Содержание

Как определить ток электродвигателя – таблица токов

Определение:

Номинальный ток — это допустимые производителем рабочий ток трехфазного электродвигателя для токопроводящих деталей и нагрева изоляции, при котором электромеханическое устройство работает продолжительное время без перегрева обмотки.

Пусковой ток — это потребляемый электрическим устройством максимальный входной импульсный ток при запуске асинхронного двигателя с короткозамкнутым ротором. Вот почему, пусковые токи электродвигателей больше номинальных и могут превышать их в несколько и более раз.

Ток холостого хода электродвигателя — это режим работы без нагрузки на валу от присоединяемого привода. В данном режиме потребляется меньше электрической энергии и поэтому исключено повышение температур выше заявленных изготовителем, что позволит провести диагностику и определить исправность устройства. Ток асинхронного двигателя на холостом ходу в зависимости от мощности и оборотов электромотора составляет 20 — 95% от номинального.

Для того чтобы самостоятельно определить ток электродвигателя без измерений нужно на корпусе устройства найти информационную табличку о токах, мощности, оборотах и напряжению. Если шильдик поврежден — найдите паспорт электромотора. В нем производитель указывает основные параметры: номинальные и пусковые токи асинхронного двигателя.

Если информация по характеристикам отсутствует и найти ток нагрузки электродвигателя не получилось, воспользуйтесь статьей — как определить мощность и обороты электродвигателя без бирки.

Как определить ток электродвигателя если известна мощность?

Как найти номинальный ток двигателя

Зная паспортную мощность, не составит труда рассчитать значения токов электродвигателя. Допустим, нам не известен номинальный ток двигателя 45 кВт – как в таком случае определить ток двигателя по мощности? При подключении к трехфазной сети 380 Вольт определение тока производится по формуле точного расчета:

Iн = 45000/√3(380*0,92*0,85) = 45000/514,696 = 87,43А

  • — сила тока асинхронного двигателя
  • — номинальная мощность двигателя 45 киловатт
  • √3 — квадратный корень из трех = 1,73205080757
  • — напряжение сети 380В
  • η — коэффициент полезного действия 92% (в расчетах 0,92)
  • сosφ — коэффициент мощности 0,85

 

Как определить номинальный ток электродвигателя, если коэффициент мощности и КПД неизвестны? В этой ситуации, найти номинальный ток двигателя с небольшой погрешностью мы сможем по соотношению – два ампера на одни киловатт. Определить силу тока электродвигателя используя формулу:

Как определить пусковой ток двигателя

Пусковые токи электродвигателей, можно найти и рассчитать по формуле:

Iп — значение тока при запуске асинхронного двигателя, которое необходимо узнать

— уже рассчитанный номинальный ток

К — кратность пускового тока двигателя (найти в паспорте)

Как определить ток электродвигателей АИР?

Если известна маркировка, например у электромотора АИР200L4 Iн = 84,9 Ампер, а соотношение тока Iп/Iн = 7,2. Найдите значение токов в таблицах:
















Пусковые токи асинхронного двигателя 3000 об/мин – таблица 1
ЭлектродвигательIн, АIп/IнМоторIн, АIп/Iн
АИР56A20,55,3АИР160M234,77,5
АИР56B20,73АИР180S241
АИР63А215,7АИР180M255,4
АИР63B22,05АИР200M267,9
АИР71A21,176,1АИР200L282,1
АИР71B22,66,9АИР225M2100,0
АИР80A23,467АИР250S21357
АИР80B24,85АИР250M21607,1
АИР90L26,347,5АИР280S21956,6
АИР100S28,2АИР280M22337,1
АИР100L211,1АИР315S2277
АИР112M214,9АИР315M2348
АИР132M221,2АИР355S2433
АИР160S228,6АИР355M2545
















Пусковые токи электродвигателей 1500 об/мин – таблица 2
ДвигательIн, АIп/IнЭлектромоторIн, АIп/Iн
АИР56A40,54,6АИР160S4307,5
АИР56B40,74,9АИР160M436,3
АИР63A40,825,1АИР180S443,2
АИР63B42,05АИР180M457,67,2
АИР71A41,175,2АИР200M470,2
АИР71B42,056АИР225M4103
АИР80A42,85АИР250S4138,36,8
АИР80B43,72АИР250M4165,5
АИР90L45,17АИР280S42016,9
АИР100S46,8АИР280M4240
АИР100L48,8АИР315S4288
АИР112M411,7АИР315M4360
АИР132S415,6АИР355S4360
АИР132M422,5АИР355M4559

 















Номинальный ток двигателя 1000 об/мин – таблица 3
ЭлектродвигательIн, АIп/IнМоторIн, АIп/Iн
АИР63A60,84,1АИР160M631,67
АИР63B61,14АИР180M638,6
АИР71A61,34,7АИР200M644,7
АИР71B61,8АИР200L659,3
АИР80A62,35,3АИР225M671
АИР80B63,25,5АИР250S686
АИР90L64АИР250M6104
АИР100L65,66,5АИР280S61426,7
АИР112MA67,4АИР280M6169
АИР112MB69,75АИР315S6207
АИР132S612,9АИР315M6245
АИР132M617,2АИР355S6292
АИР160S624,5АИР355M6365














Номинальные токи электродвигателей 750 об/мин – таблица 4
Эл двигательIн, АIп/IнЭлектромоторIн, АIп/Iн
АИР71B81,13,3АИР180M834,16,6
АИР80A81,494АИР200M841,1
АИР80B82,17АИР200L848,9
АИР90LA82,43АИР225M8606,5
АИР90LB83,365АИР250S8786,6
АИР100L84,4АИР250M892
АИР112MA866АИР280S81117,1
АИР112MB87,8АИР280M81506,2
АИР132S810,3АИР315S81786,4
АИР132M813,6АИР315M8217
АИР160S817,8АИР355S8261
АИР160M825,56,5

 * Для перехода ко всем характеристикам товара — нажмите на маркировку.

 

Таблица токов холостого хода асинхронного электродвигателя











Ток холостого хода асинхронного двигателя – таблица 5
Мощность электродвигателя, кВтПроцентное соотношение от номинального тока
Токи асинхронного двигателя на холостом ходу при известной частоте вращения вала, об/мин
300015001000750600500
0,12 — 0,556075859095
0,75 — 1,5507075808590
2,2 — 5,5456570758085
7,5 — 11406065707580
15 — 22305560657075
30 — 5520505560 %6570
75 — 110204045505560

Чтобы рассчитать ток при холостом ходе двигателя 55 кВт — в правой колонке таблице найдите нужную мощность, а в левом номинальную скорость вращения, например 750 оборотов. Руководствуясь данными из таблицы токов холостого хода мы получаем значение в 60 процентов от номинального. Итого: ток холостого хода будет равен 4,26 Ампер.

Не получилось определить силу тока двигателя?

Если у Вас не получилось самостоятельно рассчитать ток трехфазного электродвигателя или Вы не смогли найти мотор из каталога с нужными параметрами — обратитесь к нам для получения бесплатной консультации. Мы всегда готовы помочь правильно подобрать и купить электродвигатель АИР под технический процесс Вашего производства.

Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности


Раздел недели: Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т. д.

Поиск на сайте DPVA

Поставщики оборудования

Полезные ссылки

О проекте

Обратная связь

Ответы на вопросы.

Оглавление

Таблицы DPVA.ru — Инженерный Справочник

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница / / Техническая информация/ / Оборудование/ / Электродвигатели. Электромоторы. / / Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт. Сила тока в зависимости от мощности

Поделиться:   






Таблица : номинальный ток электродвигателя = электромотора при полной нагрузке однофазных и 3-х фазных моторов в зависимости от напряжения 110VAC, 220VAC, 240VAC, 380VAC, 415VAC, 550VAC; Мощность 0,07-150кВт.

Сила тока в зависимости от мощности

Таблица составлена для моторов с частотой вращения 1450rpm с обычным коэффициентом мощности и КПД. Более быстрые моторы обычно имеют меньший ток, а более медленные — более высокий.

Однофазные электродвигатели = однофазные электромоторы



















Мощность

Лошадиных сил = HP

Приблизительный номинальный ток при полной нагрузке в зависимости от напряжения

1x110VAC

1x220VAC

1x240VAC

0. 07 kW

1/12

2.4

1.2

1.1

0.1 kW

1/8

3.3

1.6

1.5

0.12 kW

1/6

3.8

1.9

1.7

0.18 kW

1/4

4.5

2.3

2.1

0.25 kW

1/3

5.8

2. 9

2.6

0.37 kW

1/2

7.9

3.9

3.6

0.56 kW

3/4

11

5.5

5

0.75 kW

1

15

7.3

6.7

1.1 kW

1.5

21

10

9

1.5 kW

2

26

13

12

2. 2 kW

3

37

19

17

3 kW

4

49

24

22

3.7 kW

5

54

27

25

4 kW

5.5

60

30

27

5.5 kW

7.5

85

41

38

7. 5 kW

10

110

55

50

Трехфазные электродвигатели = Трехфазные электромоторы

































Мощность

Лошадиных сил = HP

Приблизительный номинальный ток при полной нагрузке в зависимости от напряжения

3x220VAC

3x240VAC

3x380VAC

3x415VAC

3x550VAC

0. 1 kW

1/8

0.7

0.6

0.4

0.4

0.3

0.12 kW

1/6

1

0.9

0.5

0.5

0.3

0.18 kW

1/4

1.3

1.2

0.8

0.7

0.4

0.25 kW

1/3

1.6

1. 5

0.9

0.9

0.6

0.37 kW

1/2

2.5

2.3

1.4

1.3

0.8

0.56 kW

3/4

3.1

2.8

1.8

1.6

1.1

0.75 kW

1

3.5

3.2

2

1.8

1. 4

1.1 kW

1.5

5

4.5

2.8

2.6

1.9

1.5 kW

2

6.4

5.8

3.7

3.4

2.6

2.2 kW

3

9.5

8.7

5.5

5

3.5

3.0 kW

4

12

11

7

6. 5

4.7

3.7 kW

5

15

13

8

8

6

4.0 kW

5.5

16

14

9

8

6

5.5 kW

7.5

20

19

12

11

8

7.5 kW

10

27

25

16

15

11

9. 3 kW

12.5

34

32

20

18

14

10 kW

13.5

37

34

22

20

15

11 kW

15

41

37

23

22

16

15 kW

20

64

50

31

28

21

18 kW

25

67

62

39

36

26

22 kW

30

74

70

43

39

30

30 kW

40

99

91

57

52

41

37 kW

50

130

119

75

69

50

45 kW

60

147

136

86

79

59

55 kW

75

183

166

105

96

72

75 kW

100

239

219

138

125

95

90 kW

125

301

269

170

156

117

110 kW

150

350

325

205

189

142

130 kW

175

410

389

245

224

169

150 kW

200

505

440

278

255

192

  • * Справочно: Таблица : средние значения силы тока холостого хода в % от номинального тока электродвигателя = электромотора в зависимости от мощности и частоты вращения



Поиск в инженерном справочнике DPVA. Введите свой запрос:

Дополнительная информация от Инженерного cправочника DPVA, а именно — другие подразделы данного раздела:


Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

кратко, расчёт, таблица, формула, для двигателя 380В с короткозамкнутым ротором

Автор Акум Эксперт На чтение 11 мин Просмотров 35 Опубликовано Обновлено

Пусковой ток электродвигателя при его старте превышает номинальный в несколько раз. Причём кратность превышения может находиться в пределах от 4 до 7, а то и 9. Свойства переходных процессов при запуске двигателя, расчёты, как снизить напряжение на обмотках электродвигателей разного типа — эти вопросы рассмотрены в статье.

Содержание

  1. Определение
  2. Откуда берётся и от чего зависит
  3. На что влияет и чем опасен
  4. Как узнать
  5. Как рассчитать, если известны характеристики двигателя и кратность
  6. Чем и как измерить
  7. Если нет характеристик и нечем измерить
  8. Как снизить
  9. Переключение схемы соединения обмоток
  10. Использование двигателей с фазным ротором
  11. Плавный пуск ДПТ и АД

Максимальное значение тока, потребляемого электродвигателем в момент его запуска при раскручивании до номинальной скорости вращения, называется пусковым. При этом величина его превышения при запуске по отношению к номинальному его значению — кратность пускового тока.

Требования пусковых характеристик для 3-фазных электродвигателей изложены в ГОСТ IEC 60034-12-2021.

Электродвигатель состоит из большого числа обмоток, соединённых для каждой фазы сетевого напряжения последовательно. Но даже такое подключение обмоток имеет относительно низкое сопротивление для малой частоты – 50Гц, которая используется в потребительской или промышленной сети. Вот почему при пуске асинхронного двигателя возникает большой пусковой ток.

По мере разгона двигателя сердечник его ротора входит в насыщение магнитным полем. В результате возрастает электродвижущая сила (ЭДС) самоиндукции. Индукционное сопротивление обмоток увеличивается, что приводит к падению тока через них.

Высокий пусковой ток, превышающий в несколько раз номинальное значение, а тем более фактический во время нагруженной работы двигателя, делает малоэффективной защищённость двигателя автоматическими выключателями только с электрической защитой. Он может повредить кабель, если сечение токопроводящих жил рассчитано лишь на номинальный ток электромотора.

Лучший способ обезопасить электродвигатель на случай его перегрузки — использовать тепловые реле. Некоторые из них ведут контроль тока двух фаз. Так как при перегрузке даже одной фазной линии или пропадании напряжения на ней ток увеличится на остальных. Это приведёт к нагреву добавочного сопротивления теплового устройства защиты, которое посредством увеличения температуры выше установленного (подстраиваемого) значения задействует систему управляющей цепи пуска электродвигателя.

У автоматических выключателей кроме тока срабатывания имеется время-токовая характеристика. Это показатель, определяющий время задержки до срабатывания защитного устройства в зависимости от величины протекающего тока по отношению к номинальному его значению. Кривая тока запуска двигателя изображена на рисунке.

Форма пускового тока

Пусковой ток двигателя указывается в документации (в паспорте) к электродвигателям или к оборудованию, в составе которого они используются. Его можно измерить или рассчитать с приблизительным округлением. На корпусе электродвигателя имеется табличка с указанием только номинального тока, мощности и числа оборотов. Значение пускового тока и его кратность не указывают.

При эксплуатации рабочий ток электродвигателя не должен долго превышать номинальный.

Как рассчитать, если известны характеристики двигателя и кратность

Расчет пускового тока электродвигателя можно сделать по формуле:

К = In/Iʜ, для расчёта In = К×Iʜ,

где К – это коэффициент, соответствующий кратности пускового тока, In – пусковой ток, Iʜ – номинальный.

Кратность пускового тока зависит от сопротивления обмоток, обусловленного количеством полюсов электродвигателя. Для каждого полюса используется пара обмоток. Их количество можно посчитать на самом двигателе (число секций) или определить по числу оборотов двигателя. Зависимость числа пар от скорости двигателя представлена в таблице.

Чаще всего производители указывают скорость вращения меньше, учитывая реальные обороты двигателя. Например, 950 об/мин соответствует округлённому значению 1 000 об/мин.

Чем больше пар обмоток электродвигателя, тем выше их сопротивление, соответственно, ниже пусковой ток.

Вычислить его точное значение по формулам нельзя, однако найти можно по каталогу модели производителя на онлайн-сервисах.

Чем и как измерить

Наиболее простой и удобный способ измерения пускового тока — с помощью клещей с функцией inrush. У некоторых измерительных приборов кнопка HOLD фиксирует показания в момент её нажатия, но измерения с помощью такого метода могут быть ошибочными.

Сила тока в момент запуска ещё измеряется с помощью трансформатора тока, во вторичную цепь которого подключен амперметр или осциллограф.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

При использовании трансформаторов тока вторичная цепь должна быть нагружена. Иначе возникает высоковольтное напряжение, способное нанести электрический удар через ненадлежащую изоляцию или повредить либо вывести из строя полупроводниковые компоненты измерительной аппаратуры.

Если нет характеристик и нечем измерить

Обычно мощность, номинальный ток и скорость оборотов указывают в табличке на самом агрегате. Но если она отсутствует или надпись прочитать не удаётся, то грубо определить мощность можно по диаметру вала. Для этого прилагается таблица.

Рассчитать пусковой ток по мощности сложно, так как он зависит от многих факторов:

  • количество полюсов;
  • число витков в секции;
  • диаметр провода;
  • длина провода в 1 витке и даже марка стали сердечников статора и др.

Зато зная примерную мощность, удастся грубо определить номинальный ток для пробного включения по формуле: I=P/U, где I— ток, P — мощность, U — напряжение (в нашем случае 380В). Коэффициент кратности для распространённых моделей двигателей марки АИР мощностью от 120 ватт до 315 киловатт можно взять из таблицы ниже.

ДвигателькВтОб/
мин
Ток при
380В
KПД
%
Коэфф.
мощн.
Iп/
Масса, кгДвигатели
устаревших
марок
ЧугунАлюм.
АИР56А40,1213100,44570,724,454АА56А4
АИР56А20,1827200,53650,85,554АА56А2
АИР56В20,2527200,69680,815,554АА56В2
АИР56В40,1813100,69580,684,454АА56В4
AИP63A20,3727551690,816,174А(М)63А2
AИP63B20,5527901,4740,826,184А(М)63В2
AИP63A40,2513400,79650,745,274АА(М)63А4
AИP63B40,3713401,12670,755,274АА(М)63В4
AИP63A60,188700,74560,66474АА(М)63А6
AИP63B60,258700,95590,68484АА(М)63В6
AИP71A20,7528401,77750,836,1114А(М)71А2
AИP71B21,128402,6176,20,846,9114А(М)71В2
AИP71A40,5513901,57710,755,2104А(М)71А4
AИP71B40,7513902,05730,766114А(М)71В4
AИP71A60,378801,3620,74,7104А(М)71А6
AИP71B60,558801,8650,724,7114А(М)71В6
AИP71В80,256451,1540,613,394А(М)71В8
AИP80A21,528503,4678,50,84722144А(М)80А2
AИP80B22,228554,85810,85724164А(М)80В2
AИP80A41,113902,8576,20,77619134А(М)80А4
AИP80B41,514003,7278,50,78624154А(М)80В4
AИP80A60,759052,29690,725,318134А(М)80А6
AИP80B61,19053,18720,735,522174А(М)80В6
AИP80A80,376751,49620,61421134А80А8
AИP80B80,556802,17630,61418164А80В8
AИP90L2328606,3482,60,877,532224А(М)90L2
AИP90L42,214105,09800,81729224А(М)90L4
AИP90L61,59204760,755,528214А(М)90L6
AИP90LA80,756802,43700,67428214А(М)90LA8
AИP90LB81,16803,36720,69529234А(М)90LB8
AИP100S2428808,284,20,887,538304А(М)100S2
AИP100L25,5290011,185,70,887,542354А(М)100L2
AИP100S4314106,7882,60,82739324А(М)100S4
AИP100L4414358,884,20,82741334А(М)100L4
AИP100L62,29355,6790,766,538344А(М)100L6
AИP100L81,56904,4740,7540284А(М)100L8
AИP112M27,5289514,9870,887,553414А(М)112М2
AИP112M45,5144011,785,70,83759464А(М)112М4
AИP112MA639607,4810,766,550444А(М)112МА6
AИP112MB649609,75820,766,553494А(М)112МВ6
AИP112MA82,27106790,71648424А(М)112МА8
AИP112MB837107,8800,73652494А(М)112МВ8
AИP132M211290021,288,40,897,590774А(М)132М2
AИP132S47,5145015,6870,84779714А(М)132S4
AИP132M411146022,588,40,84790834А(М)132М4
AИP132S65,596012,9840,776,584704АМ132S6
AИP132M67,597017,2860,776,592814АМ132М6
AИP132S8472010,3810,73684704АМ132S8
AИP132M85,572013,6830,74690814АМ132М8
AИP160S215293028,689,40,897,51321014АМ160S2
AИP160M218,5293034,7900,97,51411044АМ160М2
AИP160S41514603089,40,857,51471054АМ160S4
AИP160M418,5147036,3900,867,51671194АМ160М4
AИP160S61197024,587,50,786,51421054АМ160S6
AИP160M61597031,6890,8171521194АМ160М6
AИP160S87,672017,885,50,7561371084АМ160S8
AИP160M81173025,587,50,756,51791244АМ160М8
AИP180S22229404190,50,97,51911504АМ180S2
AИP180M230295055,491,40,97,51991654АМ180М2
AИP180S422147043,290,50,867,51951554АМ180S4
AИP180M430147057,691,40,867,22201754АМ180М4
AИP180M618,598038,6900,8171971704АМ180М6
AИP180M81573034,1880,766,62181704АМ180М8
AИP200M237295067,9920,97,52654АМ200М2
AИP200L245296082,192,50,97,52654А200L2
AИP200M437147570,2920,877,22764А200М4
AИP200L445147584,992,50,877,22944А200L4
AИP200M62298044,7900,8372654А200М6
AИP200L63098059,391,50,8472914А200L6
AИP200M818,573041,1900,766,62604А200М8
AИP200L82273048,990,50,786,62704А200L8
AИP225M2552970100930,97,53514А225М2
AИP225M4551480103930,877,23644А225М4
AИP225M63798071920,8673344А225М6
AИP225M83073563910,796,53634А225М8
AИP250S275297513593,60,975074А250S2
AИP250M290297516093,90,917,15374АМ250М2
AИP250S4751480138,393,60,886,84974АМ250S4
AИP250M490148016593,90,886,85684АМ250М4
AИP250S6459808692,50,8674574АМ250S6
AИP250М65598010492,80,8674874АМ250М6
AИP250S8377407891,50,796,65124АМ250S8
AИP250M84574094920,796,65124АМ250М8
AИP280S21102975195940,917,16984АМ280S2
AИP280M2132297523394,50,917,17104АМ280М2
AИP280S4110148020194,50,886,96704АМ280S4
AИP280M4132148024094,80,886,97454АМ280М4
AИP280S67598514293,50,866,76474АМ280S6
AИP280M69098516993,80,866,76964АМ280М6
AИP280S85574011192,80,816,66804АМ280S8
AИP280M87574015093,50,816,27604АМ280М8
АИР315S2160297527994,60,927,19904АМ315S2
АИР315M2200297534894,80,927,112804АМ315М2
АИР315S4160148028894,90,896,912304АМ315S4
АИР315M4200148036094,90,896,913304АМ315М4
АИР315S6110985207940,866,710304АМ315S6
АИР315М613298524594,20,876,712184АМ315М6
АИР315S89074017893,80,826,411304АМ315S8
АИР315M8110740217940,826,411704АМ315М8
АИР355S2250298043395,20,927,116804АМ355S2
АИР355M2315298054595,40,927,118964АМ355М2
АИР355S4250149044395,20,96,917454АМ355S4
АИР355M4315149055995,20,96,919574АМ355М4
АИР355S616099029294,50,886,715804АМ355S6
АИР355MA620099036594,50,886,720194А355М6
АИР355MB625099045794,50,886,72019
АИР355S813274026193,70,826,420194А355S8
АИР355M816074031594,20,826,418804А355М8
АИР355MB820074038794,50,836,42019

Если известна модель двигателя, то зная мощность и количество пар полюсов обмоток (число оборотов электродвигателя), можно на сайте производителя выяснить значения номиналов его пуска.

Самый эффективный метод снижения пускового тока при запуске электродвигателя — использование частотных преобразователей. Однако это оборудование может по стоимости превышать цену мотора, поэтому не всегда используется. Уменьшить ток при запуске удаётся применением специальных резисторов большой мощности, фиксированного номинала (для ступенчатой регулировки) или регулируемых. Дело в том, что динамическое сопротивление обмоток двигателя в момент пуска очень маленькое, и добавочные резисторы обуславливают ощутимое падение напряжения. При достижении оборотами рабочего значения сопротивления закорачиваются.

Есть и другие методы снижения тока электродвигателя при его запуске, например, с помощью электронных устройств. На видео рассмотрена простая схема ограничения тока двигателя при старте.

Переключение схемы соединения обмоток

Уменьшить пусковой ток асинхронного двигателя можно переключением схемы подключения обмоток ротора, питающихся от трёхфазного напряжения 380 В. Например, с помощью контактора, который коммутирует обмотки со звезды на треугольник. Применяется такой вариант запуска для двигателей мощностью свыше 30 кВт и скоростью вращения 3000 – 1500 об/мин. Иногда эта вынужденная мера, так как мощности питающей установки для запуска двигателя, подключенного по схеме треугольника, не хватает. А некоторые мощные двигатели можно начально запускать только по схеме звезды или с помощью специальных устройств (частотный преобразователь, устройство плавного пуска и др).

Схема, указанная на рисунке, предполагает в момент запуска включение двух контакторов — P1 и P3. Через несколько десятков секунд контактор P3 выключается. Сразу вместо него включается P2. Подробнее эта тема рассмотрена в видео.

Использование двигателей с фазным ротором

Специальная конструкция асинхронного двигателя с фазным ротором позволяет значительно снизить пусковой ток. Ротор этого мотора имеет обмотки, подключенные к специальным контактным кольцам. К ним подводятся щётки, соединённые электрически со схемой ступенчатых реостатов. В момент запуска сначала подключается максимальное сопротивление, затем ступенчато оно снижается. Когда электродвигатель набирает требуемые обороты, щётки закорачиваются, и он работает как двигатель с короткозамкнутым ротором.

Плавный пуск ДПТ и АД

Для управления скоростью и для плавного пуска двигателя постоянного тока используются устройства плавного пуска, регулирующие напряжение на нагрузке. Они плавно повышают напряжение с помощью ШИМ при пуске двигателя по мере его разгона. В продвинутых вариантах при этом отслеживаются обороты.

Распространены такие варианты плавного пуска ДПТ:

  • с помощью пускового реостата;
  • запуск с параллельным возбуждением;
  • то же с последовательным;
  • то же с независимым;
  • путём изменения питающего напряжения.

В последнем варианте плавная регулировка осуществляется управляемым выпрямителем или генератором постоянного напряжения. В выпрямителях можно использовать метод ступенчатого переключения обмоток одно- или трёхфазного трансформатора напряжения, если он рассчитан для питания только одного ДПТ или нескольких работающих синхронно.

Включение двигателя с использованием реостата осуществляют при максмальном значении сопротивления, далее его снижают до минимума. Регулированием тока в цепи обмотки возбуждения с помощью переменного сопротивления также удаётся добиться плавного запуска ДПТ. Он зависит от схемы подключения обмотки возбуждения (параллельно, последовательно или независимо).

Плавный пуск асинхронного двигателя с короткозамкнутым ротором возможен с помощью реостата, как и с ДПТ или с устройствами плавного пуска. Только ограничительные резисторы включаются в каждую из фаз, подключаемых для питания обмоток АД.

Функцией плавного пуска можно оборудовать двигатель самому, если имеется прибор, например, модели ABB PSR или подобный ему, как рассказывается в следующем видео. Устройства плавного пуска, как правило, при разгоне двигателя меняют частоту и величину питающего напряжения.

Сейчас читают:

Трехфазный ток — простой расчет

По
Стивен Макфадьен
on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):

что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008

 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:

или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), выдающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности для преобразования в Вт. Для трехфазной системы умножьте на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Using Formulas

Derivation of Formula — Example

Balanced three phase system with total power P (W), power factor pf and line to line voltage V LL  

Convert to проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии, что В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несимметричные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто произведение тока на напряжение, поэтому, зная это и напряжение, можно получить ток. При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и/или прибегать к формулам.

3-фазный калькулятор мощности + формула (кВт в ампер, ампер в кВт)

Довольно легко преобразовать кВт в ампер и ампер в кВт в простой однофазной цепи переменного тока (по сравнению с расчетом трехфазной мощности). Для этого требуется только основной закон Ома; Вы можете просто использовать наш калькулятор кВт в ампер здесь для конвертации.

В 3-фазной цепи переменного тока (обычно 3-фазный двигатель) преобразование ампер в кВт и кВт в ампер не так просто. Чтобы все упростить, мы создали 2 калькулятора трехфазной мощности:

  1. Первый 3-фазный калькулятор мощности преобразует кВт в ампер . Для этого мы используем формулу 3-фазной мощности с коэффициентом 1,732 и коэффициентом мощности (мы также рассмотрим эту формулу). Вы можете перейти к 3-фазному калькулятору кВт в ампер здесь.
  2. Второй Трехфазный калькулятор мощности преобразует ампер в кВт почти таким же образом. Мы применяем классическую формулу расчета тока трехфазного двигателя . Вы можете перейти к формуле 3-фазных ампер в кВт и калькулятору здесь.

Чтобы получить представление о том, как работают эти калькуляторы, вот скриншот калькулятора 3-фазной мощности:

Пример того, как работает 1-й калькулятор: 3-фазный двигатель, который потребляет 90 А и работает от сети 240 В с мощностью 0,8 фактор будет производить 29,93 кВт электроэнергии.

Прежде чем мы рассмотрим основы, давайте на небольшом примере проиллюстрируем, как работает расчет мощности в 1-фазной схеме по сравнению с 3-фазной схемой .

Пример: Допустим, у нас есть кондиционер мощностью 6 кВт в сети 120 В. Вот сколько ампер он потребляет:

  • В однофазной цепи 6 кВт потребляет 50 ампер .
  • В 3-фазной цепи (с коэффициентом мощности 1,0 ) калькулятор 3-фазной мощности показывает, что тот же прибор мощностью 6 кВт потребляет 28,87 ампер . Сколько ампер в трехфазном питании? При коэффициенте мощности 1,0 ток трехфазной сети в этой ситуации составляет 28,87 ампер.
  • В 3-фазной цепи (с коэффициентом мощности 0,6 ) калькулятор 3-фазной мощности показывает, что тот же прибор мощностью 6 кВт потребляет 48,11 ампер .

Чтобы понять, почему мы получаем разную силу тока в 3-фазной цепи, давайте сначала проверим, как эти амперы рассчитываются с использованием формулы 3-фазной мощности:

3-фазная формула мощности

Вот простая формула, которую мы используем для расчета мощности в однофазной цепи переменного тока:

P (кВт) = I (ампер) × V (вольт) ÷ 1000

По сути, мы просто умножаем амперы на вольты. Коэффициент «1000» предназначен для преобразования Вт в кВт; мы хотим, чтобы результирующая мощность была в киловаттах. 1 кВт = 1000 Вт.

По сравнению с этим, формула трехфазной мощности немного сложнее. Вот уравнение трехфазной мощности:

P (кВт) = ( I (Ампер) × V (Вольт) × PF × 1,732) ÷ 1000

Как мы видим, электрическая мощность в Трехфазная цепь переменного тока зависит от:

  • I (Ампер) : Электрический ток , измеряется в амперах. Чем больше у нас ампер, тем больше у нас мощность в трехфазной цепи.
  • В (В) : Электрический потенциал , измеренный в вольтах. Чем больше у нас вольт, тем больше у нас мощность в трехфазной цепи.
  • PF : Коэффициент мощности , это число от -1 до 1 (на практике от 0 до 1). Коэффициент мощности определяется как отношение активной мощности к полной мощности. Если ток и напряжение совпадают по фазе, коэффициент мощности равен 1. В трехфазной цепи ток и напряжение не совпадают по фазе; таким образом, коэффициент мощности будет где-то между 0 и 1. Он учитывает отношение реальной/полной мощности и иногда выражается в виде среднеквадратичного значения тока. Чем выше PF, тем больше кВт имеет 3-фазная цепь.
  • 1,732 коэффициент : Это константа при расчете 3-фазной мощности. Это следует из вывода этого уравнения. Точнее, мы получаем квадратный корень из 3 (√3).
  • 1000 коэффициент : Это еще одна константа. Он преобразует ватты в киловатты, потому что мы обычно предпочитаем иметь дело с киловаттами, а не с ваттами.

Поскольку нам нужно использовать коэффициент мощности для расчета кВт из ампер, эта формула также известна как «формула трехфазного коэффициента мощности».

Мы можем использовать это уравнение для разработки первого калькулятора: калькулятор трехфазной мощности (см. ниже).

Примечание. Позже мы также увидим, как можно использовать формулу трехфазного тока для разработки калькулятора силы тока трехфазного двигателя. Он преобразует кВт в ампер в трехфазных цепях, что очень важно в конструкции электродвигателя.

Калькулятор 3-фазной мощности: ампер в кВт (1-й калькулятор)

Вы можете свободно использовать этот калькулятор для преобразования ампер в кВт в 3-фазной цепи. Вам необходимо ввести ампер, напряжение и коэффициент мощности (от 0 до 1, для каждой цепи):

 

Как видите, чем больше у вас ампер и вольт, тем мощнее у вас трехфазный электродвигатель. Точно так же более высокий коэффициент мощности пропорционален более высокой выходной мощности.

Вы можете использовать этот пример, чтобы увидеть, как работает калькулятор трехфазной мощности: Двигатель 100 А в трехфазной цепи 240 В с коэффициентом мощности 0,9 производит 37,41 кВт электроэнергии. Вставьте эти 3 величины в калькулятор, и вы должны получить тот же результат.

Теперь о формуле расчета тока трехфазного двигателя:

Формула трехфазного тока

Как мы уже видели, эта формула мощности трехфазного тока вычисляет, сколько кВт электроэнергии будет потреблять двигатель:

P (кВт) = ( I (А) × V (В) × PF × 1,732) ÷ 1000

уравнение немного. Получаем формулу трехфазного тока так:

I (А) = P (кВт) × 1000 ÷ (В (В) × PF × 1,732)

Используя эту формулу мощности, мы можем, например, преобразовать 3-фазный двигатель в кВт в ампер. расчет. Обратите внимание, что если трехфазный двигатель с более низким напряжением и более низким коэффициентом мощности будет потреблять больше ампер для получения той же выходной мощности.

Вот калькулятор, основанный на формуле трехфазного тока:

Расчет тока трехфазного двигателя: кВт в ток (2-й калькулятор)

Чтобы рассчитать ток из кВт, вам необходимо ввести кВт, напряжение и коэффициент мощности трехфазного двигателя. Калькулятор будет динамически рассчитывать силу тока (в амперах) на основе введенных вами данных:

 

Вы можете использовать этот пример, чтобы проверить, правильно ли вы используете калькулятор трехфазного тока: Допустим, у нас есть двигатель 200 кВт в трехфазной цепи 480 В с коэффициентом мощности 0,8 . Такой двигатель потребляет 300,70 ампер. Вы можете вставить эти числа в калькулятор и посмотреть, получите ли вы правильный результат.

Мы используем 3-фазную цепь для тяжелых задач. Например, вы можете проверить, сколько времени нужно, чтобы полностью зарядить Теслу с помощью нагнетателя, и вы быстро поймете, что вам нужно какое-то дополнительное напряжение и целая куча ампер.

В общем, мы надеемся, что эти калькуляторы помогут вам определить мощность и токовые характеристики электродвигателей. Если у вас есть какие-либо вопросы, вы можете использовать комментарии ниже, и мы постараемся вам помочь.

Содержание

AC DC Формула расчета тока полной нагрузки

Ток полной нагрузки используется для проектирования системы защиты электрооборудования.

Что такое ток полной нагрузки:

Ток полной нагрузки — это не что иное, как максимально допустимый ток. Входной ток машины превышает ток полной нагрузки, что может привести к повреждению электрической машины. Из-за избыточного тока машина выделяет дополнительное тепло (поскольку P=I 2 *R)., это может привести к повреждению изоляции или обмотки электрооборудования. Следовательно, работа машины при токе ниже полной нагрузки увеличивает срок службы электрооборудования.

Нагрузки двигателя переменного тока (переменный ток) :

Нагрузки переменного тока состоят из резистивных нагрузок, индуктивных нагрузок. Резистивные нагрузки — водонагреватель, комнатный обогреватель и т. д. Индуктивные нагрузки — индукционная печь, однофазный асинхронный двигатель, трехфазный двигатель и т. д.

Расчет тока при полной нагрузке 3-фазный двигатель:

В большинстве трехфазных систем потребление электроэнергии происходит при соединении звездой и треугольником. Входная мощность (P) в систему одинакова, независимо от соединения.

Мощность в кВт (киловаттах)

В= Напряжение +/- 10 % в Вольтах

I= Ток полной нагрузки в Амперах

Cos pi = коэффициент мощности

 Трехфазная мощность P = 3 В*I* Cos Пи
  Следовательно, Ток трехфазного двигателя при полной нагрузке I = P / (3 * V * Cos pi)  

кВт = выходная мощность в ваттах……. Все данные указаны на паспортной табличке.

Взгляните на приведенную выше формулу: трехфазный ток полной нагрузки равен мощности, деленной на произведение линейного напряжения на нейтраль и коэффициента мощности, умноженное на 3.

Как мы уже говорили, полный ток нагрузки трехфазной системы зависит от типа подключения. Здесь

Iph => Фазный ток

Iline => Линейный ток

Для соединения по схеме «звезда» ток полной нагрузки Iline равен Iph

 Iph = Iline 

Для соединения треугольником ток полной нагрузки Iline равен Иф

 Iph/1,732 = Iline 

Следовательно, трехфазный ток полной нагрузки I равен

I= P/(1,732*V*Cos pi)

Здесь трехфазный ток полной нагрузки равен мощности, деленной на 1,732 умноженное на линейное напряжение и коэффициент мощности.

Расчет тока полной нагрузки Однофазный двигатель:

Ток полной нагрузки однофазного двигателя I равен мощности P, деленной на коэффициент мощности, умноженный на напряжение между фазой и нейтралью.

 P = V * I * Cos pi 

Ток полной нагрузки I = P / (V x Cos pi) Ампер

V= Напряжение +/- 10 % в Вольтах Амперы

Cos pi = коэффициент мощности

кВт = выходная мощность в ваттах……. Все данные указаны на паспортной табличке двигателя.

Расчет тока полной нагрузки Трехфазный нагревательный элемент:

Для трехфазного тока полный ток резистивной нагрузки равен трехфазной мощности, деленной на напряжение в 1,732 раза. Здесь коэффициент мощности будет равен единице для резистивных нагрузок.

Как вы знаете формулу мощности,

P = 1,732 x V x I

Ток полной нагрузки I,

I =P / 1,732 * V Ампер.

В= Линейное напряжение

I= Ток полной нагрузки в амперах

Если рассматривать среднее линейное напряжение, формула тока полной нагрузки будет выглядеть так: .

кВт = выходная мощность в ваттах……. Все данные указаны на паспортной табличке обогревателя.

Узнайте больше:  Что такое автоматический выключатель, конструкция, работа, типы автоматических выключателей B, C, D, K?

Расчет тока при полной нагрузке Однофазные нагреватели:

Формула мощности  кВт

В = напряжение

I = ток при полной нагрузке в амперах

кВт = выходная мощность в ваттах……. Все данные указаны на паспортной табличке обогревателя.

 P = V X I Ампер 

Ток полной нагрузки для однофазного нагревателя составит,

I = P / V Ампер

Рассчитать сквозное сопротивление: 92 * R

  • I = квадратный корень из (P/R)

См. также : Расчет падения напряжения

Расчет тока при полной нагрузке Машина постоянного тока (двигатель постоянного тока и генератор постоянного тока):

Постоянный ток => постоянный ток

 P= V X I 6 P  90 /В ампер, где

В = Е ± Ia Ra ± Is Rш + щётки кап (шунтовая машина)

В = Е ± Ia (Ra + Rш) + щётки капля (серийная машина)

В = Напряжение питания

E = противо-ЭДС

  • См.