Содержание

Звезда и треугольник. Подключение двигателей.

Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник — 230 В. звезда — 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.

Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья. 

Однофазные, двухфазные и трёхфазные электрические сети

В мире распространение имеют однофазные и трёхфазные электрические сети.

Однофазный ток представляет собой синусоиду:

Полное амплитудное напряжение превышает фазное, отличающееся от него в √2/2 раз, т.е.
311.1 х √2/2 = 220,
325.3 х √2/2 = 230,
169.7 х √2/2 = 120.

В трёхфазной сети фазы сдвинуты относительно друг друга на 120 градусов. Линейное напряжение выше фазного в √3 раз, т.е. примерно в 1.73 раза, следовательно,
220 х √3 = 380,
230 x √3 = 400,
380 x √3 = 660,
400 x √3 = 690,
120 x √3 = 208,
277 х √3 = 480.

Линейное напряжение трёхфазной сети — это межфазное напряжение,
именно оно обозначается на шильдиках двигателей. Фазное напряжение
(между фазой и нейтралью) на шильдиках не обозначается.

Одновременно с этим, условно говоря, вы можете считать, что на
шильдике обозначено фазное напряжение, но только в том случае, если
собираетесь подключать двигатель только к одной фазе через конденсатор.
 

Помимо этого, в США и Канаде также распространены двухфазные сети (сети с разделённой фазой или трёхпроводные однофазные сети), которые
позволяют подключать мощные бытовые приборы и приборы, выпущенные под европейский
стандарт 230 В. По сути, использование таких систем обосновано тем, что в США обычно не ведут по столбам низкое напряжение как у нас, а устанавливают понижающие трансформаторы непосредственно в местах отвода потребителям. Т.е. прямо на столбах они вешают трансформаторы, понижая напряжение с условных 7 кВ до положенных по стандарту 120 В. Но вместо того, чтобы просто понизить напряжение до 120 В, они используют трансформатор на 240 В со средней точкой. Напряжения на крайних выводах вторичной обмотки трансформатора, возникающие в каждый момент его работы, сдвинуты по фазе на 180 градусов.

Т.е. они получают таким образом как бы две фазы 120 В, смещённые относительно друг друга на 180 градусов.

Соответственно, у них там применяются специальные розетки на три контакта (две фазы и нейтраль) и есть разные варианты подключения мощных бытовых приборов, например, кондиционеров, которые можно подключать к 120 В, а можно к 240 В при наличии технической возможности.

Не следует путать такие двухфазные сети с существовавшими в начале XX века в США двухфазными сетями, где фазы были смещены на 90 градусов, к которым можно было напрямую подключать двигатели с двумя обмотками (как у современных сервомоторов).


Все варианты однофазных и трёхфазных сетей, применяющихся в Америке, выглядят следующим образом:


Подключение двигателей

Вот всем известные схемы подключения треугольником (D) и звездой (Y):

Всего
с двигателя выходит 6 проводов: это начала трёх обмоток и их концы.
Места соединений обмоток на схеме выше обозначены точками a, b, c и 0
(последний — только для звезды). В клеммной коробке шесть указанных
клемм располагают в два ряда по три клеммы, причём клеммы начала и
концов обмоток не находятся параллельно друг другу, а расположены так,
чтобы было удобнее подключать треугольником (т.е. соединять начала одних
обмоток с концами других):

Некоторые
граждане иногда подключают нейтральный провод к нулевой точке при
подключении двигателя звездой. На самом деле ничего хорошего от этого
нет, делать так не нужно.

Совершенно
неважно как вы подключаете двигатель: звездой или треугольником. Важно
только то, какое напряжение вы подаёте на обмотки двигателя
. Будет ли
это напряжение получаться как межфазное (треугольник) или как фазное
(между фазой и нулевой точкой — звезда) — двигателю это совершенно
неважно.

Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение
380 В (220 В на фазу), а у другой — 220 В (127 В на фазу), то к первой
вы можете подключать двигатель звездой, а ко второй — треугольником,
разницы для  двигателя не будет никакой, отличаться будут лишь токи,
протекающие в проводниках на линии, ведущей к двигателю. 

Выглядит всё это так, например, для двигателя мощностью 1.1 кВт с номинальным напряжением обмотки 220 В. Для тех, кто в танке: РИСУНОК СЛЕВА — это для РОССИИ, где 380 В 50 Гц, т.е. 220В на фазу,  а справа — это для стран, где трёхфазное напряжение 220 В, 50 Гц (или 127 В на фазу):

Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4. 9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.


Как видно по рисунку выше, при подключении к сети с большим напряжением токи в проводниках ниже (2.8A vs. 4.85A), поэтому, в случае использования преобразователя частоты переменного тока (ПЧ) для управления двигателем D/Y 230V / 400V, лучше применять схему подключения звезда и выставлять в настройка ПЧ напряжение двигателя 400В.

Теперь логичный вопрос:

если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?

 

Ответ такой: двигатель должен соответствовать требованиям конкретной ситуации, а требоваться может следующее:

1. ВОЗМОЖНОСТЬ ПОДКЛЮЧЕНИЯ К ТРЁХФАЗНОЙ СЕТИ
В трёхфазную сеть можно подключить двигатель, номинальное напряжение
обмоток которого равно либо фазному напряжению сети (звездой), либо
линейному (треугольник)
.

2. ВОЗМОЖНОСТЬ ВКЛЮЧЕНИЯ В ОДНОФАЗНУЮ СЕТЬ
Для правильного подключения двигателя в однофазную сеть (через
конденсатор) требуется, чтобы номинальное напряжение обмотки двигателя
было не больше фазного напряжения сети.

3. ПЕРЕКЛЮЧЕНИЕ ЗВЕЗДА-ТРЕУГОЛЬНИК
Для двигателей со свободной нагрузкой на валу наиболее
дешевым способом плавного пуска при подключении в трёхфазную сеть
является пуск «звездой» с последующим переключением на «треугольник». Номинальное напряжение обмотки должно быть равно линейному напряжению сети. Т.е. сначала подается более низкое фазное напряжение (звезда — между фазой и нулевой точкой), а затем происходит переключение на треугольник, т.е. начинает подаваться межфазное напряжение, соответствующее номиналу двигателя.

Если составить таблицу по всем трём пунктам для трёхфазной сети 400В 50Гц (Россия, Европа, Китай), то будет она выглядеть так:

Аналогичная таблица для сети 208В 60Гц (США, Тайвань, Япония):

В итоге производители условно делят все двигатели на две категории:

1. Маломощные (менее 5 кВт), преимущественного бытового назначения, для которых может возникнуть потребность подключения к однофазной сети (не у каждого дома есть трёхфазная розетка). В России это двигатели D230V / Y400V.

2. Двигатели мощностью более 5 кВт, которые не имеют бытового назначения, а потому для них нет потребности подключения в однофазную сеть. Одновременно с этим, для них может возникнуть потребность переключения со звезды на треугольник при пуске. В России такими двигателями являются D400V / Y690V. Кроме того, такие двигатели можно подключать к промышленным сетям 690В, организация которой позволит экономить на прокладке кабеля, поскольку, как уже было показано выше, токи в проводниках будут ниже для сетей с более высоким напряжением.

Двигатели малой мощности 

D 230V / Y 400V

Если двигатель имеет небольшую мощность (до 4 — 5 кВт), то его обычно делают с расчётом на возможность подключения к однофазной сети. Т.е. в трёхфазную сеть его подключают звездой, а в однофазную — треугольником через фазосдвигающий конденсатор. Для последнего случая также может использоваться пусковой конденсатор (отключается сразу после запуска). Выглядит это так:

Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.  

Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейное напряжение 208 В, а фазное — 120 В), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится, но можно подключить в их двухфазную сеть 240 В, если таковая имеется.

D 115V / Y 208-230V

Одновременно с этим, маломощные двигатели, предназначенные для стран, где стандартное напряжение ниже, чем у нас, будут подключаться как D 127V / Y 220V. Однако,  двигатели с такой надписью на шильдике вы вряд ли найдёте, потому что 127 В, 50 Гц — это очень малораспространённое напряжение в мире (см. тут). Поэтому, скорее всего, вам встретится двигатель с шильдиком, где будет указано напряжение D 115V / Y 208-230V.


Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:

Двигатели мощности более 5 кВт 

D 400V / Y 690V

Для двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V.

Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения «звезда» при старте с последующим переключением на «треугольник». Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют «щадящим».

Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.

Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для «щадящего старта» вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет «щадящим» для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.

D 220V / Y 440V, D 277V / Y 480

Двигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 277 В, поскольку там распространены промышленные сети 480 В, ну а в Тайване аналогичные двигатели будут иметь номинал в 220 В. К российской трёхфазной сети 400 В подключаются они звездой, а к российской однофазной сети через конденсатор — треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:

Как подключить трехфазный электродвигатель в сеть 220 В

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:

  1. Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
  2. Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.

Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.

https://youtube.com/watch?v=ukl8nctMpTI

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При  использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы

Теперь важно не перепутать

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо

А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они бывают на 2 вида напряжения – 220/380 и 380/660 В.

В чем отличия? В номинальных напряжениях питания. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты

И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!

Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит!!!

Как будет выглядеть подключение подобного двигателя в коробке:

Подключение в “Звезду” двигателя на 220 – 380 В

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Напряжение питания 660 В в реальной жизни не используется, а схема, показанная справа, используется для “раскрутки” ротора.

Реальные примеры:

Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”

Вот этот же двигатель, его коробка борно, подключен в треугольник:

Обмотки двигателя подключены в треугольник на 380 В

Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.

О конденсаторах

Значение конденсатора в сети

В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его  величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит  снижение таких показателей, как электрическая мощность и мощность вала движка.

Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от  остальных обмоток была максимальная отдача, их нужно использовать совмещенно при  подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.

Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.

Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового  момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации  этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.

Еще одна особенность конденсатора при подключении к трехфазной сети это  его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке  или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в  какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы  можете управлять движением вала.

Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу.  Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на  месте конденсатора будет подключен дроссель. То он будет способствовать значительному  уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.

Поэтому конденсатор является единственным элементом пригодным для эффективного  перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.

Виды конденсаторов

Для подключения электрических агрегатов 380 на 220 Вольт в основном используют  следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.

Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими  качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Схемы “Звезда” и “Треугольник”

У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.

Схема обмоток статора с выводами для трехфазного асинхронного двигателя

Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?

Это простейшая логическая задача, у которой есть два решения – “Звезда” и “Треугольник”:

Схема соединения обмоток статора “звездой”

Схема соединения обмоток статора “треугольником”

В результате имеем у каждой схемы три вывода, которые можно подключать к источнику питания.  А вот почему напрямую подключать не всегда возможно, об этом статья.

Эти схемы также имеют названия “Delta” и “Star“, и могут обозначаться на схемах как D и S. Но чаще обозначение идёт от вида схем – Δ и Υ. Или D и Y.

На обратной крышке борно обычно указывают схемы подключения и обозначения выводов:

Схемы подключения выводов двигателя: Звезда и Треугольник. Отличия видны сразу

По по схемам мы плотно пройдёмся ниже.

И ещё немного теории.

Мощность на валу при подаче номинального напряжения будет одинакова хоть в Звезде, хоть в Треугольнике. А токи разные, ведь P=UI. Это происходит потому, что Напряжение питания в этих схемах отличается в √3 раз, ток – тоже. В “звезде” напряжение питания двигателя (линейное) больше номинала катушки, а в “треугольнике” ток питания двигателя больше тока катушки в 1,73 раза.

Другими словами, если “базовое” рабочее напряжение катушки равно 220 В, то напряжение в “Звезде” будет 1,73 · 220 = 380 В. Другими словами, Uл=1,73Uф, где Uф – это номинальное напряжение катушки, Uл – номинальное напряжение питания. Для треугольника ситуация повторяется, но только для тока.

Таким образом, если написано одно из напряжений, можно легко узнать другое напряжение и ток:

Указано напряжение только в треугольнике 400 В

Вот этот же двигатель, вид на клеммы в коробке:

Подключение обмоток статора треугольником – клеммы двигателя

В данном случае на шильде приведён только треугольник, но чудес не бывает – этот двигатель может работать и в звезде, главное переключить правильно обмотки. Напряжение “Звезды” будет 1,73 · 400 = 690 В, ток в то же число меньше.

Кто хочет копнуть поглубже – в конце выложу для скачивания умные книги.

Этапы переделки

Чтобы переделать электродвигатель с 380 Вольт на 220 сначала откиньте крышку мотора, чтобы посмотреть, сколько снаружи концов у статорных намоток. Их может быть 6 или 3. Если 6, то есть возможность поменять схему соединения: если была «звезда», можно перейти на «треугольник», и наоборот.

Если конца всего 3, значит, внутри короба намотки уже соединяются либо «звездой», либо «треугольником» (всего 6 концов, которые попарно объединяются клеммами, их и будет 3, так как на каждую клемму – 2 конца). В таком случае придется оставить прежнюю схему.

Соединение обмоток

Неважно, каков источник питания, трехфазный или однофазный, соединять статорные намотки можно любым из способов (можете прочитать подробнее про способы подключения электродвигателей):

  • Звезда;
  • Треугольник.

Звездой обычно соединяют намотки, если двигатель будет питаться от сети 380 В. Благодаря этому пуск становится плавным, хотя теряется треть мощности. Треугольник же рекомендуется при запитывании от 220 Вольт. Пусковые токи при этом не так высоки по сравнению с теми, что возникают от трехфазного питания. Зато мощность равна той, что дает «звездное» соединение, если мотор подключен к 380 В.

Схемы посмотрите ниже. Разница в том, что в первом случае соединяются все начала так, что получается трехконечная звезда. А во втором – конец одной обмотки соединяется с началом следующей так, что образуется фигура с тремя вершинами (треугольник).

Расчет конденсаторов

Когда концы намоток соединяют звездой или треугольником, образуется 3 места, где они стыкуются. На этих местах ставят клеммы. При питании от 380 Вольт на каждую из них подают фазу. Но наша задача, имея те же 3 контакта, подать лишь 1 фазу 220 Вольт и нуль. Это можно реализовать своими руками, компенсировав отсутствие трехфазного питания конденсаторами. Пусковой будет активным только на время запуска, а рабочий – постоянно.

Чтобы электрический двигатель хорошо запускался и работал, нужно правильно подобрать емкость конденсаторов. У рабочего накопителя она зависит от схемы соединения. Если это звезда, то работает формула:

Если треугольник, то формула преобразует свой вид:

Ср – искомая емкость рабочего накопительного элемента. U – напряжение в сети (220 Вольт). I – сила тока, которую находят по формуле:

Р – мощность, U – уже известное нам напряжение, ƞ – КПД, косинус «фи» — коэффициент мощности. Все эти значения можно посмотреть в техническом паспорте от вашего трехфазного мотора.

Расчет емкости пускового конденсатора (Сп) прост: умножьте Ср на 1,5 или 2. Если Ср=50 мкФ, то Сп будет от 75 до 100 мкФ. Поочередно ставьте то одну емкость, то другую, запуская каждый раз мотор. По звуку хода слушайте: если нет гула, то все в порядке.

Сборка по схеме

Схема выше показывает, как правильно соединить своими руками намотки статора с конденсаторами и проводами сети 220 В. К одной из вершин треугольника или звезды нужно подключить накопительные элементы параллельно друг другу (предусмотрите ключ для ручного отключения пускового накопителя после разгона)

Затем их выводят либо на фазу, либо на ноль: неважно. От этого будет зависеть только направление вращения вала

Как устроен трехфазный асинхронный двигатель

В большинстве случаев асинхронные двигатели используют конденсаторный запуск, однако бывают и другие способы пуска. В трехфазных электродвигателях в отличие от однофазных имеется три обмотки статора, которые сдвинуты под определённым углом. Угол намотки обмоток статора трехфазного двигателя — 120 градусов, что позволяет создавать вокруг ротора мощное магнитное поле.

Конструкция статора трехфазного электродвигателя состоит из таких элементов:

  • Корпуса;
  • Магнитопровода и сердечника с обмотками;
  • Клеммной коробки.

Стандартное соединение обмоток трехфазного электродвигателя выполнено по схеме «звезда». Также существует менее распространённым способ соединения обмоток трехфазного двигателя, а именно — «треугольник». В любом случае, каждая обмотка статора имеет определённое направление, а также, начало и конец.

Для нумерации обмоток статора электродвигателя используются арабские цифры: 1, 2, 3. Концы обмоток обозначаются буквой и цифрой: К1, К2, К3, а их начало — Н1, Н2, Н3. В некоторых типах электродвигателей маркировка обмоток статора может иметь другое обозначение, например: С1, С2, С3 и С4, С5, С6.

Стандартное подключение

Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.

По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.

Соединение обмоток

Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.

Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.

В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.

В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда». По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.

Разновидности частотных преобразователей

Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:

Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.

Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.

Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.

  1. Транзисторные частотные преобразователи

Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.

Схемы подключения

Существуют две основные схемы, по которым производится подключение электрического мотора к сети переменного тока 220 вольт:

  • Треугольник.
  • Звезда.

Необходимо отметить тот факт, что любое изменение в подключениях электродвигателей несет за собой снижение их мощности. И если потери этого показателя в схеме треугольник составляют всего лишь 30%, то в схеме звезда уже 50%. Поэтому специалисты рекомендуют использовать именно треугольник. Хотя при соединении звездой электродвигатель работает мягко и плавно. Что касается частоты вращения ротора, то при подключении к сети 220 вольт этот показатель практически не изменяется.

Чтобы было понятно, как выглядят оба вида подключения, предлагаем посмотреть на два нижних рисунка, где позиция (а) это принципиальная электрическая схема, а (б) это монтажная схема подключения. Первый рисунок – это соединение треугольник, второй – звезда.

Соединение треугольник

Сразу оговоримся, что переделать подключение с 380 на 220 вольт можно двигатель, у которого из клеммной коробки торчит шесть концов. При этом на принципиальной схеме концы обозначаются по-разному. Старое обозначение (оно среди электриков используется и сейчас) – это начало обмоток С1, С2, С3, конец – это С4, С5, С6. Согласно ГОСТа 26772-85 буквенные обозначение были изменены на начало обмоток – U1, V1, W1, конец – U2, V2, W2.

Соединение звезда

Чтобы провести пуск 3-фазного электродвигателя малой мощности рабочего конденсатора будет достаточно. Но если мощность мотора превышает 1,5 кВт, то он или не запустится вообще, или запуск будет производиться медленно и трудно. Поэтому рекомендуется установить в схему еще один конденсатор – пусковой. Он будет отвечать только за пуск 3-х фазного двигателя. В самой его работе он участвовать не будет, то есть, тут же отключится после завершения запуска. На это уходит две-три секунды.

Вот снизу схема подключения, где установлен пусковой конденсатор (Cn).

Данные двигателя

На что стоит обратить внимание при включении в однофазную сеть 3ех фазных электродвигателей:

  • полезная мощность снижается до 70–80%,
  • при рабочих значениях 380/220,Ỵ/Δ, подключать на одну фазу нужно треугольником. При соединении звездой не будет максимальной мощности,
  • если на шильде указано только одно значение – 380В, звезда, тогда придется двигатель разбирать, чтобы сделать переключение на треугольник, что не совсем удобно. При возможности стоит поискать другой двигатель.

Реверс в однофазной сети

Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.

Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Предыдущая ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius
Следующая ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Асинхронный двигатель схема подключения звезда треугольник

Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Из этого вытекает больший срок службы. Соединение треугольником заключается в последовательном соединении обмоток.

Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно: сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»; затем электродвигатель соединяют по схеме «треугольник».

Соединение звезда и треугольник. Различие между ними

Соединение треугольником заключается в последовательном соединении обмоток. За счет этого происходит уменьшение пускового тока. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом. Поэтому, получается еще один дополнительный нулевой вывод. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. Рисунки очень хорошо наглядно показывают, как и что должно быть. Определение начала и конца фазных обмоток асинхронного электродвигателя

Подключение электродвигателя на 380В. Схема пуска звезда-треугольник

В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной торцевой его части. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

  • как подключить провода трехфазного двигателя в триугольник
  • Еще по теме: Энергоаудит предприятия

Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху. В большинстве случаев набор оборотов занимает до сек. Также существуют определённые отличия в эргономичности. Так, К первой фазы подсоединён у Н второй.

Различия между «звездой» и «треугольником»

Двигатель попросту сгорит, так как при подключении обмоток в треугольник окажется запитанным повышенным напряжением: его рабочее фазное фазное напряжение составляет В, а линейное В.

По сути, получается, что напряжение генератора при звезде, равное вольт, преобразуется в вольт, если провести переключение с одного варианта на другой. Таким выглядит клеммник движка стандартной конфигурации.

В трехфазной системе он равняется градусам.

    Для удобства чтения, она разделена на две схемы: управления и силовой части. Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. При подаче управляющего напряжения срабатывает магнитный пускатель K3 — цепь питания его катушки замыкается нормально замкнутыми контактами реле времени K1 и контактора K2. Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США где линейной напряжение В, а фазное — В при частоте тока 60 Гц , то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Если перепутать конец и начало — подключаемая машина не будет работать. Техническая пластина на боковине корпуса движка. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности.

    Переключение режимов двигателя: звезда-треугольник

    Соединение обмоток звездой и треугольником У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника. Произошёл тут такой случай.

    Для чего это необходимо делать? Одновременно с запуском КМ2 при помощи его дополнительного нормально разомкнутого контакта БКМ2 запускается реле времени, контакты которого переключаются, но срабатывания КМ1 не происходит, так как БКМ2 в цепи катушки КМ1 разомкнут. Реле времени, совмещенное с пускателем K1 в этой схеме, работает в цепи управления с небольшими токами, поэтому, может быть заменено обычным реле времени с тремя парами блок-контактов. В ином случае она будет трёхпроводной.

    Следовательно, для России линейное напряжение В для такого двигателя надо использовать схему подключения звезда. Поэтому, применяются разные способы, с целью уменьшения пускового тока. Подключение электродвигателя на 220В треугольником и звездой Демонстрация работы Какой вид лучше

    Соединение обмоток звездой и треугольником

    В таком случае, если из схемы исключено токовое реле, и переключение режимов осуществляется по уставке таймера, то в момент перехода на треугольник будут наблюдаться всё те же броски тока почти такой же продолжительности, как и при пуске с неподвижного состояния ротора.

    Начало выводов присоединяют к соответствующим фазам питающей сети.

    Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели рубильники. Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости мкФ с рабочим напряжением не менее В.

    Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат.

    В ней нет нулевого провода, его просто некуда подключать. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Однако простота требует жертв.

    Читайте дополнительно: Энергетический паспорт предприятия кто должен делать

    Соединение «звездой» и его преимущества

    Когда в обмотках появляется трех фазное напряжение , на их полюсах происходит образование магнит ных потоков. В общем, подключил он неправильно, потому двигатель и сгорел. Также стоит обратить внимание на то, что пуско-защитная аппаратура подбирается на номинальную мощность электродвигателя, но при некорректном подключении звездой просто физически не может выполнять свои функции.

    Мягкий пуск двигателя. Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.

    При цитировании материалов сайта активная гиперссылка на l При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Звезда и треугольник принцип подключения.

    Каталог реле и аппаратуры

    Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку — вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования. Правда, встречаются иногда экземпляры несколько иной конфигурации.

    После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды.

    Кроме этого нельзя отрицать тот факт, что когда отключается контактор одного соединения Y, а двигатель еще не набрал нужных оборотов, срабатывает фактор самоиндукции, и в сеть поступает повышенное напряжение, что может вывести из рабочего состояния другое рядом включенное оборудование и приборы. Иными словами, электродвигатель включается по схеме подключения «треугольник».

    Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.

    Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. Что такое звезда и треугольник в трансформаторе?

    *** Сайт принадлежит Елене Кравцовой Adblockdetector

    Запуск электродвигателя по схеме «звезда-треугольник»

    Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

    Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

    Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту.

    Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам.

    Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

    Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга.

    Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью.

    Трехфазное напряжение подается на начало обмоток.

    Рисунок 1 — Схема подключения «звезда»

    При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:

    U л = U ф ⋅ 3 U _л= U _ф cdot sqrt{3}

    где: — напряжение между двумя фазами; — напряжение между фазой и нейтральным проводом; Значения линейного и фазного токов совпадают, т. е. Iл = Iф.

    При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно.

    Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток.

    При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.

    Рисунок 2 — Схема подключения «треугольник»

    • Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:
    • I л = I ф ⋅ 3 I _л=I _ф cdot sqrt{3}
    • где: — линейный ток; — фазный ток.
    • Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:
    • M n = m ⋅ U 2 ⋅ r 2 ´ ⋅ p 2 ⋅ π ⋅ f ( ( r 1 + r 2 ´ ) 2 + ( x 1 + x 2 ´ ) 2 ) M _n = { m cdot U^2 cdot acute r_2 cdot p } over { 2 cdot %pi cdot f( ( r _1 + acute r _2 )^2 + ( x_1 + acute x_2 )^2 )}
    • где: U — фазное напряжение обмотки статора; r1 — активное сопротивление фазы обмотки статора r2 — приведенное значение активного сопротивления фазы обмотки ротора; x1 — индуктивное сопротивление фазы обмотки статора; x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора; m — количество фаз; p — число пар полюсов.
    • Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:
    • U ф = U л 3 = 380 3 = 220 В U _ф= {U _л} over { sqrt{3} } = {380} over {sqrt{3}} =220В
    • Фазный ток равен линейному току и равен:
    • I ф = I л = U ф Z = 220 10 = 22 A I _ф=I _л= {U _ф} over {Z } = {220} over {10} =22A

    После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:

    1. U ф = U л = 380 B U _ф=U _л =380B
    2. I ф = U ф Z = 380 10 = 38 A I _ф = {U _ф} over {Z} = {380} over {10}=38A
    3. I л = 3 ⋅ I ф = 3 ⋅ 38 = 65 ,8 A I _л= sqrt{3} cdot I _ф=sqrt{3} cdot38=65,8A

    Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а
    значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность.

    Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи.

    Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

    С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда».

    После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник».

    Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.

    Рисунок 3 — Временная диаграмма реле времени 80.82

    Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы
    «звезда-треугольник», в которой используется три электромагнитных пускателя.

    Рисунок 4 — Силовая часть схемы «звезда-треугольник»

    Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.

    Рисунок 5 — Управление схемой «звезда-треугольник»

    Разберем алгоритм работы данной схемы:

    После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1. 1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2.

    Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.

    2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.

    2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

    Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.

    Список использованной литературы:

    1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
    2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
    3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907

    Подключение электродвигателей к сети — схемы 220/380 Вольт асинхронных трехфазных двигателей

    Подключение асинхронного трехфазного электродвигателя АИР к сети с напряжением 220/380/660 Вольт — это упорядоченное схемой, соединение концов обмоток выводов в клеммной коробке.

    Подключение 6/3/8 проводов, через конденсаторы, с пусковой защитой, магнитными пускателями, частотники. Схемы подключения — звезда, треугольник, комбинированное.

    От правильного монтажа напрямую зависит срок службы и эффективность оборудования.

    Предусмотрено подключение асинхронного трехфазного электродвигателя 220/380 Вольт к однофазной сети 220В при помощи фазосдвигающего конденсатора. Соединение обмоток двигателя производится соответствующей установкой перемычек в клеммной коробке.

    Внимание! Использование электродвигателей без заземления, автомата, пусковой, защитной аппаратуры запрещено.

    Выбор схемы подключения электродвигателя Звезда или Треугольник?

    Завод производитель указывает на бирке двигателя АИР схему подключения электромотора «Δ / Y 220/380» или «Δ / Y 380/660».

    Схема подключения электродвигателяНапряжение сети питания
    Звезда380 В660 В
    Треугольник220 В380 В
    • Электродвигатели 220/380 Вольт — современные модели до 112 габарита — 7,5 кВт. Ранее выпускались серии 4А, 4АМ, 5А, 5АМ до 315 габарита — 132 кВт. Подключение к сети 220В треугольником, к 380В звездой.
    • Электродвигатели 380/660 Вольт — встречается в моделях, мощностью от 4 кВт. Схема для 380В — треугольник, для 660В — звезда.

    Схема подключения электродвигателя звезда

    Cоединение трёхфазного электродвигателя схемой подключения звездой, то на начало обмоток подают трехфазное напряжение, концы статорных обмоток соединяют в одной точке нейтральной, нулевой. Более высокое напряжение питания — 660В для двигателей 380/660 и 380В для двигателей 220/380, рабочие и пусковые токи будут ниже. Однако при этом невозможно достичь паспортной мощности электродвигателя.

    Преимущества схемы подключения 380В, 660В:

    • Максимальный КПД мотора
    • Более надежная работа двигателя
    • Допускается не длительная перегрузка

    Схема подключения электрического двигателя треугольник

    При подключении двигателя с короткозамкнутым/фазным ротором треугольником конец одной статорной обмотки последовательно соединяется с началом следующей. Данный тип подключения при запуске имеет высокую силу тока и тяжелую пусковую нагрузку, что может привести к пробою изоляции.

    Преимущества схемы подключения 220Вольт, 380Вольт:

    • Рабочая мощность соответствует паспортной
    • Улучшенное тяговое усилие
    • Маломощные электродвигатели могут быть подключены к однофазной сети питания 220 В через пусковые и рабочие конденсаторы. Паспортная мощность мотора ниже на 30%

    Комбинированный тип подключения трехфазного асинхронного электродвигателя

    Комбинированный тип подключения — электродвигатель 380/660В подключают звездой с напряжением треугольника — 380В. Пуск двигателя плавный, низкие пусковые токи. Переключение между схемами автоматически, вручную с помощью магнитного пускателя, пускового реле, пакетного переключателя.

    В случае с мощными электромоторами (начиная с 5,5/3000) важно обеспечить плавный пуск без перегрузок и дальнейшую работу на максимальной мощности. Комбинированная схема подключения асинхронного двигателя обезопасит мотор от высоких пусковых токов и обеспечит паспортную мощность двигателя.

    Запуск по схеме «звезда / треугольник» подходит для моторов с большими маховыми массами, у которых при номинальной скорости сразу набрасывается нагрузка. Схемы подключения скачать pdf.

    Актуально для техпроцессов с пропорциональным возрастанием нагрузки на вал — насосы, вентиляторы, пилы, компрессоры.

    Подключение асинхронного двигателя к однофазной сети 220В

    Для использования асинхронного электродвигателя от бытовой электрической сети 220 В применяют фазосдвигающий конденсатор. Таким образом достигается мягкий запуск агрегата. Методы подключения конденсаторов к бытовой сети 220В:

    • с выключателем
    • напрямую, без выключателя
    • параллельное включение двух электролитов

    Конденсатор для двигателя должен превышать его по напряжению минимум в 1,5 раза. В противном случае возникнут скачки напряжения, что чревато поломками.

    Подбор конденсатора для подключения двигателя к сети питания 220В

    Правильный подбор конденсатора для подключения трехфазного двигателя к однофазной сети предполагает расчет емкости. Ее значение зависит от схемы подключения обмоток и других параметров.

    Формула расчета емкости конденсатора для схемы «Звезда»

    Формула расчета емкости конденсатора для схемы «Треугольник»

    Где Емк — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В.

    Напряжение сети питания электродвигателей АИР

    Габариты электродвигателей АИР:

    Проблемы с выбором и монтажом электродвигателя?

    Современные электродвигатели производят с 6 проводами, реже 3/4/8 выводов. Определить схему подключения электродвигателя можно по бирке и данным в клеммной коробке. Менеджеры Слобожанского завода всегда готовы помочь определить схему подключения двигателя 220/380/660 Вольт.

    Купить асинхронный трехфазный электродвигатель АИР, однофазный двигатель для сети 220 Вольт. Специалисты подберут оптимальную схему подключения звездой, треугольником под оборудование и специфику применения.

    В сервисном центре СЛЭМЗ ремонтируем электродвигатели — замена контактов, перемычек, сальников, восстановление выводов.

    «Звезда/Треугольник»: рассказываю, как работает силовая и слаботочная схема

    По схеме подключения двигателей “звезда-треугольник” написано предостаточно. Рассказываю, полагаясь на свой опыт и понимание вопроса. Как всегда, буду давать теорию и показывать, как это выглядит на практике.

    Если нужны академические знания, с ними можно ознакомиться в книгах и учебниках, которые выложены для свободного скачивания у меня на блоге, на странице Скачать.

    Внимание! В статье говорю только о двигателях на напряжение 220/380В и 380/660В. И может быть, о 127/220В.

    Напряжение питания — линейное 380 В.

    Для начала, если кто совсем не в теме, из какой области знаний вообще это всё? Речь идёт об одном из распространенных способов подключения трехфазного асинхронного электродвигателя, при котором обмотки двигателя сначала подключаются к питающей сети по схеме “звезда”, а потом – по схеме “треугольник”. В молодых пытливых умах сразу возникнет вопрос – “Зачем это нужно?” Рассказываю подробно.

    Зачем нужна схема “Звезда – Треугольник”?

    Корень проблемы кроется в пусковых токах и чрезмерных нагрузках, которые испытывает двигатель, когда на него подают питание напрямую. Да что там двигатель – весь привод при пуске скрежещет и содрогается!

    ВАЖНО! Если дочитали досюда, ознакомьтесь с моей статьёй про пусковые токи. Там очень подробно о том, откуда они берутся, как их узнать, посчитать и измерить.

    • Особенно это критично там, где нет понижающей передачи – редуктора или ремня на шкивах.
    • Особенно это важно там, где на валу двигателя насажено что-то массивное – крыльчатка или центрифуга.
    • Особенно это значимо там, где мощность двигателя – более 5 кВт, а скорость вращения большая (3000 об/мин).

    Вот такие кабанчики не любят, когда их включают в сеть напрямуюВот такие кабанчики не любят, когда их включают в сеть напрямуюПривод отличается от двигателя, как колесо от покрышки и как пускатель от контактора.

    Так вот, для того, чтобы уменьшить мощность на валу двигателя во время пуска, его включают сначала на пониженное напряжение, он не спеша разгоняется, а потом врубают по полной, на номинальную мощность. Реализуется это не изменением напряжения реостатами и трансформаторами, а более хитро. Но по порядку.

    Схемы “Звезда” и “Треугольник”

    У любого классического трехфазного двигателя есть три обмотки статора. Они могут иметь разную конфигурацию в пространстве, дополнительные выводы, но их три.

    Многоскоростные двигатели не в счёт.Схема обмоток статора с выводами для трехфазного асинхронного двигателя Схема обмоток статора с выводами для трехфазного асинхронного двигателя

    Как подключить все эти 6 выводов, если у нашего источника питания всего 3 фазы?

    На ум пришла статья про включение транзисторных датчиков. Там похожая ситуация – у датчика три вывода, а у нагрузки два…

    Это простейшая логическая задача, у которой есть два решения – “Звезда” и “Треугольник”:

    Схема соединения обмоток статора “звездой”Схема соединения обмоток статора “звездой”Схема соединения обмоток статора “треугольником”Схема соединения обмоток статора “треугольником”

    В результате имеем у каждой схемы три вывода, которые можно подключать к источнику питания. А вот почему напрямую подключать не всегда возможно, об этом статья.

    Эти схемы также имеют названия “Delta” и “Star“, и могут обозначаться на схемах как D и S. Но чаще обозначение идёт от вида схем – Δ и Υ. Или D и Y.

    Если интересно, можно у меня почитать, чем отличаются трехфазная система от однофазной, а линейное напряжение – от фазного.

    На обратной крышке борно обычно указывают схемы подключения и обозначения выводов:

    Схемы подключения выводов двигателя: Звезда и Треугольник Схемы подключения выводов двигателя: Звезда и Треугольник

    По по схемам мы плотно пройдёмся ниже.

    И ещё немного теории.

    Мощность на валу при подаче номинального напряжения будет одинакова хоть в Звезде, хоть в Треугольнике. А токи разные, ведь P=UI. Это происходит потому, что Напряжение питания в этих схемах отличается в √3 раз, ток – тоже. В “звезде” напряжение питания двигателя (линейное) больше номинала катушки, а в “треугольнике” ток питания двигателя больше тока катушки в 1,73 раза.

    Другими словами, если “базовое” рабочее напряжение катушки равно 220 В, то напряжение в “Звезде” будет 1,73 · 220 = 380 В. Другими словами, Uл=1,73Uф, где Uф – это номинальное напряжение катушки, Uл – номинальное напряжение питания. Для треугольника ситуация повторяется, но только для тока.

    Таким образом, если написано одно из напряжений, можно легко узнать другое напряжение и ток:

    Указано напряжение только в треугольнике 400 В Указано напряжение только в треугольнике 400 В

    Вот этот же двигатель, вид на клеммы в коробке:

    ВРЕМЕННОЕ Подключение обмоток статора треугольником – клеммы двигателя ВРЕМЕННОЕ Подключение обмоток статора треугольником – клеммы двигателя

    В данном случае на шильде приведён только треугольник, но чудес не бывает – этот двигатель может работать и в звезде, главное переключить правильно обмотки. Напряжение “Звезды” будет 1,73 · 400 = 690 В, ток в то же число меньше.

    Кто хочет копнуть поглубже – в конце выложу для скачивания умные книги.

    Звезда / Треугольник: работа схемы

    Хорош теорию, даёшь практику! Как же реализован алгоритм работы схемы подключения? Если очень коротко, схема “Звезда-Треугольник” работает так.

    1. Подается питание (а напряжение питания у нас во всех режимах 380 В) на выводы U1, V1, W1, а выводы U2, V2, W2 соединяются в одной точке. Реализуется схема “Звезда”, в которой вместо номинала 660 В подается 380 В:

    Первый момент запуска. Обмотки в “Звезде”. Около обмоток указано “380” – это номинал. Реально в данном случае на катушках будет действовать напряжение 220 В!

    2. Так двигатель работает несколько секунд (от 5 с до нескольких минут, зависит от тяжести пуска). Это время задается таймером (реле времени), который входит в состав схемы.

    3. Далее питание полностью снимается на время второго таймера, двигатель по инерции вращается несколько периодов напряжения (время от 50 до 500 мс). Этот защитный интервал необходим для гарантированной безаварийной работы схемы.

    Контактор “звездного” режима должен успеть выключиться, прежде чем включится “треугольный” контактор. Ведь время выключения у контакторов всегда в несколько раз больше, чем время включения, из-за явлений намагничивания.

    К сожалению, эта пауза технически реализуется далеко не всегда…

    4. После второго таймера включается основной режим, “Треугольник”, в котором двигатель получает нормальное питание и работает, пока его не выключат:

    Схема включения треугольник – работа на крейсерской скорости. На катушках – номинальное напряжение.

    Всё, если коротко. Дальше будут временные диаграммы, будет всё понятно.

    Есть варианты и без второго таймера, но с обязательной блокировкой включения “Треугольника”, пока не выключится “Звезда”.

    Теперь о том, как реализуется этот алгоритм. Для удобства разделим схему на две части, которые могут даже иметь разное питание – силовую и управляющую.

    Реализация силовой части схемы

    Понятно, что включение двигателя производится контакторами. Их нужно три.

    Есть варианты схемы “Звезда-Треугольник” с использованием Преобразователей частоты и Устройств плавного пуска (мягкого пускателя, софтстартера), но не будем раздувать статью.

    • КМ1 – это общий контактор, он подаёт питание на выводы U1, V1, W1 сразу и навсегда.
    • КМ2 – контактор “Звезды”, он соединяет выводы U2, V2, W2 в одну точку на время разгона.
    • КМ3 – контактор “Треугольника”, он подает питание на выводы U2, V2, W2 для дальнейшей работы в номинальном режиме.

    Силовая часть схемы “Звезда – Треугольник” Силовая часть схемы “Звезда – Треугольник”

    Следите за цветами, буду и дальше их соблюдать для простоты восприятия:

    • общий контактор КМ1 – синий,
    • контактор “Звезды” КМ2 – зеленый,
    • контактор треугольника КМ3 – красный.

    Реализация части управления

    Включать и выключать эти три контактора можно разными способами, вот несколько:

    • Три тумблера. Самый простой и дешевый способ. А что? Главное соблюсти алгоритм!
    • Специальный переключатель 0 – Y – Δ. Его можно купить или собрать самостоятельно, из любого галетного или кулачкового, типа ПКП.
    • Релейная схема с таймером. Её рассмотрим ниже.
    • Управление от специализированного реле. Это отдельная статья, следите за новостями.
    • Управление от универсального контроллера (PLC). Тут рассматривать нечего – это тот же 1 или 2 вариант, только управляет не человек, а программа.

    Слаботочная часть может быть вообще гальванически развязана от силовой, например через трансформатор 380 /110 В или блок питания 220 / 24 VDC. Более того, вообще питаться от аккумулятора 12 В. Главное, чтобы напряжение катушек пускателей соответствовало. Что такое гальваническая развязка и почему она безопасна – читайте про систему заземления IT.

    Короче, вот простейшая схема:

    Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическаяСхема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическаяВ контактах с временной задержкой все постоянно путаются.

    У меня – правильно)

    Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ.

    Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.

    Я писал подробно про задержку времени в статье про приставку выдержку времени ПВЛ. Рекомендую, там обширная теоретическая часть.Также годится электронное реле, как в статье про пневматический термопресс.

    Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть через классическую схему с самоподхватом.

    Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):

    Практическая схема “Звезда-треугольник” с блокировкой Практическая схема “Звезда-треугольник” с блокировкой

    Блокировка реализована на НЗ контактах, подробно об этом и не только в статье про подключение двигателя при помощи  магнитного пускателя. Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!

    Это реальная схема, можно её применять. Если что не понятно – спрашивайте.

    Кстати, вместо КА1.1 можно поставить НО контакт с задержкой Отключения. То есть, включается сразу после подачи питания, выключается – через время. Но для этого нужно два отдельных реле времени с разными принципами работы, которые должны быть синхронизированы для гарантированной паузы.

    Именно так и реализуется в специализированных реле времени “Звезда-Треугольник”.

    Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт.

    Это необходимо для дополнительной проверки работоспособности реле времени КА1.

    Временные диаграммы работы схемы “Звезда-Треугольник”

    С привязкой к моей схеме управления, диаграммы включения контакторов:

    Временные диаграммы схемы управления звезда-треугольник

    Тут вроде всё понятно, но есть одно важное замечание. Ещё раз. Между зеленой и красной областями обязательно нужен небольшой зазор (пауза).

    Его может не быть (пауза = 0), но эти области могут налазить друг на друга, если используются контакторы с катушкой постоянного тока (=24 VDC).

      В особенности при использовании обратновключенного диода (а он обязателен!), время выключения может быть больше времени включения в 7-10 раз!

    Это я к тому, что однажды мучался с такой схемой, в ней выбивал периодически вводной автомат. Поставили спец.реле с паузой, проблема была решена!

    Скачать

    Я постарался максимально раскрыть тему, но если вам нужны академические знания, пожалуйста перейдите в Источник статьи.

    P.S. Про использование специализированного реле времени “Звезда-Треугольник” читайте следующую статью.

    Видео, как работает реальная схема:

    Ещё некоторые мои статьи на Дзене про электродвигатели:

    • Как узнать обороты асинхронника по обмотке
    • Пример установки ПЧ Delta с регулировкой скорости в полировочный станок
    • Как затормозить электродвигатель
    • Выбор ПЧ насоса
    • Как правильно охлаждать силовой шкаф
    • Как измерить пусковой ток электродвигателя
    • Как определить направление вращения ротора
    • Про температуру двигателя

    Интересно? Ставьте лайк, подписывайтесь, задавайте вопросы!

    Если интересны темы канала, заходите также на мой сайт — https://samelectric.ru/ и в группу ВК — https://vk.com/samelectric

    Обращение к читателям, которым есть, что сказать: Если Вы готовы стать Автором, я могу предоставить страницы своего сайта!

    Обращение к хейтерам: за оскорбление Автора и Читателей канала — отправляю в баню.

    Цепь испытаний 8 | Infinispark

    Challenge Circuit 8

    Соединения двигателей звезда-треугольник

    Решение и практические результаты

    Ученики-электрики узнают о соединениях звезда VS треугольник, в основном, в двух разделах компетенции Сертификата III в области электротехники (системный электрик) (UEE30811 или UEE30820) — UEENEEG102A или UEEEL0020 — Решение проблем с низким напряжением переменного тока. цепей и UEENEEG006A или UEEEL0024 — Проверка и подключение вращающихся машин переменного тока. В контрольной схеме 8 задаются вопросы, связанные с соединениями двигателя со звездой и треугольником, которые в основном рассматриваются в документе UEEEL0024.

    В этом посте я расскажу об одном из способов решения схемы испытаний 8. В этой схеме испытаний шесть вопросов, давайте рассмотрим их один за другим.

    Challenge Circuit 8 подробности

    Трехфазный асинхронный двигатель можно подключить двумя способами — звездой или треугольником. Оба способа соединения имеют свое назначение в промышленности. Пожалуйста, ответьте на следующие вопросы о соединении двигателей по схеме звезда VS треугольник. Вот вопросы

    1. Какой тип подключения двигателя будет иметь разные линейные и фазные напряжения?
    2. Какой тип подключения двигателя будет иметь разные линейные и фазные токи?
    3. Какой тип подключения двигателя потребляет больше сетевого тока?
    4. Какой тип подключения двигателя будет потреблять меньше пускового тока?
    5. Какой тип подключения двигателя обеспечит более высокий крутящий момент двигателя?
    6. Какой тип подключения двигателя требует подключения нейтрали?

    A1: Соединение по схеме «звезда» имеет разное линейное и фазное напряжение

    Мы знаем, что линейное напряжение будет одинаковым при подключении по схеме «звезда» или «треугольник». Изменение фазного напряжения происходит при определенном соединении клемм двигателя. Если мы вспомним формулы для линейных и фазных напряжений для соединений «звезда» и «треугольник», ответ на этот вопрос станет довольно простым.

    Из приведенной выше формулы видно, что фазное напряжение двигателя, соединенного треугольником, такое же, как и линейное напряжение, тогда как фазное напряжение того же двигателя, соединенного звездой, покажет меньшее напряжение. Таким образом, ответ на вопрос «Какой тип подключения двигателя будет иметь разное линейное и фазное напряжение?» это Звездное соединение.

    На видео ниже показаны измерения напряжения для двигателя, соединенного звездой.

    A2: Соединение треугольником имеет разные линейные и фазные токи

    В отличие от линейного напряжения, которое остается неизменным, поскольку оно зависит от источника питания, линейные токи для двигателей будут изменяться в зависимости от нескольких факторов. Например, мощность двигателя, нагрузка на двигатель, коэффициент мощности, тип подключения двигателя и т. д. Если речь идет только об одном двигателе, работающем без нагрузки, мы сужаем разницу до одного фактора — типа подключения двигателя, это звезда или дельта.

    Вопрос в том, какое из этих двух подключений будет иметь разные линейные и фазные токи. Взглянув еще раз на формулы, мы можем получить представление об ответе на этот вопрос.

    Как видно из приведенных выше формул, линейный и фазный токи двигателя, соединенного звездой, будут одинаковыми, тогда как у двигателя, соединенного треугольником, они будут разными. Итак, ответ на этот вопрос — Delta Connection.

    A3: Двигатель, соединенный треугольником, будет потреблять больший линейный ток

    По формуле для линейного и фазного напряжения в соединении треугольником мы понимаем, что они одинаковы. Принимая во внимание, что, как обсуждалось в первом вопросе, фазное напряжение в соединении «звезда» меньше линейного напряжения. Следовательно, если мы используем один и тот же двигатель в обоих соединениях, напряжение на фазах (обмотках) двигателя будет выше в треугольнике по сравнению со звездой.

    Согласно закону Ома, если нагрузка не меняется, а напряжение увеличивается, ток, потребляемый нагрузкой, также увеличивается. Таким образом, мы можем с уверенностью сказать, что двигатель, подключенный по схеме «треугольник», будет потреблять больший фазный ток, чем тот же двигатель, подключенный по схеме «звезда». Однако вопрос касается линейного тока.

    Формула для линейного и фазного токов при соединении треугольником описывает, что линейный ток будет в SQRT(3) раза выше, чем фазный ток. Таким образом, ответ на этот вопрос — соединение Delta.

    Сравнение линейного тока между соединениями «звезда» и «треугольник» показано ниже.

    A4: двигатель, соединенный звездой, будет потреблять меньше пускового тока

    Используя объяснение из предыдущего вопроса, поскольку двигатель такой же, но напряжение по фазам меньше при соединении звездой, фазный ток также будет меньше . В отличие от соединения треугольником, где линейный ток выше фазного тока, при соединении звездой линейный и фазный токи одинаковы. Одна из причин, по которой используются пускатели звезда-треугольник, заключается в меньшем пусковом токе в ступени соединения звезды, что обеспечивает меньший пусковой момент и создает меньшую механическую и электрическую нагрузку на систему, тем самым увеличивая срок ее службы.

    Таким образом, если двигатель подключен по схеме «звезда», он будет потреблять меньший пусковой ток, чем если бы тот же двигатель был подключен по схеме «треугольник». Так что ответ здесь Star Connection.

    Сравнение пускового тока между соединениями «звезда» и «треугольник» показано ниже.

    A5: Двигатель, соединенный треугольником, будет обеспечивать более высокий крутящий момент

    В предыдущих двух вопросах обсуждаются токи двигателей, соединенных звездой и треугольником. Мы понимаем, что линейный ток соединения «треугольник» выше, чем у соединения «звезда». Поскольку линейное напряжение остается неизменным и при сохранении той же нагрузки, мы можем сказать, что крутящий момент двигателя зависит от потребляемого тока. Более высокий ток означает более высокий крутящий момент, а более низкий ток означает более низкий крутящий момент.

    Двигатель, соединенный треугольником, будет потреблять больше линейного тока, поэтому создаваемый им крутящий момент также будет выше по сравнению с соединением звезды того же двигателя. Таким образом, ответ на этот вопрос — соединение Delta.

    На видео ниже показано подключение двигателя по схеме «звезда» и «треугольник» и измерение тока для обоих. Он также сравнивает различные крутящие моменты двигателя, создаваемые в обоих соединениях.

    A6: Ни один Тип подключения двигателя Требуется нейтраль

    Одной из функций нейтрального проводника является отвод небалансного тока от трехфазной цепи. Однако сбалансированные трехфазные нагрузки равномерно потребляют трехфазную мощность и позволяют обратному току от каждой фазы проходить через две другие фазы, не оставляя небалансного тока. Вот почему сбалансированные трехфазные нагрузки не нуждаются в нейтральном соединении или проводнике.

    Поскольку трехфазный двигатель представляет собой сбалансированную трехфазную нагрузку, он также оставляет любые несимметричные токи и не требует подключения нейтрали. Таким образом, нет необходимости в нейтрали, независимо от того, подключен ли трехфазный двигатель по схеме «звезда» или «треугольник».

    Заключение

    Соединение по схеме «звезда» и «треугольник» в двигателях является важной темой, но ученикам-электрикам также легко их спутать. Тем не менее, безопасное подключение двигателей к оборудованию, как в нашем Motor Faults Pracbox, облегчает их понимание на практике.

    Если вы хотите обсудить другие важные моменты, касающиеся различий между соединениями «звезда» и «треугольник», поделитесь ими в комментариях, чтобы наши читатели и студенты могли извлечь пользу из вашего мнения.

    Спасибо за внимание.

    Husnen Rupani

    Я помогаю организациям по обучению электротехнике повышать вовлеченность учащихся, разрабатывая инновационное учебное оборудование. У меня есть поговорка: «Электричество — его нельзя увидеть, его нельзя услышать, но когда почувствуешь, может быть уже поздно». Моя главная цель — превратить эту черную магию, которую мы называем электричеством, во что-то понятное людям.

    Правильный способ подключения 6-проводного двигателя с двойным напряжением «звезда-треугольник» — ElectricMotorRewindingSolutions

    Соединение двигателя с двойным напряжением «звезда-треугольник» в большинстве случаев ошибочно принимается за то же самое, что и 6-проводной двигатель с пуском по схеме «звезда-треугольник». Они не. И хотя они имеют одинаковую нумерацию выводов или клемм, их применение совершенно различно.

    В большинстве случаев это соединение можно найти на двигателях стандарта IEC. Некоторые стандартные двигатели NEMA, такие как двигатели на 2300 В/4160 В, также имеют это соединение.

    Я научу вас, как подключить двигатель двойного напряжения звезда-треугольник

    1. Убедитесь, что автоматический выключатель или любой используемый разъединитель находится в положении «ВЫКЛ.».

    2. Прочтите паспортную табличку и убедитесь, что двигатель рассчитан на двойное напряжение.

    3. Измерьте входное напряжение автоматического выключателя или отключите его с помощью мультиметра. Делайте это с осторожностью.

    4. Если входное напряжение соответствует или близко к нижнему напряжению, указанному на паспортной табличке, подключите клеммы двигателя к треугольнику.

    5. Если входное или питающее напряжение соответствует или близко к более высокому напряжению, указанному на паспортной табличке, подключите клеммы двигателя к звезде.

    Я объясню, почему каждый из шагов важен с точки зрения безопасности и в то же время позволяет избежать повреждения вашего двигателя.

    Шаг 1. Убедитесь, что на двигатель не подается питание

    • Отключите питание. Это может быть разъединитель, автоматический выключатель, выключатель ВКЛ и ВЫКЛ или блок предохранителей.
    • Проверьте кабель питания двигателя с помощью мультиметра и убедитесь, что питание подается.
    • Всегда будьте начеку. Никогда не просите никого выключить его для вас. Сделай это сам.
    • Поставьте бирку или замок, чтобы никто случайно не включил.

    Шаг 2: Прочтите информацию на паспортной табличке

    На паспортной табличке должно быть указано, что имеется только одна номинальная мощность, одна скорость, одна номинальная частота, но два номинальных напряжения.

    Примеры: 230/400, 280/480, 480/830, 208-230/380 и некоторые другие конфигурации напряжения IEC. 230 В — низкое напряжение, 380 — высокое.

    Шаг 3: Проверьте напряжение питания с помощью мультиметра.

    Этот шаг предназначен только для подтверждения, но если вы абсолютно правы в отношении напряжения питания, вы можете его пропустить. Motor Rewinding Solutions.com заботится о вашей безопасности.

    Сторона питания — это входное напряжение, подаваемое на автоматический выключатель, три кабеля непосредственно перед предохранителями или, если у вас есть магнитный контактор, вход в верхней части устройства.

    Шаг 4: Если напряжение питания соответствует низкому напряжению, указанному на паспортной табличке, подключите двигатель к треугольнику .

    .

    Причина этого в том, что линейное напряжение при соединении треугольником такое же, как и фазное напряжение (Vлинейное = VØ на треугольнике). Группа катушек на каждой фазе внутри двигателя рассчитана на полное питание низкого напряжения

    Шаг 5: Если напряжение питания соответствует высокому напряжению, указанному на паспортной табличке, подключите двигатель к звезде.

    Причина этого в том, что линейное напряжение в соединении звездой равно фазному напряжению X 1,732 (V линии = V Ø на звезде). Это означает, что при соединении звездой катушки двигателя, предназначенные для треугольника, могут выдерживать более высокое напряжение, в 1,732 раза превышающее номинальное напряжение.

     Например, двигатель, рассчитанный на 230 В, треугольник, может питаться от 380 В при подключении к звезде. С учетом сказанного, не просто выбирает соединение для подключения двигателя, надеясь, что оно будет работать . Случайно может быть, но вы также рискуете повредить двигатель .

    Можно ли подключить 6-проводной двигатель двойного напряжения к пускателю по схеме «звезда-треугольник»?

    Если ваш двигатель мощностью 7,5 л.с. или больше, может потребоваться использование пускателя по схеме «звезда-треугольник». Вопрос в том, можете ли вы использовать это на 6-проводном двигателе с двойным напряжением?

    Вы можете использовать пускатель по схеме «звезда-треугольник» на 6-проводном двигателе с двойным напряжением, если вы используете номинальное низкое напряжение, указанное на паспортной табличке двигателя. Это также означает, что номинальное низкое напряжение двигателя соответствует напряжению питания.

    Например, на двигателе 230/380 вольт можно использовать пускатель звезда-треугольник при соединении треугольником 230 вольт. Вы будете использовать звезду в качестве начального соединения и треугольник в качестве рабочего соединения.

    Что делать, если напряжение питания 380 вольт? Если входное напряжение двигателя соответствует высокому номинальному напряжению двигателя, вам необходимо подключить его к звезде, и вы не можете использовать пускатель звезда-треугольник.

    Когда напряжение питания требует подключения двигателя к звезде, вы не можете использовать пускатель звезда-треугольник. Но есть и другие альтернативы. Некоторые из вариантов:

    • через линию или прямое онлайн
    • Снижение напряжения. Начало
    • Электронный мягкий старт
    • . Повторная моторика с одним Voltage 670024 9024 . от источника питания, все другие методы запуска двигателя могут быть более дорогими, но бывают случаи, когда у вас просто нет выбора.  

      Если ваш двигатель вышел из строя из-за частых остановок и пусков и его необходимо перемотать, вы можете попросить ремонтную мастерскую перемотать двигатель на 6 проводов звезда-треугольник с использованием высокого номинального напряжения.

      Например, если напряжение вашей сети составляет 460 В и у вас есть двигатель на 380/460 В для перемотки, вы можете перемотать его на 460 В, 6 выводов звезда-треугольник. Это будет двигатель с одним напряжением, и он будет работать со стартером звезда-треугольник. Motor Rewinding Solutions готова предоставить вам измененные параметры, но мне нужны исходные данные обмоток двигателя.

      Как точно определить, что двигатель двухвольтный?

      Можно сказать, что это просто. Просто посмотрите на паспортную табличку, и если есть два напряжения, двигатель имеет двойное напряжение.

      Двигатель считается двойным напряжением, если низкое паспортное напряжение составляет 58 % от номинального высокого напряжения. Если на паспортной табличке указано два напряжения, но разница составляет всего 10 %, это диапазон допустимого напряжения, с которым может работать двигатель, но не считается двигателем с двойным напряжением.

      Примером этого является двигатель с паспортным напряжением 530/580 В. Это считается двигателем с одним напряжением, и его не следует путать с двойным.

      Почему производители так делают? Они разработали двигатель для работы с диапазоном напряжения, поэтому они могут продавать его в странах с другим напряжением питания и при этом обеспечивать крутящий момент, указанный на паспортной табличке двигателя. Умный поступок.

      Что лучше, если двигатель с двойным напряжением соединен звездой или треугольником?

      Возникает некоторая путаница в отношении того, какое соединение лучше, когда речь идет о силе крутящего момента или эффективности. Хотя это может быть правдой в отношении производственной стороны двигателя, для нас, конечных пользователей двигателя, нет никакого влияния на мощность или иную эффективность, если вы подключите его треугольником или звездой. Вот факт;

      На двигателе с двойным напряжением, если он соединен треугольником в приложениях с низким напряжением или звездой в приложениях с высоким напряжением, и напряжение питания соответствует этим напряжениям, мощность двигателя или номинальная мощность в кВт будут одинаковыми на оба соединения

      Единственным преимуществом, которое вы можете получить, является привилегия использовать его в пускателе по схеме «звезда-треугольник», но это ограничено использованием только низкого номинального напряжения.

      Каждый двигатель разработан производителем для работы с определенным типом соединения, и мы не можем изменить это, если не перепроектируем и не перемотаем двигатель.

      При соединении звездой напряжение на виток меньше, чем при соединении треугольником, что означает меньшую нагрузку на изоляцию провода.

      Однако, поскольку производитель двигателей хочет предоставить клиентам двигатели, которые могут использовать пускатели звезда-треугольник, они производят двигатели с соединением треугольником. Но это только одна из многих причин.

      Подключение 6-проводного двигателя двойного напряжения по схеме «звезда» или «треугольник», используя эту таблицу

      В зависимости от того, какой тип проводов имеется на клеммной коробке, 6-проводной двигатель двойного напряжения следует подключать определенным образом. Это таблица того, как должны быть подключены выводы.

      Если в соединительной коробке двигателя используется клеммная колодка, убедитесь, что правильные номера выводов соединены латунными звеньями. Некоторые отведения имеют цветовую маркировку, но вы все равно заметите, что на отведениях напечатаны T1, T2, T3, T4, T5 и T6.

      Почему звезда? Почему Дельта? | Насосы и системы

      Вы, наверное, заметили, что трехфазные двигатели могут иметь различное количество выводов, выходящих из распределительной коробки. Наиболее распространенными числами являются три, шесть, девять или двенадцать.

      Обратите внимание, что все эти числа кратны трем, поскольку их комбинации должны соответствовать трем входящим фазам. Эти комбинации выводов предназначены для работы с одинарным или двойным напряжением и соединениями обмотки по схеме «звезда», «треугольник» или «звезда/треугольник». Двигатель с двенадцатью выводами обеспечивает сочетание двойного напряжения и соединения по схеме «звезда/треугольник». Чуть позже мы подробно рассмотрим каждый из них.

      Какова цель этих двух соединений и почему двигатели намотаны звездой, треугольником или их комбинацией? Комбинация звезда/треугольник дает несколько преимуществ, и мы рассмотрим их в этой колонке.
      Почему двигатели с одним и двумя напряжениями намотаны по схеме «звезда» или «треугольник»? Почему бы просто не стандартизировать одно или другое? Хотя схемы соединения звездой и треугольником довольно просты, настоящие обмотки двигателя гораздо сложнее. Часто соединение будет зависеть от производственного процесса.

      Например, соединение звездой требует меньшего количества витков, чем соединение треугольником (1,732:2), для достижения тех же электрических характеристик. Это упрощает машинную намотку небольших двигателей с узкими пазами статора. С другой стороны, часть выводов в соединении треугольником с двойным напряжением может иметь меньший диаметр, чем у соединения звездой. Это снижает стоимость проволоки и часто упрощает производство. Инженер крупного производителя двигателей недавно сказал мне: «Это акт жонглирования между количеством витков, количеством цепей и размером провода».

      Трехвыводные двигатели
      Обмотки статора трехвыводного двигателя могут быть соединены треугольником или звездой (см. рис. 1). Эти двигатели намотаны для одного напряжения, и в процессе производства обмотки соединяются по схеме «звезда» или «треугольник».

      Рис. 1. Трехпроводное подключение двигателя

      Входящее питание подключается к клеммам T1, T2 и T3. Преимущество этой конструкции заключается в том, что ошибки при монтаже обычно избегаются из-за предварительно подключенных обмоток. Необходимо еще проверить правильное направление вращения.

      Шестивыводные двигатели
      Шестивыводные двигатели намотаны таким образом, что обмотки можно соединить звездой или треугольником (см. рис. 2). Если выводы T4, T5 и T6 соединены вместе, а питание подается на выводы T1, T2 и T3, достигается соединение звездой. Если выводы T1 и T6, T2 и T4 и T3 и T5 соединены вместе, а питание подается на вершины, соединение является треугольником.

       

      Рис. 2. Соединения двигателя с шестью выводами

      В США соотношение высокого и низкого напряжения составляет 2:1 (460 вольт: 230 вольт), а в Европе — √3:1 (380 вольт: 220 вольт). Это позволяет Европе воспользоваться соотношением напряжения 1,732 между соединениями по схеме «звезда» и «треугольник» (обсуждается в части 1) и использовать их для двойного напряжения. Поскольку импеданс соединения «звезда» в три раза больше сопротивления соединения «треугольник», высокое напряжение подключается звездой, а низкое напряжение подключается треугольником.

      Другим применением двигателя с шестью выводами, используемым в США и Европе, является метод запуска при низком напряжении, известный как запуск по схеме звезда/треугольник. В этом приложении используется специальный пускатель, соединяющий обмотки звездой во время пуска и переключающий их на треугольник после того, как двигатель достигнет определенной скорости.

      Более низкое пусковое напряжение снижает пусковой ток примерно до 1/3 от нормального. Пусковой момент также существенно снижается, поэтому скорость, при которой происходит переход от звезды к треугольнику, будет зависеть от инерции нагрузки. Центробежные насосы и вентиляторы часто могут достичь полной скорости перед переключением в режим работы по схеме Delta.

      Двигатели с девятью выводами
      Двигатели с девятью выводами могут быть соединены по схеме «звезда» или «треугольник», но это решение принимается производителями. Их цель состоит в том, чтобы обеспечить работу с двумя напряжениями в приложениях, в которых соотношение напряжений составляет 2:1. На рис. 3 показаны соединения для различных проводов.

       

       

      Рис. 3. Соединения двигателя с девятью выводами

      Обратите внимание, что обмотки статора как звезда, так и треугольник состоят из шести отдельных цепей. Если бы каждое из открытых отведений было соединено вместе (T4 и T7, T5 и T8, а также T6 и T9) фазные катушки будут соединены последовательно, а приложенное фазное напряжение на Т1, Т2 и Т3 составит 460 вольт. Если фазное напряжение составляет 230 вольт, выводы должны быть соединены таким образом, чтобы образовались две параллельные цепи по схеме «звезда» или «треугольник».

      Так как эта диаграмма может стать сложной, я представлю ее в другом виде и покажу только соединение звездой. На рис. 4 показано последовательное соединение звездой, рассчитанное на 460 вольт. Обратите внимание, что соединения такие же, как указано выше, и выводы T7, T8 и T9соединяются, образуя звезду.

       

       

      Рис. 4. Серийное соединение звездой

      Прямоугольники представляют катушки обмотки, и для простоты их две на цепь. Если принять, что сопротивление каждой цепи равно 10 Ом, то общее сопротивление в каждой фазе равно 20 Ом. В последовательной цепи сопротивление равно сумме сопротивлений отдельных элементов. Если двигатель должен работать от 230 вольт, сопротивление в цепи должно быть уменьшено, чтобы выходная мощность оставалась прежней.

      На рис. 5 показаны те же наборы обмоток, что и на рис. 4, но подключенные на 230 вольт. В этом примере обмотки Т7, Т8 и Т9 соединены параллельно с Т1, Т2 и Т3. Если вы внимательно посмотрите на соединения с правой стороны, то увидите, что они образуют две параллельные схемы «звезда». В параллельной цепи сопротивление ведет себя иначе, чем в последовательной цепи.

       

       

      Рис. 5. Параллельное соединение звездой

      Каждая из фаз по-прежнему протекает через два сопротивления по 10 Ом, но общее сопротивление совсем другое.