Расчет мощности электродвигателя | ЭлектроЦентр
Чат с магазином
03.08.2017
Расчет мощности электродвигателя
— задача, которая на первый взгляд выглядит несколько странной: чего рассчитывать, если мощность электромотора в обязательном порядке указывается в сопроводительной документации, да и на самом двигателе тоже? Однако не все так просто — в разных режимах работы электродвигатель может показывать весьма различную мощность — и то, какой она будет, сильно зависит от того, как электромотор используется. А так как
асинхронный двигатель
самый распространенный в быту, все расчеты будут приводиться именно для этого типа.
В общем случае для квалифицированного подбора
электродвигателя
должна быть известна нагрузочная диаграмма механизма. Однако, в случае постоянной или слабо меняющейся нагрузки без регулирования скорости достаточно рассчитать требуемую мощность по теоретическим или эмпирическим формулам, зная рабочие параметры нагрузки. Ниже приведены формулы для расчета мощности двигателя P2 [кВт] некоторых механизмов.
1. Вентилятор
где Q [м3/с] – производительность вентилятора,
Н [Па] – давление на выходе вентилятора,
ηвент, ηпер – КПД вентилятора и передаточного механизма соответственно,
kз – коэффициент запаса.
Но расчет необходимой мощности электродвигателя
будет выглядеть несколько хитрее, если электромотор должен работать в насосе или компрессоре.
2. Насос
k3 — коэффициент запаса, принимаемый как 1,1-1,3 в зависимости от мощности электродвигателя, где:
Q [м3/с] – производительность насоса,
g=9,8 м/с2 – ускорение свободного падения,
H [м] – расчетная высота подъема,
ρ [кг/м3] – плотность перекачиваемой жидкости,
ηнас, ηпер – КПД насоса и передаточного механизма соответственно,
kз – коэффициент запаса.
3. Поршневой компрессор
Где:
Q [м3/с] – производительность компрессора,
А [Дж/м3] – работа изотермического и адиабатического сжатия атмосферного воздуха объемом 1 м3 давлением 1,1·105 Па до требуемого давления,
ηк, ηп – КПД компрессора и передаточного механизма соответственно,
kз – коэффициент запаса.
Кроме того, необходимо сопоставить пусковой момент двигателя (особенно в случае асинхронного с короткозамкнутым ротором) и рабочего механизма, так как некоторые механизмы имеют повышенное сопротивление в момент трогания. Следует иметь в виду и то обстоятельство, что при замене трехфазного асинхронного двигателя на однофазный пусковой момент последнего почти в три раза меньше и механизм, успешно функционировавший ранее, может не тронуться с места.
Развиваемый электродвигателем
момент M [Нм] и полезная мощность на валу Р2 [кВт] связаны следующим соотношением:
Важно отметить следующее:
1.Не следует выбирать двигатель с большим запасом по мощности, так как это приведет к снижению его КПД, а в случае двигателя переменного тока также к снижению коэффициента мощности.
2. Необходимо учитывать то, что наиболее нагруженными в двигателе являются подшипниковые узлы. В связи с этим необходимо учитывать радиальные и осевые усилия, действующие на вал двигателя. Превышения допустимых значений сил приводит к кратному уменьшению срока службы, а в некоторых случаях и выходу из строя не только подшипников, но и всего двигателя.
3. В случае отклонения условий эксплуатации двигателя (например, температуры окружающей среды или высоты над уровнем моря), мощность нагрузки должна быть изменена. Кроме того, при снижении мощности нагрузки в определенные моменты времени для рационального использования двигателя может быть изменена схема соединения обмотки.
Широкий ассортимент электродвигателей
представлен в ТВК «ЭлектроЦентр» и на сайте интернет-магазина stv39. ru.
Ссылка
Отключить автозагрузку страниц
1. Общие положения
1.1. Настоящее Пользовательское соглашение (далее –
Соглашение)
относится к сайту Интернет-магазина stv39.ru,
расположенному по
адресу 238311, Калининградская обл., Большое Исаково, ул.
Старокаменная,
дом. 35, и ко всем соответствующим сайтам, связанным с
сайтом stv39.ru.
1.2. Сайт Интернет-магазина stv39.ru (далее – Сайт)
является
собственностью ИП «Савельев И.В.».
1.3. Настоящее Соглашение регулирует отношения между
Администрацией
сайта Интернет-магазина stv39.ru (далее –
Администрация сайта) и
Пользователем данного Сайта
1.4. Администрация сайта оставляет за собой право в любое
время
изменять, добавлять или удалять пункты настоящего Соглашения
без
уведомления Пользователя.
1.5. Продолжение использования Сайта Пользователем означает
принятие
Соглашения и изменений, внесенных в настоящее Соглашение.
1.6. Пользователь несет персональную ответственность за
проверку
настоящего Соглашения на наличие изменений в нем.
Полная версия документа
Быстрый заказ
Прошу перезвонить
Контактный телефон * Кого спросить *
Пн—Пт 8:30 — 18:30. Сб 9:00 — 18:00.
Вс — выходной
Я соглашаюсь на условия
обработки моих данных
Товар добавлен в корзину
(раздел «Под заказ/Товар в пути»).
OK
Товар удален из корзины.
OK
Заказ оформлен.
Менеджер свяжется с Вами.
OK
Файл готовится…
OK
Корзина не доступна в связи с переездом.
С 12 по 23 апреля 2019г.
OK
Добавление в корзину не доступно в связи с переездом.
С 12 по 23 апреля 2019г.
OK
Операции с заказами не доступны в связи с переездом.
С 12 по 23 апреля 2019г.
OK
Электромагнитная мощность и потери в асинхронном двигателе
Мощность, потребляемая
двигателем из сети, определяется по
формуле
Р1 =
√3 U1I1cos
φ1.
Часть этой
мощности (рис. 10.16)
теряется в обмотке статора:
ΔРобм1 =
3 I12r1,
Рис. 10.16. Потери
мощности в асинхронном двигателе
а
часть, ΔРст1,
составляет потери в сердечнике статора
от перемагничивания и вихревых токов.
Мощность, передаваемая
вращающимся магнитным полем ротору,
называется электромагнитной мощностью
и составляет
Рэм = P1 —
ΔРобм1 —
ΔРст1 =
3Е2кI2 cos
ψ2.
(10,34)
Часть электромагнитной
мощности теряется в обмотке ротора:
ΔРобм2 =
3 I22r2,
(10,35)
а
часть, ΔРст2,
составляет потери в сердечнике ротора
от гистерезиса и перемагничивания.
Мощность,
преобразуемая в механическую, равна
Рмех = Рэм —
ΔРобм2 —
ΔРст2.
(10,36)
Небольшая часть
механической мощности теряется на
тре-ние в подшипниках ротора о воздух
и вентиляцию.
Мощность, развиваемая
двигателем на валу,
Рв = Рмех —
ΔРмех .
(10,37)
Все потери мощности,
кроме вентиляционных, которые представляют
собой затраты мощности на продувание
воздуха внутри двигателя с целью лучшего
охлаждения, превращаются в теплоту и
нагревают двигатель.
Известно, что
мощность равна произведению момента
на частоту вращения:
Р =
Мω.
В асинхронном
двигателе произведение электромагнитного
момента, возникающего в результате
взаимодействия тока ротора с магнитным
полем, на частоту вращения поля
представляет собой электромагнитную
мощность:
Мэмω0 = Рэм.
(10,38)
Механическая
мощность, развиваемая двигателем, равна
произведению электромагнитного момента
на частоту вращения ротора.
Мэмω
= Рмех.
(10,39)
Если
пренебречь потерями мощности в сердечнике
ротора вследствие их малости относительно
потерь в обмотке ротора, то разность
электромагнитной и механической
мощностей, как следует из (10.36), будет
равна потерям мощности в обмотке ротора1:
Рэм — Рмех =
ΔРобм2 =
3 I22r2.
(10,40)
Подставив в (10.40)
вместо мощности их значения из (10. 38) и
(10.39), получим
Мэмω0 — Мэмω
= 3 I22r2,
откуда
Мэм = | 3 I22r2 | . |
ω0 — |
Заменив
ω0 —
ω через ω0s,
что вытекает из (10.23), получим выражения
электромагнитного момента
Мэм = | 3 I22r2 | . |
ω0s |
(10. 41)
1 Короткозамкнутая
обмотка ротора имеет не три, а m фаз. Для
общности выводов обмотка ротора приведена
к трем фазам, которые имеют обмотки
статора и ротора двигателя с фазным
ротором.
и электромагнитной
мощности
Pэм = | 3 I22r2 | . |
s |
(10.42)
Момент,
развиваемый двигателем на валу, будет
меньше электромагнитного момента на
величину ΔМмех,
обусловленную силами трения в подшипниках,
ротора о воздух и вентиляционными
потерями:
М = Мэм —
ΔМмех .
Потери
момента ΔМмех для
асинхронных двигателей средней и большой
мощности относительно малы, и ими обычно
пренебрегают. В практических расчетах
часто принимают, что
М = Мэм.
(10,43)
В выражении (10.41)
отсутствует магнитный поток, что на
первый взгляд противоречит принципу
действия двигателя. Однако легко
показать, что это не так: магнитный поток
вошел в уравнение в неявном виде.
Выразив
в (10.41) потери мощности в обмотке I22r2 через
ЭДС, ток и cos ψ2 ротора
| /\ |
|
3I22r2 = | E2, I2 | ) |
Получим
Mэм = | 3E2I2 cos | . |
ω0s |
(10.44)
Подставляя
в (10.44) вместо ЭДС Е2 ее
значение из (10.27) и учитывая (10.42), получаем
Mэм = | 3E2кsI2 cos | = | 3•4,44f1w2Фk02I2 cos | = |
ω0s | ω0 |
(10.45)
где С =
3 • 4,44f1w2k02/ω0 —
конструктивный коэффициент, обусловливающий
момент двигателя.
Используя выражения
(10.40), (10.42), можно получить два соотношения:
потери в обмотке
ротора
ΔPобм2 = Pэмs;
механическая
мощность, развиваемая двигателем,
Pмех = Pэм(1
— s)
Из
этих выражений вытекает, что при
неподвижном роторе, когда s =
l, вся электромагнитная мощность
преобразуется в теплоту в обмотке
ротора, а механическая мощность равна
нулю. При номинальном режиме работы,
когда s ≈ 0,02
— 0,08, почти вся электромагнитная мощность
(0,92 — 0,98) преобразуется в механическую
и только небольшая ее часть (0,02 — 0,08)
преобразуется в теплоту в обмотке
ротора.
СХЕМА
ЗАМЕЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ
Для анализа работы
асинхронного двигателя пользуются
схемой замещения. Схема замещения
асинхронного двигателя аналогична
схеме замещения трансформатора и
представляет собой электрическую схему,
в которой вторичная цепь (обмотка ротора)
соединена с первичной цепью (обмоткой
статора) гальванически вместо магнитной
связи, существующей в двигателе.
Рис. 10.17. Схема
замещения асинхронного двигателя
Основное отличие
асинхронного двигателя от трансформатора
в энергетическом отношении состоит в
следующем. Если в трансформаторе энергия,
переданная переменным магнитным полем
во вторичную цепь, поступает к потребителю
в виде электрической энергии, то в
асинхронном двигателе энергия, переданная
вращающимся магнитным полем ротору,
преобразуется в механическую и отдается
валом двигателя потребителю в виде
механической энергии.
Электромагнитные
мощности, передаваемые магнитным полем
во вторичную цепь трансформатора и
ротору двигателя, имеют одинаковые
выражения:
Рэм = Р1 —
ΔР1.
В трансформаторе
электромагнитная мощность за вычетом
потерь во вторичной обмотке поступает
к потребителю:
Р2 = Рэм —
3I22r2 =
3U2I2 cos
φ2 =
3I22rп =
3I’22r’п,
(10. 46)
где rп —
сопротивление потребителя. В асинхронном
двигателе электромагнитная мощность
за вычетом потерь в обмотке ротора
превращается в механическую мощность:
Р2 = Рмех = Рэм —
3I22r2 = Рэм —
3I’22r’2.
(10.47)
Подставив
в (10.47) вместо Р ее
значение из (10.42), получим
Pмех=3I22 | r2(1 | =3I’22 | r’2(1 | = | |||
s | s | ||||||
где r’э = r’2 | 1 | . | |||||
s |
(10,48)
Сравнивая выражения
(10.46) и (10.48), можно заключить, что
r’п = r’э.
Таким
образом, потери мощности в
сопротивлении r’э численно
равны механической мощности, развиваемой
двигателем.
Заменив
в схеме замещения трансформатора
сопротивление нагрузки r’п на r’э = r’2 (1
— s)/s,получим
схему замещения асинхронного двигателя
(рис. 10.17). Все остальные элементы схемы
замещения аналогичны соответствующим
элементам схемы замещения
трансформатора: r1, х1 —
активное сопротивление и индуктивное
сопротивление рассеяния фазы обмотки
статора; r’2, х’2—
приведенные к обмотке статора активное
сопротивление и индуктивное сопротивление
рассеяния фазы обмотки ротора.
Приведенные
значения определяются так же, как и для
трансформатора:
r’2 =
r2k2, х’2 = х2k2,
где k
= E1/E2к = U1ф/E2к —
коэффициент трансформации двигателя.
Может возникнуть
сомнение в возможности использования
гальванической связи цепей статора и
ротора в схеме замещения, поскольку
частоты в этих цепях на первый взгляд
не одинаковы. Первая часть схемы замещения
представляет собой эквивалентную схему
фазы обмотки ротора, которая, как было
показано в § 10.7, приведена к частоте
тока статора. В реальном же двигателе
в отличие от схемы замещения частоты
тока ротора и статора не одинаковы.
Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.
ГОСТы, СНиПы Карта сайта TehTab.ru Поиск по сайту TehTab.ru | Навигация по справочнику TehTab.ru: главная страница / / Техническая информация/ / Физический справочник/ / Электрические и магнитные величины/ / Понятия и формулы для электричества и магнетизма. / / Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.
| |||||||
Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу. | ||||||||
TehTab.ru Реклама, сотрудничество: info@tehtab.ru | Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями. |
Мощность и вращающий момент электродвигателя. Что это такое?
Работа и мощность
Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.
Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).
Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.
Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.
Приведем единицы измерения к общему виду.
Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.
Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.
Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.
Как образуется вращающий момент и частота вращения?
Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.
В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.
Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.
Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:
Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.
Механическая характеристика
Как основная, помогает проводить детальный анализ работы электродвигателя. Она выражает непосредственную зависимость частоты вращения самого ротора от электромагнитного момента n=f (M).
Из графика видно, что на участке 1-3 машина работает устойчиво. 3-4 — непосредственный отрезок неустойчивой работы. Идеальный холостой ход соответствует точке 1.
Точка 2 — номинальный режим работы. Точка 3 — частота вращения достигла критического значения. Пусковой момент Мпуск — точка 4.
Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.
Существуют технические способы расчетов и построения механической характеристики с учетом данных паспорта.
В первоначальной точке 1 n0=60f/p (p – количество пар полюсов). Поскольку nн и Mн непосредственно координаты точки 2, расчет номинального момента производится по формуле Mн=9,55*Рн/ nн, где Рн — номинальная мощность. Значение nн указано в паспорте двигателя. В точке 3 Mкр=Mнλ. Пусковой момент в точке 4 Mпуск=Mн*λпуск (значения λ, λпуск — из паспорта).
Механическая характеристика, построенная таким образом, называется естественной. Изменяя другие параметры можно получить искусственную механическую характеристику.
Полученные результаты дают возможность проанализировать и согласовать механические свойства самого двигателя и рабочего механизма.
Потребляемая мощность электродвигателя
Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.
В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).
Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.
И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.
Момент электродвигателя
Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.
Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.
Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.
Графическое представление вращающего момента электродвигателя изображено на рисунке.
Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.
Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.
Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.
Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.
Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.
Нагрузка насосов и типы нагрузки электродвигателя
Выделяют следующие типы нагрузок:
Постоянная мощность
Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.
Постоянный вращающий момент
Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.
Переменный вращающий момент и мощность
«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.
Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.
Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.
Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.
Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.
В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.
Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.
Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.
На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.
Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:
Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.
В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.
Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.
Характеристики асинхронного двигателя
К энергетическим характеристикам асинхронного двигателя относятся КПД двигателя(η) коэффициент мощности (cosφ) и скольжение S. коэффициент полезного действия (η) вычисляется как отношение полезной мощности на валу двигателя Р2 кВт, к активной мощности, потребляемой двигателем из сети Р1 кВт; η = Р2/ Р1 коэффициент мощности (cos(φ)вычисляется как отношение потребляемой активной мощности Р1 кВт, к полной мощности, потребляемой из сети S1 кВА;
По ГОСТ Р. 51677-2000 асинхронные двигатели общепромышленного назначения делятся на двигатели с нормальным КПД и двигатели с повышенным КПД. У асинхронных двигателей с повышенным КПД, суммарные потери не меньше, чем на 20%, чем у двигателей с нормальным КПД такой же мощности и частоты вращения. Коэффициенты мощностей (cosφ) асинхронных двигателей определены в ГОСТ.Р 51677. Значения КПД и cosφ конкретного асинхронного двигателя можно узнать по каталогу или по шильдику.
Причем КПД и cosφ асинхронного двигателя определяются и нагрузкой машины. В справочниках по электрическим машинам можно увидеть эти зависимости.
Линейный ток двигателя можно определить исходя из номинальной полезной мощность (Р2, кВт), номинального напряжения (UH, В ), КПД (η) и cosφ.
Мощность, потребляемая из сети можно определить из формулы:
Скольжение вычисляется как разницу между номинальной n1 и синхронной nc частотой вращения двигателя, приведенной к номинальной скорости двигателя n1:
Номинальную частоту вращения ротора n1 или скольжение (S, %)можно определить по каталогу двигателя или прочесть на его шильдике.
Механические и пусковые характеристики асинхронного двигателя
Одной из основных характеристик асинхронного двигателя, является механическая характеристика. Механической характеристикой называют зависимость скорости вращения или скольжения от вращающего момента на валу двигателя. Она позволяет сравнить и согласовать механические свойства двигателя и рабочего механизма. Соответственно, зависимость скорости вращения или скольжения от тока статора называют электромеханической характеристикой.
Механическая характеристика асинхронного двигателя определяет зависимость момента на валу двигателя от скольжения, при сохранении неизменного напряжении и частоты питающей сети
Пусковые характеристики определяют величину пускового моментаMп, минимального момента Мmin, максимального или критического момента Мкр., пускового тока Iп или пусковой мощности Sп или их отношениями. Диаграмма момента, приведенного к номинальному моменту, от скольжения получила название относительной механической характеристики.
Номинальный вращающий момент можно определить по формуле:
P2н- номинальная мощность , кВт, N1н- номинальная частота вращенияю, об/мин.
Пусковые характеристики асинхронного двигателя
Пусковые характеристики асинхронного двигателя регламентирует ГОСТ 28327 ( МЭК 60034 — 12), а их значения приводятся в каталогах. Стандартные асинхронные двигатели могут иметь два исполнения по механическим характеристикам, которые определены в ГОСТ 28327 и МЭК 60034-12: N – двигатели с нормальный моментом; Н –двигатели с повышенным моментом.
Двигатели , изготовленные в исполнении N, рассчитывают на два последовательных пуска с остановкой между пусками из холодного состояния или на один пуск из нагретого состояния, после работы при номинальной нагрузке.
Момент сопротивления нагрузки при запуске прямо пропорционален квадрату частоты вращения и равняется номинальному моменту при номинальной частоте вращения, а значение внешнего момента инерции, γ , кг*м2, не должно превышать рассчитанного по формуле
где Р-номинальная мощность двигателя, кВт; р — число пар полюсов;
При построении характеристики предполагается, что момент сопротивления нагрузки остается постоянным и равен номинальному моменту. Кроме того он не зависит от частоты вращения. Значение же внешнего момента инерции не превышаетт 50% величины, полученной по приведенной выше формуле.
Механические характеристики асинхронных мшин зависят в том числе и от типа ротора, его номинальной мощности, и от числа пар полюсов.
Ввиду того, что разность в значениях момента при соответствующих скольжениях у двигателей с различным числом пар полюсов невелика, и не превышает значения поля допуска на моменты. Различные механические характеристики для разных исполнений асинхронных двигателей показаны на рис
1 — исполнение N; 2 — исполнение Н; 3 — с повышенным скольжением. Механические характеристики группы двигателей, одной серии, или ее части обычно укладываются в некоторую зону. По средней линии этой зоны можно составить групповую механическую характеристику. Величина зоны групповой характеристики меньше поля допуска двигателей на моменты.
Соответствие электродвигателя нагрузке
Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.
Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.
Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.
Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.
Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.
Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.
Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.
Время пуска электрдвигателя
Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.
Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:
tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке
n = частота вращения электродвигателя при полной нагрузке
Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.
Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.
Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.
Мизб можно рассчитать по следующим формулам:
Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.
Число пусков электродвигателя в час
Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.
Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.
Момент асинхронного электродвигателя
Эквивалентная схема асинхронного электродвигателя, рассмотренная в предыдущей статье, дает возможность получить выражение электромагнитного момента, который развивает асинхронный электродвигатель. Мощность, которая потребляется электрической машиной из сети, будет расходоваться не только на полезную работу, но и потери в контуре намагничивания и в обмотках.
Поэтому выражение мощности будет иметь вид:
На основании формулы (1) можно получить такое уравнение:
В свою очередь мощность электромагнитную можно выразить и таким способом:
Из выше перечисленных уравнений можем получить значение электромагнитного момента:
Помножив знаменатель и числитель этого выражения на S2 и в целях упрощения вида уравнения примем значение Хк = Х1 + Х2/. Хк – сопротивление индуктивное асинхронного электродвигателя при коротком замыкании:
Для упрощения записи, как в равенстве (5), индекс «эм» будет пропускаться.
Момент электромагнитный асинхронной машины представляет собой довольно сложную функцию скольжения S. Для того, чтоб найти максимум момента асинхронной машины приравняем производную S нулю:
Производная станет равна нулю только в том случае, если стоящий в скобках числителя множитель равен будет нулю:
Или же:
Откуда можно выразить скольжение:
Sк называют критическим, так как при переходе S = Sк момент двигателя уменьшится. Это происходит из-за того, что при увеличении роторного тока (S > Sк) его активная часть не вырастет, а наоборот, уменьшится, что в свою очередь приведет к снижению момента.
Если Sк положительно – это режим работы двигательный, а если отрицательный – генераторный.
В асинхронных машин большой мощности r1 значительно меньше, чем Хк, и, как правило, лежит в пределах r1 = 0,1 – 0,12Хк. Поэтому величина r12 существенно мала, по сравнению Хк, и ею можно пренебречь без ущерба для точности:
Подставив положительные значения Sк (6) в выражение (5), найдем значение критического момента для двигательного режима:
Раскрыв скобки в знаменателе (8) и сократив дробь величине Мкд получим:
Для машин большой мощности для которых величиной r1 можно пренебречь выражение (9) примет вид:
Аналогичным образом получается значение критического момента для генераторного режима:
Отношение моментов генераторного и двигательного режимов работы АД:
Поделив числитель и знаменатель на и обозначив соотношение выражение (12) примет вид:
Также ε можно еще выразить как:
Так как асинхронные электродвигатели обычно имеют r1 ≈ r2/, то приближенно можем принять:
Из выражений (12) и (13) можно увидеть, что в генераторном режиме значение критического момента будет больше, чем в двигательном. Это объясняется влиянием падения напряжения в активном сопротивлении статорной обмотки.
Отношение момента электромагнитного, к его критическому значению в двигательном режиме Мдк = Мк, будет иметь вид:
Откуда выражаем:
Данное выражение представляет собой уточненное уравнение механической характеристики асинхронного электродвигателя.
Если принять, как это делалось выше, r1 = 0, то тогда ε = 0 и взамен (15) получим упрощенное уравнение для механической характеристики:
М, выраженный формулами (5), (15) и (16), является функцией скольжения S. Задаваясь различными значениями скольжения S можно построить механическую характеристику асинхронной машины.
Ниже показана механическая характеристика построенная по формуле (15):
Для машин асинхронных трехфазных с короткозамкнутым ротором общего применение мощностью 0,6 – 100 кВт соотношение должны лежать в пределах 1,7 – 2,2; причем большее значение соответствует большей скорости вращения ротора 3000 об/мин, а меньшее — 750 об/мин. Для машин мощность свыше 100 кВт должны иметь λм = 1,7 – 1,8. Для крановых и металлургических:
Уравнения (15) и (16) имеют значительное преимущество перед уравнением (5) в том, что нет необходимости знать параметры обмоток асинхронной машины и можно вести расчет по каталожным данным электродвигателя.
Но в каталожных данных значение критического скольжения не приводится и их приходится определять из соотношений (15) и (16), используя значения перегрузочных способностей машин λм.
Записав уравнение механической характеристики для Мном получим:
Использовав приближенное равенство ε ≈ Sк, получим:
Данное равенство можно представить в виде квадратного уравнения относительно Sк:
Решив его:
В электрических двигателях большой мощности ε ≈ 0 и уравнение для Sк будет иметь вид более простой:
В выражениях (17) и (18) перед корнем следует брать знак плюс, так как отрицательный знак соответствует нахождению точки Sном, Мном на механической характеристике в зоне где S>Sк. Практического применения данный случай не имеет, поэтому второе решение отбрасывается.
Приведенные выше механические характеристики (5), (15), (16) справедливы только при оговоренных выше ограничениях. Асинхронные электродвигатели имеющие фазный ротор имеют характеристики достаточно точно описываемые данными уравнениями. В машинах с короткозамкнутым ротором имеется процесс вытеснения тока в стержнях ротора. Следствием чего становится непостоянство их параметров и механические характеристики могут значительно отличатся от построенных по формулам (5), (15), (16). Однако от этого данные формулы (особенно (15), (16)) не теряют своего значения, так как благодаря своей простоте они позволяют производить многие расчеты и делать общие заключения о работе асинхронных машин. В случаях когда необходима большая точность применяют экспериментально снятые или специально рассчитанные механические характеристики.
В качестве примера ниже показаны механические характеристики некоторых типов электродвигателей с КЗ ротором:
Похожие материалы:
- Как контроллер микрошагов обеспечивает более плавное…
Вращающий момент асинхронного электродвигателя создается, как уже указывалось, за счет взаимодействия между вращающимся магнитным потоком статора и токами в обмотке ротора. Вполне понятно, что при отсутствии тока в обмотке ротора никакого момента создаваться не будет. Скольжение характеризует скорость вращения ротора относительно магнитного поля статора. От величины этой скорости зависит ток в роторе, а от тока—величина вращающего момента электродвигателя, который может быть вычислен по формуле (6).![]() где с — постоянная величина, зависящая от конструкции электродвигателя; ?1 —угловая скорость вращающегося магнитного поля. Выражение (90) показывает, что вращающий момент пропорционален квадрату напряжения сети, в связи с чем даже небольшое уменьшение напряжения в питающей сети приводит к резкому снижению вращающего момента, что отрицательно сказывается на работе электродвигателя. Кроме того, выражение (90) учитывает зависимость величины вращающего момента от активных и индуктивных сопротивлений электродвигателя, а также от скольжения. Если обозначить (х1 + сх2) через х и выполнить несложные преобразования в формуле (90), то получим Величинами r1 s и x2 s2 можно пренебречь, ввиду их малости. Тогда, до некоторого предела Таким образом доказано, что с увеличением скольжения возрастает и момент электродвигателя. Более точный анализ выражений (90) и (91) показывает, что момент с увеличением скольжения возрастает лишь до некоторого критического значения Мкрит (так называемый опрокидывающий момент), после чего начинается резкое его снижение. Величина критического скольжения, при которой имеет место опрокидывающий момент, Подставляя это выражение в уравнение (91), получим В последних выражениях знак плюс относится к работе электродвигателя в режимах двигательном и торможения противовключением, а знак минус — к работе в генераторном режиме с отдачей энергии в сеть. Очевидно, что критический момент в двигательном режиме меньше, чем в генераторном. Зависимость М = f (s), построенная по уравнению (91), приведена на рис. 42, который показывает, что при трогании электродвигателя с места, когда скольжение s=1, начальный пусковой момент асинхронного электродвигателя невелик, что является его основным недостатком. Выражения (93) и (94) показывают, что при изменении активного сопротивления роторной цепи величина опрокидывающего момента Мкрит не изменяется, меняется при этом лишь величина критического скольжения sкрит. его роторную цепь. Таким же образом можно регулировать скорость электродвигателя, так как при изменении активного сопротивления роторной цепи меняется величина скольжения (рис. 43), а от скольжения, как показывает выражение (82), зависит число оборотов асинхронного электродвигателя. |
Мощность электродвигателя через крутящий момент
Расчет крутящего момента электродвигателя
Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр или в килограмм-силах на метр.
Виды крутящих моментов:
- Номинальный – значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.
- Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске. При подборе эл двигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования — насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.
- Максимальный
– предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.
Определение направления вращения вала электродвигателя
Любой асинхронный электрический двигатель может вращаться по часовой стрелке и против нее. Данные параметры зависят от направления магнитного поля, создаваемого вокруг статора.
Если направление вращения вала электродвигателя не указано и опытное наблюдение невозможно, следует внимательно изучить маркировку на корпусе и схемы соединений, поставляемые производителем.
Следует отметить, монтаж любого электродвигателя должны проводить специалисты с соответствующим опытом и знаниями. Только тогда производитель гарантирует длительную и безопасную работы электромотора.
Направление вращения электродвигателя вы сможете узнать во время проведения монтажа или при периодическом техническом обслуживании, которое рекомендуется проводить систематически.
Покупая электродвигатель, продавец-консультант даст подробную информацию по поводу всех интересующих Вас вопросов и поможет подобрать тот электродвигатель, который будет полностью соответствовать всем заявленным требованиям.
Дата: Воскресенье, 15 Декабрь 2013
Таблица крутящих моментов электродвигателей
В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)
Двигатель | кВт/об | Мном, Нм | Мпуск, Нм | Ммакс, Нм | Минн, Нм |
АИР56А2 | 0,18/2730 | 0,630 | 1,385 | 1,385 | 1,133 |
АИР56В2 | 0,25/2700 | 0,884 | 1,945 | 1,945 | 1,592 |
АИР56А4 | 0,12/1350 | 0,849 | 1,868 | 1,868 | 1,528 |
АИР56В4 | 0,18/1350 | 1,273 | 2,801 | 2,801 | 2,292 |
АИР63А2 | 0,37/2730 | 1,294 | 2,848 | 2,848 | 2,330 |
АИР63В2 | 0,55/2730 | 1,924 | 4,233 | 4,233 | 3,463 |
АИР63А4 | 0,25/1320 | 1,809 | 3,979 | 3,979 | 3,256 |
АИР63В4 | 0,37/1320 | 2,677 | 5,889 | 5,889 | 4,818 |
АИР63А6 | 0,18/860 | 1,999 | 4,397 | 4,397 | 3,198 |
АИР63В6 | 0,25/860 | 2,776 | 6,108 | 6,108 | 4,442 |
АИР71А2 | 0,75/2820 | 2,540 | 6,604 | 6,858 | 4,064 |
АИР71В2 | 1,1/2800 | 3,752 | 8,254 | 9,004 | 6,003 |
АИР71А4 | 0,55/1360 | 3,862 | 8,883 | 9,269 | 6,952 |
АИР71В4 | 0,75/1350 | 5,306 | 13,264 | 13,794 | 12,733 |
АИР71А6 | 0,37/900 | 3,926 | 8,245 | 8,637 | 6,282 |
АИР71В6 | 0,55/920 | 5,709 | 10,848 | 12,560 | 9,135 |
АИР71В8 | 0,25/680 | 3,511 | 5,618 | 6,671 | 4,915 |
АИР80А2 | 1,5/2880 | 4,974 | 10,943 | 12,932 | 8,953 |
АИР80В2 | 2,2/2860 | 7,346 | 15,427 | 19,100 | 13,223 |
АИР80А4 | 1,1/1420 | 7,398 | 16,275 | 17,755 | 12,576 |
АИР80В4 | 1,5/1410 | 10,160 | 22,351 | 24,383 | 17,271 |
АИР80А6 | 0,75/920 | 7,785 | 16,349 | 17,128 | 12,457 |
АИР80В6 | 1,1/920 | 11,418 | 25,121 | 26,263 | 20,553 |
АИР80А8 | 0,37/680 | 5,196 | 10,393 | 11,952 | 7,275 |
АИР80В8 | 0,55/680 | 7,724 | 15,449 | 16,221 | 10,814 |
АИР90L2 | 3/2860 | 10,017 | 23,040 | 26,045 | 17,030 |
АИР90L4 | 2,2/1430 | 14,692 | 29,385 | 35,262 | 29,385 |
АИР90L6 | 1,5/940 | 15,239 | 30,479 | 35,051 | 28,955 |
АИР90LА8 | 0,75/700 | 10,232 | 15,348 | 20,464 | 15,348 |
АИР90LВ8 | 1,1/710 | 14,796 | 22,194 | 32,551 | 22,194 |
АИР100S2 | 4/2850 | 13,404 | 26,807 | 32,168 | 21,446 |
АИР100L2 | 5,5/2850 | 18,430 | 38,703 | 44,232 | 29,488 |
АИР100S4 | 3/1410 | 20,319 | 40,638 | 44,702 | 32,511 |
АИР100L4 | 4/1410 | 27,092 | 56,894 | 65,021 | 43,348 |
АИР100L6 | 2,2/940 | 22,351 | 42,467 | 49,172 | 35,762 |
АИР100L8 | 1,5/710 | 20,176 | 32,282 | 40,352 | 30,264 |
АИР112М2 | 7,5/2900 | 24,698 | 49,397 | 54,336 | 39,517 |
АИР112М4 | 5,5/1430 | 36,731 | 73,462 | 91,827 | 58,769 |
АИР112МА6 | 3/950 | 30,158 | 60,316 | 66,347 | 48,253 |
АИР112МВ6 | 4/950 | 40,211 | 80,421 | 88,463 | 64,337 |
АИР112МА8 | 2,2/700 | 30,014 | 54,026 | 66,031 | 42,020 |
АИР112МВ8 | 3/700 | 40,929 | 73,671 | 90,043 | 57,300 |
АИР132М2 | 11/2910 | 36,100 | 57,759 | 79,419 | 43,320 |
АИР132S4 | 7,5/1440 | 49,740 | 99,479 | 124,349 | 79,583 |
АИР132М4 | 11/1450 | 72,448 | 173,876 | 210,100 | 159,386 |
АИР132S6 | 5,5/960 | 54,714 | 109,427 | 120,370 | 87,542 |
АИР132М6 | 7,5/950 | 75,395 | 150,789 | 165,868 | 120,632 |
АИР132S8 | 4/700 | 54,571 | 98,229 | 120,057 | 76,400 |
АИР132М8 | 5,5/700 | 75,036 | 135,064 | 165,079 | 105,050 |
АИР160S2 | 15/2940 | 48,724 | 97,449 | 155,918 | 2,046 |
АИР160М2 | 18,5/2940 | 60,094 | 120,187 | 192,299 | 2,884 |
АИР180S2 | 22/2940 | 71,463 | 150,071 | 250,119 | 4,288 |
АИР180М2 | 30/2940 | 97,449 | 214,388 | 341,071 | 6,821 |
АИР200М2 | 37/2950 | 119,780 | 275,493 | 383,295 | 16,769 |
АИР200L2 | 45/2940 | 146,173 | 380,051 | 584,694 | 19,003 |
АИР225М2 | 55/2955 | 177,750 | 408,824 | 710,998 | 35,550 |
АИР250S2 | 75/2965 | 241,568 | 628,078 | 966,273 | 84,549 |
АИР250М2 | 90/2960 | 290,372 | 784,003 | 1161,486 | 116,149 |
АИР280S2 | 110/2960 | 354,899 | 887,247 | 1171,166 | 212,939 |
АИР280М2 | 132/2964 | 425,304 | 1233,381 | 1488,563 | 297,713 |
АИР315S2 | 160/2977 | 513,268 | 1231,844 | 1693,786 | 590,259 |
АИР315М2 | 200/2978 | 641,370 | 1603,425 | 2116,521 | 962,055 |
АИР355SMA2 | 250/2980 | 801,174 | 1281,879 | 2403,523 | 2163,171 |
АИР160S4 | 15/1460 | 98,116 | 186,421 | 284,538 | 7,457 |
АИР160М4 | 18,5/1460 | 121,010 | 229,920 | 350,930 | 11,375 |
АИР180S4 | 22/1460 | 143,904 | 302,199 | 402,932 | 15,110 |
АИР180М2 | 30/1460 | 196,233 | 470,959 | 588,699 | 27,276 |
АИР200М4 | 37/1460 | 242,021 | 532,445 | 847,072 | 46,952 |
АИР200L4 | 45/1460 | 294,349 | 647,568 | 941,918 | 66,229 |
АИР225М4 | 55/1475 | 356,102 | 997,085 | 1317,576 | 145,289 |
АИР250S4 | 75/1470 | 487,245 | 1218,112 | 1559,184 | 301,605 |
АИР250М4 | 90/1470 | 584,694 | 1461,735 | 1871,020 | 467,755 |
АИР280S4 | 110/1470 | 714,626 | 2072,415 | 2429,728 | 578,847 |
АИР280М4 | 132/1485 | 848,889 | 1697,778 | 2886,222 | 1612,889 |
АИР315S4 | 160/1487 | 1027,572 | 2568,931 | 3802,017 | 2363,416 |
АИР315М4 | 200/1484 | 1287,062 | 3217,655 | 4247,305 | 3603,774 |
АИР355SMA4 | 250/1488 | 1604,503 | 3690,356 | 4492,608 | 8985,215 |
АИР355SMВ4 | 315/1488 | 2021,673 | 5054,183 | 5862,853 | 12534,375 |
АИР355SMС4 | 355/1488 | 2278,394 | 5012,466 | 6151,663 | 15493,078 |
АИР160S6 | 11/970 | 108,299 | 205,768 | 314,067 | 12,021 |
АИР160М6 | 15/970 | 147,680 | 339,665 | 443,041 | 20,675 |
АИР180М6 | 18,5/970 | 182,139 | 400,706 | 546,418 | 29,324 |
АИР200М6 | 22/975 | 215,487 | 517,169 | 711,108 | 50,209 |
АИР200L6 | 30/975 | 293,846 | 617,077 | 881,538 | 102,846 |
АИР225М6 | 37/980 | 360,561 | 721,122 | 1081,684 | 186,050 |
АИР250S6 | 45/986 | 435,852 | 784,533 | 1307,556 | 440,210 |
АИР250М6 | 55/986 | 532,708 | 1012,145 | 1811,207 | 633,922 |
АИР280S6 | 75/985 | 727,157 | 1454,315 | 2326,904 | 1090,736 |
АИР280М6 | 90/985 | 872,589 | 1745,178 | 2792,284 | 1657,919 |
АИР315S6 | 110/987 | 1064,336 | 1809,372 | 2873,708 | 4044,478 |
АИР315М6 | 132/989 | 1274,621 | 2166,855 | 3696,400 | 5735,794 |
АИР355МА6 | 160/993 | 1538,771 | 2923,666 | 3539,174 | 11848,540 |
АИР355МВ6 | 200/993 | 1923,464 | 3654,582 | 4423,968 | 17118,832 |
АИР355MLA6 | 250/993 | 2404,330 | 4568,228 | 5529,960 | 25485,901 |
AИР355MLB6 | 315/992 | 3032,510 | 6065,020 | 7278,024 | 40029,133 |
АИР160S8 | 7,5/730 | 98,116 | 156,986 | 235,479 | 13,246 |
АИР160М8 | 11/730 | 1007,329 | 1712,459 | 2417,589 | 181,319 |
АИР180М8 | 15/730 | 196,233 | 333,596 | 529,829 | 41,994 |
АИР200М8 | 18,5/728 | 242,685 | 509,639 | 606,714 | 67,952 |
АИР200L8 | 22/725 | 289,793 | 579,586 | 724,483 | 88,966 |
АИР225М8 | 30/735 | 389,796 | 701,633 | 1052,449 | 214,388 |
АИР250S8 | 37/738 | 478,794 | 861,829 | 1196,985 | 481,188 |
АИР250М8 | 45/735 | 584,694 | 1052,449 | 1520,204 | 695,786 |
АИР280S8 | 55/735 | 714,626 | 1357,789 | 2143,878 | 1071,939 |
АИР280М8 | 75/735 | 974,490 | 1754,082 | 2728,571 | 1851,531 |
АИР315S8 | 90/740 | 1161,486 | 1509,932 | 2671,419 | 4413,649 |
АИР315М8 | 110/742 | 1415,768 | 2265,229 | 3964,151 | 6370,957 |
АИР355SMA8 | 132/743 | 1696,635 | 2714,616 | 3902,261 | 12215,774 |
AИР355SMB8 | 160/743 | 2056,528 | 3496,097 | 4935,666 | 18097,443 |
AИР355MLA8 | 200/743 | 2570,659 | 4627,187 | 6940,781 | 26991,925 |
AИР355MLB8 | 250/743 | 4498,654 | 7647,712 | 10796,770 | 58032,638 |
Расчет крутящего момента – формула
Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.
Расчет онлайн
Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)
тут будет калькулятор
После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»
Источник
Мощность электродвигателя: формула, правила расчета, виды и классификация электродвигателей
В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.
Что такое электродвигатель?
Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.
Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока
где P — мощность, U — напряжение, I — сила тока.
Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.
Преимущества и недостатки
К достоинствам относится:
- Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
- Легко регулируемая частота вращения;
- хорошие пусковые характеристики;
- компактные размеры.
У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.
Недостатки:
- ограниченный ресурс коллектора и щёток;
- дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
- ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
- дороговизна в изготовлении якорей.
По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.
Конструкция электрического двигателя
Привод включает в себя:
- Ротор.
- Статор.
- Подшипники.
- Воздушный зазор.
- Обмотку.
- Коммутатор.
Ротор — единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.
Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.
Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.
Воздушный зазор — расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.
Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.
Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.
Зависимость момента от частоты вращения двигателя постоянного тока
§ 115. Характеристики двигателей постоянного тока
Рабочие свойства двигателей определяются их рабочими характеристиками, представляющими собой зависимости числа оборотов n
, вращающего момента
М
э, потребляемого тока
I
1, мощности
P
1 и к. п. д. η от полезной мощности на валу
Р
2, т. е.
Эти зависимости соответствуют естественным условиям работы двигателя, т. е. машина не регулируется и напряжение сети остается постоянным. Так как при изменении полезной мощности Р
2 (т. е. нагрузки на валу) изменяется также и ток в якоре машины, то рабочие характеристики часто строятся в зависимости от тока в якоре. Мы рассмотрим зависимость вращающего момента и скорости вращения от тока в якоре для двигателей с различным возбуждением. Характеристики двигателя параллельного возбуждения изображены на рис. 164, а схема его показана выше (см. рис. 163).
Число оборотов двигателя определяется следующим выражением:
С увеличением нагрузки на валу двигателя повышается также и ток в якоре. Это вызывает увеличение падения напряжения в сопротивлении обмотки якоря и щеточных контактах (I
я
r
я). Как ток возбуждения, так и магнитный поток остаются неизменными. Однако при увеличении тока в якоре увеличивается размагничивающее действие потока реакции якоря и магнитный поток Φ несколько уменьшится. Увеличение
I
я
r
я вызывает уменьшение скорости двигателя, а уменьшение Φ увеличивает его скорость. Обычно падение напряжения влияет на изменение скорости в несколько большей степени, чем реакция якоря, так что с увеличением тока в якоре скорость уменьшается. Изменение скорости у двигателя этого типа незначительно и не превышает 5% при изменении нагрузки от нуля до номинальной, т. е. двигатели параллельного возбуждения имеют жесткую скоростную характеристику. Вращающий момент двигателя равен:
М
э =
k
Φ
I
я. (151)
При неизменном магнитном потоке зависимость момента от тока в якоре представится прямой линией. Но под воздействием реакции якоря с увеличением нагрузки происходит некоторое уменьшение магнитного потока и зависимость момента пойдет несколько ниже прямой линии.
Схема двигателя последовательного возбуждения показана на рис. 165. Пусковой реостат этого двигателя имеет только два зажима, так как обмотка возбуждения и якорь образуют одну последовательную цепь. Характеристики двигателя изображены на рис. 166.
Число оборотов двигателя последовательного возбуждения определяется следующим выражением:
где r
c — сопротивление последовательной обмотки возбуждения. В двигателе последовательного возбуждения магнитный поток не остается постоянным, а резко изменяется с изменением нагрузки, что вызывает значительное изменение скорости. Так как падение напряжения в сопротивлении якоря и обмотки возбуждения очень мало в сравнении с приложенным напряжением, то число оборотов можно приближенно определить следующим выражением:
Если пренебречь насыщением стали, то можно считать магнитный поток пропорциональным току в обмотке возбуждения, который равен току в якоре. Следовательно, у двигателя последовательного возбуждения скорость вращения обратно пропорциональна току в якоре и число оборотов резко уменьшается с увеличением нагрузки, т. е. двигатель имеет мягкую скоростную характеристику. С уменьшением нагрузки скорость вращения двигателя увеличивается. При холостом ходе (I
я ≈ 0) скорость двигателя беспредельно возрастает, т. е. двигатель идет в разнос. Таким образом, характерным свойством двигателей последовательного возбуждения является недопустимость сброса нагрузки, т. е. работы вхолостую или при малых нагрузках. Двигатель имеет минимально допустимую нагрузку, составляющую 25 — 30% номинальной. При нагрузке меньше минимально допустимой скорость двигателя резко увеличивается, что может вызвать его разрушение. Поэтому в случаях, когда возможны сбросы или резкие уменьшения нагрузок, использовать двигатели последовательного возбуждения нельзя. В двигателях очень малых мощностей сброс нагрузки не вызывает разноса, так как механические потери двигателя будут являться для него достаточно большой механической нагрузкой. Вращающий момент двигателя последовательного возбуждения, учитывая пропорциональную зависимость между магнитным потоком и током в якоре (Φ = с′
I
я), можно определить следующим выражением:
М
э =
k
Φ
I
я =
k
′
I
2 я, (153)
где с
′ и k′ — некоторые постоянные величины; k′ =
k
· c′, т. е. вращающий момент пропорционален квадрату тока. Однако при больших токах сказывается насыщение стали и зависимость момента приближается к прямой линии. Таким образом двигатели этого типа развивают большие вращающие моменты при малых оборотах, что имеет существенное значение при пуске больших инерционных масс и при перегрузках. Эти двигатели широко используются в транспортных и подъемных устройствах. При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения. Двигатели со встречным включением обмоток не нашли широкого применения, так как они обладают плохими пусковыми свойствами и работают неустойчиво. Скоростные характеристики двигателей смешанного возбуждения занимают промежуточное положение между характеристиками двигателей параллельного и последовательного возбуждения. С увеличением тока в якоре число оборотов якоря уменьшается в большей мере, чем в двигателях параллельного возбуждения, за счет увеличения магнитного потока, вызываемого увеличением тока в последовательной обмотке возбуждения.
При холостом ходе двигатель смешанного возбуждения не идет в разнос, так как магнитный поток не уменьшается до нуля в результате наличия параллельной обмотки возбуждения. При увеличении нагрузки в двигателях смешанного возбуждения происходит увеличение магнитного потока и вращающий момент возрастает в большей мере, чем в двигателях параллельного возбуждения, но в меньшей степени, чем в двигателях последовательного возбуждения.
Источник
Принцип действия
По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.
Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.
Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:
n пр = n обр = f 1 × 60 ÷ p = n 1
n пр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;
n обр — число оборотов поля в обратном направлении, об/мин;
f 1 — частота пульсации электрического тока, Гц;
p — количество полюсов;
n 1 — общее число оборотов в минуту.
Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.
Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют
S = P ÷ cos (alpha), где:
S — полная мощность, измеряемая в Вольт-Амперах.
P — активная мощность, указываемая в Ваттах.
alpha — сдвиг фаз.
Под полной мощностью понимаются реальный показатель, а под активной — расчетный.
Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ
Способы регулирования частоты вращения двигателей оцениваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым отношением наибольшей частоты вращения к наименьшей; экономичностью регулирования, определяемой стоимостью регулирующей аппаратуры и потерями электроэнергии в ней.
Из (29.5) следует, что регулировать частоту вращения двигателя независимого возбуждения можно изменением сопротивления в цепи якоря, изменением основного магнитного потока Ф
, изменением напряжения в цепи якоря.
График мощности и крутящего момента — о чем он говорит?
Пример графика мощности и крутящего момента, полученный со стенда для испытания двигателей PowerTest.
Где
- ω — угловая скорость вращения вала
- M — крутящий момент
- π — число
3.1416
- n — частота вращения, измеряемая в оборотах в единицу времени (в данном случае одна минута).
Важно отметить что мощность в этой формуле получается в ваттах, для получения результата в лошадиных силах мощность в кВт необходимо умножить на коэффициент 0,735499.
КРУТЯЩИЙ МОМЕНТ (TORQUE)
— это произведение силы в Н, которая приложена к валу не напрямую, а через рычаг (плечо) длиной 1 м, прикрепленный к валу (точка измерения крутящего момента), отсюда и единица измерения Н*м. При такой нагрузке происходит деформация вала ,только не изгиб, который был бы при нулевой длине плеча, а скручивание, при котором отдельные сечения вала не повторяют друг друга, а оказываются повернутыми друг относительно друга на определённые углы, тем большие, чем больше приложенная сила, или чем больше рычаг при одной и той же силе. По этой причине момент называют крутящим. Не следует ожидать, что вы увидите эту закрутку стального вала диаметром, например, 20 мм, нанеся перед нагрузкой на поверхность вала линии, параллельные его оси. Величина закрутки будет в реальности настолько мала, что её непросто измерить даже с помощью специальных приборов, измерителей крутящего момента.
ОБОРОТЫ (RPM — Revolutions Per Minute)
— здесь все еще проще, это число оборотов, которое совершает ВАЛ за одну минуту. Измеряется в об/мин.
Часто кажется, что люди не вполне понимают разницу между МОЩНОСТЬЮ и МОМЕНТОМ, тем более, последние связаны друг с другом через еще один ключевой параметр, как на стенде испытаний двигателя, так и в условиях реальной эксплуатации. Это угловая скорость вращения вала.
Например к нам часто приходят запросы «Нам нужно измерить параметры двигателя мощностью 200л.с.» или «какой гидротормоз вы посоветуете на 140 кВт?»
Ответить на этот вопрос можно, но это не гарантирует что заказчик получит желаемый результат. Потому что в вопросе отсутствует информация о скоростных режимах испытываемого на стенде двигателя.
Уравнения состояния и структурная схема асинхронного электродвигателя
Систему уравнений АД представим записанной в форме Коши, одновременно заменяя токи обмоток через функции потокосцеплений.
Или, подставляя выражения для токов, получаем:
Подставляем полученные значения токов и момента в уравнения и, обозначая D1 = L
1
L
2—
L
2
m
, получаем:
Последние уравнения можно рассматривать как уравнения состояния АД. В качестве переменных состояния здесь выступают проекции потокосцеплений на ортогональные оси и угловая частота вращения ротора. Внешними воздействиями на двигатель являются напряжения статора и момент сил сопротивления.
Эти уравнения нелинейны (содержат произведения переменных состояния) и решения в общем виде не имеют. Переходные процессы АД обычно исследуют моделированием на ЭВМ.
Почему это важно?
При выборе нагружающего устройства это критически важно, так как одну и ту же мощность двигатель может выдавать на стенде как при 1500 об/мин (дизельный двигатель), так и на 20 000 об/мин (двигатель гоночного мотоцикла). Для каждого типа двигателя необходимо подбирать соответствующее нагружающее устройство. А иногда даже не одно, а тандем из двух, первое из которых работает при низких оборотах, а второе при высоких. Если речь идет об испытаниях вновь создаваемых двигателей с широким скоростным диапазоном вращения вала.
Что это означает на практике?
Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!
При движении в горку двигатель выдает большую мощность при тех же оборотах. (при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.
Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.
А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.
Какому двигателю отдать предпочтение?
В настоящий момент к привычным ДВС на дизельном топливе или бензине добавились еще и электродвигатели. Во всех этих конструкциях крутящий момент двигателя может кардинально отличаться.
Бензиновый двигатель
Действие основано на впрыске и формировании воздушно-топливной смеси с последующим возгоранием от искры свечей зажигания. Процесс происходит при температуре в 500 градусов, а коэффициент сжатия находится в районе 10 единиц.
Дизельный двигатель
Здесь коэффициент сжатия достигает уже 25 единиц, а температура составляет 900 градусов. При таких условиях смесь воспламеняется без необходимости в использовании свечей.
Электродвигатель
Пожалуй, самый простой и прогрессивный вариант, который лучше вообще исключить из списка. Дело в том, что трехфазный асинхронный двигатель работает по другому принципу, кардинально отличающемуся от традиционных ДВС. Здесь пикового КМ в 600 Нм можно достичь на любой скорости. Если же говорить о «лошадях», у Теслы их количество составит 416.
Но пока электрокары не получили повсеместного распространения. И если этот вариант по каким-либо причинам недоступен, рассмотрим особенности бензиновых и дизельных агрегатов. При одинаковых объемах первый способен давать высокую скорость, второй – быстрый разгон.
Мощность электродвигателя расчет и классификация
Электродвигатели, устанавливаемые в оборудование, особенно производственное, важно грамотно подбирать по ряду критериев. Одним из основных технических параметров, которые важно учитывать при подборе, является мощность двигателя..
Грамотный подбор позволит значительно продлить срок эксплуатации электроприбора, что в случае с использованием дорогостоящего оборудования будет означать еще и существенную экономию..
Электродвигатели
Задача электродвигателя заключается в том, чтобы преобразовывать энергию поступающего электрического тока в механическую энергию. В основе данного процесса лежит известный принцип электромагнитной индукции. Двигатель может работать от переменного или постоянного тока, поступающего от инвертора, аккумулятора или сети..
Стоит также отметить, что на электростанциях двигатели совершают обратный процесс – преобразуют механическую энергию (например, энергию падающей воды) в электрическую.
Можно выделить две большие группы электромоторов: работающие на переменном токе и на постоянном. Вторые, в свою очередь, подразделяются на бесколлекторные и коллекторные, первые – на асинхронные и синхронные.
Моторы переменного тока также делятся на однофазные, двухфазные и трехфазные. В отдельную категорию выделяются двигатели с жидкостным (вода) и воздушным типами охлаждения.
Как рассчитать мощность двигателя, который работает на переменном токе? Для расчета используется следующая формула:
Конструкция электродвигателя
Основные элементы конструкции следующие::
- Ротор.
- Статор.
- Подшипники.
- Воздушный зазор.
- Обмотку.
- Коммутатор.
Рассмотрим их подробнее..
Ротор представляет собой единственный подвижный элемент двигателя. При работе мотора ротор вращается вокруг оси. При этом ток, проходящий через проводники, создает в обмотках двигателя индукционные возмущения. Таким образом создается магнитное поле. Взаимодействуя со статором, в котором имеются магниты, это поле заставляет вращаться вал. .
Подшипники – деталь, устанавливаемая на вал. Именно на них вал вращается.
Статор – неподвижный элемент конструкции двигателя. Статор, в свою очередь, может включать в себя разные составляющие, в зависимости от типа мотора. Это может быть обмотка или постоянный магнит. Ключевая деталь статора – это набор тонких пластинок металла, которые образуют так называемый пакет якоря. Он используется для снижения энергетических потерь.
Обмотка, по сути, представляет собой катушку с медной проволокой, расположенную вокруг сердечника. Сердечник выполняется из металла и является намагниченным. Задача катушки заключается в том, чтобы преобразовывать одно значение напряжения в другое. Электрический ток, проходя через обмотку, создает индукционные возмущения. Вследствие этого мотор переходит в режим полюсности, имеющий явные и неявные полюса
Можно выделить несколько разных видов обмотки. Наиболее популярная из них – так называемая винтовая. Кроме того, различают слоевую обмотку, чередующуюся, дисковую катушечную.
Воздушный зазор – это расстояние между статором и ротором. Чем зазор больше, тем ток намагничивания выше. Вследствие этого оптимальным для хорошей работы мотора является небольшой зазор, поскольку он напрямую влияет на КПД двигателя – на потери, на вращающий момент. Чересчур малый зазор, однако, приводит к появлению трения и к ослаблению фиксаторов
Различные виды двигателей имеют разные зазоры. Конкретная величина зазора определяется рядом факторов, таких как габариты мотора, рабочая температура, нагрузки и т.д.
Коммутатор представляет собой набор изолированных колец, которые располагаются на валу двигателя. Основная задача коммутатора заключается в том, чтобы переключать напряжение на входе. Можно выделить два класса коммутаторов: транзисторные и тиристорные..
Принцип действия
Согласно закону Архимеда, ток в проводниках создается магнитным полем, в котором действует сила. В том случае, если взять такой проводник и сделать из него рамку, а затем расположить ее в магнитном поле под прямым углом, то края этой рамки будут испытывать на себе силы, векторы которых будут расположены по отношению друг к другу в противоположных направлениях. Эти силы и формируют крутящий момент, а он, в свою очередь, вращает ось..
Магнитное поле формируется магнитами – постоянными или электрическими. Наличие витков на якоре гарантирует постоянное вращение. В итоге ток создает индукционное поле, которое и формирует электродвижущую силу.
Индукционный (асинхронный) двигатель требует постоянного источника переменного тока. Ток в таком моторе, осуществляя взаимодействие с магнитным полем, вращает ротор. Если на катушке мотора нет напряжения, то двигатель неподвижен. Но стоит появиться току – тут же формируется магнитное поле, которое можно описать такой формулой:
Магнитное поле формирует пульсацию, которая заставляет ротор вращаться вокруг оси. В катушке устройства создается ток, его частота зависит от вращения ротора. Как только ток вступает во взаимодействие с магнитным полем, вал мотора начинает вращаться
Есть три основные формулы расчета мощности асинхронных двигателей. Для расчета по сдвигу фаз применяют следующую:
Типы электродвигателей
Все двигатели можно разбить на два больших класса: работающие на переменном токе и на постоянном. По параметру «принцип работы» классификация следующая
- Коллекторные.
- Вентильные.
- Асинхронные.
- Синхронные.
Следует уточнить, что вентильные двигатели – не самостоятельный класс, а вариация коллекторного типа мотора. В конструкцию такого двигателя включен датчик положения ротора и электронный преобразователь. Как правило, эти элементы монтируют на плате управления. Благодаря им становится возможной согласованная коммутация якоря.
Моторы синхронного и асинхронного типов работают только на переменном токе. Наличие сложной электроники позволяет управлять оборотами такого двигателя.
Асинхронные моторы, в свою очередь, подразделяются на одно–, двух– и трехфазные. Расчет мощности трехфазного мотора (в случае соединения по типу звезды или в треугольник): :
Если значения тока и напряжения линейны, то формула изменяется:
Синхронные двигатели можно разделить на несколько больших категорий
- Шаговые.
- Гибридные.
- Индукторные.
- Гистерезисные.
- Реактивные.
Шаговый мотор имеет в конструкции постоянный магнит. Эти двигатели не принято выносить в самостоятельный отдельный подкласс. Управление ими ведется при помощи специальных частотных преобразователей.
Также можно выделить универсальные моторы, которые могут работать и на переменном токе, и на постоянном.
Формулы и уравнения линейных и асинхронных двигателей
Следующие уравнения и формулы, относящиеся к линейным и асинхронным двигателям, можно использовать для расчета основных параметров при анализе и проектировании однофазного и трехфазного асинхронного двигателя.
Содержание
Формула и уравнения для асинхронного двигателя:
ЭДС индукции:
e инд = vB л
12
, где
- e ind = ЭДС индукции
- v = скорость ротора
- B = плотность магнитного потока
- l = длина проводников внутри магнитного поля
Ток ротора:
Ток ротора определяется по формуле:
Создаваемый крутящий момент:
Термины, используемые в уравнениях и формулах крутящего момента двигателя.
- N с = Синхронная скорость
- s = скольжение двигателя
- s b = пробойная или выдвижная накладка
- E 1 = напряжение статора или входное напряжение
- E 2 = ЭДС ротора на фазу в состоянии покоя
- R 2 = сопротивление ротора на фазу
- X 2 = реактивное сопротивление ротора на фазу
- В = напряжение питания
- К = соотношение оборотов ротора/статора на фазу
Пусковой момент
- Максимальный пусковой момент Условие
R 2 = X 2
- Отношение пускового момента к напряжению питания
- Крутящий момент в рабочем состоянии
- Полный крутящий момент
- Условия максимального рабочего крутящего момента
- Максимальный рабочий крутящий момент
- Накладка аварийная
- Отношение крутящего момента к максимальному крутящему моменту
- N скольжение = N с – N (скорость в об/мин)
- ω скольжение = ω с – ω (Угловая скорость в Рад/с)
- N скольжение = скорость скольжения
- N с = Синхронная скорость = 120f/P
- N = скорость вращения двигателя
- S — скольжение асинхронного двигателя
- N = (1-с)N
- ω = (1-с) ω с (угловая скорость в рад/с)
- f r = частота ротора
- f = Частота линии
- P = Количество полюсов
- P 1 = входная мощность статора
- P 2 = Входная мощность ротора
- P м = Полная выходная мощность ротора
- P вых = выходная мощность
- Т г = полный крутящий момент
- T ш = крутящий момент на валу
- Полная выходная мощность ротора:
2
- Выходная мощность:
T ст α V 2
R 2 = sX 2
Скорость скольжения и скольжение асинхронного двигателя:
Скорость скольжения представляет собой разницу между синхронной скоростью и скоростью вращения ротора;
Где
Скольжение асинхронного двигателя является относительным показателем, выраженным в процентах. Это дано:
Где
Скорость ротора :
Скорость ротора асинхронного двигателя определяется как
Электрическая частота ротора:
Где
Мощность асинхронного двигателя:
Связанные термины, используемые в формулах и уравнениях мощности двигателя.
Входная мощность ротора:
P 2 = T г ω с
P м = T г ω
P вых = T ш ω
P1 = P2 + потери в статоре = P м + потери в меди ротора = P OUT + Потери намонтаж и трения
Вход ротор Вход: выходной механический потеря
Синхронный Ватт:
Крутящий момент, при котором машина на синхронной скорости будет генерировать один ватт;
КПД асинхронного двигателя:
- Эффективность ротора:
- Общая эффективность
Формула и уравнения для линейного асинхронного двигателя:
Синхронная скорость:
Где
- В с 90 = линейная 8 синхронная скорость 8
- w = ширина одного шага полюсов
- f = частота сети
Слип:
Где
- v с = линейная синхронная скорость
- v = Фактическая скорость
тяга или сила :
, где
P 2 = Входная мощность ротора
. :
- Преобразование формул и уравнений
- Основные формулы и уравнения электротехники
- Формулы основных электрических величин
- Формулы мощности в однофазных и трехфазных цепях постоянного и переменного тока
- Формулы и уравнения в области электротехники и электроники
- Символы электродвигателей
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Motor Formulas and Calculations, Index of Helping Tools
Это новое всплывающее окно поверх окна браузера GeneratorJoe. НАЖМИТЕ, ЧТОБЫ ЗАКРЫТЬ ОКНО
| ||||||||||||||
Приведенные ниже формулы и расчеты следует использовать только для целей оценки. Заказчик несет ответственность за указание требуемой мощности двигателя, крутящего момента и времени разгона для своего применения. Продавец может пожелать проверить значения, указанные клиентом, с помощью формул в этом разделе, однако, если есть серьезные сомнения относительно применения клиента или если клиенту требуется гарантированная производительность двигателя/приложения, клиент должен привлечь инженера-электрика для точной проверки.![]() Чтобы получить подробное объяснение каждой формулы, нажмите на ссылки ниже, чтобы перейти прямо к ней. Практические правила (приблизительные)
Механические формулы = | л.с. x 5250 об / мин | —— | л.![]() | Крутящий момент x rpm | —— | RPM = | —— | RPM = | —— | RPM = | —— | RPM. | ||
5250 |
Преобразование температуры
Градус C = (Градус F — 32) x 5/9
Градус F = (Градус C x 9/5) + 32
Формула преобразования температуры 0,6 | C = 5 / 9 (F-32) R = F + 46043043. . K = C + 273 | C = градусы Цельсия, F = градусы Фаренгейта, .K = Кельвин R = Rankine, degrees | ||
| до C до C 9867 до C
|
|
Высокоинерционные нагрузки
t = | WK 2 x об/мин 308 x T ср. | —— | WK 2 = инерция в lb.ft. 2 t = время разгона в сек. Т = Ср. ускоряющий крутящий момент lb.ft. |
T = | WK 2 x rpm 308 x t |
inertia reflected to motor = Load Inertia | Load rpm Мотор RPM | 2 |
-Синхронная скорость, частота и количество полюсов AC Motors
N S = 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
N S = 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
N S = 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
N S 9017 =
|