле. Пар можно дополнительно нагреть, пропустив его через пароперегреватель на пути от котла к двигателю. Обычный пароперегреватель представляет собой группу параллельных труб, поверхность которых подвергается воздействию горячих газов топки котла. С помощью пароперегревателей пар может быть нагрет выше температуры, при которой он производится кипящей водой.

В паровом двигателе поршневого и цилиндрового типа пар под давлением подается в цилиндр с помощью клапанного механизма. Когда пар расширяется, он толкает поршень, который обычно соединен с кривошипом на маховике для создания вращательного движения. В двигателе двойного действия пар из котла поступает попеременно к каждой стороне поршня. В простой паровой машине расширение пара происходит только в одном цилиндре, тогда как в составной машине имеется два или более цилиндров увеличивающегося размера для большего расширения пара и повышения эффективности; первый и самый маленький поршень приводится в действие начальным паром высокого давления, а второй — паром более низкого давления, выходящим из первого.

В паровой турбине пар выбрасывается с высокой скоростью через сопла, а затем проходит через ряд неподвижных и движущихся лопастей, заставляя ротор двигаться с высокой скоростью. Паровые турбины более компактны и обычно допускают более высокие температуры и большую степень расширения, чем поршневые паровые двигатели. Турбина является универсальным средством, используемым для выработки большого количества электроэнергии с помощью пара.

Джеймс Уатт: паровой двигатель

Посмотреть все видео к этой статье

Первыми паровыми двигателями были научные новинки Героя Александрийского в 1 веке н.э., такие как эолипил, но только в 17 веке были предприняты попытки использовать пар для практических целей. В 1698 году Томас Савери запатентовал насос с ручными клапанами для подъема воды из шахт за счет всасывания, создаваемого конденсирующимся паром. Примерно в 1712 году другой англичанин, Томас Ньюкомен, разработал более эффективную паровую машину с поршнем, отделяющим конденсирующийся пар от воды. В 1765 году Джеймс Уатт значительно усовершенствовал двигатель Ньюкомена, добавив отдельный конденсатор, чтобы избежать нагрева и охлаждения цилиндра при каждом такте. Затем Уатт разработал новый двигатель, который вращал вал вместо простого движения насоса вверх-вниз, и добавил много других улучшений, чтобы создать практическую силовую установку.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подписаться сейчас

Громоздкий паровой вагон для дорог был построен во Франции Николасом-Жозефом Кюньо еще в 1769 году. Ричард Тревитик в Англии первым использовал паровой вагон на железной дороге; в 1803 году он построил паровоз, который в феврале 1804 года совершил успешный пробег по маршруту конки в Уэльсе. Адаптация парового двигателя к железным дорогам стала коммерчески успешной с Rocket 9.0030 английского инженера Джорджа Стефенсона в 1829 году. Первым практичным пароходом был буксир Charlotte Dundas, , построенный Уильямом Саймингтоном и опробованный на канале Форт и Клайд в Шотландии в 1802 году. Роберт Фултон применил паровой двигатель на пассажирском судне в Соединенные Штаты в 1807 году.

Хотя паровая машина уступила место двигателю внутреннего сгорания в качестве средства движения транспортных средств, интерес к ней возродился во второй половине 20-го века из-за увеличения проблем загрязнения воздуха, вызванных горением ископаемого топлива в двигателях внутреннего сгорания.

Редакторы Британской энциклопедии
Эта статья была недавно пересмотрена и обновлена ​​Адамом Августином.

Как работают паровые двигатели?

Как работают паровые двигатели? | Кто изобрел паровые двигатели?

Вы здесь:
Домашняя страница >
Инжиниринг >
Паровые машины

  • Дом
  • Индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Представьте, что вы живете только за счет угля и
вода и еще достаточно энергии
бегать со скоростью более 100 миль в час! Это именно то, что может сделать паровоз.
Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части
железных дорог мира, паровые технологии живут в сердцах людей и
такие локомотивы до сих пор используются как туристические достопримечательности во многих культурных центрах.
железные дороги.

Паровозы приводились в движение паровыми двигателями и заслужили
вспомнили, потому что они прокатились по миру через Индустриальный
Революции 18 и 19 гг.вв. Паровые двигатели занимают
машины,
самолеты, телефоны,
радио и телевидение
среди величайших изобретений всех времен. Это чудеса техники и превосходные
примеры инженерной мысли, но под всем этим дымом и паром, как
точно работают?

На фото: паровой железнодорожный локомотив, работающий на железной дороге Твитси в Северной Каролине.
Это узкоколейный поезд, а значит, колея не такая широкая, как на обычной железной дороге. Узкие дорожки
часто используются в гористой местности и в другой труднопроходимой местности, потому что их обычно дешевле строить.
Предоставлено: фотографии из американского проекта Кэрол М. Хайсмит в архиве Кэрол М. Хайсмит,
Библиотека Конгресса, Отдел эстампов и фотографий.

Содержание

  1. Что приводит в действие паровой двигатель?
  2. Что такое паровая машина?
  3. Как работает паровой двигатель
  4. Типы паровых двигателей
  5. Пар действительно умер?
  6. Кто изобрел паровую машину. .. и когда?
  7. Узнать больше

Что приводит в действие паровой двигатель?

Чтобы сделать что угодно, нужна энергия
можно придумать — кататься на скейтборде,
летать на самолете, ходить в магазины или водить машину по
улица. Большая часть энергии, которую мы сегодня используем для транспорта, поступает из
масла, но так было не всегда. До начала 20 века основным источником энергии был уголь.
любимое топливо в мире, и оно приводило в действие все, от поездов до кораблей
к злополучным паровым самолетам, изобретенным американским ученым
Сэмюэл П. Лэнгли, один из первых соперников братьев Райт. Что было так
специально для угля? Внутри Земли его много, так что это было
относительно недорогой и широко доступный.

Уголь является органическим химическим веществом, что означает
он основан на элементе
углерод. Уголь образуется в течение миллионов лет, когда останки мертвых
растения погребены под камнями, сдавлены давлением и
приготовленный внутренним теплом Земли.
Вот почему его называют ископаемым топливом. Куски угля на самом деле являются кусками
энергия. Углерод внутри них связан с атомами водорода и
кислород соединениями, называемыми химическими связями. Когда мы сжигаем уголь в костре,
связи разрываются, и энергия высвобождается в виде тепла.

Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистые ископаемые виды топлива, такие как бензин, дизельное топливо и керосин, и это одна из причин, почему паровые двигатели должны сжигать так много его.

Фото: Основные части паровоза.
(Альтернативный вид сбоку смотрите здесь.) Это бывший цистерна-локомотив British Railways Standard 4MT под номером 80104 (построен в Брайтоне в 1955 году).
работает на железной дороге Суонидж, Англия, август 2008 года.
Почитайте, как его восстановили из ржавеющей кучи и вернули в строй
его владельцы, «Южные локомотивы», в
80104 Реставрация.

Что такое паровая машина?

Паровой двигатель — это машина, которая сжигает уголь для выделения тепла
энергия, которую он содержит, так что это пример того, что мы называем тепловым двигателем. Это
немного похоже на гигантский чайник, стоящий на вершине угольного огня. Тепло от огня кипятит воду в чайнике и превращает ее в пар. Но вместо того, чтобы бесполезно сдуться в воздух,
как и пар из чайника, пар улавливается и используется для питания
машина. Давайте узнаем, как!

Как работает паровой двигатель

Грубо говоря, паровая машина состоит из четырех частей:

  1. Огонь, в котором горит уголь.
  2. Котел, наполненный водой, которую огонь нагревает до пара.
  3. Цилиндр и поршень, похожие на велосипедный насос, но намного
    больше. Пар из котла подается в цилиндр, вызывая
    поршень двигался сначала в одну сторону, потом в другую. Это движение вперед и назад
    (который также известен как «поршневой») используется для привода…
  4. Машина, прикрепленная к поршню. Это может быть что угодно от
    водяной насос к заводскому станку… или даже к гигантскому паровозу
    бегать вверх и вниз по железной дороге.

Конечно, это очень упрощенное описание. На самом деле, даже в одном устройстве есть сотни или, может быть, даже тысячи деталей.
Самый маленький локомотив.

Пошагово

Проще всего увидеть, как все работает, в нашей небольшой анимации
паровоза, внизу. В кабине локомотива вы загружаете уголь
в топку (1), что вполне
буквально металлический ящик
содержащий ревущий угольный огонь. Огонь нагревает котел — «гигантский
чайник» внутри паровоза.

Котел (2) в паровозе
не очень похоже
чайник, который вы бы использовали, чтобы заварить чашку чая, но он работает
таким же образом, производя пар под высоким давлением.
Котел представляет собой большой резервуар с водой с десятками тонких металлических трубок.
Бег
через него (для простоты мы показываем здесь только один, окрашенный в оранжевый цвет).
Трубы идут от топки к дымоходу, перенося тепло и
дым от костра с ними (показан белыми точками внутри трубки).
Такое расположение котельных труб, как их называют, означает
двигатель
огонь может нагревать воду в баке котла намного быстрее, поэтому он производит пар
быстрее и эффективнее. Вода, которая делает пар либо
поступает из цистерн, установленных сбоку от локомотива, или из отдельного вагона, называемого тендером, который тянется за локомотивом.
локомотив. (Тендер также осуществляет поставку угля для локомотива.) Вы можете увидеть фото
тендера с резервуаром для воды ниже на этой странице.

Пар, образующийся в котле, стекает в цилиндр (3)
прямо перед колесами, толкая плотно прилегающий плунжер, поршень
(4), туда и обратно. Маленькая механическая заслонка в цилиндре, известная как
впускной клапан
(показан оранжевым цветом) пропускает пар. Поршень соединен с одним или
больше колес паровоза через своего рода плечо-локоть-рука
соединение, называемое кривошипом и шатуном
(5).

Когда поршень толкает, кривошип и шатун поворачивают
колеса локомотива и приведите поезд в движение (6).
Когда поршень достигает конца цилиндра, он не может толкать
дальше. Импульс поезда (стремление продолжать движение) несет в себе
проворачивая вперед, толкая поршень обратно в цилиндр таким образом,
Оно пришло. Клапан подачи пара закрывается. Открывается выпускной клапан и
поршень выталкивает пар обратно через цилиндр и наружу
паровозная труба (7). Прерывистый шум пыхтения, который
паровой двигатель делает, и его прерывистые клубы дыма происходят, когда
поршень движется вперед-назад в цилиндре.

С каждой стороны локомотива есть цилиндр, и два цилиндра
стреляйте немного не в ногу друг с другом, чтобы всегда
мощность, толкающая двигатель вперед.

Рекламные ссылки

Типы паровых двигателей

Фото: Крупный план поршня и цилиндра парового двигателя.

На приведенной выше схеме показана очень простая одноцилиндровая паровая машина, приводящая в действие
паровоз по рельсам. Это называется поворотный
готовить на пару
двигатель, потому что работа поршня состоит в том, чтобы заставить колесо вращаться.
самые ранние паровые машины работали совершенно по-другому. Вместо
поворачивая колесо, поршень толкал балку вверх и вниз простым
возвратно-поступательное или возвратно-поступательное движение.
Поршневой пар
двигатели использовались для откачки воды из затопленных угольных шахт в начале
18-ый век.

На нашей диаграмме пар толкает поршень в одну сторону, а импульс
локомотива, ведущего его в другую сторону. Это называется одностороннего действия.
паровой двигатель, и это довольно неэффективная конструкция, потому что поршень
питание только в половине случаев. Гораздо лучше (хотя и немного больше
сложная) конструкция использует дополнительные паровые трубы и клапаны для подачи пара
поршень сначала в одну сторону, потом в другую. это называется двойное действие
(или противоточная) паровая машина.
Он мощнее, потому что пар все время приводит поршень в движение.
время.

Анимация: в цилиндре двойного действия клапан (оранжевый) щелкает вперед и назад, позволяя пару входить (желтый) и выходить (красный) из цилиндра с обоих направлений, таким образом обеспечивая мощность в два раза больше времени. Я упростил механизм здесь, чтобы его было легко понять. Клапан фактически скользит из стороны в сторону, а не переворачивается.

Если вы внимательно посмотрите на колеса типичной паровой машины, вы
видите, что все сложнее, чем мы видели в простой анимации выше:
там гораздо больше механизмов, чем просто кривошип и шатун. На самом деле, есть
замысловатая коллекция блестящих рычагов, двигающихся вперед и назад с дотошным
точность. Это называется клапанным механизмом. Его работа
заключается в открытии и закрытии клапанов цилиндров в нужные моменты, чтобы позволить
пар поступает с обоих концов, чтобы двигатель работал как можно эффективнее и мощнее, а также чтобы он
ехать задним ходом. Существует довольно много различных типов
клапанный механизм; один из наиболее распространенных дизайнов называется Walschaerts, названный в честь
его бельгийский изобретатель Эгиде Вальшартс (1820–1919 гг.01). Танковый двигатель 80104
показанный на второй фотографии на этой странице, имеет клапанный механизм типа Walschaerts, как и
Эддистоун, локомотив, изображенный ниже.

Фото: Клапанный механизм Walschaerts на типичном большом паровозе,
34028 Эддистоун.

Первые паровые машины были очень большими и неэффективными, а значит
требовалось огромное количество угля, чтобы заставить их что-либо делать. Более поздние двигатели
производил пар при гораздо более высоком давлении: пар производился в
меньший, гораздо более прочный котел, поэтому он выдавливался с большей силой и
ударил поршень сильнее. Дополнительная сила высокого давления
готовить на пару
двигатели позволили инженерам сделать их легче и компактнее,
и именно это проложило путь паровозам, пароходам,
и паровые машины.

Фото: Паровые машины не смогли перевезти всю воду
они нужны для дальней дороги. Периодически им приходилось останавливаться для пополнения запасов.
резервуары для воды на стороне пути, подобные этому (вверху) на железной дороге Суониджа.
У более крупных паровозов были тендеры: грузовики, которые они тащили за собой, с запасами топлива.
уголь (перед нарисованной нами красной линией) и вода (за красной линией). Уголь лежит на наклонной
пластина внутри тендера, благодаря которой он естественным образом наклоняется к отверстию
спереди, где пожарный может легко закинуть его в топку.
Внизу: Вы можете увидеть, как выглядит тендер внутри, на этой необычной фотографии пустого тендера.
сфотографировано немного сверху и сзади, снято в Музее науки Think Tank в Бирмингеме, Англия. Этот тендер вмещает около 18000 литров (4000 британских галлонов) воды и принадлежит музейному локомотиву Бирмингема.

Пар действительно умер?

Уголь был дешевым и доступным топливом в начале индустриальной эпохи.
Революция, но изобретение бензинового двигателя
(бензиновый двигатель) в середине 19 века ознаменовали новую эру:
в течение 20-го века нефть обогнала уголь в качестве фаворита в мире
топливо. Паровые двигатели крайне неэффективны, расходуют впустую около 80–90 процентов энергии.
всей энергии, которую они производят из угля. Это означает, что они должны гореть
огромное количество угля для производства полезного количества энергии.

Паровая машина настолько неэффективна, потому что огонь, который сжигает уголь,
полностью отдельный (и часто на некотором расстоянии от) цилиндр, который вращается
тепловую энергию пара в механическую энергию, приводящую в действие
машина. Такая конструкция называется двигателем внешнего сгорания.
потому что огонь и котел находятся вне цилиндра. это неэффективно
потому что энергия тратится впустую, поскольку тепло и пар перемещаются от огня,
через котел в цилиндр. Бензиновые и дизельные двигатели основаны на совершенно другой конструкции, называемой
двигатель внутреннего сгорания. Бензин или дизельное топливо
горит внутри цилиндра, а не снаружи, и это делает
двигатели внутреннего сгорания значительно эффективнее.
(Подробнее о внутреннем и внешнем сгорании вы можете прочитать в нашем обзоре
двигателей.)
У нефти есть и много других преимуществ: она чище угля, производит меньше
загрязнение воздуха, и его гораздо легче транспортировать по трубам.

Во многом поэтому с наших железных дорог исчезли паровозы — тепловозы были
вообще удобнее. Требуется несколько часов, чтобы запустить паровой двигатель, прежде чем вы сможете его использовать; Вы можете
запустить дизельный двигатель менее чем за минуту. Паровые машины исчезли с заводов, когда электричество
стал более удобным способом питания зданий. Кому захочется каждый день загружать уголь на фабрику, когда можно просто
щелкнуть переключателями, чтобы все заработало?

Работа: Чем меньше, тем лучше: Великобритания перешла с паровых двигателей на дизельные и электрические в 19 веке.60-е годы. Последние паровозы были построены здесь в 1956 г., а самый последний паровоз ходил в августе 1968 г. К 1968 г. в эксплуатации находилось лишь около трети локомотивов по сравнению с 1962 г., но перевозилось столько же грузов: дизель-электрическая рельсовая система, по-видимому,
намного эффективнее. Источник: составлено с использованием данных из «Работы британских железных дорог за 1962–1968 годы» CDJones, Journal of Transport Economics and Policy, Vol. 4, № 2 (май 1970 г.), стр. 162–170.

Но все не совсем так, как кажется. Пар и уголь никогда не делали
исчезнуть — не совсем так.
Откуда берется используемая нами электроэнергия?
Было бы здорово, если бы все это происходило из возобновляемых источников энергии.
(ветряки, солнечные батареи и т. д.), но
большая часть его по-прежнему поступает из угля,
сгорели на электростанциях в милях от
наши дома и фабрики.
Внутри угольной электростанции уголь по-прежнему сжигается для производства пара, который приводит в действие устройства, похожие на ветряные мельницы.
паровые турбины, которые намного эффективнее паровых двигателей. При вращении они поворачиваются
электромагнитные генераторы и производят электричество.
Вот видите, хотя паровозы и исчезли из нашего
железные дороги, паровая энергия
жив и здоров — и столь же важен, как и прежде!

На фото: некоторые из паровых двигателей, которые работают на старых линиях.
были еще относительно новыми, когда они были выведены из эксплуатации.
Вот этот,
Bulleid Pacific № 34070 «Мэнстон»,
был построен в 1947 г. и выведен менее чем через 20 лет (в 1964 г.).
После долгой реставрации компанией «Южные локомотивы» он вернулся в
обслуживание на железной дороге Суонидж в сентябре 2008 г.
Удивительно впечатляющее зрелище, он весит 128 тонн и может развивать скорость более 160 км/ч (100 миль в час).

Кто изобрел паровой двигатель… и когда?

Вот краткая история паровой энергии:

  • 1 век н.э.: Герой Александрии
    демонстрирует паровую вращающуюся сферу, называемую эолипилом.
  • 16 век н.э.: итальянский архитектор Джованни.
    Бранка
    (1571–1640) использует струю пара для вращения лопастей небольшого колеса,
    предвосхищая паровую турбину, разработанную сэром Чарльзом Парсонсом в 1884 году.
  • 1680: голландский физик Христиан Гюйгенс
    (1629–1693)
    делает первый поршневой двигатель, используя простой цилиндр и поршень
    питается от взрыва пороха. Помощник Гюйгенса Денис
    Папен
    (1648–1712) понимает, что пар — лучший способ приводить в движение цилиндр, и
    поршень.
  • 1698: Томас Савери (ок. 1650–1715)
    разрабатывает
    паровой водяной насос под названием «Друг шахтера». это просто
    поршневая паровая машина (или лучевая машина) для откачки воды из
    шахты.
  • 1712: англичанин Томас Ньюкомен
    (1663–1729) разрабатывает
    гораздо лучшая конструкция парового двигателя с водяной помпой, чем у Савери.
    и обычно приписывают изобретение паровой машины. А
    шотландский инженер по имени Джеймс Уатт
    (1736–1819) вычисляет
    гораздо более эффективный способ получения энергии из пара после улучшения
    Модель двигателя Ньюкомена. Улучшения Уатта Ньюкомена
    двигателя привели к широкому распространению пара.
  • 1770: офицер французской армии Николя-Жозеф
    Кюньо
    (1725–1804) изобретает трехколесный трактор с паровым двигателем.
  • 1797: английский горный инженер Ричард.
    Тревитик
    (1771–1833) разрабатывает паровую версию двигателя Уатта, работающую под высоким давлением.
    прокладывая путь для паровозов.
  • 1803: английский инженер Артур Вульф
    (1776–1837) составляет
    паровой двигатель с более чем одним цилиндром.
  • 1804: американский промышленник Оливер Эванс
    (1775–1819)
    изобретает паровой пассажирский автомобиль. Как и Тревитик, он
    признает важность пара высокого давления и строит более
    50 паровых машин.
  • 1807: американский инженер Роберт Фултон.
    (1765–1815) работает
    первое пароходное сообщение по реке Гудзон.
  • 1819: Океанский корабль на паровой тяге «Саванна».
    пересекает
    Атлантика из Нью-Йорка в Ливерпуль всего за 27 дней.
  • 1825: английский инженер Джордж Стефенсон.
    (1781–1848) строит первую в мире паровую железную дорогу между
    города Стоктон и Дарлингтон. Для начала паровозы тянут
    только большегрузные угольщики, а пассажиров перевозят в конных экипажах.
  • 1830: Ливерпульско-Манчестерская железная дорога становится первой, использующей энергию пара.
    для перевозки как пассажиров, так и грузов.
  • 1882: плодовитый американский изобретатель Томас
    Эдисон
    (1847–1931) открывает первую в мире коммерческую электростанцию ​​​​в Перл.
    Улица, Нью-Йорк. Он использует высокоскоростные паровые двигатели для питания
    генераторы электроэнергии.
  • 1884: английский инженер сэр Чарльз Парсонс.
    (1854–1931)
    разрабатывает паровую турбину для своего быстроходного парохода Turbinia.

Фото: Подумайте о паровых двигателях, и вы, вероятно, думаете о паровозах, но корабли тоже были паровыми до того, как появились дизельные двигатели. Это прекрасно отреставрированный PS Waverley, последний колесный пароход в мире, построенный в 1947 году и направляющийся к пирсу Суонидж в сентябре 2009 года.

Подробнее

На этом сайте

  • Автомобильные двигатели (бензиновые двигатели)
  • Дизельные двигатели
  • Электродвигатели
  • Энергия
  • Реактивные двигатели
  • Двигатели Стирлинга

На других веб-сайтах

  • Паровозы: несколько удивительно запоминающихся теле- и радиоклипов BBC. [Архивировано с помощью Wayback Machine.]
  • Flickr: Steam Powered: группа Flickr для любителей паровых двигателей. В настоящее время более 32 000 фотографий от примерно 1000 участников.
  • Йорк, сверх ожиданий: отличное описание замечательного парового двигателя в разрезе в Национальном железнодорожном музее в Йорке, Англия.

Видеоролики

  • Эксплуатация паровоза: Это отличное «виртуальное» руководство по вождению паровоза с использованием компьютерного моделирования RailWorks внутренней части кабины.
  • Курсы вождения паровоза на Лавандовой линии: посмотрите видео о том, как кто-то управляет паровозом. Там нет комментариев, и трудно понять, что делает машинист, но вы понимаете, насколько «физически» управлять паровозом!

Книги

Как это работает (для читателей старшего возраста)
  • Как на самом деле работают паровозы PWB Semmens и AJ Goldfinch. Oxford University Press, 2004. Я не читал эту книгу полностью, но, судя по отрывкам, которые я видел, она выглядит неплохо. Довольно подробный (348 страниц) и с очень британским колоритом.
  • Паровые двигатели, объясненные Стэном Йорком. Countryside Books, 2009. Великолепная небольшая книга с фантастически четкими иллюстрациями различных типов паровых двигателей. Хорошая отправная точка для людей, которые не хотят вдаваться в инженерные подробности.
Как это работает (для младших читателей)
  • Как работают маленькие паровозики (Томас и друзья) Криса Окслейда. Random House, 2017. 48-страничное введение для поклонников Паровозика Томаса (возраст 5–7 лет). Обратите внимание, что в этой книге повторно используется содержание из Руководства Хейнса Паровозик Томас: 1945 г. и далее .
История (для читателей постарше)
  • Великая железнодорожная революция: история поездов в Америке Кристиана Вольмара. Hachette, 2012. Как трансконтинентальные железные дороги сыграли ключевую роль в формировании Соединенных Штатов.
  • Огонь и пар Кристиана Вольмара. Atlantic Books, 2008. Превосходная книга об истории железных дорог в Великобритании. Вольмар — страстный и знающий транспортный журналист из Великобритании, и он идеально подходит для написания такой книги.
  • Кровь, железо и золото: как железные дороги изменили мир Кристиана Вольмара. PublicAffairs, 2010. Продолжение Fire and Steam, исследует распространение железных дорог в других странах.
  • Герцогини, Aurum, 2015;
    Летучий шотландец, Aurum, 2011;
    и Great Western Railway, Aurum, 2011, все Эндрю Роден. Три книги, написанные с чуть большей страстью и темпом, чем у Кристиана Вольмара; Я получил огромное удовольствие от всех трех.
  • Пар Джон К. Мерриам в Восьмидесятилетний прогресс Соединенных Штатов , 1867 год. Увлекательная история паровой энергетики 19-го века, написанная с американской точки зрения.
История (для младших читателей)
  • Паровые двигатели: великие изобретения Джеймса Линкольна Кольера. Marshall Cavendish/Benchmark Books, 2005. Краткая история паровых двигателей для юных читателей.
  • Джеймс Уатт и паровой двигатель Джима Уайтинга. Митчелл Лейн, 2006. Биография Ватта для читателей в возрасте около 9 лет.–12.

Статьи

  • Великолепная кряква: самый быстрый в мире паровоз: BBC News, 3 июля 2013 г. Ностальгическое путешествие в прошлое с непревзойденным паровым двигателем сэра Найджела Гресли.
  • Фотографии паровоза О. Уинстона Линка, сделанные Мэттом Макканном. The New York Times, 16 ноября 2012 г. Исследование работы известного фотографа, который задокументировал последние годы американского пара.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2007, 2022. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оценить эту страницу

Пожалуйста, оцените или оставьте отзыв на этой странице, и я сделаю пожертвование WaterAid.

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2007/2022) Паровые двигатели. Получено с https://www.explainthatstuff.com/steamengines.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем веб-сайте…

  • Средства связи
  • Компьютеры
  • Электричество и электроника
  • Энергия
  • Машиностроение
  • Окружающая среда
  • Гаджеты
  • Домашняя жизнь
  • Материалы
  • Наука
  • Инструменты и приборы
  • Транспорт

↑ Вернуться к началу

Чем создание парового двигателя похоже на создание веб-сайта?

Что значит задать вопрос разработчику? Приготовьтесь к длинному ответу. Недавно мы задали пару вопросов нашему директору по развитию, чтобы помочь конкретизировать наш веб-сайт. Мы ожидали простого ответа, но получили очень подробный ответ.

У нашего директора по развитию есть несколько увлечений; один из них строит модели паровых двигателей. Предположительно, он надеется построить полноценный паровой двигатель в будущем. Вот вопрос, который мы ему задали:

Вот его ответ. Наслаждаться.

Первым шагом при создании веб-сайта является планирование. Нам нужно выяснить, что потребуется для создания работающего веб-сайта, отвечающего потребностям и требованиям клиента, то есть нам нужен веб-сайт, на котором отображаются наши продукты и который позволяет пользователю запрашивать расценки. Как только это станет известно, следующим шагом будет проработка множества различных деталей, чтобы создать основу для веб-сайта. Параллельно делается выбор того, что сделает сайт эффективным и красивым. Наконец, все это собирается и проверяется на работоспособность.

Сборка паровой машины состоит почти из тех же шагов. Вы решаете, что двигатель должен делать. Это может быть что-то простое, например: «Он должен вращаться при впрыске сжатого воздуха», или сложное, например: «Он должен генерировать 1 л.с. и управлять электрическим генератором». Это соответствует «потребностям и требованиям» клиента к веб-сайту.

Затем нам нужно создать дизайн, соответствующий требованиям. В паровых двигателях это выбор размера и хода поршня, рабочей скорости в об/мин и клапанов. Дополнительные проблемы могут быть связаны с тем, является ли это конденсационным двигателем или двигателем без конденсации. Это эквивалент этапа планирования при создании веб-сайта. В рамках этого планирования и проектирования мы выбираем правильную структуру или CMS, чтобы удовлетворить потребности и требования заказчика.

Когда дизайн готов, пора приступать к делу. Машинист или веб-дизайнер работает с подробными чертежами/документами на этапе планирования. Иногда задачи простые, иногда задачи сложные. На веб-сайте создание хорошего дизайна базы данных является сложной кропотливой задачей, которая занимает много времени и считается «сложной». С другой стороны, применить правильный CSS для позиционирования HTML-элемента легко, но отнимает много времени.

Создание паровой машины также включает в себя сложные и легкие задачи. Иногда сложные задачи на самом деле занимают меньше времени, чем простые. Например, довольно «легко» подогнать удилище по размеру. Легко надеть нить на стержень, когда он в размер. Легко сделать удилище нужной длины. Столь же просто сделать четыре стойки, каждая из которых должна иметь одинаковую длину между нитями, и каждый набор нитей должен быть одинаковым, и каждая общая длина должна быть одинаковой, но это требует времени. С другой стороны, отливка поршня двигателя — это всего несколько минут интенсивной работы (заливка расплавленного металла — самая интенсивная работа, которую я когда-либо делал), и требуется час или два ожидания, чтобы увидеть результаты. На самом деле не требуется много времени, но это все еще очень сложно.

После того, как все элементы веб-сайта созданы: таблицы базы данных, различные темы и представления, логика — настало время собрать их все в один целостный гештальт. В обоих проектах вы выполняете пробную подгонку по ходу дела, но только когда вы начнете сборку, вы узнаете, что у вас есть. Вы тщательно собираете все части вместе, пока не получите готовый веб-сайт или движок.

Настало время проверить, работает ли он. Вы открываете сайт заказчику и надеетесь, что он ему понравится. Вы сделали все возможное и следовали всем инструкциям и указаниям, которые вы получили, но только в этот волшебный момент вы знаете, правильно ли вы поступили. В паровом двигателе это тот момент, когда вы подаете сжатый воздух на «пар» в порту и смотрите, крутится ли двигатель. Вы устанавливаете давление и измеряете скорость и мощность двигателя. Вы также смотрите, нет ли утечек.

Если все работает, то пора запускать. День запуска всегда волнующий. Разработчики делают копию веб-сайта из промежуточной зоны, где клиент оставлял отзыв, в рабочую зону. Все проверено и перепроверено. Клиент приходит и делает двойную проверку. Наконец, сайт запущен, и весь мир приглашается посмотреть, что было сделано. Заказы начинают поступать.

Для машиниста день запуска включает в себя подключение двигателя к котлу для обеспечения движущей силы и подключение выхода двигателя к чему-либо, чтобы использовать эту мощность, например к динамо-машине, гидравлическому насосу или генератору. Котел зажигается, а затем к двигателю подается острый пар с давлением 340 ä‹Š и 100 фунтов на квадратный дюйм. Он шипит, выплевывая воду и пар, а затем начинает поворачиваться. Довольно скоро двигатель крутится на скорости и прикладывается нагрузка. Двигатель замедляется, а затем снова набирает обороты, и счетчики могут измерять мощность, вытекающую из генератора, или гидравлический насос видит, как датчик GPM движется вверх.

Короче говоря, веб-сайты и паровозы удивительно похожи!

История парового двигателя

История парового двигателя
[Главная страница истории Steam] [Карта сайта истории Steam] [Домашняя страница учебника по вводному химическому машиностроению] [Дополнительные материалы к учебнику]


Краткая история паровой машины

Резюме Карла Лиры

Одной из наиболее важных промышленных задач 1700-х годов было удаление
воды из шахт. Пар использовался для откачки воды из шахт. Теперь это
может показаться, что он имеет очень мало общего с современной паровой электроэнергетикой.
растения. Однако одним из основных принципов, используемых при разработке
Энергия на основе пара — это принцип, по которому конденсация водяного пара может создать
вакуум. В этой краткой истории обсуждается, как конденсация использовалась для создания вакуума.
для работы первых паровых насосов и как Джеймс Уатт изобрел раздельный
конденсатор. Хотя представленные в этой истории циклические процессы не используются
в современных паровых турбинах с непрерывным потоком в современных системах используются отдельные конденсаторы.
работающих при давлении ниже атмосферного, с учетом описанных здесь принципов.
Кроме того, истории изобретателей и их изобретений дают представление о
процесс технологических открытий.

Демонстрация вакуума

Один из самых важных принципов, применяемых в работе паровой энергии.
это создание вакуума путем конденсации. Эта ссылка обеспечивает простую иллюстрацию
используя бутылку безалкогольного напитка и кипящую воду. Демонстрация иллюстрирует, как конденсация
внутри резервуара создается вакуум. Помпа Savery, описанная ниже, использует метод
очень похоже на продемонстрированный метод. Вакуум
Демо.

Насос Savery

В первые дни одним из распространенных способов удаления воды было использование ряда
ковшей на шкивной системе, управляемой лошадьми. Это было медленно и дорого
так как животные нуждались в кормлении, ветеринарной помощи и содержании. Использование
пар для перекачивания воды был запатентован Томасом Савери в 169 г.8, а по его словам
предоставил «двигатель для подъема воды огнем». Насос Савери заработал
путем нагревания воды для ее испарения, заполнения резервуара паром, а затем создания
вакуум, изолируя бак от источника пара и конденсируя пар.
Вакуум использовался для забора воды из шахт. Однако вакуум может
брать воду только с небольшой глубины. Еще одним недостатком помпы был
использование давления пара для вытеснения воды, набранной в резервуар.
В принципе, давление можно использовать для нагнетания воды из резервуара вверх.
80 футов, но взрывы котлов не были редкостью, так как конструкция герметичных
котлы были не очень развиты. Эта ссылка содержит подробную информацию о работе Savery
Описание насоса..

Атмосферный двигатель Ньюкомена

Томас Ньюкомен (1663-1729), кузнец, в течение 10 лет экспериментировал с
первый по-настоящему успешный паровой двигатель, приводивший в действие насос для удаления воды из
шахты. Его способность продавать двигатель была затруднена из-за обширного патента Савери.
Он был вынужден основать фирму с Савери, несмотря на улучшение показателей.
его двигателя, существенные механические отличия, устранение
потребность в давлении пара и использование вакуума совершенно по-другому. А
Схема двигателя Ньюкомена показана на рис. 1. Двигатель называется
«атмосферный» двигатель, потому что наибольшее используемое давление пара близко к
атмосферное давление.

Рис. 1. Иллюстрация атмосферного двигателя Ньюкомена для откачки воды.

Принцип действия. Паровая машина состоит из
паровой поршень / цилиндр, который перемещает большую деревянную балку для привода водяного насоса.
Двигатель не использует давление пара для подъема парового поршня ! Скорее,
система сконструирована таким образом, что балка тяжелее со стороны главного насоса,
и гравитация тянет вниз балку со стороны главного насоса. Веса добавляются к
стороны главного насоса, если это необходимо. Насосы на рис. 1 вытесняют воду вверх.
ход поршня насоса, в соответствии с насосами, использовавшимися в оборудовании в то время, и обсуждение следует этой конструкции. Для того, чтобы рисовать
воды в основной насос в правой части схемы, рассмотрим цикл
это начинается с луча, опрокинутого вниз справа. Цилиндр под паром
поршень сначала заполняется паром атмосферного давления, а затем распыляется вода
в цилиндр для конденсации пара. Разность давлений между атмосферой и
возникающий вакуум выталкивает пар
поршень вниз, поднимая поршень основного насоса вверх, поднимая воду над поршнем основного насоса и заполняя нижнюю камеру основного насоса водой. В нижней части хода парового поршня открывается клапан для восстановления
паровой цилиндр к атмосферному давлению, а луч направлен вниз справа
под действием силы тяжести, позволяя главному поршню упасть. Когда главный поршень падает, вода из-под поршня проходит в камеру над поршнем, как будет объяснено позже. Пар атмосферного давления поступает в паровой цилиндр.
на этом этапе, что позволяет повторить процесс.

Двигатель Ньюкомена был лучшей технологией на протяжении 60 лет! Некоторые двигатели Ньюкомена
использовались намного дольше, хотя и значительно уступали Ваттным
последующие двигатели. Более подробно о работе и фото старейшего
существующий двигатель Ньюкомена, см. Newcomen
Описание двигателя.

Атмосферный паровой двигатель мощностью

Вт

Рис. 2. Иллюстрация атмосферного двигателя Уатта для перекачивания воды.
Главный насос не показан. (По гравюре Стюарта, 1824 г. ,
стр. 114.).

 

Двигатели

Newcomen были крайне неэффективны. Пользователи узнали, как
требовалось много энергии. Паровой цилиндр неоднократно нагревался и охлаждался,
которые тратили энергию на повторный нагрев стали, а также вызывали большие тепловые
стрессы. Джеймс Уатт (1736-1819) совершил прорыв, применив
отдельный конденсатор. Уатт открыл отдельный конденсатор в 1765 году.
(См. Эксперимент Уатта.) Потребовалось 11 лет, прежде чем
он видел устройство на деле! Самое большое препятствие для реализации
двигателя Уатта была технология изготовления большого поршня/цилиндра.
с достаточно жесткими допусками, чтобы они герметизировали умеренный вакуум.
Технология улучшилась примерно в то же время, когда Уатт нашел финансовую
поддержку, в которой он нуждался, благодаря партнерству с Мэтью Бултоном.

Принцип действия. Двигатель Ватта, как
двигатель Ньюкомена, работающий по принципу разности давлений, создаваемой вакуумом
с одной стороны поршня, чтобы толкнуть
паровой поршень вниз. Однако паровой цилиндр Уатта и вовсе оставался горячим.
раз. Клапаны позволяли пару поступать в отдельный конденсатор.
а затем конденсат откачивался вместе с газами с помощью воздушного насоса. (См. рис. 2.)

Более подробная информация о работе и фотографии пары двигателей Watt
используется для перекачки воды, см. Уатт
Описание двигателя.

Поршень двойного действия и роторный двигатель

Рис. 3. Иллюстрация двигателя двойного действия Бултона-Ватта. (адаптированный
с гравюры Стюарта, 1824 г., стр. 128).

 

Уатт и Боултон успешно применили свой двигатель для откачки воды из
колодцы. Бултон был прозорливым промышленником и воспользовался
возможности применения двигателя в других отраслях промышленности. Перемещение
паровой двигатель в помещении, устройство стало полезным для работы мельниц и
текстильные фабрики и др.

Двигатель, изображенный слева, является примером двигателя позднего
1700-е годы. Обратите внимание на цепь, которая ранее соединяла поршень с балкой.
двигатели были заменены механизмом параллельного движения. Ватт сказал
своему сыну, что он гордится этим изобретением еще больше, чем
сам двигатель. Механизм позволял поршню действовать в
идеально выровненное движение вверх/вниз, в то время как луч следует по дуге. Механизм
также дали возможность передавать работу в восходящем ходе! Steam есть
, наконец, выполняет работу, толкая вверх! Используемые для этого котлы
устройством также являются котлы атмосферного давления. Цилиндровое пространство над
поршень соединен с вакуумом конденсатора, чтобы обеспечить
пар, толкающий поршень.

Двигатель слева также содержит еще одно необходимое улучшение
для работы машин с постоянной скоростью — подключен регулятор скорости
к дроссельному клапану.

Подробнее о двигателе двустороннего действия, механизме параллельного движения,
регулятор скорости, а также система солнечной и планетарной передачи (не изображена
на рис. 3), включая фотографии, см.
Описание двигателя.

Биография Джеймса Ватта и история двигателя

История Джеймса Уатта и разработки двигателя чрезвычайно интересна.
Используйте эту ссылку, чтобы найти биографию Ватта. История
поможет вам понять, как двигатель стал больше, чем водяной насос, и как
Вышеуказанные события относятся к человеку и времени.

Важные даты в развитии Steam
Двигатель

Краткая библиография книг и ресурсов для
Изучение паровых двигателей и Джеймса Уатта

Карта сайта

Для просмотра каталога сайта щелкните здесь.


Спасибо за проявленный интерес!

Обновлено 21.05.13, авторское право
2001-2013, Карл Т. Лира, [email protected]
Все права защищены.

Подготовлено как дополнение к Вводной
Химическая инженерия Термодинамика.

Новое изобретение парового двигателя | Engineering For Change

20 августа 2021 г.

автор: ЗАПРОС: ASME Global Development Review

Карл Биленберг черпал вдохновение в технологических инновациях промышленной революции, направленных на борьбу с глобальной энергетической бедностью.


Один взгляд на спутниковый снимок Земли ночью многое говорит об энергетическом неравенстве в мире. Европа, США и Ближний Восток светятся яркими огнями. Япония в огне, как и большая часть Юго-Восточной Азии, Южной Канады и густонаселенных прибрежных районов Южной Америки и Австралии. Но Африка — за пределами пылающего Йоханнесбурга и нескольких мерцающих городских центров — темна.

По данным Международного энергетического агентства, около 1,3 миллиарда человек во всем мире не имеют доступа к электричеству. Почти половина из них живет в небольших отдаленных общинах, разбросанных по всей Африке к югу от Сахары, где проживает почти миллиард человек. И, несмотря на стремительный экономический рост во многих африканских странах, число людей, не подключенных к современным энергетическим услугам, растет, потому что расширение инфраструктуры не может идти в ногу с ростом городов. Действительно, при высокой стоимости и медленном росте энергетических услуг процент «подключенного» населения Африки — как городского, так и сельского — мало изменился за последние 40 лет.

Примерно столько времени Карл Биленберг искал способы создания доступной энергии в Африке. В 1980-х годах инженер-механик изучал, как использовать растительные масла в качестве более дешевых заменителей дизельного топлива, которое в то время приводило в действие большинство сельскохозяйственных машин. Ни одна из разрабатываемых им технологий не оказалась столь рентабельной, как он надеялся, поэтому он вернулся к чертежной доске. Путь назад.

«Я начал спрашивать, почему мы отказываемся от пара, — размышляет Биленберг. «Пар был источником энергии, подпитывавшим промышленную революцию. Почему бы нам не использовать это в Африке?»

Краткая история парового двигателя

Между серединой 18-го и 19-го веков большинство заводов, кораблей и поездов приводились в движение паровыми двигателями. Технология была проста: котел — в основном резервуар или контейнер с огнем под ним — производил пар путем нагревания воды. Создание объемов пара внутри котла создавало давление, которое можно было использовать для движения и выполнения работы.

До конца 19-го века паровые двигатели вырабатывали полезную мощность за счет приложения давления в котле к поршню, который запускал цепную реакцию, когда он начинал двигаться. Движение будет вращать связанный вал, который можно использовать для привода механического оборудования, например, при прикреплении к колесам локомотива или гребному винту корабля. Или он мог производить электричество, вращая генератор. Это был простой процесс, а паровые двигатели были чрезвычайно надежными и долговечными машинами. На самом деле, паровая машина могла работать до 75 лет при нечастом обслуживании.

Доступ к энергии в Африке мало изменился за последние 40 лет.

Недостатком паровых машин было то, что они были большими, тяжелыми и капиталоемкими. Со временем, когда использование ископаемого топлива и двигателей внутреннего сгорания стало более распространенным, паровые двигатели стали менее конкурентоспособными. Поэтому, когда Биленберг решил вернуться к использованию пара в качестве источника энергии, он знал, что ему необходимо внести улучшения.

«Дело не в том, что они не знали, что им нужно было сделать в 19 веке для повышения эффективности. Они сделали очень многое за почти столетнюю историю его использования», — говорит Биленберг. «Но мы смогли продвинуться немного дальше с материалами, которых у них не было».

В 2008 году, используя современные материалы и улучшенную термодинамику, Биленберг разработал небольшую паровую установку, работающую на биомассе, которая преобразует древесные и сельскохозяйственные отходы в полезную энергию. Он назвал и прототип, и предприятие, которое он начал для его коммерциализации, Village Industrial Power, или сокращенно VIP.

Зависимость от биомассы

Использование биомассы в качестве мощного и эффективного источника энергии может изменить правила игры в бедных, не подключенных к сети сообществах, где от 75 до 80 процентов общего потребления энергии потребляется природными веществами, говорит Биленберг. Отчасти причина такого высокого процента заключается в том, что много биомассы сжигается в традиционных открытых огнях, которые являются неэффективным способом обеспечения тепла.

Биленберг утверждает, что для борьбы с энергетической бедностью имеет смысл изучить виды топлива, которые люди уже используют, чтобы понять, как использовать их более эффективно и производить современные энергетические услуги. «Если вы можете это сделать, вы даете людям возможность развиваться экономически и повышать уровень жизни, не становясь зависимыми от дорогого импортного топлива. Это очень мощная парадигма», — говорит он.

VIP, безусловно, предлагает значительный импульс для изменения парадигмы, как предполагает часть названия «деревня». Машина предназначена для обеспечения энергией целых сообществ или небольших коммерческих предприятий, а не отдельных домохозяйств. Предполагаемое использование VIP включает в себя питание сельскохозяйственной промышленности, общественных клиник и больниц или микросетей. На самом деле, все эти приложения были протестированы.

Географически целевые рынки VIP включают в себя менее развитые страны, где технология может заменить функции, которые в противном случае зависят от дорогостоящих источников топлива, таких как дизельное топливо, которое стоит около 1 доллара США за литр в большинстве районов Африки. Поскольку VIP работает на биомассе, эта технология полезна только в регионах с обильными источниками биомассы, а не в пустынях или регионах с небольшим количеством деревьев или малой растительностью. Самые идеальные районы находятся в пределах от 10 до 30 градусов от экватора.

В отдаленном африканском регионе Сахель — полосе между северной пустыней континента и центральным лесом, простирающейся от Судана до Сенегала — сельские общины обходятся небольшими источниками дохода и элементарной инфраструктурой.

Эффективность простых источников энергии из биомассы

«[Для получения энергии] люди сжигают древесину. Лес и деревья очень важны для их выживания», — объясняет Биленберг. Для всего, что не может быть топливом из дерева, люди полагаются на дизельные двигатели и генераторы или силу человеческих мышц.

Дизельные машины дороги в местах, где мало возможностей для заработка. Эксплуатация небольшого дизельного генератора мощностью 2,5 кВт в течение полного дня может стоить около 10 долларов на топливо. Таким образом, люди пытаются свести к минимуму потребление топлива, чтобы сэкономить деньги на неизбежные расходы, такие как лекарства, одежда и плата за обучение в школе; они делают это, максимально полагаясь на свой собственный труд.

«В деревнях, где есть зерновые мельницы с дизельным двигателем, значительная часть женщин предпочитает молоть кукурузу вручную, чтобы избежать затрат на механизированное измельчение», — объясняет Биленберг. «Это указывает на то, что для женщин с низким доходом ручной труд может быть дешевле дизельного топлива».

Биленберг подчеркивает потребность в доступных, недорогих видах энергии, а также в решениях, которые могут обеспечить возможности получения дохода в сообществах, особенно для женщин.

Меньшая паровая машина, которая могла

Возможность использовать биомассу в качестве источника энергии для слаборазвитых районов появилась у Биленберга благодаря 40 годам работы в Западной Африке и долгой карьере в области производства электроэнергии в США. В США он зарабатывал себе на жизнь, представляя то, что он называет «целевой компанией», которая производит промышленные котельные на биомассе.

«Основным рынком сбыта этих растений является Новая Англия, где зимы длинные, а вегетационный период короткий и у нас много древесины. Мы ставим их в школах и больницах, и они производят очень дешевое тепло и горячую воду для больших зданий», — говорит он. «Это технология, которая [является] очень интересной и рентабельной при уменьшении масштаба».

Эффективность 10-киловаттной машины VIP

Полезная выходная энергия VIP бывает трех видов: механическая, электрическая и тепловая. Механическая энергия может использоваться для привода механизмов или преобразовываться в электрическую энергию с помощью генератора машины. Первоначальный прототип паровой машины мощностью 7 кВт поглощает 60 процентов тепла от огня, работающего на биомассе, — около восьми процентов из которых можно использовать для производства энергии или электричества.

Последняя версия VIP — это машина мощностью 10 кВт, которая может улавливать 70 % тепла от огня, примерно 10 % которого можно преобразовать в электричество. Работая восемь часов в день, он может производить 80 кВт-часов, что достаточно для обеспечения электричеством от 100 до 200 домов для маломощного освещения и основных бытовых приборов, таких как небольшой холодильник. Это также заменяет расходы на дизельное топливо от 32 до 40 долларов каждый день.

Оставшиеся 60 процентов захваченной энергии можно использовать в качестве тепла для таких применений, как общественные бани, приготовление пищи, обработка или сушка урожая или стерилизация в медицинских учреждениях.

«Звучит как плохая сделка, что мы получаем больше тепла, чем энергии, но в приложениях, которые мы рассматриваем, [таких как] обработка урожая и здравоохранение, потребность в тепле на самом деле превышает потребность в электроэнергии. или мощность, так что это, по сути, очень хороший баланс», — говорит Биленберг.

Одним из ключевых преимуществ VIP по сравнению с другими технологиями является то, что его мощность может быть легко передана в любое время. Фотоэлектрическая солнечная энергия, например, требует резервных батарей для работы ночью или в плохих погодных условиях.

Чтобы сделать паровую энергию доступной для сообществ с ограниченными ресурсами, Биленбергу и его команде пришлось внести значительные изменения в дизайн своей вдохновляющей модели. Традиционные паровые двигатели имели сложные соединения и механизмы для управления их клапанами, что усложняло и удорожало машину. Но VIP должен был быть простым по своей конструкции, с минимальным количеством движущихся частей из-за трудностей с поиском специалистов для обслуживания в отдаленных районах.

Решение, которое разработала команда Биленберга, заключалась в установке автоматических впускных клапанов. «Они находятся под давлением, работают сами по себе и делают именно то, что им нужно, не требуя никакого внешнего механизма для их перемещения», — объясняет он.

Еще одно важное изменение конструкции заключается в том, что VIP не требует смазки для своих движущихся частей. В стандартных паровых двигателях операторам приходилось использовать масло для смазки поршня и поршневых колец, чтобы двигатель работал плавно. Биленберг хотел отказаться от смазочных материалов по двум причинам: во-первых, потому что масло было бы дополнительными затратами, и во-вторых, потому что смазочное масло для поршня смешивалось бы с паром и его нужно было бы отфильтровывать перед рециркуляцией конденсата обратно в котел. — дополнительная сложность. Если бы этого не было, масло сгорало бы внутри котла и снижало его КПД.

В качестве решения команда VIP использовала углеграфитовые материалы для поверхности скольжения поршня и поршневых уплотнений. Поршни и уплотнения, изготовленные из этой кристаллической формы углерода, являются самосмазывающимися. Это позволяет воде — дефицитному ресурсу во многих местах — легко перерабатываться в машине.

Последним усовершенствованием конструкции VIP является прочный котел. В гидростатических испытаниях, когда для оценки производительности котла используется вода под давлением, коэффициент безопасности машины оказался в три раза выше, чем у обычных американских котлов. Это стало результатом кропотливой инженерной работы Биленберга, направленной на то, чтобы котел соответствовал или превосходил нормы котлов ASME — строгий набор стандартов, который был сформирован с появлением коммерческого производства паровой энергии.

Все эти доработки позволяют сделать машину более эффективной, безопасной и компактной. Однако VIP-оборудование по-прежнему является тяжелым оборудованием: готовые единицы весят около тонны.

В настоящее время все VIP изготавливаются вручную в Новой Англии и доставляются в конечные пункты назначения готовыми к эксплуатации по прибытии. Каждый блок построен как единое целое, которое можно перемещать на пикапе и прикручивать болтами к бетонной площадке внутри сарая. Как только VIP-устройство установлено на место, все, что нужно сделать оператору, это наполнить его топливом и водой, чтобы начать его использовать.

Есть недостатки в ручном изготовлении VIP-юнитов, так далеких от их целевых рынков, особенно с точки зрения стоимости. В настоящее время производство машин стоит около 20 000 долларов. Поскольку компания использует более дешевое производство и увеличивает объемы производства, ожидается, что цена упадет примерно до 15 000 долларов.

Для сравнения, дизель-генераторные установки, которые могут соответствовать выходной электрической мощности VIP, стоят где-то от 4000 до 10 000 долларов США без учета текущих затрат на дизельное топливо. «Таким образом, производство нашего примерно в два раза дороже», — признает Биленберг.

Добавьте стоимость доставки в порты Африки, которая составляет около 2500 долларов за машину, от 100 до 500 долларов за транспортировку из порта до конечного объекта и до 300 долларов за установку, и VIP становится довольно дорогим оборудованием для сельские общины с низким доходом должны платить авансом.

Команда признает, что должны быть варианты финансирования, чтобы решение было жизнеспособным. Но они также ожидают, что, когда будет определена окончательная цена, VIP будет конкурентоспособен по стоимости с другими доступными технологиями. (VIP утверждает, что машина уже конкурентоспособна с солнечными системами сравнимого размера.) По оценкам Биленберга, если двигатель будет работать от восьми до десяти часов в день, машина окупится за один-два года.

Доказательство эффективности

В конце 2014 года компания VIP начала полевые испытания своих устройств, чтобы определить, какие аспекты технологии работают лучше, а какие необходимо улучшить. Пять бета-прототипов блоков мощностью 7 кВт были отправлены в Африку благодаря грантовому финансированию в рамках премии USAID 2013 года «Энергия сельского хозяйства»: два в Танзанию для питания больницы и деревенской микросети и три для устойчивых плантаций масличных пальм в Бенине. В Танзании больничная установка предназначена для обеспечения электричеством воды и отопления прачечной, а установка в деревне, как ожидается, электрифицирует 50 домов и ряд малых предприятий. В Бенине установки предназначены для замены дизельного топлива и дров для питания сельскохозяйственной техники и горячего водоснабжения.

VIP-гостиница и масличная пальма испытываются на топливе из кофейной шелухи (пергамента) и волокна масличной пальмы и скорлупы ядра пальмы соответственно, в то время как деревенский завод испытывается на древесных отходах выращенных на плантациях эвкалиптов.

В дополнение к пяти испытательным блокам в Африке компания VIP установила два блока мощностью 50 кВт в государственном доме престарелых в Нью-Гэмпшире. Эти блоки являются частью интегрированной автономной системы, которая также состоит из гидроэлектростанций и дизель-генераторов. Эти агрегаты получают пар от котельной установки Messersmith мощностью 5 мм БТЕ, частично разработанной Bielenberg. Инсталляция в Нью-Гэмпшире подчеркивает широкие возможности применения технологии и ее потенциальное использование в более богатых сообществах.

В ходе полевых испытаний команда надеется узнать больше о том, как работает VIP при работе на различных видах топлива, а также о том, сколько золы производят различные виды топлива и вызывают ли они коррозию передаточной поверхности котла или способствуют « зашлаковывание печи из-за налипания на ее горячие поверхности. Испытания также позволяют оценить адаптируемость технологии к различным видам топлива, чтобы определить, где она наиболее подходит для использования.

Большинство результатов, собранных VIP до сих пор, были анекдотичными, но, тем не менее, познавательными. Например, одной из проблем, которую решает команда, является установка автоматического контроля подачи и зарядки аккумуляторов на машинах. Другие отзывы показали, что некоторые аспекты машин работают лучше, чем предполагалось изначально.

«Многие люди думали, что тот факт, что это ручная машина, будет проблемой», — говорит Фелисити Лодж, генеральный директор VIP. «На самом деле, люди были в восторге от того, что это ручное управление, потому что им не нужно беспокоиться о замене деталей, к которым у них нет доступа или которые они не могут отремонтировать. Они были довольны тем, что устройство можно разобрать и собрать менее чем за час с помощью двух гаечных ключей».

Она добавляет, что технологии для рынков с низким уровнем ресурсов, подобных тем, которые они обслуживают в Африке, иногда могут быть слишком сложными. «Как только они ломаются, они ломаются. Здесь не тот дизайн. Было задумано сделать VIP ремонтопригодным и простым в обслуживании».

Один из самых неожиданных отзывов касается способности машины свести к минимуму использование дров в качестве ежедневного источника топлива. И Биленберг, и Лодж считали, что фермеры и сельские жители будут больше всего заинтересованы в экономии дизельного топлива. «Но оказывается, что значительное сокращение потребления древесины для них не менее, если не более важно», — говорит Лодж.

VIP Цикл ввода-вывода

Это важный знак будущего технологии как эффективного и устойчивого источника энергии. Нетрудно представить, как надежный производитель энергии, работающий на биомассе, может привести к разрушительным экологическим действиям, таким как вырубка лесов, чтобы поддерживать отопление и освещение сообществ и идти в ногу с экономическим ростом. Наоборот, Биленберг считает, что местное присутствие высокопоставленного лица может фактически стимулировать лесовосстановление, мотивируя фермеров устойчиво сажать деревья для использования в качестве топлива, а не просто заготавливать древесину для пропитания, говорит он.

Команда VIP еще не опубликовала количественные данные о том, сколько киловатт-часов электроэнергии могут производить машины на килограмм биомассы, но они анализируют эти цифры для нескольких источников топлива. Предварительные испытания показали, что когда давление в котле VIP составляет от 250 до 300 фунтов на квадратный дюйм, для производства 7 кВт энергии требуется от 25 до 30 кг воздушно-сухой древесины в час. «Новое поколение VIP», выпущенное в декабре 2015 года, «было рассчитано на работу при давлении до 400 фунтов на квадратный дюйм. Мы наблюдаем значительное увеличение мощности и эффективности при повышении давления и ожидаем, что новые агрегаты будут производить 10 кВт при том же расходе топлива», — говорит Биленберг.

Благодаря инвестиционному финансированию со стороны фирмы по поддержке венчурных предприятий Factor (E) Ventures на ранней стадии, новые агрегаты, получившие название V-10, включают в себя несколько улучшений, таких как новый котел, разработанный в соответствии с кодом ASME, сварные соединения труб и более прочные внутренние детали двигателя. чтобы приспособиться к повышенному давлению и мощности. Рыночные испытания новых устройств начнутся в 2016 году в Кении и Гане.

Замыкание цепи

В танзанийской деревне, где VIP-блок используется для питания микросети, процесс запуска и запуска сети многому научил команду VIP о потенциале и ограничениях их изобретения. В деревне они нашли общину, которая ждала, когда правительство подключит их к национальной электросети, хотя сеть Танзании обслуживает только 14 процентов ее почти 50 миллионов жителей. (Большинство его подключенных пользователей находятся в городах.) Из-за этого готовность сельских жителей платить за электроэнергию была ограничена, даже несмотря на то, что темпы подключения правительства были медленными.

Те, кто понимал, что сеть вряд ли до них доберется в ближайшее время, с большей готовностью платили за электроэнергию, при условии, что они могли снизить затраты, используя источник на более длительные периоды времени для поддержания продуктивной деятельности в дневное время.

«Люди были счастливы, что узел можно разобрать и собрать за час с помощью двух гаечных ключей».

Таким образом, команда VIP узнала, что для того, чтобы система микросетей работала, эти приложения должны быть доступны с первого дня, а также должен существовать четкий процесс выставления счетов домохозяйствам за потребляемую ими электроэнергию. Затраты и планирование, необходимые для того, чтобы технология работала на этом уровне, могут быть больше, чем могут себе позволить некоторые из предполагаемых клиентов VIP.

Биленберг и Лодж признают, что первоначальная стоимость устройства VIP, будь то для микросети или любого другого приложения, создает проблему для его масштабируемости. «Одной большой проблемой для многих фермеров является финансирование, потому что они не могут легко получить доступ к финансированию от банков или других традиционных поставщиков», — говорит Лодж. «Мы рассматриваем различные модели финансирования и способы решения этой проблемы».

Одним из решений является помощь сообществам в разработке моделей финансирования, подобных энергосервисной компании или кооперативу, члены которого объединяются, чтобы купить машину. Они также надеются использовать заинтересованность успешных членов сообщества в том, чтобы помочь своим родным деревням получить доступ к лучшим ресурсам.

«В Африке люди, которые ушли и преуспели, традиционно несут ответственность за помощь своим деревням и семьям, — говорит Лодж.

Биленберг добавляет: «Я вижу в них людей, которые в конечном итоге должны нести ответственность за экономическое развитие своей страны. У них есть ресурсы, чтобы это произошло, но они не были задействованы в полной мере, потому что технологии [необходимые для экономического развития] не были доступны».

Биленберг на собственном опыте убедился, насколько эффективным может быть взаимодействие. В апреле прошлого года во время поездки в Бенин Биленберг разговаривал со своим малийским водителем о своей работе над VIP. Водитель предложил помощь с установкой трех агрегатов в Сакете. Он прибыл, чтобы помочь разгрузить машину и руководить всеми, кто ее устанавливал; он также научился обслуживать и запускать его. Он сказал Биленбергу, что после выхода на пенсию он хотел бы иметь VIP-персону в своей деревне в Мали.

Биленберг размышляет: «Он также сказал: «Это то, что вы никогда полностью не узнаете о плодах этого, потому что плоды будут продолжать накапливаться еще долго после того, как вас не станет».


Примечание редактора: Спрос: ASME Global Development Обзор закрылся после шести лет публикации материалов о наиболее интересных проявлениях дизайнерских, инженерных и социальных инициатив в глобальном развитии. Журнал, выходящий два раза в год, был главным источником статей о глобальном развитии и дочерней публикацией журнала Engineering for Change. В знак уважения к Demand и работе экспертов, мнения которых он распространял, мы перепечатываем статьи и изображения Demand на этом сайте.

Эта статья была написана Запрос Ответственный редактор Сара Гударзи .

теги : спрос, Энергетические решения, дешевая энергия

Наука со мной — узнайте о паровых двигателях

Вы когда-нибудь ездили на паровозе?

Вы можете найти классический паровоз на старых железных дорогах, потому что он традиционно использовался для перевозки людей и товаров в различные места. Торговцы используют паровоз для перевозки своих товаров и продажи их на ярмарках или рынках. До того, как была введена современная железнодорожная система, все железные дороги использовали паровозы для своих поездов. Вы, наверное, задавались вопросом, что делает паровоз таким захватывающим, и это потому, что он приводится в движение паровым двигателем!

Что такое паровая машина?

Паровой двигатель — главная причина, по которой могут работать паровозы. С паровым двигателем люди могут путешествовать быстрее, что сделало торговлю более эффективной. Паровые двигатели являются одними из самых блестящих открытий человечества. Хотя большинство паровозов сегодня больше не работают на железных дорогах, вы все еще можете найти паровые двигатели, используемые на различных фабриках и промышленных предприятиях.

Что приводит в действие паровой двигатель?

Паровой двигатель — это машина, использующая только пар для выработки энергии. Вот так! Энергия парового двигателя получается за счет тепла, исходящего от котла, который работает подобно огромному котлу, наполненному водой. Сжигание угля для разогрева котла похоже на включение плиты для кипячения воды в чайнике. Люди постоянно подбрасывают уголь для сжигания, чтобы тепло могло циркулировать внутри котла, а по мере того, как вода продолжает кипеть, она выделяет пар, который, в свою очередь, заставляет машину работать. Это выглядит так просто, что просто удивительно, как это может привести в действие двигатель!

Понимание энергии паровых двигателей

Как и паровые двигатели, все использует энергию для работы. Например, пища, которую мы едим, переваривается, а затем превращается в топливо, необходимое нашему организму для выполнения повседневных задач. Энергию можно использовать и преобразовывать, но она никогда не исчезнет. Он только переходит из одного состояния в другое, и паровые двигатели — прекрасный пример того, как это происходит. Для работы паровых двигателей энергия получается из четырех различных видов: химической энергии, тепловой энергии, кинетической энергии и, наконец, потенциальной энергии.

  • Химическая энергия. Для производства пара, который используется для работы паровой машины, уголь загружается в топку, которая по сути похожа на печь или дровяную печь. Поскольку уголь является топливом, которое может эффективно передавать тепло, его используют для повышения температуры котла. В тот момент, когда уголь касается огня и вспыхивает, он воспламеняется. Этот вид химической реакции называется химической энергией .
  • Тепловая энергия. Преобразование энергии начинается в топке и заканчивается в котле. В паровой машине химическая энергия преобразуется в тепловая энергия после поджога углей. Тепловая энергия направляется изменением температуры. Сразу после воспламенения угля эта химическая энергия преобразуется в тепловую энергию, которая используется для кипячения воды и производства пара.
  • Кинетическая энергия. С помощью пара двигатель теперь может использовать эту энергию для приведения в движение шестерен или, в случае с паровозом, колес. Пар заставляет цилиндр и поршень внутри паровой машины перетасовывать и двигаться, инициируя вращение колес и приводя их в движение. это называется кинетическая энергия . Кинетическая энергия, полученная из тепловой энергии (пара), дает цилиндру и поршню возможность двигаться вперед и назад, вызывая механическое воздействие на колеса.
  • Потенциальная энергия. Наконец, паровые двигатели обладают потенциальной энергией, когда необходимо работать за счет гравитационного притяжения. Когда паровоз поднимается в гору, кинетическая энергия, которая генерирует движение колес, внезапно становится потенциальной до того, как локомотив пойдет вниз. Когда локомотив движется вниз по склону, эта же потенциальная энергия преобразуется обратно в кинетическую энергию, помогая локомотиву спуститься вниз.

Проще говоря, паровые двигатели используют огонь и уголь (химическая энергия) для кипячения воды и производства пара (тепловая энергия), который, в свою очередь, толкает цилиндр и поршень, приводя в движение колеса (кинетическая). Когда колеса поворачиваются и движутся к склону или холму, несущему груз (потенциальная энергия), они также могут двигаться быстрее, когда движутся вниз (кинетическая энергия). Этот постепенный, но неуклонный сдвиг форм энергии делает возможным работу такой машины, как паровой двигатель! Теперь, когда вы понимаете, что паровые двигатели используют энергию в различных формах для работы, не думаете ли вы, что также важно экономить энергию? Без энергии ничто не может функционировать должным образом, и все, включая паровые двигатели, не будет работать должным образом.

Ресурсы

  • Паровые машины. Объяснение В этой книге Стэн Йорк объясняет историю паровой машины и огромное разнообразие ее применений. Более 50 фотографий, а также подробные схемы.
  • Паровой двигатель Wilesco 10 D10 155 мл Содержимое бойлера, включая предохранительный клапан и свисток.
  • Sunnytech Двигатель Стирлинга с горячим воздухом Один маховик Образовательная игрушка Генератор электроэнергии.