Лошадиные силы двигателя автомобиля не измеряются лошадьми на практике, и это очевидно. Но как рассчитать мощность двигателя автомобиля другим способом? Всё очень просто: если Вы хотите узнать, сколько лошадиных сил в двигателе машины, Вы подключите двигатель к специальному динамометру. Динамометр создаёт нагрузку на двигатель и измеряет количество энергии, которое может развить двигатель против нагрузки. Но, тем не менее, чтобы рассчитать мощность двигателя, есть ещё один шаг, который необходимо преодолеть, и об этом мы сейчас поговорим.
Крутящий момент
Представьте себе, что у Вас есть большой торцевой гаечный ключ с ручкой на нём в 1 метр длиной, и Вы надавите на него весом 100 грамм. То, что Вы делаете, называется применением крутящего момента, у которого также есть своя единица измерения, и в данном случае она рассчитывается как 1 ньютон*метр (Н*м), потому что Вы давите 100 граммами (что примерно равно 1 Ньютону) с "плечом" в 1 метр. Вы сможете получить тот же 1 Н*м, если, к примеру, надавите весом в 1 кг на торцевой ключ с длиной ручки в 10 см.
Аналогично, если Вы вместо торцевого ключа приложите вал двигателя, то двигатель даст некоторый показатель крутящего момента на вал. Динамометр измеряет этот крутящий момент. А далее Вы можете легко конвертировать крутящий момент в лошадиные силы путём простой формулы и, таким образом, рассчитать мощность машины. Формула эта выглядит следующим образом:
Мощность двигателя = (Обороты в минуту * Крутящий момент)/5252.
Тем не менее, крутящий момент, хоть и растёт вместе с мощностью при росте оборотов, тем не менее, не всегда значение мощности прямо пропорционально крутящему моменту. Так, если Вы построите график мощности и крутящего момента по оборотам вращения двигателя, делая отметки с шагом в 500 оборотов, то, что Вы в конечном итоге получите, является кривой мощности двигателя. Типичная кривая мощности для высокопроизводительного двигателя может выглядеть следующим образом (в примере 300-сильный мотор Mitsubishi 3000):
Данный график указывает на то, что любой двигатель имеет пиковую мощность, которую можно рассчитать динамометром - значение оборотов в минуту, при которых мощность двигателя достигает своего максимума. Двигатель также имеет максимальный крутящий момент в определённом диапазоне оборотов в минуту. Вы можете часто видеть в технических характеристиках автомобилей указание наподобие "123 л.с. при 4 600 об./мин., 155 Нм при 4 200 об./мин.". А ещё, когда люди говорят, что двигатель "низкооборотистый" или "высокооборотистый", то они имеют в виду, что максимальный крутящий момент двигателя достигается на довольно низкой или высокой величине оборотов соответственно (например, дизельные двигатели по своей природе являются низкооборотистыми, и потому (но не только поэтому) их часто используют на грузовых автомобилях и тракторах, а вот бензиновые двигатели, напротив, высокооборотистые).
Как мы видим, рассчитать мощность двигателя машины является не такой уж и сложной задачей для специалистов, вооружённых динамометром.
howcarworks.ru
Многие люди, покупая автомобиль или задумываясь про мощность двигателя, смотрят на значение «количество лошадиных сил», а вовсе не на показатель крутящего момента и его максимальное значение. Тем не менее для дальновидных водителей эта особенность двигателя, дающая возможность радостно разгоняться и как следствие, ловко маневрировать, является тоже очень важной. Что же нужно знать об этой характеристике, от чего она зависит и автомобиль с каким крутящим моментом лучше?
По определению, момент силы – физическая величина, вычисляемое как произведение радиус-вектора, который имеет начальную точку на оси вращения, а конечную в точке приложения силы, на вектор этой силы. Это понятие, характеризующее вращательное действие силы, направленной на твёрдое тело. Крутящий момент в двигателе автомобиля определяется умножением действующей на поршень силы на расстояние от центральной оси шейки шатуна до коленчатого вала, точнее, центральной его оси. Это тяговая характеристика, момент силы, для информации, измеряется в ньютон-метрах.
Мощность машины и крутящий момент двигателя тесно связаны. Садясь в автомобиль и следуя по трассе, водитель выясняет, что способность двигателя производить хорошую динамику на наименьших оборотах имеет первостепенное значение. Конечно же, после безопасности. Скорость и динамика разгона автомобиля зависят от мощности двигателя, всем известных лошадиных сил. Мощность вычисляется умножением момента силы на частоту вращения вала. Соответственно, есть два пути ее повышения: повысить крутящий момент либо частоту вращения вала. Повысить эту частоту у поршневого двигателя нелегко: влияют силы инерции (по квадрату оборотов), нагрузки на конструкцию, трение (в десятки раз). У каждого двигателя на графике будет точка перегиба, где крутящий момент, ненадолго повысившись, падает, так как при работе на высокой мощности ухудшается наполнение цилиндров смесью топлива и воздуха. Другой путь: увеличить крутящий момент. Здесь нужен наддув для того, чтобы прокачать через мотор вдвое большее количество воздуха и горючего. Тогда крутящий момент увеличится примерно вдвое все при тех же оборотах. Но в этом случае нарастают тепловые нагрузки, отсюда другие проблемы.
Если взять средний автомобиль, то все силы будут задействованы лишь при 5000–6500 об/мин. А при обычной езде по городу, при низких оборотах, в 2-3 тысячи, автомобиль приводят в движение только половина лошадиных сил. И только при осуществлении скоростного маневра на трассе, при высоких оборотах проявится полная сила мотора. Притом любому ясно, что чем быстрее двигатель будет набирать обороты, тем раньше разгонится автомобиль. Крутящий момент прямо пропорционально зависит от длины шатуна. То есть чем он длиннее, тем выше крутящий момент.
Зачастую человеку кажется, что если у него столько-то лошадиных сил под капотом, то все они на него каждую секунду и работают. А вот и нет! Допустим, есть автомобиль, максимальная мощность двигателя которого будет при 5000–6500 об/мин. То есть для достаточного ускорения придется разогнать мотор увеличить обороты в минуту. Это удастся лишь через определенное время, которое может оказаться очень важным при обгоне. В случае мощного мотора с нормальным крутящим моментом, когда необходимая мощность появляется уже при 2000 оборотах, получим моментальное ускорение для любого рискованного маневра.
Принято считать, что почти все автомобили-малолитражки с «тяговитыми» двигателями, а также авто с дизельными моторами. Водители автомобилей с дизельным двигателем особенно замечают быстрый разгон даже при низких оборотах. Они, похваляясь, чаще всего говорят, что в нем, в крутящем моменте, вся сила. Теперь ясно: крутящий момент не в меньшей степени, чем лошадиные силы, важная характеристика железного коня. На него следует смотреть в первую очередь при покупке нового автомобиля, а также при подборе подержанного.
Вот и стало ясно, чем те же самые 200 Hм на 1700 об/мин. лучше, чем те же 200 при 4000 оборотах в мин. Теперь понятно, что именно крутящий момент влияет на маневренность и скорость разгона автомобиля. Это заметно по времени, в течение которого можно разгоняться дальше. Конечно, здорово изобрести машину, у двигателя которой значение крутящего момента на любых оборотах низких ли, средних или высоких стабильно и максимально было бы приближено к пиковому. Жаль, но такого идеального варианта пока не существует. Это уже из области фантастики.
www.fortunaxxi.ru
Размерной ед
xn----7sbeb3bupph.xn--p1ai
Проще воспользоваться токовыми клещами, отсутствуй одно но. В холостом режиме, даже на высоких оборотах двигатель бессилен развить полную мощность. Ниже приведем таблицу, согласно которой можно судить о параметрах прибора по режиму. Не решает задачи целиком. Давайте посмотрим, как определить мощность и ток электродвигателя простыми методами.
Проще использовать токовые клещи. Прибор, дистанционно позволяющий оценить величину напряженности магнитного поля вокруг одиночного провода. Охватывая кольцом шнур питания, получим значение, равное нулю. Поля направлены противоположно фазной и нулевой жил. Работать понадобится сделать розетку с раздельными проводами, показано на снимке. Видим:
Розетка измерения токовыми клещами
Монтаж основания розетки
Розетка монтируется на доску, потрудитесь надежно зажать провода, блокируя возможность обрыва, выскальзывания. Проще сделать, воспользовавшись обрезком изоляции, показано фото. Прижимаем саморезом, долгая жизнь тестовой розетке обеспечена. При одевании корпуса понадобиться намотать немного изоляционной ленты вокруг шнура для лучшего прижатия. Получился вспомогательный инструмент проведения измерений токовыми клещами.
Рекомендуем начать приборами, мощность которых известна. Например, возьмите электрическую дрель с коллекторным двигателем, начинайте мерить ток. На холостом ходу значение будет ниже номинального. Замечено, при разгоне, от двигателя требуется полная мощность, мгновенные, выдаваемые экраном клещей, близки номиналу. Например, для прибора на фото — 3,2 А, при напряжении розетке 231 вольт дает 740 Вт (номинал 750 Вт). При запуске будет видно: ток резко повышается, потом быстро падает. Нужно успеть засечь вершину горы.
Измерение тока потребления дрели
Обратите внимание: токовые клещи выдают показания через равные короткие промежутки времени, сложно засечь пик с первого раза. Поставьте самую высокую скорость шпинделя, терпеливо жмите курок, пытаясь поймать вершину. Нам удалось с третьего раза. Чтобы сделать боле-менее годный снимок, опыт проводился полтора десятка раз (затвор спускался с задержкой, было сложно поймать момент). Причем после этого получилось фото лишь на 3,1 А (думаем, читатели верят авторам насчет 3,2 А). В ходе опыта было получено однократно значение 4 А, которые относим на случайные скачки тока сети плюс погрешности. Вы же удостоверьтесь: пик повторяется (хотя бы 2 раза из пяти).
Читайте также: Как подключить двухклавишный выключатель света
В результате ориентировочно определяется мощность коллекторного двигателя электрической дрели. Сразу хотим сказать: отсутствует однозначная зависимость тока холостого тока от номинала мощности. В природе существуют достаточно сложные формулы, воспользоваться ими достаточно непросто. Применить практически — того сложнее. Приводим таблицу примерных соотношений асинхронных типов двигателей, взятую с сайта http://energo.ucoz.ua/. Где достали авторы, остается загадкой, сведения дают возможность понять, как оценить номинальную мощность двигателя по току холостого хода. Напряжение должно быть номинальным, громоздкие приборы нужно разогреть перед работой. Так говорит ГОСТ Р 53472. Период определен типом подшипников.
Ток холостого хода двигателей
Боитесь ошибиться, берите максимальное значение:
Как оценить примерную мощность? Поясняем. Список дан желающим провести измерения поточнее. Для примерной оценки используем таблицу, избегая забивать мозги. Коллекторный двигатель дрели до измерений при комнатной температуре не разогревался вовсе. Большинство читателей лишено токовых клещей. Большинство мультиметров позволяют измерять ток, шкала ограничена размером 10 А. Обратите внимание, при максимальном лимите следует красный провод подключать к другому гнезду (показано фотографией).
Выбор гнезда подключения
Возле отверстия по-русски (английским языком) написано: время работы с измерениями режимом не превышает 10 секунд (MAX 10SEC) с последующим перерывом четверть часа (EACH 15MIN). В противном случае работоспособность мультиметра не гарантируется, вход без предохранителя (UNFUSED). Рассказывает инструкция. Мультиметр врезается в цепь. Один проводов нужно разомкнуть для измерений. Вместе подумаем, выгодно ли экономически.
Посмотрите снимок чеков. Клемметр подразумевает токовые клещи, простенький тестер обозначается 1СК. Видно, оба прибора стоят дешевле 400 рублей, потому хозяйству нужны оба. Мультиметр позволит оценить ток до 10 А, очень короткое время работы. Клещи работают гораздо грубее, одна шкала достигает предела 1000 А. Вывод очевиден – требуется примерно определить ток электродвигателя, применяется «клемметр». Понадобится точность, используйте тестер (номинальный ток ниже предельно допустимого).
Стоимость токовых клещей
Мощность электродвигателя составлена активной, реактивной составляющими. Предприятиям установлен штрафной тариф. Потому важно понимать измеряемые величины. Инструкция токовых клещей пишет: оценивают среднеквадратический ток. Чистая математика. Сие означает: прибор делает выборку определенного интервала, берет корень суммы квадратов отдельных измерений, деленной на общее количество. Уподобим усреднению за некоторый период времени.
Активный ток, полный, реактивный (вряд ли). Вопрос нужно выяснить: токовые клещи, показанные фото, с завидной регулярностью дают мощность приборов на 11% ниже номинала. Проверяли электрические обогреватели, утюги, фен. Мощность занижена единой величиной. Литература пишет: среднеквадратическое значение (RMS) показывает полную величину тока. Физически течет по проводу. Расчет ведется для синусоидальной формы, будут отклонения при невыполнении требования.
Токовые клещи попросту врут. Показывали бы активную часть, для двигателя значения были бы существенно ниже, нежели обогревателя. Нагрузка чисто активная, обмотки дают сильную мнимую составляющую. Нужно тарировать токовые клещи перед применением. Сделать проще всего, используя чисто активные обогреватели (масляные). Возможность токовых клещей измерять активную мощность отдельно обычно указывается инструкцией. Профессионалы говорят: подобные изделия — плод воображения дилетантов.
Двигатели дают большую нагрузку в реактивном спектре. Люди мирится, либо ставят конденсаторные блоки, компенсирующие нестыковку, выравнивая фазу. О подобных бытовых изделиях можете прочитать на сайтах, продающих приборы наподобие Эконор. Смысл коробочки подобно блоку конденсаторов компенсировать реактивную мощность. Обратите внимание: для профессиональных станций указывается лимит, выраженный ВАР, для Эконор параметр замалчивается. Один радиолюбитель посчитал цифру. Оказалось, компенсируется 150 ВАР.
Читайте также: Как найти проводку в стене
Наверное, хватит маломощным приборам, двигателям будет слоновья дробина. Асинхронные машины дают 40% реактивной мощности, тратится энергия. Пользы грош. Обратите внимание: при изолированной нейтрали проблем добавляется. Ток втекает одной фазой, выходит — другой. Эффект может вычитаться. Токовые клещи нельзя считать лучшим вариантом.
Лучше, если нейтраль заземленная. Суммарный ток вытекает нулевым проводом, где проводим измерения. Нейтраль изолирована — получается, эффект одного провода будем измерять дважды: вход, выход. Попробуйте три значения сложить, потом поделить на два. Грубая методика окажется приблизительно верной.
Насадка токовых клещей
Предлагаем определить тип двигателя. Помогает сделать шильдик. Указывается полная мощность (реактивная плюс активная, соединенные через косинус угла сдвига фаз, называемый коэффициентом мощности). Если известен тип двигателя (выяснили, руководствуясь изображениям, внешним видом), справочники позволят найти мощность. Неудивительно: габариты тесно связаны с параметром, каждый производитель максимально хочет экономить выпуском продукции. Размеры оптимизированы, типичный набор параметров следующий:
Двигатели АИР описаны, размеры, мощность указаны здесь: http://wp.electrostal.com.ua/kakoy-diametr-vala-u-elektrodvigatelya/. Соответственно, можно без инструментов понять детали. Увидите, аналогичного рода информация отыщется практически на любые типы моторов. Шильдик сорван, можно некоторое время потратить, отыскивая похожие модели в интернете. Россия уступает Китаю разнообразием электрических двигателей. Шанс успеха высок.
Полагаем, перечислили доступные способы определения мощности, тока, невелика проблема потратить 1000 рублей, получая нужные средства. Учитывая, что рубль сгорает, шаг будет казаться разумным. Проще определить мощность электродвигателя, пользуясь справочником. Нужно знать модель, вал измерите штангенциркулем.
Заканчиваем обзор, надеемся, постоянные читатели знают отличия асинхронного двигателя от коллекторного. Различия опускаем. Обратите также внимание: большим пусковым током страдают асинхронные двигатели. У коллекторных разброс невысок.
Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.
В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).
Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое по секундомеру.
Для удобства расчетов двигатель подключается на время, равное 10 минутам. До подключения и через 10 минут со счетчика снимаются показания. Разность показаний в кВт∙ч, поделенная на 60/10=6, и будет равна мощности электродвигателя в киловаттах.
Некоторые электронные счетчики имеют функцию измерения мгновенной мощности, при этом задача упрощается. Нужно при работающем двигателе зайти в меню измерений счетчика и найти в нем искомое значение.
Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи. измеряющие ток в цепи без ее разрыва.
При использовании мультиметра (как пользоваться мультиметром? ) или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе. перед запуском прибор нужно надежно закоротить. чтобы он не сгорел.
Можно воспользоваться и электронным счетчиком с функцией измерения токов.
Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя :
Величину напряжения тоже рекомендуется измерить, желательно – непосредственно на зажимах электродвигателя.
Если измерения производятся без нагрузки, то получится ток холостого хода. Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.
Мощность двигателя, кВт
Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.
Схема соединения обмоток
Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В». Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.
Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.
В момент запуска вал электродвигателя неподвижен. Чтобы его раскрутить, нужно усилие, превышающее номинальное. Поэтому и ток при пуске превышает номинальный. При раскручивании вала ток плавно уменьшается.
Пусковые токи мешают работе электрооборудования, вызывая резкие провалы напряжения. При запуске мощных агрегатов могут даже отпадать пускатели других электродвигателей, гаснуть лампы ДРЛ.
Для снижения последствий запуска применяют три способа.
Оцените качество статьи. Нам важно ваше мнение:
Господа специалисты, практики и просто хорошие технари. Фирма Скат технолоджи продает однофазные коллекторные двигатели МК — 5528-А220В-03. где в характеристике записано, что потребляемая мощность 400 ватт, но под нагрузкой, по мнению продавца, эта мощность возрастает аж до 1500 ватт, что на самом деле НЕ ВОЗМОЖНО. Хотелось бы увидеть мнение специалиста, которое возможно понадобится в судебных процессах, если конечно, фирма не обманывает таким образом.Буду признателен за ответ, как бы он не звучал.
Прибор для экономии электроэнергии Electricity Saving BoxПочитать отзывы можно здесь
Проще всего было бы воспользоваться токовыми клещами, если бы не одно но. В холостом режиме, даже на самых высоких оборотах двигатель не развивает своей полной мощности. Ниже мы приведём таблицу, согласно которой можно как-то судить о параметрах прибора по его режиму. Но это не решает задачи целиком. Давайте посмотрим, как определить мощность и ток электродвигателя самыми простыми методами.
Проще всего использовать токовые клещи. Это прибор, который дистанционно позволяет оценить величину напряжённости магнитного поля вокруг одиночного провода. Обратите внимание, что если охватить кольцом шнур питания, то значение будет равно нулю. Потому что поля направлены противоположно в фазной и нулевой жиле. То есть для работы понадобится сделать небольшую розетку с раздельными проводами, как то показано на снимке. Здесь мы видим:
Зажим проводов обрезком изоляции
Розетка монтируется на доску, нужно очень надёжно зажать провода, чтобы они не оборвались и не выскользнули со временем. Проще всего это сделать при помощи обрезка изоляции так, как это показано на фото. Прижимаем все это саморезом, и долгая жизнь тестовой розетке обеспечена. При одевании корпуса может понадобиться намотать немного изоляционной ленты вокруг шнура для лучшего прижатия. В результате у нас получился вспомогательный инструмент для проведения измерений токовыми клещами. (См. также: Как определить фазу, ноль и землю )
Мы рекомендуем начать с приборов, мощность которых и без того уже известна. Например, возьмите электрическую дрель с коллекторным двигателем и начинайте мерить ток. Мы уже сказали, что на холостом ходу его значение будет намного ниже номинального. Но замечено, что при разгоне, когда от двигателя требуется полная мощность, мгновенные значения на экране клещей близки к номиналу. Например, для прибора на фото это 3,2 А, что при напряжении в розетке 231 В даёт примерно 740 Вт (номинал 750 Вт). При запуске будет видно, что ток резко повышается, а потом быстро падает. Нужно успеть засечь вершину этой горы.
Обратите внимание, что токовые клещи выдают показания через равные короткие промежутки времени, поэтому не факт, что удастся засечь пик с первого раза. Поставьте самую высокую скорость шпинделя и терпеливо жмите на курок раз за разом, пытаясь поймать вершину. Нам это удалось сделать с третьего раза. А чтобы сделать боле-менее годный снимок, опыт проводился примерно полтора десятка раз (затвор спускался с задержкой, и было сложно поймать момент). Причём и после этого получилось фото лишь на 3,1 А (мы думаем, читатели верят нам на слово на счёт 3,2 А). В ходе опыта было один раз получено значение 4 А, которые мы относим на случайные скачки тока в сети и погрешности. Вы же удостоверьтесь, что пик повторяется раз за разом (хотя бы 2 раза из пяти).
Прибор для экономии электроэнергии Electricity Saving BoxПочитать отзывы можно здесь
В результате примерно определяется мощность коллекторного двигателя электрической дрели. Мы сразу хотим сказать, что не существует какой-то однозначной зависимости для тока холостого тока от номинала мощности. В природе существуют достаточно сложные формулы, но воспользоваться ими достаточно непросто. А применить на практике и того сложнее. Мы приводим таблицу примерных соотношений для асинхронных типов двигателей, взятую с сайта http://energo.ucoz.ua/. Где её достали авторы, остаётся загадкой, но именно эти данные дают возможность понять, как оценить номинальную мощность двигателя по току его холостого хода. Добавим к этому, что напряжение также должно быть номинальным, а громоздкие приборы нужно разогреть перед работой. Об этом прямо говорит ГОСТ Р 53472. Период зависит от типа подшипников.
Таблица примерных соотношений для асинхронных типов двигателей
Если не хотите ошибиться, берите максимальное значение:
Как оценить примерную мощность, если мы её не знаем? Поясняем. Этот список дан для тех, кто хочет провести измерения более точно. Для примерной оценки используем таблицу и не забиваем себе мозги. В частности, коллекторный двигатель дрели до измерений при комнатной температуре не разогревался вовсе. Теперь о насущном: большинство наших читателей не имеет на руках токовых клещей, что делать в этом случае? Большинство мультиметров позволяют измерять ток, но шкала при этом ограничена размером 10 А. Обратите внимание, что при максимальном лимите следует красный провод подключать к другому гнезду, как это показано на фотографии.
Выбор гнезда для подключения
Кроме того, возле отверстия по-русски (на английском языке написано), что время работы с измерениями в таком режиме не должно превышать 10 секунд (MAX 10SEC) с последующим перерывом на четверть часа (EACH 15MIN). В противном случае работоспособность мультиметра не гарантируется, потому что вход без предохранителя (UNFUSED). Как мерить? Об этом обычно рассказывает инструкция. В нашем случае мультиметр врезается в цепь. То есть один из проводов нужно разомкнуть для измерений. А теперь вместе подумаем, выгодно ли это экономически.
Посмотрите на снимок с чеками. Там под клемметром понимаются токовые клещи, а простенький тестер обозначается, как 1СК. Видно, что оба прибора стоят дешевле 400 рублей – хотя неизвестно, что будет дальше – а потому в хозяйстве нужно иметь оба. Мультиметр позволяет оценить ток до 10 А, но в течение очень короткого времени. Тогда как клещи работают гораздо более грубо, но одна из шкал выходит на предел в 1000 А. Вывод очевиден – если требуется примерно определить ток электродвигателя, то применяется «клемметр». А когда нужна точность, то можно использовать и тестер при условии, что номинал не выходит за пределы допустимого. (См. также: Как определить фазу и ноль мультиметром )
Стоимость тестера и токовых клещей
Вся проблема ещё в том, что мощность у электродвигателя делится на активную и реактивную. Причём для предприятий может быть установлен тариф за ту и за эту. Потому важно понимать, что именно мы измеряем. В инструкции к токовым клещами написано, что они оценивают среднеквадратический ток. Что это? Чистая математика. Сие означает, что прибор делает выборку на определённом интервале, после чего берет корень из суммы квадратов отдельных измерений, делённой на общее их количество. Это можно сравнить с усреднением за некоторый период времени.
Но активный это ток, полный или реактивный (последнее совсем вряд ли). Этот вопрос нужно выяснить по той простой причине, что токовые клещи, показанные на фото с завидной регулярностью дают мощность приборов на 11% ниже их номинала. Мы проверяли электрические обогреватели, утюги и даже фен. Везде одно и то же – мощность занижена на одну и ту же величину. В литературе пишут, что среднеквадратическое значение (RMS) показывает полную величину тока. Это то, что физически течёт по проводу. Расчёт ведётся для синусоидальной формы, и будут отклонения при невыполнении этого требования.
В результате мы можем сказать, что токовые клещи попросту врут. Потому что если бы они показывали лишь активную часть, то для двигателя значения были бы существенно ниже, нежели для обогревателя. Потому что в последнем случае нагрузка чисто активная, тогда обмотки дают сильную мнимую составляющую. В итоге нужно тарировать свои токовые клещи перед применением. А сделать это проще всего на чисто активных обогревателях. Например, масляных. Если токовые клещи умеют измерять активную мощность отдельно, это обычно указывается в инструкции. Хотя многие профессионалы говорят, что все подобные изделия не более чем плод воображения дилетантов.
Таким образом, нужно знать, что двигатели дают большую нагрузку в реактивном спектре. С этим либо мирится, либо ставят конденсаторные блоки, которые компенсируют цепь, выравнивая фазу. О подобных бытовых изделиях каждый может почитать на сайтах, где продают приборы наподобие Эконор. Весь смысл такой коробочки в том, что она при помощи блока конденсаторов компенсирует реактивную мощность. Обратите внимание на то, что для профессиональных станций указывается некий лимит в ВАР, но для Эконор параметр умалчивается. Один из радиолюбителей даже посчитал цифру. Оказалось, что компенсируется нечто порядка 150 ВАР.
Наверное, это достаточно для маломощных приборов, но двигателям это будет, что слону дробина. Некоторые асинхронные машины дают до 40% реактивной мощности, и на все это тратится энергия. Но вот пользы она не приносит ни на грош. Обратите внимание, что при изолированной нейтрали проблем добавляется: ток втекает по одной фазе, а выходит по другой. Эффект в этом случае может вычитаться. Поэтому токовые клещи нельзя считать лучшим вариантом в этом случае.
Гораздо лучше если нейтраль заземлённая. В этом случае суммарный ток будет вытекать по нулевому проводу, где и нужно проводить измерения. Если же нейтраль изолирована, то получается, что мы эффект одного и того же провода будем измерять дважды: при входе и выходе. Ну, в крайнем случае, попробуйте все три значения сложить, а потом поделить на два. Есть шанс, что такая грубая методика окажется приблизительно верной.
Мы предлагаем для простоты определить тип двигателя. Обычно это помогает сделать шильдик. Там же обычно указывается полная мощность (реактивная плюс активная, соединённые через косинус угла сдвига фаз, который часто называют коэффициентом мощности). Но даже не в этом вся прелесть: если известен хотя бы тип двигателя (выяснили по изображениям в интернете или как-нибудь ещё), то по справочникам вполне можно найти мощность. И это неудивительно: габариты тесно связаны с этим параметром, потому что каждый производитель максимально хочет экономить на выпуске своей продукции. Поэтому размеры оптимизированы, а типичный набор данных следующий:
Например, для двигателей АИР все размеры совместно с мощностью указаны по этой ссылке: http://wp.electrostal.com.ua/kakoy-diametr-vala-u-elektrodvigatelya/. Соответственно, можно и без инструментов понять все, что нужно. Вы увидите, что аналогичного рода информация отыщется во многих местах, практически на любые типы моторов. А если шильдик сорван, то можно некоторое время потратить на поиск похожей модели в интернете. В любом случае, у нас не Китай, и широкое разнообразие электрических двигателей не наблюдается. А потому и шанс на успех высок.
Мы полагаем, что перечислили все доступные способы определения мощности и тока, и не проблема сейчас потратить 1000 рублей, чтобы получить в своё распоряжение нужные средства. А, учитывая тот факт, что рубль сгорает не по дням, а по часам, такой шаг и вовсе будет казаться разумным. Ну, и, конечно, проще всего определить мощность электродвигателя по справочнику. А для этого нужно знать модель, что касается вала, будет лучше измерить его при помощи штангенциркуля.
Мы заканчиваем на этом обзор и надеемся, что наши постоянные читатели уже знают, чем отличается асинхронный двигатель от коллекторного. В связи с этим здесь мы эти различия опускаем. Обратите также внимание, что большим пусковым током страдают именно асинхронные двигатели. У коллекторных разброс не столь высок.
Средство от псориаза
Источники: http://vashtehnik.ru/elektrika/kak-opredelit-moshhnost-i-tok-elektrodvigatelya.html, http://electric-tolk.ru/kak-opredelit-parametry-elektrodvigatelya/, http://ruslanbelov.ru/elektrika/kak-opredelit-moshhnost-i-tok-elektrodvigatelya-sposoby-raschyotov/
electricremont.ru
Проще воспользоваться токовыми клещами, отсутствуй одно но. В холостом режиме, даже на высоких оборотах двигатель бессилен развить полную мощность. Ниже приведем таблицу, согласно которой можно судить о параметрах прибора по режиму. Не решает задачи целиком. Давайте посмотрим, как определить мощность и ток электродвигателя простыми методами.
Проще использовать токовые клещи. Прибор, дистанционно позволяющий оценить величину напряженности магнитного поля вокруг одиночного провода. Охватывая кольцом шнур питания, получим значение, равное нулю. Поля направлены противоположно фазной и нулевой жил. Работать понадобится сделать розетку с раздельными проводами, показано на снимке. Видим:
Розетка измерения токовыми клещами
Монтаж основания розетки
Розетка монтируется на доску, потрудитесь надежно зажать провода, блокируя возможность обрыва, выскальзывания. Проще сделать, воспользовавшись обрезком изоляции, показано фото. Прижимаем саморезом, долгая жизнь тестовой розетке обеспечена. При одевании корпуса понадобиться намотать немного изоляционной ленты вокруг шнура для лучшего прижатия. Получился вспомогательный инструмент проведения измерений токовыми клещами.
Рекомендуем начать приборами, мощность которых известна. Например, возьмите электрическую дрель с коллекторным двигателем, начинайте мерить ток. На холостом ходу значение будет ниже номинального. Замечено, при разгоне, от двигателя требуется полная мощность, мгновенные, выдаваемые экраном клещей, близки номиналу. Например, для прибора на фото — 3,2 А, при напряжении розетке 231 вольт дает 740 Вт (номинал 750 Вт). При запуске будет видно: ток резко повышается, потом быстро падает. Полагается успеть засечь вершину горы.
Измерение тока потребления дрели
Обратите внимание: токовые клещи выдают показания через равные короткие промежутки времени, сложно засечь пик с первого раза. Поставьте самую высокую скорость шпинделя, терпеливо жмите курок, пытаясь поймать вершину. Нам удалось с третьего раза. Чтобы сделать годный снимок, опыт исполнялся полтора десятка раз (затвор спускался с задержкой, было сложно поймать момент). Причем после этого получилось фото лишь на 3,1 А (думаем, читатели верят авторам насчет 3,2 А). В ходе опыта было получено однократно значение 4 А, которые относим на случайные скачки тока сети плюс погрешности. Вы же удостоверьтесь: пик повторяется (хотя бы 2 раза из пяти).
В результате ориентировочно определяется мощность коллекторного двигателя электрической дрели. Сразу хотим сказать: отсутствует однозначная зависимость тока холостого тока от номинала мощности. В природе существуют достаточно сложные формулы, воспользоваться ими достаточно непросто. Применить практически — того сложнее. Приводим таблицу примерных соотношений асинхронных типов двигателей, взятую с сайта http://energo.ucoz.ua/. Где достали авторы, остается загадкой, сведения дают возможность понять, как оценить номинальную мощность двигателя по току холостого хода. Напряжение предвидится номинальным, громоздкие приборы потребуется разогреть перед работой. Так говорит ГОСТ Р 53472. Период определен типом подшипников.
Ток холостого хода двигателей
Боитесь ошибиться, берите максимальное значение:
Как оценить примерную мощность? Поясняем. Список дан желающим провести измерения поточнее. Для примерной оценки используем таблицу, избегая забивать мозги. Коллекторный двигатель дрели до измерений при комнатной температуре не разогревался вовсе. Большинство читателей лишено токовых клещей. Большинство мультиметров позволяют измерять ток, шкала ограничена размером 10 А. Обратите внимание, при максимальном лимите следует красный провод подключать к другому гнезду (показано фотографией).
Выбор гнезда подключения
Возле отверстия по-русски (английским языком) написано: время работы с измерениями режимом не превышает 10 секунд (MAX 10SEC) с последующим перерывом четверть часа (EACH 15MIN). В противном случае работоспособность мультиметра не гарантируется, вход без предохранителя (UNFUSED). Рассказывает инструкция. Мультиметр врезается в цепь. Один провод потребуется разомкнуть для измерений. Вместе подумаем, выгодно ли экономически.
Посмотрите снимок чеков. Клемметр подразумевает токовые клещи, простенький тестер обозначается 1СК. Видно, оба прибора стоят дешевле 400 рублей, потому хозяйству нужны оба. Мультиметр оценит ток до 10 А, очень короткое время работы. Клещи работают гораздо грубее, одна шкала достигает предела 1000 А. Вывод очевиден – требуется примерно определить ток электродвигателя, применяется «клемметр». Понадобится точность, используйте тестер (номинальный ток ниже предельно допустимого).
Стоимость токовых клещей
Мощность электродвигателя составлена активной, реактивной составляющими. Предприятиям установлен штрафной тариф. Потому важно понимать измеряемые величины. Инструкция токовых клещей пишет: оценивают среднеквадратический ток. Чистая математика. Сие означает: прибор делает выборку определенного интервала, берет корень суммы квадратов отдельных измерений, деленной на общее количество. Уподобим усреднению за некоторый период времени.
Активный ток, полный, реактивный (вряд ли). Вопрос полезно выяснить: токовые клещи, показанные фото, с завидной регулярностью дают мощность приборов на 11% ниже номинала. Проверяли электрические обогреватели, утюги, фен. Мощность занижена единой величиной. Литература пишет: среднеквадратическое значение (RMS) показывает полную величину тока. Физически течет по проводу. Расчет ведется для синусоидальной формы, будут отклонения при невыполнении требования.
Токовые клещи попросту врут. Показывали бы активную часть, для двигателя значения были бы существенно ниже, нежели обогревателя. Нагрузка чисто активная, обмотки дают сильную мнимую составляющую. Требуется тарировать токовые клещи перед применением. Сделать проще всего, используя чисто активные обогреватели (масляные). Возможность токовых клещей измерять активную мощность отдельно обычно указывается инструкцией. Профессионалы говорят: подобные изделия — плод воображения дилетантов.
Двигатели дают большую нагрузку в реактивном спектре. Люди мирится, либо ставят конденсаторные блоки, компенсирующие нестыковку, выравнивая фазу. О подобных бытовых изделиях можете прочитать на сайтах, продающих приборы наподобие Эконор. Смысл коробочки подобно блоку конденсаторов компенсировать реактивную мощность. Обратите внимание: для профессиональных станций указывается лимит, выраженный ВАР, для Эконор параметр замалчивается. Один радиолюбитель посчитал цифру. Оказалось, компенсируется 150 ВАР.
Наверное, хватит маломощным приборам, двигателям будет слоновья дробина. Асинхронные машины дают 40% реактивной мощности, тратится энергия. Пользы грош. Обратите внимание: при изолированной нейтрали проблем добавляется. Ток втекает одной фазой, выходит — другой. Эффект может вычитаться. Токовые клещи нельзя считать лучшим вариантом.
Лучше, если нейтраль заземленная. Суммарный ток вытекает нулевым проводом, где выполняем измерения. Нейтраль изолирована — получается, эффект одного провода будем измерять дважды: вход, выход. Попробуйте три значения сложить, потом поделить на два. Грубая методика окажется приблизительно верной.
Насадка токовых клещей
Предлагаем определить тип двигателя. Помогает сделать шильдик. Указывается полная мощность (реактивная плюс активная, соединенные через косинус угла сдвига фаз, называемый коэффициентом мощности). Если известен тип двигателя (выяснили, руководствуясь изображениям, внешним видом), справочники позволят найти мощность. Неудивительно: габариты тесно связаны с параметром, каждый производитель максимально хочет экономить выпуском продукции. Размеры оптимизированы, типичный набор параметров следующий:
Двигатели АИР описаны, размеры, мощность указаны здесь: http://wp.electrostal.com.ua/kakoy-diametr-vala-u-elektrodvigatelya/. Соответственно, можно без инструментов понять детали. Увидите, аналогичного рода информация отыщется практически на любые типы моторов. Шильдик сорван, можно некоторое время потратить, отыскивая похожие модели в интернете. Россия уступает Китаю разнообразием электрических двигателей. Шанс успеха высок.
Полагаем, перечислили доступные способы определения мощности, тока, невелика проблема потратить 1000 рублей, получая нужные средства. Учитывая, что рубль сгорает, шаг будет казаться разумным. Проще определить мощность электродвигателя, пользуясь справочником. Требуется знать модель, вал измерите штангенциркулем.
Заканчиваем обзор, надеемся, постоянные читатели знают отличия асинхронного двигателя от коллекторного. Различия опускаем. Обратите также внимание: большим пусковым током страдают асинхронные двигатели. У коллекторных разброс невысок.
vashtehnik.ru
Если вы осмотрели корпус электродвигателя со всех сторон, но так и не нашли значение его мощности, то стоит вычислить этот показатель своими силами. Это очень легко сделать, ведь нужно просто измерить силу тока и применить специальные расчеты.
Современные электродвигатели аир обладают всеми необходимыми показателями. Их мощность легко определяется, если знать размеры и особенности конструкции устройств.
Подключайте двигатель только к тому источнику тока, напряжение которого вы точно знаете. Теперь подключите к цепи обмотки амперметра, но не все сразу, а по отдельности. Это даст вам возможность узнать, каких значений достигает рабочий ток. Затем просуммируйте все те показатели, которые вы получили.
Число, которое у вас получилось, необходимо умножить на предельное напряжение в сети. Полученный результат и станет значением той мощности, которую будет потреблять двигатель.
Можно найти этот показатель и другим способом. Вычислите скорость вращения вала устройства, пользуясь при этом тахометром. После этого возьмите динамометр, чтобы найти тяговое усилие электродвигателя. Чтобы получить окончательный результат, стоит умножить число 6,28 на частоту вращения, а также на радиус вала.
Последний показатель можно получить, измерив соответственный элемент линейкой. Теперь вы знаете, какая мощность понадобится для эффективной работы двигателя.
С измерением мощности вы уже успели разобраться. Но какие же плюсы и минусы есть у данных устройств?
Достоинства электродвигателей:
Недостатки устройств:
Это основные моменты, которые касаются современных электродвигателей. Если вы сделаете выбор в пользу такого устройства, то процесс работы будет идти гораздо быстрее и эффективнее.
Смотрите также:
Как работает илосос и чем он отличается от ассенизатора http://euroelectrica.ru/kak-rabotaet-ilosos-i-chem-on-otlichaetsya-ot-assenizatora/.
Интересное по теме: Какие выбрать выключатели и розетки?
Советы в статье "Дизельные электростанции" здесь.
Способы вычислить мощность двигателя смотрим в видео:
euroelectrica.ru
Объем двигателя у всякого автомобиля — величина непрерывная и со временем не изменяется и не колеблется. От того какой объем у машины, напрямую зависит его мощность. А данный показатель влияет безусловно на все — на скорость и даже на оформление годичной страховки на автомобиль.
Вам понадобится
1. Дабы определить объем двигателя и верно его рассчитать, необходимо знать, как, в тезисе, устроен мотор машины. Задача двигателя — преобразовывать тепловую энергию, получающуюся в процессе сгорания топлива в цилиндрах, в механическую энергию, которая, собственно, и разрешает машине двигаться.
2. Цилиндров в автодвигателе несколько. Помещаются они в цельный блок, внутри которого еще добавочно установлены поршни. И каждая вот эта система определяет свой работой объем мотора. Рассчитать его, невзирая на кажущуюся трудность, довольно легко. Для этого надобно знать технические параметры «начинки», то есть цилиндров и поршней, а дальше все считать по определенной математической формуле.
3. Формула, которая применяется для расчета объема двигателя , скажем, для четырехцилиндровой машины, выглядит так: V = 3,14 х Н х D в квадрате / 1000 (это число циклов в минуту на низких и средних показателях). В данной формуле величина D определяет диаметр поршня двигателя , указанного в миллиметрах, а Н — это ход поршня в миллиметрах. К примеру, у авто диаметр поршня равен 82,4 мм, а ход поршня — 74,8 мм, значит V двигателя у него будет дальнейшим: 3,14 х 74,8 х 82,4 х 82,4 / 1000 = 1595 сантиметров кубических. Соответственно, и мощность у такой машины средняя.
4. Рассчитывается объем неизменно либо в кубических сантиметрах, либо в литрах. Определяя рабочий объем двигателя , дозволено храбро систематизировать все автомобили по группам: микролитражные (объем до 1,4 литра), малолитражные (1,2-1,7 литра), среднелитражные (1,8-3,5 литра) и крупнолитражные (свыше 3,5 литров). В большинстве стран в мире от показателей объемов двигателя зависит налогообложение и страхование. Так, скажем, в некоторых европейских странах для больше сильных авто (тех, которые имеют рабочий объем двигателя больше 2000 кубических сантиметров) предполагается уплата повышенного налога.
Моторы автомобилей Волжского автозавода выпускаются небольшого объема, но, как знаменито, литраж мотора дозволено с триумфом увеличить. Вследствие чему в последствии возрастает мощность и динамика автомобиля, что подталкивает последователей управления машиной в спортивном жанре к осуществлению тюнинга двигателя .
Вам понадобится
1. Мотористы, в случае обращения к ним за советом, могут предложить несколько вариантов по увеличению объема двигателя , выбор одного из них зависит от пожелания клиента, а также от того, какую сумму обладатель готов потратить на реконструкцию двигателя .
2. Примитивный и малозатратный по средствам вариант предусматривает тривиальную расточку гильз блока цилиндров под установку поршней большего диаметра, что в результате незначительно, но все же увеличит литраж мотора. Использование данного способа форсирования двигателя повлечет за собой лишь расходы, связанные с получением новой поршневой группы.
3. Наравне с этим существует еще один вариант увеличения объема двигателя , тот, что предусматривает замену штатного коленвала иным, имеющим увеличенный радиус кривошипа. Соответственно, коленвал, особого исполнения не может устанавливаться в мотор в комплекте с обыкновенными поршнями, следственно данный способ форсирования предусматривает также получение особой поршневой группы. В итоге проведения сходственного тюнинга мотора возрастает рабочий ход поршня, что значительно увеличивает объем всего цилиндра в частности, и увеличивает литраж двигателя в совокупности.
4. Какой из 2-х вариантов по увеличению объема двигателя предпочесть, весь автомобилист решает для себя сам. Но не стоит забывать о том, что форсирование двигателя выполняется только в специализированной мастерской высококвалифицированными экспертами, в распоряжении тот, что имеются высокоточные приборы и нужное оборудование, и которые помогут обладателю определиться с выбором определенного варианта по увеличению объема мотора.
Видео по теме
Обратите внимание! Изредка для увеличения мощности мотора вносятся метаморфозы в газораспределительный механизм, предусматривающий реконструкцию головки блока цилиндров с заменой распредвала и клапанов. Изучите и данный вариант форсирования мотора. Кто знает, может он окажется еще результативнее по части обнаружения спрятанных вероятностей силовой установки.
Основным критерием при выборе отопительного прибора является его тепловая мощность . Она представляет собой степень обогрева помещения. Радиатор должен нагревать воздух так, дабы возместить тепловые потери самой конструкции.
Вам понадобится
1. Отопительный прибор — прибор, тот, что тем либо другим методом обеспечивает передачу тепловой энергии в окружающее пространство. Существуют разные его виды. Они могут быть радиационными, конвективными и смешанного типа. Конструкции также дозволено подразделить на секционные, панельные, трубчатые и пластинчатые.
2. Перед тем как предпочесть обогреватель, рассчитайте минимальную нужную тепловую мощность , для вашего определенного случая. Чем поменьше утеплен дом, тем больше сильным должен быть отопительный прибор. Измеряется данный показатель в ккал/ч.
3. Для расчета воспользуйтесь дальнейшей формулой:Q = v??t?k. 1-й её элемент представляет собой объем помещения, тот, что нужно обогревать. 2-й – это разница между температурой вне помещения и нужной температурой внутри него. 3-й – показатель рассеяния. Он зависит от типа конструкции и изоляции комнаты. Принимает значение 3,0-4,0 в случае, если конструкция является упрощенной деревянной либо сделана из гофрированного металлического листа в отсутствии теплоизоляции. 2,0-2,9 – если ваша комната из одинарной кирпичной кладки. Величина показателя 1,0-1,9 — для стандартно построенного здания из кирпича и небольшого числа окон. Показатель рассеяния равен 0,6-0,9 при наличии в доме усовершенствованной конструкции, сдвоенных рам, толстого основания пола и крыши из высококачественного теплоизоляционного материала.
4. Дальше определите данный показатель для самого отопительного прибора. Он рассматривается как число теплоты, отдаваемое этим прибором в установившемся режиме. Она зависит от разности средних температур теплоносителя и воздуха, и измеряется в киловаттах ( кВт ). Формула расчета имеет вид:Тнап=(Твх+Твых)/2-Ткомн.Твх,Твых — температура на входе и выходе радиатора, Ткомн — температура воздуха в комнате.
5. В техническом паспорте радиатора обыкновенно указывается либо температурный режим в формате Твх/Твых/Ткомн, либо температурный напор одним числом
jprosto.ru
Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощно
xn----7sbeb3bupph.xn--p1ai
Как найти мощность и ток электродвигателя
Все электронные движки выпускаются с табличками на корпусе, из которых можно выяснить главные свойства электродвигателя: его марку, потребляемый номинальный рабочий ток и мощность, частоту вращения, тип мотора, КПД и cos(fi). Так же эти данные указаны в паспорте к устройству.
Из всех параметров более принципиальное значение для подключения имеют: мощность электродвигателя и потребляемый ток, не стоит его путать с пусковым. Конкретно эти данные позволяют нам найти достаточность мощности для привода, нужное сечение кабеля для подключения мотора и подобрать подходящие по номиналу для защиты автомат и термическое реле.
Но бывает, что нет паспорта либо таблички и для определения этих величин необходимо будет сделать измерения. Как выяснить мощность, рабочий ток и понизить пусковой, Вы узнаете дальше из этой статьи.
Проще всего поглядеть на табличку и отыскать величину в кв. К примеру, на картинке она равна 45 кВт.Учтите, что данная величина на табличке показывает на потребляемую активную мощность из электросети. Полная же мощность будет равна сумме активной и реактивной мощности. Электронные счетчики в доме либо гараже считают только расход активной электроэнергии, а учет реактивной энергии ведется лишь на предприятиях с помощью особых счетчиков. Чем выше у электродвигателя cos(fi), тем меньше будет составляющая реактивной энергии в полной мощности. Не стоит путать cos(fi) с КПД. Этот показатель указывает сколько электроэнергии переводится в полезную механическую работу, а сколько в никчемное тепло. К примеру, КПД равный 90 процентам, гласит о том, что десятая часть потребленной электроэнергии уходит на теплопотери и трение в подшипниках.
Вы должны иметь ввиду, что в паспорте либо на табличке указывается номинальная мощность, которая будет равна этому значению только при условии заслуги хорошей нагрузки на вал. При чем перегружать не стоит вал по целому ряду обстоятельств, лучше избрать по сильнее мотор. На холостом ходу величина тока будет еще ниже номинала.
Как же определить номинальную мощность электродвигателя? В вебе Вы отыщите много разных формул и расчетов. Для неких нужно помереть размеры статора, для других формул пригодится знать величину тока, КПД и cos(fi). Мой совет не заморачивайтесь со всем этим. Лучше этих расчетов все равно будут практические измерения. И для их проведения ничего не пригодится вообщем.
Как определить мощность любого электроприбора в доме или гараже? Естественно при помощи счетчика электроэнергии. До измерения отключите все электроприборы из розеток, освещение и все то, что подключено от электрощита.
Дальше если у Вас электронный счетчик типа Меркурий, все просто нужно включить мотор под нагрузкой и погонять минут 5. На электрическом табло должна высветится величина нагрузки в кВт, присоединенная к счетчику на этот момент.
Если же у вас дисковый индукционный счетчик учитывайте, что он учет ведет в кв/часах. Запишите до измерений последние характеристики, включайте движок строго секунда за секунду ровно на 10 минут, потом после остановки отымите новые показания от прошлых и множьте кВт\ч на 6. Приобретенный итог и будет активной мощностью данного мотора в Кв, для перевода в Ватты разделите на 1000. Рекомендую прочесть статью: как снимать показания электросчетчика.
— тюнинг запчасти — наша группа — я вк .
Предлагаю метод измерения частоты вращения неведомого асинхронного электродвигателя. Подобный стробо.
Если двигатель маломощный, тогда для более высокой точности можно посчитать обороты диска. Например, за одну минуту он сделал 10 полных оборотов, а на счетчике написано 1200 оборотов= 1 кВт/ч. 10 умножаем на количество минут в часе и получаем 600 оборотов за час. 1200 делим на 600 и получаем 500 Ватт или 0.5 кВт. Чем дольше по времени будете измерять, тем точнее будут данные. Но время всегда должно быть кратно полной минуте. Затем делим 60 на количество минут измерения и умножаем на сосчитанные обороты. После этого величину оборотов, равных одному Киловатт/часу для вашей модели электросчетчика делим на полученный результат и получаем необходимую величину мощности.
Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.
Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.
Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.
При запуске любого типа электродвигателя возникает пусковой ток от 2 до 8 кратного значению номинального тока в рабочем режиме электродвигателя. Величина пускового тока зависит от типа двигателя, скорости вращения, схемы подключения, наличие нагрузки на валу и от других параметров.
Пусковой ток возникает, потому что в момент запуска наводится очень сильное магнитное поле в обмотках необходимое, что бы сдвинуть с места и раскрутить ротор. При включении мотора сопротивление обмоток мало, а следовательно по закону Ома, ток вырастает при неизменном напряжении в участке цепи. По мере того как двигатель раскручивается, возникает в обмотках ЭДС или индуктивное сопротивление и ток начинает уменьшаться до номинального значения.
Эти всплески реактивной энергии негативно сказываются на работе других электропотребителей, подключенных к этой же линии электропитания, что служит причиной возникновения особенно губительных для электроники скачков или перепадов напряжения.
Снизить вдвое пусковой ток можно при использовании специально разработанного для этих целей тиристорного блока, а лучше при помощи устройства плавного запуска (УПЗ). УПЗ с меньшим пусковым током и быстрее в полтора раза запускает мотор по сравнению с тиристорным запуском. Устройства плавного запуска подходят как к синхронным, так и к асинхронным двигателям. УПЗ выпускаются предприятиями Украины и России.
Для запуска трехфазного асинхронного двигателя сегодня нередко используются и преобразователя частоты. Широкое их распространение пока сдерживает только цена. Благодаря изменению величин частоты тока и напряжения удается не только сделать плавный запуск, но и регулировать скорость вращения ротора. По другому как только изменением частоты электрического тока, регулировать скорость вращения асинхронного двигателя нет возможности. Но следует знать, что частотный преобразователь создает помехи в электросети, поэтому для подключения электроники и бытовой техники используйте сетевой фильтр.
Использование устройства плавного запуска и частотного преобразователя позволяет не только сохранить стабильность электропитания у Вас и Ваших соседей, подключенных к одной линии электроснабжения, но и продлить срок службы электродвигателей.
sis26.ru
Определение мощности мотора
Автомобиль добивается наибольшей скорости тогда, когда он движется на прямой передаче. В данном случае передаточное число коробки равно 1 либо близко к ней. Не на всех движках, если рассматривать их наружные свойства, наибольшая частота вращения коленчатого вала соответствует наибольшей мощности. Наибольшая частота вращения коленчатого вала у большинства движков превосходит на 10 15% ту частоту, которая соответствует наибольшей мощности. В ориентировочных расчетах при подборе мотора можно ориентироваться на наивысшую мощность и подобающую этой мощности частоту вращения.
Отношение частоты вращения мотора к частоте вращения колеса для заслуги данной скорости дает передаточное число коробки ит=пЛ/пк.
При установке мотоциклетных движков со своими коробками передач следует подразумевать, что у их в главном (исключая томные байки) коленчатый вал мотора соединен с ведомым валом коробки передач через цепную передачу. Потому передаточное число этих соединений нужно учесть при определении общего передаточного числа коробки.
Мотоциклетные движки выпускаются и продаются вкупе с механизмом сцепления и коробкой. В таком виде их обычно и употребляют в самодельных конструкциях автомобилей.
Для маломощных движков это полностью оправдано. При более массивных движках для улучшения динамических черт автомобилей бывает целенаправлено поменять коробку на авто. В этом случае для соединения картера коробки и мотора Ю. Долматовский советует устанавливать переходный железный лист ( 21).
В каждом определенном случае вероятны свои приемы крепления движков. Его можно установить на особом подрамнике, как, к примеру, это изготовлено в конструкции автомобиля «Ми-ни-Валга» ( 22). Подрамник сделан из железного профиля (уголка 50X50) и трубки 0 42 мм. Болтами к нему крепятся передняя и задняя опоры. Движок крепится фронтальной частью
конкретно к фронтальной опоре, а задней — к щечкам заднего крепления мотора, к которой присоединяется и глушитель. Конструкция задних щечек показана на 23. Подрамник к раме автомобиля крепится болтами, пропущенными через резиновые подушки, устанавливаемые меж рамой и подрамником для поглощения толчков и вибрации.
При использовании мотоциклетных движков их стремятся расположить в фронтальной части автомобиля. На 24 приведена схема установки мотора в фронтальной части автомобиля «Мотокар» с уменьшенной колеей фронтальных колес.
На 25 приведена конструкция соединения мотора байка М-61 с коробкой передач автомобиля ЗАЗ-965, разработанная А. Ковиным из Ленинабада для собственного автомобиля «Дельфин». Соединение осуществляется при помощи переходного фланца. Переходный фланец крепится к картеру мотора и картеру коробки болтами М10. Для центровки фланец имеет два буртика — один со стороны картера мотора, а другой со стороны коробки передач.
— тюнинг запчасти — наша группа — я вк .
Постараюсь рассказать простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент.
Иногда для удобства компоновки стандартная коробка передач крепится не к картеру сцепления, а через удлинитель с промежуточным валом, что позволяет отодвинуть коробку передач и улучшить распределение масс машины с одновременным осво-
бождением места для размещения педалей управления. На 26 показана такая схема, примененная на автомобиле «Колобок».
Удлинитель представляет собой отрезок тонкостенной трубки. С одной стороны трубка приваривается к круглому фланцу, с помощью которого осуществляется соединение с картером сцепления двигателя. С другой стороны в трубке прорезан продольный паз, поверх которого надет широкий хомут для соединения со стаканом фланца коробки передач. В центре этого фланца в центральное отверстие вварен стальной толстостенный стакан для установки в него подшипника и уплотнения промежуточного вала. Для жесткости к фланцу и стакану приварены четыре стальных подкоса.
Для получения необходимой мощности любители иногда создают как бы новый силовой агрегат, объединяя в одно целое два стандартных. Двигатель, созданный В. Килиным из г. Новокузнецка, состоит из двух одноцилиндровых двухтактных двигателей ( 27), соединенных общим картером редуктора. Вал
отбора мощности воспринимает крутящий момент от обоих коленчатых валов через косозубые шестерни. Шестерни взяты от коробки передач автомобиля «Запорожец». Таким образом удалось увеличить мощность двигателя до 14,6 кВт (20 л. с.) при
Подобрав необходимый двигатель и компонуя его на шасси автомобиля, следует подумать об охлаждении.
Во время работы двигателя через стенки цилиндров отводится до 30% тепла, выделяемого топливом при сгорании. Это тепло
необходимо удалить со стенок цилиндра, чтобы обеспечить нормальную работу двигателя. Отвод тепла у автомобильных двигателей осуществляется либо с помощью воды или другой жидкости (у двигателей жидкостного охлаждения), либо с помощью воздуха (у двигателей воздушного охлаждения). Все мотоциклетные двигатели, силовые агрегаты мотороллеров и мотоколясок, а также двигатели автомобилей ЗАЗ (кроме ЗАЗ-1102) имеют воздушное охлаждение. Конструкция силовых агрегатов с воздушным охлаждением значительно проще, а в эксплуатации они более надежны (как утверждает статистика, в двигателях с жидкостным охлаждением до 20% всех неисправностей приходится на систему охлаждения). Кроме того, двигатели с воздушным охлаждением при равной мощности на 30 50% легче.
Двигатели, устанавливаемые на мотороллеры, мотоколяски и микролитражные автомобили, которые выпускает промышленность, имеют специальные вентиляторы с направляющими кожухами для создания необходимой циркуляции воздуха вокруг нагретых частей. Поэтому при установке их на самодельный микроавтомобиль следует только позаботиться о создании специальных воздухозаборных отверстий в кузове и, если возникает необходимость, направляющих кожухов.
Когда мотоциклетный двигатель стоит на мотоцикле, он при движении последнего находится непосредственно в воздушном
потоке и циркуляция воздуха вокруг оребренной головки вполне достаточна для его нормального охлаждения. Но как только этот двигатель будет размещен в подкапотном пространстве микроавтомобиля, охлаждение его нарушается и возникает необходимость создавать принудительную циркуляцию воздуха вокруг нагреваемых частей двигателя.
У одноцилиндрового мотоциклетного двигателя принудительное охлаждение можно выполнить подобно охлаждению силовых агрегатов мотороллеров. Для двухцилиндровых мотоциклетных двигателей можно применить кожух с встроенным в него центробежным вентилятором ( 28). Вентилятор располагается поверх горизонтально расположенных цилиндров, а кожух охватывает почти всю поверхность оребрения, имея только окна для отвода воздуха снизу.
sis26.ru