Содержание

Ядерный реактор — принцип работы, устройство, схема

Принцип работы ядерного реактора

Принцип действия реактора можно описать в паре предложений:

Уран-235 распадается, вследствие чего выделяется большое количество тепловой энергии. Эта энергия кипятит воду, а возникший пар крутит турбину под давлением. Турбина, в свою очередь, вращает электрогенератор, который вырабатывает электричество.

Все, расходимся… Ладно, давайте разберемся более детально.

Уран-235 — это один из изотопов урана. Изотоп — это разновидность атома какого-либо вещества, которая отличается от обычного атома атомной массой. Конкретно уран-235 отличается от простого урана тем, что в ядре такого изотопа на три нейтрона меньше.

Из-за недостатка нейтронов ядро становится менее стабильным и распадается на две части, если разогнать и врезать в него нейтрон. При этой реакции вылетает еще парочка нейтронов. Эти нейтроны могут попасть в другое ядро урана-235 и расщепить его, после чего оттуда вылетит еще нейтрон, и так далее по цепочке. Такой процесс называется цепной ядерной реакцией.

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Деление урана

Деление ядер урана под воздействием нейтронов открыли немецкие ученые Отто Ган и Фриц Штрассман в 1938 году. Для эксперимента выбрали именно нейтроны потому, что они электрически нейтральны, то есть у них нет заряда. А раз нет заряда, то между протонами и нейтронами нет кулоновского отталкивания, и нейтроны легко проникают в ядро.

Когда нейтрон попадает в ядро урана-235, оно деформируется и становится вытянутым. Ядерные силы действуют на очень маленьких расстояниях, но не работают на больших. А вот электростатическое взаимодействие может происходить и на больших расстояниях. Поэтому ядерное взаимодействие не может противодействовать электростатическому отталкиванию противоположных частей вытянутого ядра, и последнее разрывается на части. При этом излучается та самая парочка нейтронов, о которых мы уже упоминали выше, а близкие по массе осколки разлетаются с большой скоростью.

Результаты деления ядра урана-235:

1. Распад на барий и криптон с выделением трех нейтронов:

2. Распад на ксенон и стронций с выделением двух нейтронов:

Еще больше наглядных примеров — на курсах по физике для 9 класса в онлайн-школе Skysmart.

Управляемая ядерная реакция

Естественная ядерная реакция происходит очень быстро — меньше, чем за секунду. Такая быстрая ядерная реакция провоцирует ядерный взрыв.

Хорошая новость заключается в том, что ядерной реакцией можно управлять. Задача проста — следи себе за реакцией, контролируй и не давай урану распадаться слишком быстро. Легко сказать!

Для выполнения этой задачи придумали замедлитель. Замедлитель — не устройство, а вещество, которое уменьшает кинетическую энергию нейтронов за счет многократного столкновения с молекулами замедлителя. В качестве замедлителя часто используют графитовые стержни и воду — обычную (H2O) или тяжелую (D2O).

Оказывается…

На Земле был природный ядерный реактор. Он находился в урановом месторождении Окло. Это в Габоне, в Центральной Африке. В природном ядерном реакторе процесс распада урана происходит без человеческого участия. Но есть один нюанс: этот реактор остыл больше миллиарда лет назад.

Бесплатные занятия по английскому с носителем

Занимайтесь по 15 минут в день. Осваивайте английскую грамматику и лексику. Сделайте язык частью жизни.

Техническая реализация

Если вы хоть раз смотрели «Симпсонов» (или в вашем городе есть реактор), то знаете, как выглядят большие трубы, стоящие на территории атомной электростанции (АЭС). Эти трубы называются градирни и служат для быстрого охлаждения пара.

В момент распада ядро урана раскалывается на две части. Эти части разлетаются в разные стороны с огромной скоростью, но, несмотря на скорость, не улетают далеко. Они ударяются об атомы, которые находятся рядом, и кинетическая энергия переходит в тепловую. Количество теплоты от этих соударений нагревает воду, превращая ее в пар. Пар крутит турбину, а турбина крутит генератор, который вырабатывает электричество.

Вот и получается, что мы живем в стимпанке — все работает на пару.

АЭС

Если коротко, то атомная электростанция — это сооружение, которое производит электричество за счет ядерного реактора.

А если подробнее, то АЭС — это большой комплекс, во главе которого стоит ядерный реактор. Помимо реактора на АЭС есть турбина, генератор, трансформаторы для преобразования напряжения. В общем, это большая система.

В бытовом употреблении АЭС часто приравнивают к ядерному реактору, и это нельзя назвать неправильным. Просто ядерный реактор — босс в этой движухе, поэтому он и определяет все остальное. 😉

Кстати, когда будете играть в крокодила, загадайте атомную электростанцию. Будет забавно, проверено.

Чернобыльская АЭС

Когда речь заходит о ядерной энергетике, многие невольно вспоминают катастрофу на Чернобыльской АЭС и поэтому ошибочно считают, что ядерный реактор — зло.

Но по большому счету, реактор — это очень дорогой чайник. Дым, который валит из труб АЭС и пугает прохожих, на самом деле не дым, а пар.

В результате работы ядерного реактора действительно образуются радиоактивные отходы, и они могут быть опасны, если с ними неправильно обращаться. Часть этих отходов перерабатывают для дальнейшего использования, а часть приходится держать в хранилищах, чтобы они не причинили вред человеку и окружающей среде.

Шок-контент 😱

Ядерная энергия — самый экологически чистый вид энергии на сегодняшний день.

Атомные электростанции выбрасывают в атмосферу только пар, им необходимо небольшое количество топлива, а еще они занимают малую площадь и при правильном использовании безопасны. Тем не менее, после аварии на Чернобыльской АЭС многие страны приостановили развитие атомной энергетики.

Первая авария на Чернобыльской АЭС произошла в 1982 году. Во время пробного пуска разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, но последствия ликвидировали около трех месяцев.

В 1986 году произошло ЧП в известном всему миру четвертом энергоблоке. В этом самом энергоблоке проводились испытания турбогенератора. Система аварийного охлаждения была планово отключена, поэтому, когда реактор не смогли остановить, эта система не спасла АЭС от взрыва и пожара.

Взрыв и его последствия не говорят о том, что ядерная энергетика вредна. На самом деле даже бананы радиоактивны, потому что в них содержатся радиоактивные изотопы. Но даже съев около сотни бананов массой 150 г, вы получите всего лишь нормальную суточную дозу радиации. Чтобы банановая радиация навредила человеку, ему придется съесть не меньше тонны. То же и с ядерными реакциями — они приносят вред только в том случае, если их не контролировать.

Виды современных реакторов

Сегодня существует несколько видов ядерных реакторов, но используют в основном два — гомогенные и гетерогенные:

  • в гомогенных реакторах ядерное горючее и замедлитель перемешаны;
  • в гетерогенных реакторах ядерное горючее и замедлитель находятся отдельно друг от друга.

Еще бывают реакторы, в которых для получения энергии используют уран-238, а не уран-235. Но в таких реакторах сложно отводить тепло, поэтому они довольно редки.

Использование атомной энергии

Атомная энергия используется не только в ядерных реакторах. Например, существуют корабли и подводные лодки, которые работают на атомной энергии.

В начале XXI века из-за высоких цен на нефть были очень актуальны поиски способов использования ядерной энергии. Тогда появились разработки по компактным атомным электростанциям, которые могут работать десятилетиями без обслуживания и к тому же безопасны.

Кроме того, ученые работают над ядерными методами для диагностики и лечения онкологических заболеваний. Есть исследования, которые подтверждают, что радиоактивные изотопы могут уничтожать раковые клетки.

Как работает атомная электростанция — T&P

Иллюстрация: Максим Чатский

Все очень просто. В ядерном реакторе распадается Уран-235, при этом выделяется огромное количество тепловой энергии, она кипятит воду, пар под давлением крутит турбину, которая вращает электрогенератор, который вырабатывает электричество.

Науке известен по крайней мере один ядерный реактор естественного происхождения. Он находится в урановом месторождении Окло, в Габоне. Правда, он уже остыл полтора миллиарда лет назад.

Уран-235 — это один из изотопов урана. Он отличается от простого урана тем, что в его ядре не хватает 3 нейтронов, из-за чего ядро становится менее стабильным и распадается на две части, когда в него на большой скорости врезается нейтрон. При этом вылетает еще 2–3 нейтрона, которые могут попасть в другое ядро Урана-235 и расщепить его. И так по цепочке. Это называется ядерной реакцией.

Управляемая реакция

Если не управлять цепной ядерной реакцией и она пойдет слишком быстро, то получится самый настоящий ядерный взрыв. Поэтому за процессом надо тщательно следить и не давать распадаться урану слишком быстро. Для этого ядерное топливо в металлических трубках помещают в замедлитель — вещество, которое замедляет нейтроны и переводит их кинетическую энергию в тепловую.

Для управления скоростью реакции в замедлитель погружают стержни из поглощающего нейтроны материала. Когда эти стержни поднимают, они улавливают меньше нейтронов и реакция ускоряется. Если стержни опустить, то реакция опять замедлится.

Дело техники

Огромные трубы в атомных электростанциях на самом деле никакие не трубы, а градирни — башни для быстрого охлаждения пара.

В момент распада ядро раскалывается на две части, которые разлетаются с бешеной скоростью. Но далеко они не улетают — ударяются о соседние атомы, и кинетическая энергия превращается в тепловую.

Дальше этим теплом нагревают воду, превращая ее в пар, пар крутит турбину, а турбина крутит генератор, который и вырабатывает электричество, точно так же, как в обычной тепловой электростанции, работающей на угле.

Смешно, но вся эта ядерная физика, изотопы урана, цепные ядерные реакции — все для того, чтобы вскипятить воду.

За чистоту

Атомная энергия используется не только в атомных электростанциях. Существуют корабли и подводные лодки, работающие на ядерной энергии. В 50 годы даже разрабатывались атомные автомобили, самолеты и поезда.

В результате работы ядерного реактора образуются радиоактивные отходы. Часть из них можно переработать для дальнейшего использования, часть приходится держать в специальных хранилищах, чтобы они не причинили вред человеку и окружающей среде.

Несмотря на это ядерная энергия сейчас является одним из самых экологически чистых. Атомные электростанции не производят выбросов в атмосферу, требуют очень мало топлива, занимают мало места и при правильном использовании очень безопасны.

Но после аварии на Чернобыльской АЭС многие страны приостановили развитие атомной энергетики. Хотя, например, во Франции почти 80 процентов энергии вырабатывается атомными электростанциями.

В двухтысячных из-за большой цены на нефть все вспомнили о ядерной энергии. Существуют разработки по компактным ядерным электростанциям, которые безопасны, могут работать десятилетими и не требуют обслуживания.

Игорь Гладкобородов

Теги

#просто о сложном

#научпоп

#электричество

#наука

  • 150 189

6 вещей, которые вы должны знать о ядерных тепловых двигателях

Офис
Атомная энергетика

10 декабря 2021 г.

НАСА хочет отправить астронавтов на Марс, и они могли бы сделать это с помощью ядерных ракетных двигателей.

Ядерные тепловые двигательные установки (NTP) не новы, но они могут значительно сократить время полета и нести большую полезную нагрузку, чем современные химические ракеты, что дает людям большие возможности для исследования дальнего космоса.

Вот 6 вещей, которые вы должны знать о ядерных тепловых двигателях.

URL видео

Посмотрите анимацию выше, чтобы узнать о преимуществах ядерных тепловых двигателей.

Видео предоставлено Министерством энергетики

1. Системы NTP питаются от деления

Системы NTP работают, прокачивая жидкое топливо, скорее всего водород, через активную зону реактора. Атомы урана распадаются внутри ядра и выделяют тепло в результате деления. Этот физический процесс нагревает топливо и превращает его в газ, который расширяется через сопло для создания тяги.

2. Системы НТП более эффективны, чем химические ракеты

Ракеты НТП обладают большей энергоемкостью, чем химические ракеты, и в два раза эффективнее.

Инженеры измеряют эту производительность как удельный импульс, который представляет собой величину тяги, которую можно получить от определенного количества топлива. Удельный импульс химической ракеты, сжигающей жидкий водород и жидкий кислород, составляет 450 секунд, что ровно вдвое меньше, чем у начальной мишени для ядерных ракет (900 секунд).

Это потому, что более легкие газы легче разогнать. Когда химические ракеты сжигаются, они производят водяной пар, гораздо более тяжелый побочный продукт, чем водород, который используется в системе NTP. Это приводит к большей эффективности и позволяет ракете лететь дальше на меньшем количестве топлива.

3. Системы NTP не будут использоваться при запуске

Системы NTP не будут использоваться на Земле. Вместо этого они будут запущены в космос химическими ракетами до того, как их запустят. Системы NTP не предназначены для создания тяги, необходимой для отрыва от поверхности Земли.

4. Системы NTP обеспечивают большую гибкость

Системы NTP обеспечивают большую гибкость для полетов в дальний космос. Они могут сократить время полета до Марса на 25% и, что более важно, ограничить воздействие космической радиации на летный экипаж. Они также могут обеспечить более широкие окна запуска, которые не зависят от выравнивания орбиты, и позволяют астронавтам прерывать миссии и при необходимости возвращаться на Землю.

Загрузите нашу инфографику по ядерным тепловым двигателям.

5. Системы NTP были разработаны при поддержке DOE

NTP не нова. Он был изучен НАСА и Комиссией по атомной энергии (ныне Министерство энергетики США) в 1960-х годах в рамках программы «Ядерный двигатель для ракетных транспортных средств». За это время ученые Лос-Аламосской национальной лаборатории помогли успешно построить и испытать ряд ядерных ракет, на которых сегодня основаны нынешние конструкции NTP.

Хотя программа завершилась в 1972 году, продолжались исследования по улучшению базовой конструкции, материалов и топлива, используемых для систем NTP.

НАСА и Министерство энергетики в настоящее время работают с промышленностью над разработкой обновленных конструкций ядерных тепловых двигательных реакторов. Три отраслевые команды выиграли конкурс проектов в 2021 году и в настоящее время продолжают разработку проектов, которые будут представлены для оценки осенью 2022 года.

6. Системы NTP сосредоточены на использовании низкообогащенного урана испытание, разработка и оценка возможности использования нового топлива, требующего меньшего обогащения урана, для систем НТП. Это топливо может быть изготовлено с использованием новых передовых технологий производства и потенциально может помочь снизить связанные с безопасностью затраты, связанные с использованием высокообогащенного топлива.

Национальная лаборатория Айдахо в настоящее время помогает НАСА разрабатывать и тестировать топливные композиты на своей установке для испытаний переходных реакторов (TREAT), чтобы изучить, как они работают при суровых температурах, необходимых для ядерных тепловых двигателей. Первоначальные испытания показали, что ядерное топливо, разрабатываемое НАСА и Министерством энергетики, способно выдерживать повышение температуры до рабочих температур ядерных тепловых двигателей без значительных повреждений.

Узнайте больше о работе НАСА по ядерным тепловым двигателям и узнайте о роли Министерства энергетики в освоении космоса.

Следите за Управлением ядерной энергии

NUCLEAR 101: Как работает ядерный реактор?

Офис
Ядерная энергия

29 марта 2021 г.

Ядерные реакторы — сердце атомной электростанции.

Они содержат и контролируют цепные ядерные реакции, которые производят тепло посредством физического процесса, называемого делением. Это тепло используется для производства пара, который вращает турбину для выработки электроэнергии.

Имея более 440 коммерческих реакторов по всему миру, в том числе 92 в Соединенных Штатах, ядерная энергетика продолжает оставаться одним из крупнейших доступных источников надежной безуглеродной электроэнергии.

Ядерное деление создает тепло

Основная задача реактора — поддерживать и контролировать ядерное деление — процесс, в котором атомы расщепляются и высвобождают энергию.

Деление и синтез: в чем разница?

    

Реакторы используют уран в качестве ядерного топлива. Уран перерабатывается в небольшие керамические гранулы и укладывается в герметичные металлические трубки, называемые топливными стержнями. Как правило, более 200 таких стержней связываются вместе, образуя топливную сборку. Активная зона реактора обычно состоит из пары сотен сборок, в зависимости от уровня мощности.

Внутри корпуса реактора топливные стержни погружены в воду, которая действует как теплоноситель и замедлитель. Замедлитель помогает замедлить нейтроны, образующиеся при делении, чтобы поддерживать цепную реакцию.

Затем в активную зону реактора можно вставить управляющие стержни, чтобы уменьшить скорость реакции, или вынуть, чтобы увеличить ее.

Тепло, создаваемое ядерным делением, превращает воду в пар, который вращает турбину для производства безуглеродного электричества.

Типы легководных реакторов в США       

Все коммерческие ядерные реакторы в США являются легководными реакторами. Это означает, что они используют обычную воду в качестве теплоносителя и замедлителя нейтронов.