Содержание

Технические характеристики моторных масел: свойства, вязкость

Вязкость моторного масла

Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:

  • кинематическая вязкость показывает способность материала сопротивляться течению под действием силы тяжести. Измеряется в стоксах (Ст) или в квадратных миллиметрах в секунду (мм2/с). Чаще всего характеристику определяют для температур 40 и 100 °С;
  • динамическая вязкость определяет отношение силы к скорости сдвига. Характеристика показывает способность моторного масла к течению при разных температурах, измеряется в сантипуазах (Сп) или в (Н·с/см2).

Индекс вязкости

Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.

Температура застывания

Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.

Температура вспышки

Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.

Щелочное число (Total Base Number, TBN)

Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала. Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.

Зольность

Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию. Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.

Стандарты и спецификации

SAE J300

Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.

Классы вязкости зимних моторных масел SAE J300










 

Низкотемпературная вязкость

Высокотемпературная вязкость

Класс

вязкости

SAE

CCS, МПа-с. Max, при темп.,°С

MRV, МПа-с, Max, при темп.,°С

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

 

 

 

Min

Max

0W

3250 при -30

30000 при -35

3,8

5W

3500 при -25

30000 при -30

3,8

10W

3500 при -20

30000 при -25

4,1

15W

3500 при -15

30000 при -20

5,6

20W

4500 при -10

30000 при -15

5,6

25W

6000 при -5

30000 при -10

9,3

Классы вязкости летних моторных масел SAE J300














Класс вязкости SAE

Высокотемпературная вязкость

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

Min

Max

8

4,0

6,1

1,7

12

5,0

7,1

2,0

16

6,1

8,2

2,3

20

6,9

9,3

2,6

30

9,3

12,5

2,9

40

12,5

16,3

2,9*

40

12,5

16,3

3,7**

50

16,3

21,9

3,7

60

21,9

26,1

3,7

* Для классов 10W40, 5W40, 10W40.

** Для классов 15W40, 20W40, 25W40, 40.

API

Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:

  • S – Service (spark ignition). Категория включает масла для бензиновых двигателей легковых автомобилей;
  • C – Commercial (compression ignition). В нее включена продукция для дизельных двигателей;
  • EC – Energy Conserving. Категория описывает энергосберегающие масла.

Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.

ILSAC

Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:

GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;

GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;

GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;

GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;

GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.

Знание основных характеристик необходимо для грамотного выбора моторного масла.

Моторные масла: технические особенности


Моторные масла – жидкие смазочные материалы, предназначенные для использования в автомобиле. Моторные масла играют важную роль в двигателе внутреннего сгорания (ДВС), обеспечивая его работоспособность и защиту.


То, что двигателю жизненно необходима смазка, понимал еще отец-основатель ДВС Этьенн Ленуар. Все попытки Ленуара и его последователей создать конструкцию, не предусматривающую использование масла и охлаждающей жидкости, окончились неудачей. И лишь после доработки конструкции ситуация изменилась.


Главная задача моторного масла – формировать защитную пленку на металлических поверхностях, снижая трение и предотвращая задиры соприкасающихся элементов.


Смазывание уменьшает износ и внутреннюю рабочую температуру. Отсутствие масла в двигателе приводит к заклиниванию поршней и выходу из строя мотора. Помимо смазывания у масла есть и другие задачи: удаление отработанных продуктов (стружка, элементы несгоревшего топлива) с рабочих поверхностей, охлаждение элементов двигателя, антикоррозионная защита.


Автомобильные масла работают в сложных условиях: механические и тепловые нагрузки, агрессивное воздействие кислорода и прочих газов, топлива, продуктов сгорания топлива. Таким образом, современное моторное масло должно соответствовать высоким требованиям качества и экологической безопасности.


 

Состав моторного масла


Современное моторное масло состоит из двух частей: основа (базовое масло) и пакет присадок. Вязкостно-температурные свойства масла зависят от химического состава основы. Присадки же выполняют функцию дополнения, усовершенствования показателей моторного масла. В частности, они отвечают за моющие, антикоррозионные свойства масла.


C помощью присадок можно повысить качество масла, даже если оно изначально произведено не из лучшей основы.


Базовая основа – составляет 70–80% моторного масла, оставшаяся часть – 20–30% — содержание присадок. Однако, со временем состав меняется. Продолжительная эксплуатация, тяжелые нагрузки разрушают присадки, и после того как масло вырабатывает свой рабочий ресурс на 50-60 %, его показатели начинают определяться составом основы.


Базовые масла (основа) могут быть:

  • минеральными (производятся из очищенной нефти (продукт перегонки нефти))
  • синтетическими (производятся благодаря каталитическому синтезу из газов)
  • полусинтетическими (комбинация минеральных и синтетических (не менее 25 %!) базовых масел; такие базовые масла отличаются более высокими качествами чем минеральные, но уступают синтетическим)


 

Присадки


В моторном масле основа отвечает за смазывающие свойства, а специальный пакет присадок обеспечивает продукту прочие качества. Присадки могут быть модифицирующими (изменяют свойства масел), для защиты механизмов и для защиты самого масла. Их количество может достигать 20-25% от объема.


С течением времени присадки вырабатывают свой ресурс и разрушаются. Следует отметить, что современное моторное масло уже содержит весь пакет необходимых присадок, так что нежелательно в него заливать различные «чудодейственные» средства и добавки.

Типы присадок:

  • Вязкостно-загущающие присадки. Позволяют маслу изменять макромолекулы полимеров исходя из температуры. Благодаря этому, при повышении температуры масло сохраняет вязкость, не становясь слишком жидким. Если масло содержит до 10% вязкостных присадок, то его называют загущенным.

    Варьируя количество вязкостно-загущающих присадок можно создавать масла, обладающие разной вязкостью. Чем больше вязкость, тем меньше нужно добавлять присадок. Современные научные разработки позволяют создавать моторные масла с небольшим вязкостным диапазоном. Это экономит топливо и снижает нагарообразование.

  • Моющие присадки (детергенты, дисперсанты). Добавление моющих присадок в масло предотвращает лако- и нагарообразование в двигателе. Принцип действия таких присадок описан в самом названии: они смывают продукты окисления и выносят их к фильтру, дробя крупные частицы на мелкие. Детергенты действуют так же как и бытовые моющие средства, нейтрализуя кислоты и обеспечивая антикоррозионную защиту. Дисперсанты растворяют частицы грязи и в дальнейшем поддерживают их в растворенном виде, препятствуя образованию отложений в жиклерах, на внутренних поверхностях двигателя.

    Действие моющих присадок легко увидеть через некоторое время после заливки масла. Для этого нужно проверить состояние свежего масла – оно потемнеет. Но это не повод для паники, это лишь означает, что моющие добавки смыли грязь и поддерживают ее в мелкодисперсном состоянии, не давая ей осесть на двигателе.

  • Противоизносные присадки. Снижают износ пар трения двигателя.  Противоизносные присадки  проникают в труднодоступные металлические поверхности, абсорбируются и вступают в химическую реакцию с металлом. При этом формируется специальная защитная пленка.
  • Ингибиторы окисления (антиокислительные присадки). Присадки, защищающие само масло в процессе работы. Дело в том, что моторное масло работает в тяжелых условиях: высокие температуры, действие газов (кислород, азотные соединения), из-за чего происходит окисление масла, ослабление и разрушение присадок. Благодаря противоокислительным присадкам, окисление масел протекает медленнее. Присадки при нагревании вступают в химическую реакцию с окисляющими веществами.
  • Ингибиторы коррозии и ржавления. Защищают внутренние поверхности двигателя от коррозии и окислительных процессов. Формируют защитную пленку и нейтрализуют кислоты. Принцип действия схож с противоокислительными присадками, но в отличии от них, защищают не само масло, а металлические поверхности двигателя.
  • Антипенные присадки. Препятствуют образованию пены в процессе эксплуатации двигателя (движения коленвала вызывает пенообразование масла в картере). Пена образуется при взаимодействии масла с воздухом и сильно вредит смазывающим свойствам масла, приводя к интенсивному изнашиванию и ухудшению охлаждающих качеств. Содержание противопенных присадок в масле крайне мало, но они выполняют очень важную функцию, разрушая воздушные пузырьки.
  • Модификаторы трения. Данный тип присадок снижает трение между соприкасающимися поверхностями для получения энергосберегающих масел. Известными модификаторами трения являются графит и дисульфид молибдена. Однако, в современных моторных маслах их использование затруднено в силу нерастворимости. В роли модификаторов трения применяются эфиры жирных кислот – они хорошо растворяются в маслах, имеют высокую адгезию к металлическим элементам, уменьшают трение.

Основные характеристики моторных масел

  • Вязкость. Один из главных показателей масла. Моторное масло изменяет вязкость исходя из температуры – чем она ниже, тем гуще становится масло и, напротив, при повышении температуры вязкость должна уменьшаться. Качественное масло должно обеспечивать бесперебойную работу двигателя как в зимних условиях (холодный пуск двигателя), так и при высоких температурах. В первом случае масло не должно иметь низкую вязкость, чтобы стартер мог провернуть коленвал, а во втором масло должно иметь подходящую вязкость для формирования защитной масляной пленки между парами трения.
  • Температура вспышки. Эта характеристика показывает степень испаряемости масла при работе. Качественные моторные масла имеют температуру вспышки выше 225°С. Если в масле присутствуют легкоиспаряющиеся фракции, то в процессе эксплуатации они быстро выгорят, что приведет к повышенному расходу.
  • Температура застывания. Это температурная отметка, при которой масло утрачивает текучесть. Температура застывания указывает на момент повышения вязкости при отрицательных температурах, приводящий к тому, что масло отвердевает.
  • Щелочное число (TBN). Указывает на общий показатель щелочности масла. Щелочными свойствами обладают моющие и диспергирующие присадки. Высокое щелочное число означает свойство масла препятствовать образованию отложений и нейтрализовывать агрессивное действие кислот, образующихся при работе двигателя. Щелочное число (TBN) моторных масел – 8-9 единиц, масел для дизельных двигателей – 11-14. В процессе эксплуатации показатель TBN снижается, нейтрализующие свойства сходят на нет.
  • Кислотное число (TAN). Определяет содержание в моторном масле продуктов окисления. Чем этот показатель ниже – тем лучше для масла и двигателя. Увеличение кислотного числа указывает на окислительные процессы, что происходит из-за повышения содержания в составе кислых продуктов сгорания топлива. Это означает, что масло работает уже достаточно долго.


 

Классификация масел


Прошло уже более полутора веков с момента изобретения двигателя внутреннего сгорания. С тех пор увидели свет множество автомобилей, двигателей разного типа и смазочных материалов для них. Чтобы ориентироваться в мире моторных масел для различного типа двигателей, разработаны специальные системы классификации:

  • API – Американский Институт Нефти (American Petroleum Institute),
  • ILSAC – Международный комитет стандартизации и апробации моторных масел (International Lubricant Standardization and Approval Committee),
  • ACEA – Ассоциация Производителей Автомобилей Европы  (Association des Cunstructeurs Europeens d’Automobiles). 


Согласно каждой из этих систем моторные масла делятся на ряды и категории в зависимости от уровня качества и предназначения. Перечень рядов и категорий установлен национальными и международными организациями нефтеперерабатывающих компаний и автопроизводителей.


Кроме того, действуют и требования (спецификации) автопроизводителей. Сегодня в мире есть одна официально признанная система классификации моторных масел — спецификация SAE J300. SAE – Society of Automotive Engineers (Общество Автомобильных инженеров). Классификация SAE делит моторные масла на 12 классов вязкости от 0W до 60: 6 зимних (0W, 5W, 10W, 15W, 20W, 25W) и 6 летних (10, 20, 30, 40, 50, 60).


Вязкость масла определяется при условиях, приближенных к реальным. Литера W указывает на слово «winter» — «зимний», т.е. что масло подходит для эксплуатации при низкой температуре. Спецификация масел по SAE дает потребителю информацию о температуре застывания масла. «Зимний» индекс показывает температурную отметку, до которой можно применять масло.

  • Летнее масло обозначается числом: SAE 20, 30, 40, 50, 60.
  • Всесезонное масло –  комбинация летнего-зимнего вида (пример: SAE 5W30, SAE 10W40).


Высоковязкостные летние масла предназначены для работы в теплое время года. Они обеспечивают качественное смазывание двигателя в весенне-летний период, однако с наступлением холодов летние масла загустевают. Автолюбитель чувствует это, когда у него появляются проблемы с пуском двигателя.


Зимние масла имеют малую вязкость и рекомендованы для применения при отрицательных температурах. Но в летний период они не могут надежно защищать двигатель. По этой причине в настоящее время наиболее популярны среди автолюбителей всесезонные масла, пригодные для «летней» и «зимней» эксплуатации. Маркируются такие масла комбинацией зимнего и летнего ряда: 5W-30, 10W-40.


 

Кратко о…

…минеральном моторном масле


Является продуктом перегонки нефти. Наиболее дешевый вид моторных масел по сравнению с синтетическим и полусинтетическим маслами. Отличается меньшей химической стабильностью, низкой окислительной стойкостью и высокой испаряемостью из-за присутствия в составе молекул разной длины и структуры. Минеральное моторное масло имеет частый интервал замены и более короткий срок службы по сравнению с другими типами масел. К минеральному базовому маслу добавляются присадки, направленные на улучшение технических свойств минерального масла. Пакет присадок позволяет «подтянуть» общее качество масла, придав «минералке» моющие, антикоррозионные и противоизносные свойства.

В целом, минеральные масла проигрывают «синтетике» и «полусинтетике». Слабая окислительная стойкость и высокая испаряемость обуславливают небольшой срок службы «минералки».  Использовать минеральное масло рекомендовано на старых моделях автомобилей и автомобилях со сроком эксплуатации свыше 10 лет.


Примеры минеральных моторных масел: G-Energy Expert G 20W-50, Gazpromneft Super 10W-30 API SG/CD.

…синтетическом моторном масле


Синтетическое моторное масло производится из синтетических базовых масел, полученных благодаря химическому синтезу, глубокой переработке нефти или иным процессам, благодаря которым достигается высокая однородность молекул, что не может быть достигнуто в результате обычной переработки нефти. Это позволяет синтетическому маслу демонстрировать высокие результаты в тяжелых рабочих условиях.

Синтетические моторные масла отличаются высоким уровнем защиты при отрицательных температурах (безотказный холодный пуск двигателя) и высоким верхним пределом рабочих температур, малым расходом масла на угар, крайне низким нагароотложением. Помимо этого, «синтетика» имеет хорошие антиокислительные показатели, малую испаряемость. Синтетические моторные масла более текучи, чем минеральные, что позволяет им экономить топливо и лучше охлаждать двигатель.


Примеры синтетических моторных масел: Gazpromneft Premium 5W-40 API SM/CF, G-Energy F Synth 0W-40.

…полусинтетическом моторном масле


Полусинтетические моторные масла являются смесью минеральных и синтетических базовых масел. Процентное содержание «синтетики» может составлять 30-35%, хотя специальных требований относительно количественного содержания синтетических базовых масел нет.


По своим техническим показателям полусинтетическое масло находится между «минералкой» и «синтетикой», сочетая достаточно хорошие эксплуатационные свойства и доступную стоимость. Вязкостно-температурные свойства полусинтетических масел превосходят свойства минеральных масел, но уступают синтетическим маслам.


Тем не менее, полусинтетика хорошо себя проявляет в умеренных рабочих условиях и средних нагрузках. Использование полусинтетики в б/у автомобилях, автомобилях средней ценовой категории вполне оправдано.


Примеры полусинтетических моторных масел: Gazpromneft Premium 10W-40 API SL/CF, G-Energy Expert L 5W-30.

Технические характеристики моторных масел 🚗 Свойства масел для двигателей

Содержание

  • Функции моторного масла
  • Требования к качественному маслу
  • На что влияют технические характеристики
  • Что входит в технические характеристики масла
  • Вязкость: кинетическая и динамическая
  • Температура застывания и вспышки
  • Плотность
  • Зольность и щелочное число
  • На что обратить внимание при выборе масла
  • Предложение SINTEC

Важность качественного моторного масла сложно переоценить: правильно подобранная смазочная жидкость необходима, чтобы машина исправно работала, а узлы не изнашивались раньше срока. Чтобы подобрать состав, который будет подходить под конкретные климатические условия, важно разбираться в характеристиках моторных масел. Грамотно выбранные параметры вязкости, зольности, плотности помогут определиться с составом, но главное, конечно, не связываться с недобросовестными производителями и покупать смазочную жидкость только у проверенных компаний.

Функции моторного масла

Основное назначение состава – смазывать двигающиеся детали, чтобы не допускать их трения друг о друга и преждевременного износа. Также масло отводит от механизмов тепло, не дает им перегреваться, а содержащиеся в составе присадки защищают от загрязнений и обладают моющими свойствами. Во многом особенности зависят от состава присадок: разные масла рассчитаны под разные условия, и это еще одна причина, по которой смазочную жидкость нужно подбирать с умом. В расчет берутся три параметра: характеристики самой машины, климатические условия, в которых ее владелец использует авто, и необходимый состав (минеральное, синтетическое или полусинтетическое и т. д.).

Требования к качественному маслу

Могут различаться в зависимости от региона и машины. Но основные требования остаются неизменными:

  • нейтральность по отношению к металлу. Иными словами, состав не должен провоцировать коррозию и ускорять разрушение деталей;
  • моющие и стабилизирующие свойства, которые в основном достигаются за счет присадок;
  • способность функционировать в нужном температурном диапазоне;
  • отсутствие пены при работе;
  • возможность охлаждать греющиеся детали, то есть хорошие термоокислительные и термические способности;
  • совместимость с материалами, из которых делают уплотнительные элементы. Важно, чтобы состав не был чересчур агрессивен к полимерам;
  • способность нейтрализовать кислоты и продлевать тем самым срок работоспособности двигателя;
  • низкая летучесть, небольшой расход;
  • возможность запускать мотор, в том числе из холодного состояния.

На что влияют технические характеристики

В зависимости от того, какими характеристиками и свойствами обладает смесь, можно судить, комфортно ли будет использовать ее в определенных условиях, скажем, зимой или, наоборот, в жаркое время года. Некоторые варианты больше подходят для одних особенностей конструкции, некоторые – для других. Вдобавок стоит смотреть на качество: и синтетическое, и минеральное масла могут хорошо работать, если выпущены грамотными производителями. В случае же, если состав разрабатывался некачественно, итоговых свойств может быть недостаточно для нормальной работы машины. Технические характеристики масла определяют:

  • когда им лучше пользоваться – летом, зимой или круглый год;
  • для каких двигателей оно подходит – бензиновых или дизельных.

Некоторые классы предназначены для тяжелонагруженных моторов или имеют повышенную совместимость с каталитическими нейтрализаторами.

Что входит в технические характеристики масла

Существует несколько классификаций, определяющих параметры смазочной жидкости. Они касаются особенностей применения, вязкости и типа двигателей, для которых предназначено масло. Однако классификация – отдельный вопрос. Если речь идет именно о характеристиках как о свойствах, выраженных количественно, то к ним обычно относят семь параметров:

  • динамическую и кинетическую вязкость;
  • температуру застывания;
  • температуру вспышки;
  • плотность;
  • зольность;
  • щелочное число.

Они описывают физические и химические свойства конкретного масла: именно на их основе смазочную жидкость относят к тому или иному классу по одной из классификаций.

Вязкость: кинетическая и динамическая

Это показатель, который говорит, насколько хороши смазывающие свойства масла. Более вязкая жидкость лучше смазывает, но хуже подходит для низких температур, потому что быстрее застывает. Более жидкие составы обычно используются на холоде или в условиях, когда масла с высокой вязкостью нельзя применять. Эта характеристика разделяется на две:

  • динамическая вязкость описывает поведение масла при холодном моторе, то есть демонстрирует, как оно будет вести себя зимой. Этот показатель даже не всегда указывают в таблицах характеристик, так как он напрямую связан с классом зимней вязкости. Указания класса обычно достаточно;
  • кинетическая же вязкость описывает работу масла во время, когда двигатель включен. Рассчитывается, как правило, для температуры в 100 градусов, и чем больше цифра, тем лучше.

Классификация SAE

Этот международный стандарт делит моторные масла на группы в зависимости от их вязкости и температурных пределов, для которых они предназначены. Согласно этой классификации смазочные жидкости бывают трех основных типов:

  • летние. Класс обозначается одним числом, чем оно выше, тем гуще масло;
  • зимние. Их легко узнать: обозначение – число, после которого указана буква W. Она означает winter – зима. Чем меньше числовое значение, тем более жидким является масло и, соответственно, тем при более низких температурах его можно использовать;
  • всесезонные. Обозначаются сдвоенным значением: первое – зимнее, с буквой W, второе – летнее. По соотношению чисел можно определить температурный диапазон, при котором смазочная жидкость будет нормально функционировать.

Индекс вязкости

Это численное значение, которое не говорит о вязкости как таковой: оно обозначает, как сильно она меняется с перепадами температуры. Этот параметр во многом определяет качество масла: в идеале оно должно как можно меньше менять свои свойства, когда меняется температурный режим. В реальности такое недостижимо, но современные синтетические масла достигают значения индекса в 150–180 единиц. Чем выше этот показатель, тем лучше: высокие значения говорят о том, что жидкость не слишком активно изменяется при смене температурного режима и сохраняет свои свойства.

Температура застывания и вспышки

Существуют температурные пределы, при которых масло полностью перестает функционировать. Нижний называется температурой застывания, ее достижение означает, что масло потеряло текучесть и застыло. Де-факто функционировать оно может перестать раньше: еще до застывания текучесть станет настолько низкой, что смазочная жидкость перестанет прокачиваться через фильтр. Обычно это происходит за 5–7 градусов Цельсия до достижения температуры застывания. Грамотные производители учитывают такую возможность при определении класса масла: даже при температурных значениях, близких к минимуму, смесь еще будет прокачиваться. Верхний же предел называется температурой вспышки. Это температурное значение, при котором масла испарится настолько много, что, если рядом окажется источник огня, пары загорятся. Обычно оно выше 200 градусов и недостижимо, если с машиной все в порядке, но показатель позволяет понять скорость испарения масла даже в нормальных условиях. Чем ниже температура вспышки, тем активнее испаряется жидкость.

Плотность

Каждое масло содержит определенное количество летучих фракций. Их объем и определяет плотность – параметр, влияющий на качество работы смазочной жидкости.

  • Высокоплотные составы обычно гуще, они снижают механическую нагрузку на узлы, но при слишком высоком значении плотности могут плохо проникать в труднодоступные места цилиндров.
  • Масла со слишком низкой плотностью не так хорошо справляются со своей работой, как с оптимальной.

Обычно чем выше температура вспышки, тем выше и плотность, но бывают и исключения – высококачественные синтетические масляные основы. Они могут обладать оптимальными значениями обоих параметров одновременно.

Зольность и щелочное число

Технические характеристики моторного масла описывают не только физический, но и химический его состав, к таким можно отнести показатель сульфатной зольности и щелочное число.

  • Зольность иногда считают показателем количества присадок в смазочной жидкости, но в действительности этот параметр не всегда коррелирует с ними. Он показывает, сколько золы остается после испарения масляной основы или ее сгорания. Зола часто содержит в себе сульфаты, которые могут быть вредны для каталитических нейтрализаторов, но в целом показатель зольности критичнее для топлива, чем для масла.
  • Щелочное число показывает, какому количеству гидроксида калия эквивалентны присадки в масле, направленные на нейтрализацию кислот. По сути, показатель демонстрирует, как долго смазочная жидкость сможет избегать окисления.

На что обратить внимание при выборе масла

Помимо основных параметров – для бензина или для дизеля предназначен состав, какой пакет присадок в нем используется – нужно обращать внимание на технические характеристики и сопоставлять их с реальными условиями.

Жителям холодных регионов высокая вязкость не принесет пользы, а жарких, наоборот, сослужит хорошую службу. Если Вы хотите, чтобы масло работало дольше, обращайте внимание на показатели зольности и щелочное число. И, конечно, пользуйтесь продуктами проверенных производителей: «Синтек» предлагает качественную и разнообразную продукцию. В нашем ассортименте минеральные, синтетические, полусинтетические масла с разными характеристиками, подходящими под различные условия использования.

Предложение SINTEC

SINTEC PLATINUM SAE 5W-40 API SN/CF

Синтетическое масло с высокими эксплуатационными характеристиками, подходящее для всех сезонов и содержащее пакет многофункциональных качественных присадок зарубежных производителей.

SINTEC LUX SAE 5W-40 API SL/CF

Универсальный продукт, подходящий и для бензиновых, и для дизельных двигателей. Подходит в том числе грузовикам, машинам отечественного и зарубежного производства.

SINTEC EURO SAE 15W-40 API SJ/CF

Пример качественного минерального масла с характеристиками, подходящими для использования в российских условиях, и пониженным расходом.

Технические характеристики моторных масел

Технические характеристики моторных масел — это количественное выражение определенных свойств масла в физических величинах или коэффициентах. Они показывают, при каких условиях моторное масло защищать двигатель от износа, коррозии, загрязнений, возникающих в ходе работы. Информацию о типовых характеристиках можно найти в листе технического описания (TDS, Technical Data Sheet).

Содержание

Вязкость моторных масел

Вязкость – очень важная характеристика моторного масла, которая влияет на множество аспектов: количество отводимой от узла трения теплоты, износ вкладышей подшипников и шеек коленвала, способность обеспечивать гидродинамическое трение.

Один из способов понять, что такое вязкость – представить, что вы пытаетесь плыть. Если жидкость слишком густая, вам сложно двигаться и приходится тратить много энергии. И наоборот, если субстанция слишком жидкая, то вы будете опускаться на дно. Поэтому важен правильный баланс. Масло должно быть достаточно густым, чтобы выдерживать разделение движущихся частей, но достаточно тонким, чтобы обеспечивать топливную экономичность.

Молекулы жидких тел при перемещении вызывают трение. Это трение и называется вязкостью. При повышении давления, уменьшается объем и усиливается взаимное притяжение молекул и увеличивается сопротивление течению, вязкость масла увеличивается. При повышении температуры процесс прямо противоположный — вязкость уменьшается.

Работа, затрачиваемая на перемещение молекул, рассеивается в виде тепла. Если масляная пленка толще зазора, увеличивается сила трения, что приводит к повышению температуры и снижению КПД. Поэтому автопроизводители рассчитывают зазоры под рабочие температуры двигателя, специально заставляя его работать под повышенными нагрузками при прогреве.

Кинематическая вязкость моторного масла

Кинематическая вязкость – это показатель, выражающийся в отношении динамической вязкости к плотности масла. Он характеризует текучесть масла при нормальной и высокой температуре. Измеряется в сантистоксах (1 сСт = 10-6 мм2/с). Для замера используется стеклянный вискозиметр. Принцип измерения достаточно прост: замеряется время вытекания определенного количества масла из сосуда с калиброванным отверстием на дне.

В отчете ASTM 1989 года сообщается, что стремительный рост неньютоновских всесезонных масел сделал кинематическую вязкость практически бесполезным параметром для определения реальной вязкости в критически важных зонах двигателя. Поэтому был разработан параметр HTHS, о котором мы расскажем далее.

Индекс вязкости

Индекс вязкости моторного масла (ИВ, Viscosity index, VI) – это показатель, характеризующий степень изменения вязкости в зависимости от температуры °C. Чем выше индекс вязкости, тем в более широком температурном диапазоне смазочный материал способен сохранять рабочие свойства. Наибольшим индексом вязкости обладают базовые масла III (VHVI – Very High Viscosity Index, очень высокий индекс вязкости), IV (PAO – ПАО, полиальфаолефины) и V групп.

Индекс вязкости определяется по методу ASTM D2270. Для расчета необходимы показатели кинематической вязкости при 40°C и 100°C.

Динамическая вязкость
Высокотемпературная вязкость HTHS

Создание полимерных загустителей позволило производить универсальные всесезонные масла, которые способны обеспечивать уверенный пуск двигателя при отрицательных температурах и сохранять рабочие параметры при высоких. Принцип их действия достаточно прост: при низких температурах они сжимаются, занимая меньше места и снижая вязкость, а при повышении температуры, наоборот, увеличиваются в размерах, увеличивая вязкость.

Однако, у полимеров есть одна интересная особенность. При высокой скорости сдвига полимеры выстраиваются в направлении потока и сжимаются (например, в очень маленьких зазорах, где толщина масляной пленки предельно мала, но скорость движения очень высокая), что приводит к потере вязкости. Она может быть как кратковременной (при снижении скорости сдвига полимер восстановится), так и необратимой (полимер разрушается).

Скорость сдвига — это интенсивность изменения скорости одного слоя потока относительно второго. Величина выражается во взаимно обратных секундах [1/s]. В двигателе моторное заполняет зазоры между двумя поверхностями, которые двигаются с большой скоростью относительно друг друга (например, поршень и цилиндр). При этом процессе происходит скольжение слоев жидкости (моторного масла).

Для определения стойкости полимера к деструкции используется тест Курта Орбана (ASTM D 6278), при котором загущенное масло прокачивается топливным насосом высокого давления под давлением 175 бар. Масла для легковых автомобилей должны выдерживать 30 циклов такого испытания, а для коммерческих – 90. Вязкость после теста должна оставаться в рамках стандарта SAE J300.

Загущенные масла не являются ньютоновскими жидкостями, т.е их характеристики не линейно зависимы от внешних факторов. Поэтому инженерами был разработан параметр HTHS, который определяет вязкость масла в условиях, похожих на условия работы в ДВС – при температуре 150°C и скорости сдвига 106 с-1.

HTHS – это параметр динамической вязкости, который измеряется при высокой температуре (150°C) и высокой скорости сдвига 106 с-1

В уже упомянутом отчете ASTM 1989 года говорится, что стандарт SAE J300 не совершенен и 12-летние усилия по разработке нового стандарта ни к чему не привели. Однако зафиксированных случаев поломок, связанных с недостаточной вязкостью HTHS, выявлено не было, поэтому редакция SAE J300 и по сей день является актуальной.

Бытует миф, что моторные масла с низким HTHS приводят к ускоренному износу двигателя. Низковязкие масла предназначены только для специально сконструированных двигателей с минимальными зазорами. Кроме того, высокое содержание модификаторов трения позволяет защищать двигатель даже в условиях граничного трения.

Наиболее вредны масла с низким HTHS для изношенных двигателей. Дело в том, что абразивные частицы, которые, как правило, присутствуют в неновом двигателе, могут привести к тому, что тонкая масляная плёнка разрывается и начинается незащищённое трение, которое потом приводит к очень быстрому выходу деталей из строя. Слишком большие зазоры и неоптимальный режим работы топливной системы, работа мотора на малых оборотах и в режиме прогрева, приводят к тому, что топливо попадает в масло, снижая и без того малую вязкость и ухудшая его смазочные свойства.

Динамическая вязкость CCS

Параметр динамической вязкости, определяемый на имитаторе холодного пуска (Cold Cranking Simulator) по методу ASTM D 2983. Иногда его еще называют вязкость проворачивания. Этим методом определяется кажущаяся вязкость в диапазоне от 500 до 200000 сПауз Он показывает, насколько двигателю будет трудно провернуть холодное масло в цилиндро-поршневой группе. Прибор представляет собой низкотемпературную баню, куда погружены миниатюрный электродвигатель соединенный с ротором, установленный внутри статора с очень малым зазором от его стенки. Объем между ротором и статором заполнен маслом, характеристики которого и необходимо измерить. После охлаждения масла до нужной температуры, запускается электродвигатель и ротор начинает вращаться. Причем, чем гуще масло, тем скорость вращения ниже. Измеряя эту скорость, прибор и рассчитывает низкотемпературную вязкость CCS. Единица измерения — мПа*с

Динамическая вязкость MRV

Вязкость прокачивания (pumping viscosity), определяемая на мини-ротационном вискозиметре по методу ASTM D 4684, говорит нам о способности масла течь и создавать необходимое давление в системе смазки в начальной стадии работы холодного двигателя. При испытании определяется либо напряжение сдвига, необходимое для разру­шения желе, либо вязкость при отсутствии напряжения сдвига. Прокачивание обеспечивается только для масел с вязкостью не более 60 000 mPa s. Наименьшая температура, при которой масло может прокачиваться, называется нижней температурой прокачивания, ее значение близко к наименьшей температуре эксплуатации. Тест проводится при температуре на 5 градусов ниже, чем CCS

Стандарт SAE J300

Классификация моторных масел по SAE признана во всем мире. По ней все масла делятся на:

  • зимние (обозначаются литерой W: SAE 0W, SAE 5W и т.д.)
  • зимние
  • всесезонные.
Класс вязкости SAEПроворачиваемость (CCS), мПас-сПрокачиваемость (MRV), мПа-сКинеметическая вязкость при 100°C, не нижеКинеметическая вязкость при 100°C, не вышеВязкость HTHS, мПа-с
0W6200 при -35°C60000 при -40°C3.8
5W6600 при -30°C60000 при -35°CК
10W7000 при -25°C60000 при -30°C4.1
15W7000 при -20°C60000 при -25°C5.6
20W9500 при -15°C60000 при -20°C5. 6
25W13000 при -10°C60000 при -15°C9.3
84.06.11,7
125.07.12,0
166.18.22,3
206.99.32.6
309.312.52.9
4012.516.32.9*
4012.516.33.7**
5016.321.93.7
6021.926.13.7
Как определить вязкость моторного масла?

Расшифровка вязкости – дело нехитрое. На канистре обязательно указывается класс вязкости по SAE. По нему можно определить низкотемпературные свойства, а также вязкость при рабочей температуре. Например, SAE 0W-40 означает, что масло гарантированно прокачается по системе при температуре вплоть до -40 градусов Цельсия, а вязкость при 100 градусах составит от 12,5 до 16,3 сСт.

Можно ли смешивать моторные масла разной вязкости?

Можно, но только в экстренных случаях. Не имея специального оборудования, сложно понять, какой вязкости в итоге получится микс смазочных материалов. Но такой микс все равно лучше, чем отсутствие масла в двигателе.

5W-30 и 5W-40 – в чем разница?

5W-30 имеет кинематическую вязкость при 100℃ в пределах 9,3-12,5 сСт, 5W-40 – 12,5-16,3 сСт.

В чем разница между 5W-40 и 10W-40

Технические характеристики моторных масел SAE 10W-XX обеспечивают гарантированный запуск двигателя при температурах до -25°C, а 5W-XX – до минус 30°C. В остальном отличий нет. Однако, чаще всего, масла 5W-40 являются синтетическими, а 10W-40 – полусинтетическими. Но, бывают исключения. Например, многие современные масла для дизельных двигателей.

Температура вспышки (flash point)

Температура вспышки — самая низкая температура, при которой пары смазочного материала образуют смесь с воздухом, воспламеняющуюся при контакте с огнем. Само масло при этом еще не воспламеняется. Параметр характеризует наличие в масле легколетучих фракций, которые при смешивании с воздухом образуют горючую смесь. Чем меньше этот показатель, тем меньше расход на угар и выше качество базовых масел. Определяют в открытом или закрытом тигле, в последнем случае она на 20-25 градусов ниже.

Испаряемость по методу Ноака

Испаряемость по NOACK — показатель, который определяет, сколько масла будет израсходовано за один час при температуре 250 градусов Цельсия. Испаряемость зависит от качества базовых масел, так как этот показатель зависит от наличия легких, летучих фракций. Хорошие масла имеют испаряемость ниже 14%. Испаряемость по NOACK характеризует склонность масла к угару/испарению. Испаряемость по НОАК выражается в процентах, и чем эта цифра меньше, тем меньше расход масла на угар.

Как определяют испаряемость по НОАК?

Стандартизирован тест Селби-Ноака в методе ASTM D5800. Образец масла весом 65 г помещают в специальный аппарат, нагревают до 245,2 °С и в течение 60 минут пропускают над нагретым образцом постоянный поток воздуха с помощью вакуумного насоса.

Для качественных моторных масел показатель испаряемости обычно не превышает 14-15%. Косвенно по этому числу можно оценивать качество базовых масел.

Температура застывания (solidification point)

Температура застывания — это температура, при которой масло теряет свою подвижность и тягучесть. Застывшим считается масло, которое удерживается в неподвижном состоянии 5 секунд под углом 90 градусов.

Производители снижают температуру застывания с помощью специальных присадок — депрессоров, которые не дают парафину укрупняться,  увеличивать плотность, создавая псевдокристаллические структуры. Снижение динамической вязкости CCS добивается путем подбора нужного базового масла и полимера-загустителя. Поэтому температура застывания и низкотемпературная вязкость могут быть никак не связаны между собой. Кроме того, чрезмерное содержание депрессора может приводить к увеличению вязкости CCS.

Температура потери текучести (pour point)

Температура потери текучести — это самая низкая температура, при которой моторное масло еще сохраняет текучесть. Она показывает возможность переливания моторного масла без необходимости подогрева. Температура застывания, согласно стандартам, на 3°С выше температуры потери текучести. Метод измерения — ASTM D97.

Кислотное число (Total Acid Number, TAN)

TAN — показатель, характеризующий наличие в масле кислот, которые приводят к коррозии металлов. По этому показателю можно косвенно судить о качестве базового масла. В хорошо очищенных маслах II и III группы, например, TAN будет меньше, чем в I группе. Стандартный метод измерения — ASTM D664

Общее щелочное число (Total Base Number, TBN)

Щелочное число — это показатель, выражающая количество гидроксидов калия в 1 гр моторного масла. Он напрямую влияет на срок службы моторного масла. В обычных маслах этот показатель находится в диапазоне от 5 до 12 мг KOH на грамм.

В процессе сгорания топливно-воздушной смеси неизбежно образуются различные кислоты (особенно при использовании некачественного топлива с высоким содержанием серы), которые вызывают старение масла и даже способны вызывать коррозию. Именно для этого в моторное масло и добавляются щелочные присадки, нейтрализующие их.

Моющие свойства моторного масла характеризует наличие нейтральных солей, а не щелочное число. Поэтому невысокое содержание щелочи не является прямым показателем моющих свойств.

Кроме того, высокий показатель TBN приводит к повышению сульфатной зольности, которая негативно влияет на катализаторы выхлопной системы, турбины, может оседать на маслосъемных кольцах, а в случае угара масла приводить к образованию твердых абразивных веществ.

Именно поэтому в последнее время получили среднезольные и малозольные масла c пониженным содержанием сульфатной золы, фосфора и серы.

Зольность сульфатная

Сульфатная зольность — это важная характеристика моторного масла, которая показывает количество неорганических примесей, которые остаются после полного сгорания. Эти примеси являются следствием содержания в масле присадок на основе соединений металлов.

При сгорании высокозольного масла может образовываться твердый абразив, который при долгом воздействии приведет к полировке стенок цилиндра. Гладкие, как зеркало, поверхности не способны удерживать масляную пленку, а это приводит к высокому расходу масла.

Классификация моторных масел

Высокая зольность оказывает негативное влияние на клапаны (особенно актуально для двигателей, работающих на газу, а также оснащенных непосредственным впрыском топлива), подшипники турбин, катализаторы с мелкими сотами.

Для определения зольности используются такие международные стандарты, как DIN 51 575, ASTM D482, ISO 6245.

Полнозольные (Full SAPS) масла

По классификации ACEA — A1/B1, A3/B3, A3/B4, A5/
B5. Такие масла могут негативно сказываться на многоступенчатых каталитических нейтрализаторах и фильтрах DPF. Типичное значение зольности — 0,9 — 1,1%.

Среднезольные (Mid SAPS) масла

Согласно классификации ACEA имеют обозначения C2 и C3. Зольность таких масел колеблется в диапазоне 0,6-0,9%.

Малозольные (Low SAPS) масла

По классификации ACEA — C1 и C4. По стандарту содержание сульфатной золы не должно превышать 0,5%.

Допуски моторных масел – как определить и выбрать нужный для своего двигателя?

Чтобы выбрать правильное моторное масло, необходимо обратить внимание на его допуск. Под допуском понимают определенный стандарт качества. Задает эти параметры сам производитель. 

Вся информация о допуске указателя на этикетке. Как правило, есть три основных стандарта качества:

  1. API. Американский стандарт, хотя и не считается полноценным допуском, но указывает на наивысший класс. По этому стандарту моторные масла разделены на два класса: S — бензиновые и C — дизельные.
  2. ACEA. Европейский стандарт. Его применяют для энергосберегающих моторных масел. Есть две подкатегории: А- бензиновые, Б — дизельные.
  3. ISLAC. Стандарты, разработанные японскими и американскими производителями. Допускаются различные модели автомобилей разных марок. 

Как моторные масла получают допуски?

Процесс получения допускается довольно сложный и длительный. Производителю нужно указывать допуски для самых популярных марок и моделей автомобилей. Для этого нужно получить сертификат автоконцерна.

Как это сделать? Провести специальные совместные исследования моторного масла в лаборатории или на стенде. Компания-производитель смазочного материала, претендующего на допуск. Вот как выглядит  пошаговая процедура оформления допускается:

  1. Компания занимается производством автомобилей, которые демонстрируют качество нового продукта.
  2. Если автоконцерн дает добро на испытания, моторное масло проходит серию испытаний на заводе-изготовителе автомобилей. Если все тесты имеют положительные результаты.
  3. Какое допуск получит масло для двигателя, решает автопроизводитель. Как правило, производители должны указывать на этикетку.

Не бывает смазочных материалов с хорошими или плохими допусками. Все моторные масла имеют разные характеристики. 

Как подобрать масло в свой ДВС с учетом допуска?

Допуск считается определенным критерием выбора смазочного материала. Почему? В зависимости от того, насколько высокая нагрузка или перепад температуры, и сохранить свой ресурс в течение доступного времени.  

Подобные материалы можно найти на официальных сайтах автоконцернов, а также изучить эту информацию в сервисных документах для автомобилей. Все возможные варианты для разных марок авто. 

Вот какие допуски выделяются крупными автоконцерны:

Таблица 1. Допуски моторных масел VW / Audi / Seat / Skoda (VAG)

ПроизводительДопускОписание
VW / Audi / Seat /

 

Skoda (VAG)

VW 500.00 Для ДВС без наддува. 
 VW 501.01Для моторов с впрыском. 
 VW 502,00Масло с допуском 502 для ДВС с впрыском. 
 VW 503.00Для бензиновых двигателей.
 VW 504,00Масло с допуском 504 для бензиновых и дизельных ДВС.
 VW 505,00Для моторов легковых авто с турбонаддувом и без. 
 VW 506.00Для дизелей с турбонаддувом.
 VW 507,00Моторные масла с допуском 507 для моторов с сажевым фильтром без присадок. 

Таблица 2. Допуски моторных масел по маркам автомобиля Daimler Chrysler / Mercedes-Benz

ПроизводительДопуск Описание
Даймлер Крайслер /

 

Мерседес Бенц

MB 228,1Всесезонные, для дизельных ДВС. 
 MB 228,3Всесезонные грузовики с турбонаддувом и без. 
 MB 228,31Допуски по маслу для дизельных Мерседесов (грузовики с сажевыми фильтрами). 
 MB 228,5Для нагруженных моторов грузовиков.
 MB 228,51 Всесезонное для нагруженных дизелей грузовиков. Минимум сульфатной золы, фосфора и серы. 
 МВ 226.0 / 1Допуски моторного масла для турсаддува. 
 МВ 227. 0 / 1Всесезонные для ДВС старых транспортных средств. 
 МВ 227.5Для моторов на бензине.
 MB 229,1Для легковых авто с ДВС на бензине и на дизельном топливе. 
 MB 229,3Для легковых авто с увеличенным интервалом замены.
 MB 229,5Для моторов легковых авто, экономит до 2% топлива.  

Таблица 3. Допуски масел BMW

ПроизводительДопускОписание
BMWBMW Longlife-98 Для специальных моторов. 
 BMW Longlife-01Для моторов с увеличенными интервалами замены. 
 BMW Longlife-01 FEДля моторов, в которых используются маловязкие масла с целью экономии топлива.
 BMW Longlife-04БМВ рекомендуются для моторов с сажевым фильтром.

Таблица 4. Допуски масел по моделям автомобилей Ford

ПроизводительДопускОписание
бродWSS-M2C 912A1Для всех моторов легковых авто. 
 WSS-M2C 913AДля бензиновых и дизельных моторов легковых авто.
 WSS-M2C 913BДля ДВС на дизельном топливе и бензине.
 WSS-M2C 913CДля бензиновых и дизельных моторов. 
 WSS-M2C 917AДля 1,9 дизельных моторов TDI. 

Таблица 5. Допуски моторного масла Opel (Дженерал Моторс)

ПроизводительДоступОписание
 GM-LL-A-025 Для двигателей легковых авто. 
 GM-LL-B-025Для дизельных моторов легковых авто.
 Дексос 1Для бензиновых ДВС.
 Dexos 2Для дизелей GM. Относятся к малозольным.

 

Таблица 6. Допуски моторного масла Rover и Porsche

ПроизводительДопуск Описание
пиратRES-22.OL G4Для модифицированных на пониженное трение масел.
пиратRES-22.OL PD2 / D5С ССМС спецификациями и групповыми испытаниями.
PorscheПорше А40 Требует хорошей стойкости масла к деструкции. 

Таблица 7. Допуски масел по марке Renault

ПроизводительДопуск Описание
 RN 0700Для обеспечения высоких требований к совместимости и устранения отработанных газов. 
 RN 0710Для моторов с турбонаддувом и дизельных без сажевого фильтра. 
 RN 0720Для двигателей с турбонаддувом и сажевым фильтром. 

Таблица 8. Допуски моторного масла FIAT Group

ПроизводительДоступОписание
FIAT 9,55535-G1Гарантируют экономию топлива для бензиновых моторов.
 9.55535-D2,Со стандартными параметрами для дизельных ДВС.
 9.55535-h3,Для ДВС на бензине, имеют великолепную вязкость. 
 9,55535-h4Для бензиновых моторов, с высокой производительностью.
 9.55535-M2Для моторов с увеличенным интервалом обслуживания. 
 9.55535-N2Для всех видов ДВС с турбонаддувом. 
 9.55535-S1Для моторов с трехкомпонентным катализатором и дизельных моторов с сажевым фильтром. 
 9,55535-S2 Для ДВС с трехкомпонентным катализатором и сажевым фильтром. 

Таблица 9. Таблица допусков масел PSA Peugeot-Citroen

ПроизводительДопускОписание
Peugeot-CitroenPSA B71 2290Для моторов с сажевым фильтром, низкое содержание сульфатной золы, серы и фосфора.  
 PSA B71 2294Спецификации: ACEA A3 / B4 и C3 + тесты концерна Peugeot — Citroen.
 PSA B71 2295Масло с допуском PSA для моторов, выпущенных до 1998 г. 
 PSA B71 2296Спецификации: ACEA A3 / B4 + тесты концерна Peugeot — Citroen.

Для чего нужны допуски?

Конкуренция на рынке смазочных материалов постоянно ужесточается, что заставляет производителей искать новые решения и повышать качество своей продукции. Наличие аналоговых и качественных характеристик моторных масел уникально и качественно.

Допуски дизельных и бензиновых масел разные, но ни один смазочный материал нельзя считать ни хорошим, ни плохим. Все присадки, разработчики для доступных марок или моделей автомобилей. Масло идеально подходит для двигателя.

Вот почему допуски масел варьируются:

  • Автопроизводители изготавливают внутренние детали моторов из различных материалов. Для каждой из них нужны смазочные жидкости. 
  • Двигатели масла образуют пленку разной толщины. Эта величина должна быть постоянной. Если ее понизить, ДВС будет перегреваться. Если повысить, то масло попросту выгорит. 
  • Для каждого класса автомобилей (легковые, грузовые, малоритражные, коммерческие и т.д.) важно изготовить подходящие стандарты и требования к моторным маслам. В результате появляются целые линейные смазочные материалы с определенными параметрами. 

Как правило, моторные масла известных брендов (например, Motul, Shell или Liqui Moly) полностью соответствуют жестким требованиям производителей автомобилей и даже превосходят их по оценке. 

Допуск масла для дизеля, бензинового мотора или ДВС с другими параметрами и условиями эксплуатации всегда указаны на этикетке канистры.

Наличие допуска на этикетке — это плюс

Количество смазочных материалов растет в геометрической прогрессии, но не всем им удается получить сертификацию автоконцернов и соответствующий допуск. Если это удалось получить от производителя моторного масла, то его продукция быстро займет свою нишу на рынке и будет пользоваться хорошим спросом.

Если вы видите, что это весомый аргумент в пользу покупки именно таких масел. Уже не нужно тратить время на поиски других вариантов. Масла лучше отказаться.

А если залить масло с неподходящим допуском?

Такая ситуация случается нередко. Как правило, смазочные материалы с неподходящими допусками.

  • неопытные, которые недавно были разобраны в моторных масел;
  • невнимательные, которым не хочется лишний раз заглянуть в сервисную книжку автомобиля;
  • изучить результаты.

Нельзя сказать, что разница допусков масла пагубно сказывается на работе мотора. Все зависит от того, насколько неподходящий допуск. Если смазочный материал подходит по вязкости и классу качества, то ничего страшного не случится. General Motors хорошо подходят машинам марки Ford.

Соотношение допусков моторных масел OEM:

Производство может быть заменено на более качественные, но с ограниченными ограничениями. Что это значит? Допустим, вы решили «повысить» качество смазочного материала. В таком случае придется учесть состояние автомобиля:

  • если у вас все хорошо, то как качественный смазочный материал продлевает срок эксплуатации двигателя;
  • Если у вас есть запасное масло или бензин, то новое моторное масло может повлиять на материал уплотнений и на сальники.

Неправильное использование моторных масел

  • внутри него ограничены отложения;
  • дилер при обнаружении несоответствия может отказать в гарантийном ремонте;
  • при длительных поездках масло будет расходоваться неравномерно, что тоже неприятно.

Исходное из перечисленных, становится ясно: использовать смазочный материал с неподходящим допущением стоит в течение непродолжительного времени. Например, если нет другого варианта. Это может быть заменено на масло.

Практические показы: серьезные проблемы при использовании масел с неподходящими допусками случаются редко. Вероятность возникновения проблемы заключается в том, чтобы использовать аналогичные пакеты с учетом бюджета и среднего ценового сегментов.

Что вы получаете при покупке масла с допуском?

Официальное допуск на моторное масло позволяет защитить себя и свой автомобиль от подделок и контрафактных продуктов, неоправданных переплат и непредвиденных расходов на покупку новых мотора и капитальный ремонт на СТО.

Считается, что он должен быть сертифицирован как минимум по одному из международных стандартов качества (API, ACEA, ILSAC, ГОСТ).

  1. Гарантии и спокойствие. Качественный смазочный материал не может нарушить стабильную работу ДВС. Он продлит ресурс мотора в разы и поможет при нагрузке.
  2. Экономию времени и денег. Выбор моторных масел огромный, даже опытный автовладельцы теряются. Выбирать масло с учетом допускаемого.
  3. Умение выбрать масла. Вы поймете, что не бывает плохих или хороших моторных масел. Есть смазочные материалы, специально предназначенные для двигателя вашей машины. И это заметно облегчает выбор.

Видеоматериалы

Свойства моторных масел


Моторное масло играет в двигателе сразу несколько ролей: уменьшает износ, силу трения в парах деталей двигателя, предохраняет их от коррозии, омывает, собирает продукты сгорания топлива, делает более плотным зазор между поршнем, поршневыми кольцами и цилиндром.


Производят масло не абы как, а по известной заранее рецептуре. Чтобы получить все необходимые свойства – смешивают основу (базовое масло) и точно рассчитанный пакет присадок.

Вязкость моторного масла


Моторные масла, равно как многие смазочные материалы, меняют свою вязкость исходя из своей температуры. Падает температура – повышается вязкость и наоборот. Всесезонное масло рассчитано на эксплуатационный диапазон от -35 °С (холодный пуск) до +150 °С…+180 °С (работа двигателя летом «на полную») – нетрудно сделать вывод, что его вязкость многократно изменяется.


Чтобы успешно осуществить холодный запуск зимой – вязкость не должна быть очень велика. В летнюю жару, при высокой температуре моторное масло, напротив, не должна быть на очень низком уровне.


Почему? Чтобы создавалась прочная масляная пленка между парами трения и нужное давление в системе. Чтобы обеспечить заявленную вязкость масла в полном температурном диапазоне делается следующее: производство моторных масел осуществляется из основы с малой вязкостью, которая затем обогащается модификаторами вязкости (полимерные загущающие присадки.


Таким образом, основа обеспечивает требуемые низкотемпературные характеристики. А загущающие присадки позволяют сохранить достаточный уровень вязкости при высоких температурах.


Что все это значит на практике? А то, что способность регулировать вязкость исходя из скорости – сокращает потери на внутреннее трение в моторном масле и, стало быть, мощность двигателя остается на уровне.


Например, когда поршень начинает движение, то его скорость увеличивается и наступает момент, когда масло разделяет поверхности (гидродинамический режим смазки). Загущающая присадка уменьшает вязкость масла и снижает тем самым потерю мощности двигателя.

Противоизносные свойства моторного масла


Противоизносные качества моторного масла – это умение минимизировать механический износ деталей двигателя, а также ЦПГ и колец.


Особо опасен тут механический износ для трущихся между собой элементов. Допустим, скорость невелика, но нагрузки зашкаливают – что будет тогда?


Масло не сможет эффективно выполнять свою функцию, разделять детали, облегчая ход. Детали контактируют друг с другом (это называется граничным режимом смазки). В эти моменты микроповерхности касаются друг друга и разрушаются. Так формируются выступы и задиры.


Этого допускать никак нельзя и для предотвращения разрушения поверхностей в масло заливают противоизносные присадки. Они образуют на металлической поверхности тонкую пленку, обеспечивающую скольжение.


А что делают щелочные присадки? Ответ: нейтрализуют кислоты. Они предотвращают коррозионный износ ЦПГ из-за воздействия кислот, окисления масла и сгорания топлива.

Моющие и диспергирующие свойства моторного масла

Моющие свойства масла


Это, как видно из названия, свойство масла очищать внутренние элементы двигателя от лака, нагара и пр. Такие свойства обеспечиваются вводом моющих присадок, в составе которых есть поверхностно-активные вещества (ПАВ), смывающие отложения от деталей в масло.

Диспергирующие свойства


Оставляют нерастворимые в масле вещества (нагар, продукты сгорания топлива) в активном состоянии, не позволяя им выпасть в осадок. Похоже на чудо? нет, все проще – специальные присадки-дисперсанты, облепляют загрязнения, образуя оболочку. А уж эта оболочка, поверьте, точно не позволит загрязнениям прилипнуть к стенкам двигателя.

Антиокислительные свойства моторного масла


Отвечают за рабочий срок моторного масла


Дело в том, что когда масло начинает окисляться – его качества ухудшаются и оно стареет. Можно ли отсрочить этот процесс? Да, можно, с использованием антиокислительных присадок. Они защищают масляную основу от действия кислорода, и процесс окисления замедляется.


Но, масло работает в двигателе в сложных условиях, так что полностью избавиться от окисления нельзя. Потому что после ввода антиокислительных присадок вязкость масла увеличивается, также растет коррозионная активность, склонность к отложениям и пр.

Антикоррозионные свойства моторного масла


Само название раскрывает суть. Имеется в виду способность масла сопротивляться коррозии, особенно на элементах двигателя, изготовленных из цветных металлов. Антикоррозионные присадки формируют прочные защитные пленки, препятствующие непосредственному контакту с моторным маслом, которое при нагревании оказывается сильной агрессивной средой для цветмета.

Энергосберегающие свойства моторного масла


Загущающие присадки вместе с модификаторами трения – это ингредиенты для получения энергосберегающих масел с маловязкой основой. Такие масла экономят топливо.


В зависимости от класса масла и рабочего режима автомобиля экономия топлива может составлять от 1,5-2 до 5,5-6%.


Модификаторы трения могут быть:

  • Твердые – вещества диспергированные (измельченные) в масле. Хорошая адгезия дает возможность соприкосновения с поверхностями трения и уменьшения его величины при граничном режиме смазки
  • Жидкие – вещества с высокой адсорбцией к металлу и образующие на поверхности “ворс”, снижающий силу трения

Рекомендации про выбор моторного масла

Как добиться того, чтобы двигатель работал долго и надежно, без перебоев:

  • При выборе моторного масла лучше ориентироваться на перечень масел, одобренных автопроизводителем. Такие смазочные материалы успешно прошли испытания, обладают соответствующим набором качеств и допуск к применению
  • Замена масла должна осуществляться в сроки, указанные в инструкции. При эксплуатации в городе, по бездорожью и т. д. движение проходит, как правило, на низких передачах и двигатель совершает больше оборотов на 1000 км пробега, чем при движении на трассе. Посему в таких рабочих условиях менять моторное масло необходимо в 1,5-2 раза чаще, чем установлено в инструкции
  • Если у автомобиля большой пробег, то замену масла следует проводить чаще, из-за того, что его рабочие условия гораздо более суровы (износ двигателя, доступ раскаленных газов в картер)
  • Замену масляного фильтра проводить параллельно с заменой масла. При применении некачественного топлива и большом пробеге по запыленной местности – соответственно, заменять его чаще, чем масло (в разумном пределе). Слишком много продуктов неполного сгорания топлива и пыли может привести к выходу фильтра из строя задолго до срока
  • Не следует смешивать минеральные и синтетические масла, и доливать минеральное в полусинтетическое! Причина кроется в различной растворимости присадок в минеральной и синтетической основе. Итог смешивания может быть невеселым – превращение присадок в осадок – доливать нужно тот же сорт масла, который уже был залит в двигатель.
  • Масла от разных фирм-производителей имеют разные пакеты присадок, и никто вам не гарантирует, что они несовместимы
  • Промывание двигателя не обязательно, если вы своевременно меняли масло и уверены в его качестве
  • Вы купили б/у автомобиль и не знаете, какое масло использовал прежний владелец? Тогда проведите замену масла, а перед этим промойте систему смазки специальным промывочным маслом. Иначе свежее качественное масло может отмыть много отложений, а это ведет к скорому засорению фильтра системы смазки
  • Не увлекайтесь введением в моторное масло разного рода препаратов! Это может улучшить некоторые его свойства, но повлиять негативно на другие. Состояние двигателя пострадает в этом случае. Не верите? Дело в том, что в фирменном, качественном масле набор присадок точно определен и рассчитан, а возможное добавление в него какого-то средства может нарушить этот баланс
  • Не смотрите на цвет масла при выборе. Многие, вводимые в него присадки, затемняют его
  • Если двигатель не прогрет до рабочей температуры, то в масле щелочные присадки не могут нейтрализовать кислоты, получающиеся из продуктов неполного сгорания топлива. А это, увы, ведет к увеличенному коррозионному износу поршней, поршневых колец и цилиндров. А при движении автомобиля – двигатель получает нагрузку и прогревается скорее. Отсюда правило: в зимнее время прогрев двигателя на месте не должен превышать 3-5 мин

Как определить качество моторного масла

Хотя большинство моторных масел изготавливаются в соответствии с приемлемыми стандартами, их общие и специфические качества могут сильно различаться. Некачественные моторные масла часто выбрасываются на рынок по незнанию или жадности. К сожалению, для неосведомленного автовладельца качественное моторное масло и некачественное моторное масло будут выглядеть и ощущаться одинаково.

Двигатель и стендовые испытания

Двигатель всегда был конечной платформой для определения требуемого качества масла. Несмотря на то, что конструкция двигателя изменилась, чтобы соответствовать стандартам производительности, топливной эффективности и экологическим стандартам, двигатель по-прежнему остается высшим арбитром качества масла.

Однако использование двигателя для измерения качества масла при динамометрических испытаниях может оказаться дорогостоящим делом. Тем не менее, чтобы помочь контролировать затраты на гарантийное обслуживание, производители двигателей неизбежно должны разрабатывать и использовать тесты двигателей при определении качества масла, необходимого для конкретной конструкции или компонента.

Хотя это необходимо, создание воспроизводимых динамометрических испытаний двигателя может быть сложной задачей. Поскольку конструкция двигателя постепенно увеличивает мощность по сравнению с двигателями меньшего размера, сложность проведения воспроизводимых динамометрических испытаний возрастает еще быстрее. К счастью, когда уровень качества определен на динамометре или в полевых условиях, существует гораздо менее затратный подход, который можно применить для более точной оценки качества масла.

Это включает в себя использование лабораторных стендовых испытаний, предназначенных для тесной связи с испытаниями на динамометрическом стенде двигателя или полевым опытом. Эти стендовые испытания позволяют относительно недорого измерить качество масла. Однако ценность и значимость этого типа испытаний зависит от ряда факторов, включая определение конкретных потребностей двигателя, четкую и непротиворечивую информацию о двигателе либо в ходе динамометрических испытаний, либо в полевых условиях, а также понимание взаимосвязи между потребности двигателя и физические и/или химические свойства масла.

Свойства моторного масла

Для обслуживания двигателя масло должно обладать определенными физическими и химическими свойствами. Во время службы масла в двигателе возникает ряд рабочих нагрузок, отрицательно влияющих на долгосрочную способность масла функционировать на стабильно высоком уровне. Условия эксплуатации также могут сильно различаться в зависимости от окружающей среды и способа использования автомобиля. Следовательно, выбор моторного масла для удовлетворения конкретных потребностей и условий обслуживания требует знания нескольких важных свойств масла, включая вязкость.

Вязкость

Вязкость можно определить как сопротивление жидкости течению. Поскольку молекулы жидкости несколько притягиваются друг к другу, требуется энергия, чтобы разделить их и создать поток. Как правило, более крупные молекулы имеют большее притяжение между собой и более высокую вязкость. Энергия, необходимая для преодоления этого притяжения между молекулами и создания потока жидкости, можно рассматривать как форму трения.

Следовательно, вязкость можно определить как форму молекулярного трения. Из всех физических и химических свойств моторного масла его вязкость и вискозиметрические свойства во время использования часто считаются наиболее важными.

Вязкость и предотвращение износа

Это же молекулярное трение предотвращает слишком быструю утечку масла, когда две поверхности двигателя в относительном движении сближаются под давлением. Эта неспособность промежуточного масла быстро выйти и уровень его несжимаемости удерживает две поверхности друг от друга и предотвращает износ, процесс, который называется гидродинамической смазкой. Чем выше вязкость, тем больше притяжение молекул масла и выше защита от износа.

Класс вязкости

Вязкость смазочного материала всегда ассоциировалась с защитой от износа. В начале своей истории SAE признала вязкость важным фактором для работы двигателя и ввела систему классификации J300, которая устанавливает уровни вязкости для двигателей по ряду классов. Эти марки определяются уровнями вязкости в одной или двух температурных зонах. Сегодня классы устанавливаются для рабочих температур двигателя и для зимних температур, при которых масло влияет на запуск и прокачку.

Вязкость при рабочих условиях

В первые годы существования автомобильных двигателей масла формулировались просто и подчинялись уравнению Ньютона для вязкости: чем больше сила, используемая для движения жидкости (напряжение сдвига), тем быстрее она будет течь (скорость сдвига). По существу, отношение напряжения сдвига к скорости сдвига — вязкости — оставалось постоянным при всех скоростях сдвига. Все моторные масла того времени были практически одного сорта и не имели классификации SAE «W».

Это вискозиметрическое соотношение изменилось в 1940-х годах, когда было обнаружено, что добавление небольших количеств высокомолекулярных полимеров, по-видимому, придает маслу желаемые характеристики текучести как для низкотемпературного пуска, так и для работы двигателя при высоких температурах. Соответственно, эти полимерсодержащие масла относились по системе классификации вязкости SAE к всесезонным моторным маслам, так как удовлетворяли требованиям обеих вязкостно-температурных зон.

С тех пор большую популярность приобрели всесезонные масла (например, SAE 10W-40, 5W-30, 0W-20 и т. д.). Однако они больше не были ньютоновскими по характеристикам течения, поскольку было обнаружено, что вязкость уменьшается с увеличением скорости сдвига. Это считалось важным для смазывания двигателей, которые работали при высоких скоростях сдвига (измеряемых в миллионах обратных секунд), в отличие от нескольких сотен обратных секунд вискозиметров с низким сдвигом, которые тогда использовались для характеристики моторных масел.

Вискозиметрия при высокой скорости сдвига

Следовательно, возникла необходимость в разработке вискозиметра с высокой скоростью сдвига для измерения вязкости в двигателях при рабочих температурах. В начале 1980-х годов были разработаны прибор и методика, которые могли достигать нескольких миллионов обратных секунд при 150°C, а также обеспечивать высокие скорости сдвига при других температурах как на свежем, так и на отработанном моторном масле.

Прибор назывался вискозиметром с имитацией конического подшипника. Этот метод был принят ASTM как метод испытаний D4683 для использования при 150 ° C (и совсем недавно как D6616 для использования при 100 ° C). Это критическое стендовое испытание качества моторного масла стало известно как вязкость при высоких температурах и высокой скорости сдвига (HTHS). Затем были установлены минимальные пределы для различных марок в системе классификации вязкости SAE.

Интересно, что позже было показано, что этот инструмент был уникальным и в основном абсолютным в обеспечении измерений как крутящего момента сдвига, так и напряжения сдвига, а также скорости сдвига во время работы. Это единственный известный вискозиметр, способный это делать.

Вязкость и гелеобразование масла при низких температурах

Первоначально всесезонные моторные масла были представлены для снижения вязкости масла при низких температурах, чтобы облегчить запуск двигателя. Это важное преимущество сразу же стало очевидным, и с тех пор всесезонные масла стали самой популярной формой моторного масла во всем мире.

С облегчением пуска двигателя при низких температурах стала очевидной еще одна проблема — прокачиваемость масла. Это была значительно более серьезная проблема, так как недостаточная прокачиваемость масла могла вывести двигатель из строя. В ходе испытаний на динамометрическом стенде в холодильной камере было установлено, что существуют две формы проблемы прокачиваемости. Первый был просто связан с высокой вязкостью и назывался поведением с ограничением потока.

Второй был менее очевиден и связан с гелеобразованием масла при длительном цикле глубокого охлаждения. Это было названо «связыванием воздуха», поскольку масляный насос оказался связанным воздухом в результате вытягивания столба масла из поддона и отсутствия заполнения пустоты маслом, как показано на рис. 1.9.0003

Этих знаний и стендовых испытаний, которые изначально, казалось, предсказывали обе формы отказа, было недостаточно. Зимой 1979–1980 годов в Су-Фолс, Южная Дакота, цикл охлаждения показал, что связывание воздуха может происходить при относительно мягких условиях охлаждения. За 24 часа было выведено из строя несколько двигателей, содержащих масло.

Цикл охлаждения привел к состоянию, при котором масло стало связанным с воздухом. Дорогостоящий инцидент выявил потребность в более чувствительных стендовых испытаниях, которые могли бы точно предсказать тенденцию отказов прокачиваемости из-за связывания воздуха.

Индекс гелеобразования

Связанное с воздухом моторное масло, вызвавшее аварии в Су-Фоллс, стало серьезным примером. Были разработаны новый прибор и методика стендовых испытаний для выявления любой склонности испытуемого масла к гелеобразованию. Этот метод, предусматривавший непрерывную низкоскоростную работу цилиндрического ротора в свободно окружающем статоре, был немедленно включен в спецификации моторного масла и позже стал стандартом ASTM D5133.

Это не только показало тенденцию масла к ограничению потока, но также определило степень гелеобразования, которое может произойти в измеренном диапазоне температур (обычно от минус 5 до минус 40 градусов C). Этот параметр был назван индексом гелеобразования. Сегодня спецификации моторных масел для всесезонных масел требуют максимального индекса гелеобразования 12.9.0003

Вязкость и поглощение энергии

Несмотря на то, что вязкость полезна для двигателя в предотвращении износа за счет гидродинамической смазки, она также имеет некоторые негативные аспекты, которые могут повлиять на эффективность работы двигателя. Молекулярное трение масла, разделяющее две поверхности в относительном движении, требует энергии для его преодоления. Это значительное количество энергии от двигателя в обмен на обеспечиваемую защиту от износа. Таким образом, тщательное определение вязкости масла имеет решающее значение для владельцев транспортных средств и для правительств, устанавливающих ограничения экономии топлива.

Снижение вязкости масла может быть важным шагом в уменьшении вязкого трения для повышения эффективности использования топлива. Интересно, что за последние несколько лет увеличилось количество автомобилей, работающих на моторных маслах с более низким уровнем вязкости, что заметно улучшило эффективность их двигателей.

Десять лет назад самыми низкими классами вязкости по SAE были масла SAE 0W-20 и 5W-20, при этом SAE 20 имело минимальную вязкость при высокой скорости сдвига 2,6 сантипуаз (сП) для имитации работы двигателя при 150 °C. На рис. моторные масла, продаваемые в Северной и Южной Америке, а также моторные масла SAE 5W-30.

Японские автопроизводители недавно призвали к еще более низким классам вязкости. Как следствие, SAE ввела три новых рабочих класса, обозначенных как SAE 16 (минимум 2,3 сП при 150°C), SAE 12 (минимум 2,0 сП при 150°C) и SAE 8 (минимум 1,7 сП при 150°C). Эти требования также показаны на рис. 2 для сравнения.

Ни одно из этих масел более низкого качества еще не поступило на рынок для анализа. Поскольку вязкость напрямую связана с количеством энергии, затрачиваемой двигателем на защиту от износа за счет гидродинамической смазки, можно было бы ожидать, что такое снижение вязкости будет иметь важные преимущества с точки зрения эффективности использования топлива, но только в двигателях, предназначенных для их использования.

Индекс топливной эффективности в зависимости от вязкости

Учитывая влияние вязкости масла на двигатель, была разработана методика расчета влияния моторных масел на эффективность использования топлива. Чтобы иметь смысл, значения вязкости должны были быть получены при высоких скоростях сдвига, связанных с работой в определенных частях двигателя.

Более ранняя работа с динамометром определила процент трения и рабочую температуру пяти основных мест смазки в поршневом газовом двигателе, ответственных почти за все потери эффективности. Эта информация использовалась для разработки параметра индекса эффективности вязкого топлива (V-FEI).

При этом значении, которое находится в диапазоне от 0 до 100, чем выше V-FEI данного моторного масла, тем меньше энергии теряется из-за вязкости и, следовательно, тем более экономичным является двигатель. Хотя различные конструкции двигателей могут иметь разные уровни трения в основных смазывающих зонах, использование этих данных о трении обеспечивает сравнительную ценность моторных масел.

На Рисунке 3 показано среднее значение моторных масел SAE 0W-20 и 5W-30 на рынках Северной и Южной Америки с 2008 по 2014 год. Для сравнения среднее значение V-FEI для SAE 0W-20 и 5W-30 в более раннем исследовании было 46 и 47 соответственно.

Как и ожидалось, было установлено, что усредненные за год всесезонные масла SAE 0W-20 способствовали большей топливной экономичности двигателя, чем усредненные всесезонные масла SAE 5W-30 из-за различий в вязкости, показанных на рисунке 2. За исключением 2012 г., увеличение V-FEI эквивалентно почти 7-8 процентам эффективности использования топлива в зависимости от вязкости.

Снижение средней топливной экономичности моторных масел SAE 0W-20, собранных в 2012 году, может свидетельствовать о разработке рецептур, отвечающих опасениям автопроизводителей, что преимущества гидродинамической смазки не будут потеряны при усилиях по повышению эффективности использования топлива.

Испаряемость моторного масла

Еще один аспект, который следует учитывать при снижении вязкости в рецептурах моторных масел, заключается в том, что такое снижение чаще всего достигается за счет использования базовых масел с более высокой летучестью. Испаряющееся масло снижает количество смазочного материала, используемого в двигателе, и может содержать компоненты, загрязняющие катализатор выхлопных газов, что негативно влияет на способность катализатора уменьшать смог. Масло, оставшееся после потери более летучих компонентов, также будет более вязким и энергоемким.

На рис. 4 показана характеристика двух наиболее летучих классификаций всесезонных моторных масел. Также показана максимальная летучесть, установленная Международным комитетом по стандартизации и одобрению смазочных материалов (ILSAC).

В последние несколько лет стало очевидным, что классификационные категории SAE 0W-20 и 5W-30 были разработаны с достаточным запасом для соответствия спецификации ILSAC по летучести. Эти результаты показывают, что контроль испаряемости может быть менее требовательным при использовании недавно классифицированных всесезонных масел, обозначенных как SAE 0W-16, 0W-12 и 0W-8.

Выбросы и летучесть фосфора

Растворимые соединения фосфора, такие как диалкилдитиофосфат цинка (ZDDP), уже много лет используются в рецептурах моторных масел. Эти противоизносные и антиокислительные соединения оказали значительную поддержку конструкции современных двигателей.

В середине 1900-х поршневой двигатель был признан основным источником загрязнения воздуха. Несгоревшие или частично сгоревшие углеводороды из выхлопных газов двигателей под действием солнечного света превращались в вредные газообразные углеводороды, из-за которых в некоторых крупных городах образовывался смог.

Как следствие, в 1970-х годах были разработаны каталитические нейтрализаторы выхлопных газов для обработки выхлопных газов и преобразования их в углекислый газ и воду. К сожалению, спустя годы после разработки каталитического нейтрализатора было обнаружено, что некоторые элементы в бензине или моторном масле, включая фосфор и серу, деактивируют катализатор, покрывая его. В конечном итоге это привело к ограничениям количества этих химикатов в моторном масле и топливе.

Индекс выбросов фосфора

Тест Селби-Ноака на испаряемость был разработан в начале 1990-х годов как лучший и более безопасный подход к определению летучести моторного масла. Он собрал летучий компонент теста на летучесть для дальнейшего анализа, что помогло обнаружить фосфор и серу. При первом анализе летучих веществ, собранных в ходе стендовых испытаний, было очевидно, что фосфорсодержащие присадки в моторных маслах также производят фосфор в результате разложения присадок.

На основе этих результатов был разработан параметр, связанный с количеством фосфора, высвобождаемого во время испытания, который называется индексом выброса фосфора (PEI).

На рис. 5 показано изменение PEI за последние восемь лет. Очевидно, что был достигнут значительный прогресс в снижении разложения фосфора и/или летучести этих двух всесезонных классификаций SAE. Снижение PEI до 6-10 миллиграммов на литр моторного масла является значительным изменением в защите каталитического нейтрализатора от воздействия фосфора.

В связи с тенденцией к использованию двигателей меньшего размера, экономичных и оснащенных турбокомпрессором двигателей, генерирующих более высокие температуры во время работы, стендовые испытания, которые могут выявить тенденции выбросов фосфора в составе масла, были бы полезны при разработке смазочных материалов, наиболее подходящих для двигателя и окружающей среды.

Содержание фосфора и летучесть

Насколько сильно фосфор в моторном масле влияет на количество фосфора, улетучивающегося во время работы двигателя, является важным вопросом, влияющим на выбор присадок в рецептуре масла. На рис. 6 показано содержание фосфора в ряде моторных масел SAE 0W-20 и 5W-30 в зависимости от полученных значений PEI.

Данные показывают, что летучесть фосфора, определяемая тестом Селби-Ноака, практически не связана с количеством фосфора, присутствующего в масле в качестве присадки. Отсутствие корреляции между содержанием фосфора в моторном масле и количеством испарившегося фосфора проявляется в низких значениях коэффициента корреляции (R²).

Этот параметр был бы близок к единице, если бы концентрация фосфора влияла на его летучесть. Как показано на рисунке 6, значения, полученные на основе данных, намного ниже: R² составляет 0,05 для моторных масел SAE 0W-20 и 0,17 для моторных масел SAE 5W-30.

Данные PEI в основном сгруппированы по значениям от 2 миллиграммов на литр до примерно 30 миллиграммов на литр. Однако небольшое количество значений PEI превышает 40 миллиграммов на литр. Эти моторные масла, вероятно, более вредны для катализатора выхлопных газов. Однако, как показано на рисунке 5, уровни PEI заметно снижаются за последние несколько лет.

Несомненно, качество моторных масел будет играть гораздо большую роль в небольших и более мощных двигателях с турбонаддувом, которые выходят на автомобильный рынок. Однако определить качество моторного масла по внешнему виду практически невозможно.

Это определение может быть сделано только путем использования масла или его предварительного тестирования. Очевидно, что последний вариант является более предпочтительным для владельцев автомобилей, которые вложили значительные средства в хорошо функционирующий и надежный двигатель и нуждаются в нем.

Об авторе

Об авторе

Смазка 101: Масло поршневое моторное, его функции, типы и характеристики


Масло поршневое моторное, его функции, виды и характеристики.

Барб Зюльке

Масло. Его основные функции в двигателе включают уменьшение трения, охлаждение, уплотнение, очистку и защиту движущихся частей. Но это часто воспринимается как должное. В этой статье будут рассмотрены основы смазки, а также различные типы и характеристики масла.

Смазочные материалы обеспечивают жидкий барьер между движущимися частями, предотвращая трение и износ. Что касается охлаждения, масло обеспечивает до 40 процентов охлаждения двигателя с воздушным охлаждением самолета. Масло создает уплотнение между поршневыми кольцами и стенками цилиндра. Это помогает уменьшить износ, обеспечить лучшее сжатие и предотвратить попадание загрязняющих веществ при одновременном повышении эффективности использования топлива.

Если масло выполняет свою работу, оно должно быть грязным. Масло, обработанное эффективным диспергатором, взвешивает грязь, металлические частицы и несгоревший углерод. Отслеживая состояние масла с помощью анализа масла, вы можете установить рабочие тенденции, чтобы использовать его в качестве инструмента профилактического обслуживания. Ознакомьтесь с рекомендациями производителя двигателя, но обычное правило интервала замены масла составляет 50 часов для двигателя с фильтром и 25 часов для двигателя с фильтром. Наряду с часовым интервалом, масло следует менять ежеквартально или сезонно. Этот процесс поможет удалить влагу из двигателя и масла, чтобы предотвратить коррозию.

Типы масел основаны на спецификациях, разработанных военными в 1940-х годах и позже стандартизированных Обществом автомобильных инженеров (SAE). Система классифицирует моторные масла по классам вязкости. Масла классифицируются на основе их измеренной вязкости при высоких температурах для одноклассных масел и при низких и высоких температурах для всесезонных масел. Всесезонные масла имеют высокий индекс вязкости (VI) и могут подпадать более чем под одну классификацию SAE.

В авиационных двигателях используется рейтинг вязкости, отличный от автомобильного и SAE. Они используют вес 65 или SAE 30, вес 80 или SAE 40, вес 100 или SAE 50 и вес 120 или SAE 60. Авиационные всесезонные масла, разработанные позже, приняли автомобильную систему классификации SAE и могут быть найдены в 15W-50, 20W-50. и диапазоны 25W-60.

Стандарты SAE для смазочных масел включают J1966 и J1899. Стандарт SAE J1966 устанавливает требования к недиспергирующим (прямого качества) минеральным смазочным маслам, используемым в четырехтактных поршневых авиационных двигателях. Он соответствует тем же требованиям, что и прежняя военная спецификация MIL-L-6082. J1899 устанавливает требования к смазочным маслам, содержащим беззольные диспергирующие присадки, такие же, как MIL-L-22851.

Ниже приведены некоторые технические термины, характеристики и описания различных типов смазочных масел, используемых в авиационных поршневых двигателях.

Вязкость
Вязкость является мерой сопротивления масла сдвигу или течению. Высокая
вязкость указывает на высокое сопротивление потоку, а низкая указывает на низкое сопротивление. Он изменяется в зависимости от температуры и зависит от давления. Повышение температуры вызывает снижение вязкости; наоборот, снижение температуры вызывает увеличение вязкости. Более высокое давление вызывает увеличение вязкости, что также увеличивает толщину масляной пленки. Вязкость измеряется сдвигом и временем. При измерении сдвигом она выражается в сантипуазах и называется динамической вязкостью. Кинематическая вязкость выражается в сантистоксах и обычно дается при двух температурах: 40°C и 100°C. Кинематическая вязкость измеряется как время, необходимое пробе масла для прохождения через вискозиметрическую трубку при стандартной температуре. Затем это значение конвертируется в сантистоксы.

Температура застывания
Это самая низкая температура, при которой масло будет течь. Масла обычно выбирают так, чтобы температура застывания была значительно ниже предполагаемой температуры окружающей среды.

Температура вспышки
Температура вспышки – это самая низкая температура, при которой смазочный материал должен
нагретый до испарения, при смешивании с воздухом и воздействии источника возгорания воспламеняется, но не продолжает гореть. Он используется для определения требований к температуре транспортировки и хранения, а также потенциального загрязнения продукта.

Односезонное или моносортное масло
Сезонное масло представляет собой смазку на нефтяной основе с одним классом вязкости. Некоторые считают, что односортные масла лучше подходят для более высоких температур, но они не могут обеспечить поток, необходимый для холодных пусков, без использования отапливаемого ангара или устройств предварительного подогрева двигателя. В некоторых местах можно использовать одну вязкость в течение всего года.

Существует давняя дискуссия между односезонными и всесезонными маслами. Некоторые пользователи предпочитают один сорт, так как он обеспечивает лучшую устойчивость к высоким температурам и сдвигу. Другие считают, что только всесезонный может обеспечить требуемую производительность.

Чистое минеральное масло не содержит диспергаторов и обычно рекомендуется производителями для первых 50 часов обкатки новых или недавно отремонтированных двигателей. Это обеспечивает более быструю посадку поршневых колец и позволяет накапливать некоторые благоприятные отложения, которые приводят к лучшему контролю потери масла.

Всесезонное масло
Всесезонные масла представляют собой либо полностью минеральное масло, либо синтетическую смесь.
Всесезонные модели в первую очередь предназначены для всесезонной эксплуатации и удобства. Они соответствуют требованиям более чем одной классификации классов вязкости SAE и, следовательно, более подходят для использования в более широком диапазоне температур, чем одноклассные масла. Всесезонные масла содержат присадки, улучшающие вязкость, которые снижают склонность масла к потере вязкости или разжижению при различной вязкости. Другие преимущества включают более низкий расход масла и лучшую экономию топлива.

Беззольный диспергатор
Эти масла представлены как всесезонными, так и моносортными маслами AD и регулируются SAE J1899. Беззольные диспергаторы – это добавки, предназначенные для минимизации образования отложений. Они не содержат соединений металлов, которые могли бы способствовать образованию отложений в камере сгорания. Диспергаторы помогают предотвратить образование шлама из загрязняющих веществ, который может закупорить масляные каналы. Они помогают маслу удерживать побочные продукты сгорания, удерживая их в рассеянном состоянии до тех пор, пока масло не будет слито.

Синтетические
Синтетические масла представляют собой полиальфаолефины, полученные в результате химического синтеза, а не
чем очистка нефтяных масел. В процессе очистки молекулы получаются однородными по размеру и структуре. Характеристики, хотя и зависят от области применения, включают лучшую устойчивость к окислению или сопротивление, более высокий индекс вязкости, более низкую температуру застывания, более низкий коэффициент трения и более длительный срок службы. Одним из недостатков является стоимость, которая может быть в несколько раз выше, чем у масел на минеральной основе.

Синтетические масла были связаны с проблемами износа уплотнений, а также с проблемами растворимости в этилированном топливе, вызывающими образование отложений и закупорку проходов, таких как артерии. Некоторые специалисты по техническому обслуживанию даже научились определять используемое моторное масло по уровню отложений. На рынок поступило только одно полностью синтетическое масло для поршневых авиационных двигателей. Впоследствии этот продукт был изъят из продажи по некоторым из упомянутых причин.

Добавки
Качество масла определяется процессами очистки, но присадки могут улучшить общие характеристики. Присадки, обычно новые технологии, представленные на рынке в виде всесезонных масел, могут включать в себя антикоррозионные, высоконагрузочные и противозадирные характеристики. Они могут значительно улучшить характеристики смазочных материалов в двигателях старых технологий.

Компания Textron Lycoming разработала противоизносную и противозадирную присадку LW-16702, описанную в AD 80-04-03 R2. С момента появления на рынке несколько масел получили дополнительные сертификаты типа, которые можно использовать в качестве альтернативы.

Техническое обслуживание
Итак, выберете ли вы односортный или всесезонный, прямой или беззольный
диспергатора убедитесь, что интервалы замены масла соблюдаются в соответствии с рекомендациями производителя. Также учитывайте тип самолета, тип двигателя и профиль полета, чтобы определить правильное масло для окружающей среды и области применения. Это поможет убедиться, что масло, которое вы используете, соответствует требуемому стандарту.

Дополнительные ресурсы

AeroShell
Хьюстон, Техас
www.shell.com

Смазочные материалы AirBP
Парсиппани, Нью-Джерси
www.bp.com

ConocoPhillips Lubricants
Хьюстон, Техас
www.phillips66.com

ExxonMobil
Ирвинг, Техас
www.exxonmobil.com

Общество автомобильных инженеров
Warrendale, PA
www.sae.org

Вязкость моторного масла – таблица вязкости и диаграмма вязкости :: Anton Paar Wiki

Описание

Моторные масла, как правило, являются составными маслами. Они состоят из минерального, полу- или полностью синтетического базового масла (базовые масла) и различного количества присадок. Качество моторного масла зависит от базового масла и его свойств, а также от присадок.

Основными требованиями к моторному маслу являются определенные температурно-вязкостные свойства, защита от износа и коррозии, поддержание чистоты двигателя, удержание во взвешенном состоянии таких частиц, как сажа или абразивы, предел текучести при сжатии и многое другое. Температура влияет на текучесть моторного масла. Моторное масло доступно в различных классах SAE, чтобы соответствовать климату, в котором оно используется, и цели пользователя.

Таблицы вязкости – данные измерений

SAE 15W-40

Темп. [°С]

Дин. Вязкость [мПа.с]

Кин. Вязкость [мм²/с]

Плотность [г/см³]

0

1328.0

1489,4

0,8916

10

582,95

658,60

0,8851

20

287,23

326,87

0,8787

30

155,31

178. 01

0,8725

40

91.057

105.10

0,8663

50

57.172

66.464

0,8602

60

38. 071

44.585

0,8539

70

26.576

31.350

0,8477

80

19.358

23.006

0,8414

90

14. 588

17.467

0,8352

100

11.316

13.648

0,8291

Моторное масло SAE 15W-40 — кинематическая вязкость и плотность при изменении температуры

 

SAE 10W-40

Темп. [°С]

Дин. Вязкость [мПа.с]

Кин. Вязкость [мм²/с]

Плотность [г/см³]

0

735,42

839,76

0,8758

10

385,53

443,53

0,8692

20

208,89

242. 07

0,8629

30

121,63

141,98

0,8567

40

79.330

93,274

0,8505

50

53. 904

63,847

0,8443

60

37.147

44.327

0,8380

70

26.502

31,865

0,8317

80

19. 690

23.265

0,8239

90

15.093

18.424

0,8192

100

11.877

14.607

0,8131

Моторное масло SAE 10W-40 — кинематическая вязкость и плотность при изменении температуры

 

SAE 10W-60

Темп. [°С]

Дин. Вязкость [мПа.с]

Кин. Вязкость [мм²/с]

Плотность [г/см³]

0

1453,8

1684,4

0,8631

10

712,34

831,44

0,8568

20

381,08

448,10

0,8504

30

220. 06

260,69

0,8442

40

135,52

161,73

0,8380

50

88,554

106,47

0,8318

60

60. 601

73.406

0,8256

70

43.230

52,766

0,8193

80

31,946

39.292

0,8130

90

24. 310

30.129

0,8069

100

18.992

23.717

0,8008

Моторное масло SAE 10W-60 — кинематическая вязкость и плотность при изменении температуры

 

SAE 5W-40

Темп. [°С]

Дин. Вязкость [мПа.с]

Кин. Вязкость [мм²/с]

Плотность [г/см³]

0

753,52

868,78

0,8674

10

378,65

439,85

0,8609

20

206,89

242. 10

0,8545

30

121,90

143,70

0,8483

40

76.551

90,903

0,8421

50

50,861

60,849

0,8358

60

35. 409

42.685

0,8295

70

25.631

31.135

0,8232

80

19.181

23.478

0,8170

90

14. 742

18.185

0,8106

100

11.619

14.443

0,8045

Моторное масло SAE 5W-40 — кинематическая вязкость и плотность при изменении температуры

 

SAE 0W-30

Темп. [°С]

Дин. Вязкость [мПа.с]

Кин. Вязкость [мм²/с]

Плотность [г/см³]

0

474,65

550,23

0,8626

10

249,94

291,93

0,8561

20

142,17

167,29

0,8498

30

86. 600

102,66

0,8435

40

55,926

66.803

0,8372

50

38.008

45.748

0,8308

60

27. 008

32,754

0,8246

70

19.844

24.258

0,8181

80

15.064

18.561

0,8116

90

11. 734

14.572

0,8053

100

9,3466

11.698

0,7990

Моторное масло SAE 0W-30 — кинематическая вязкость и плотность при изменении температуры

SAE 30

Темп. [°С]

Дин. Вязкость [мПа.с]

Кин. Вязкость [мм²/с]

Плотность [г/см³]

0

1124.10

1257,25

0,8941

10

491.10

553,20

0,8878

20

239,39

271,56

0,8815

30

128,42

146,70

0,8754

40

74,55

85,76

0,8693

50

46,43

53,80

0,8630

60

30,58

35,69

0,8569

70

21. 17

24,89

0,8506

80

15.28

18.10

0,8444

90

11.42

13,62

0,8383

100

8,80

10. 58

0,8322

Моторное масло SAE 30 — кинематическая вязкость и плотность при изменении температуры

Ссылка

Измерено с помощью SVM™.

Метаинформация

Ссылка

Измерение с помощью SVM™

Кин. по отношению к

да

Дин. по отношению к

да

Плотность

да

Несколько температур

да

Связанный

Смазка, смазка, моторное масло, моторное масло, вязкость, SAE

Моторное масло | Mein Autolexikon

В двигателях внутреннего сгорания моторное масло выполняет ряд функций. Одним из наиболее важных из них является смазка механических компонентов. Смазка снижает трение между движущимися частями и…

Охрана окружающей среды

Современные моторные масла повышают общую эффективность двигателя, способствуя тем самым снижению выбросов. Кроме того, современные моторные масла, поддерживающие беззольное сгорание, помогают повысить функциональную надежность систем повторной обработки выхлопных газов, таких как сажевые фильтры. Современные моторные масла не содержат хлора или тяжелых металлов и могут быть легко переработаны. Это означает, что ресурсы защищены.

Назначение

В двигателях внутреннего сгорания моторное масло выполняет ряд функций. Одним из наиболее важных из них является смазка механических компонентов. Смазка уменьшает трение между движущимися частями и сводит износ к минимуму. Моторное масло также должно охлаждать, очищать, обеспечивать защиту от коррозии и герметизировать камеры сгорания. Наконец, что не менее важно, он используется для передачи мощности в гидравлических системах двигателя (натяжители цепи, регулировка распределительных валов и т. д.).

Состав моторного масла

В зависимости от типа и характеристик современные моторные масла изготавливаются на основе различных базовых масел или соединений базовых масел. Также используются добавки, которые выполняют самые разные задачи. Высокоэффективное моторное масло можно получить только со сбалансированной формулой (базовое масло и компоненты присадок).

Состав типичного моторного масла следующий:

  • 78 % базового масла
  • 10 % присадки для улучшения вязкости (для улучшения текучести) 
  • 3 % детергент (моющие вещества, очищающие двигатель)
  • 5 % диспергатор (для взвешивания частиц грязи)
  • 1 % защита от износа
  • 3 % другие компоненты

Вязкость

большинство

Вязкость важные свойства моторного масла. Вязкость масла всегда указывается на его бочке. Вязкость – это мера сопротивления жидкости течению. Оно определяется внутренним трением, которое сопротивляется потоку соседних частиц в жидкости. Еще в 1911, вязкость послужила основой для первой системы классификации моторных масел и была определена в системе классификации Общества автомобильных инженеров (SAE). Большинство масел, используемых сегодня, являются всесезонными маслами. SAE 5W30 является примером обозначения вязкости всесезонного масла.

Показатели вязкости основаны на двух переменных:

Динамическая вязкость

Описывает сопротивление моторного масла течению при низких температурах. Масла делятся на зимние классы вязкости 0W, 5W, 10W, 15W, 20W, 25W. Чем меньше число перед буквой W, тем ниже вязкость масла при низких температурах. Динамическая вязкость влияет на скорость стартера, например, когда двигатель холодный. Чем ниже индекс вязкости на холоде, тем легче будет проворачиваться холодный двигатель при запуске.

Кинематическая вязкость

Кинематическая вязкость описывает соотношение между динамической вязкостью и густотой моторного масла при определенной температуре. Летние классы вязкости SAE классифицируются при температуре испытания 100°C. Типичные классы вязкости: 20, 30, 40, 50 и 60. Чем больше число перед W, тем выше вязкость масла при 100°C.

HTHS

Упомянутые выше классы вязкости (зимний и летний) дополняются так называемой вязкостью HTHS. HTHS расшифровывается как High Temperature High Shear. Он описывает динамическую вязкость, измеренную при 150°C и более высоких усилиях сдвига. Выражается в миллипаскалях-секундах (мПа). Предельные значения HTHS определены для обеспечения того, чтобы даже в подшипниках (где и усилия сдвига, и температура масла высоки) моторные масла могли обеспечить необходимую смазку.

Предельное значение для моторных масел со спецификацией ACEA A2/A3 и ACEA B2/B3 находится при HTHS 3,5 мПа·с. Качество моторного масла категории ACEA A1/B1 имеет пониженное значение HTHS до 2,9 мПа·с. Расход топлива должен быть ниже в результате уменьшенного индекса HTHS.

Смешиваемость моторных масел

Как правило, моторные масла можно смешивать друг с другом независимо от того, являются ли они синтетическими или минеральными. Смешивание даже поощряется автомобильными компаниями.

Однако моторные масла разных марок или составов следует смешивать только в том случае, если потребность в доливке не может быть удовлетворена каким-либо другим способом. Соответственно, не рекомендуется смешивать синтетические или полусинтетические моторные масла с моторными маслами на минеральной основе, так как это снижает более высокие стандарты качества синтетических масел. Оценка качества соответствует самому слабому звену в цепи.

Увеличение интервалов замены смазочных материалов означает, что масла должны соответствовать все более жестким требованиям. Например, современные моторные масла должны поддерживать постоянную производительность на протяжении всего срока службы, а также демонстрировать высокую термическую и окислительную стабильность для длительного срока службы и оптимизированные фрикционные характеристики для снижения потерь энергии.

Безопасность

Моторное масло обеспечивает смазку всех компонентов двигателя. Он обеспечивает надежную работу двигателя, способствуя тем самым безопасности на дорогах.

Амортизация

Для обеспечения эксплуатационной надежности двигателя и предотвращения повреждений, вызванных моторным маслом, необходимо регулярно проверять уровень масла. Если уровень слишком низкий, масло необходимо немедленно долить.

Масло является изнашиваемой деталью. Его необходимо менять с периодичностью, установленной производителем автомобиля. Если масло не менять через установленные промежутки времени, существует риск более быстрого износа механических компонентов двигателя. Последствиями этого может быть дорогостоящий ремонт или даже списание двигателя.

Масло, соответствующее требованиям качества, установленным производителем двигателя, должно использоваться как при замене, так и при доливке масла. Это обеспечит надежную работу двигателя на протяжении всего срока службы, эффективную работу и низкий уровень выбросов загрязняющих веществ.

  • Моторный масло
Производитель

Основные.

0001

Чтобы понять, что такое смазочные масла, вам необходимо понять их два основных компонента – базовые масла и присадки. Присоединяйтесь к нам в первой части трехчастного вводного курса по смазочным материалам для двигателей, где мы более подробно рассмотрим компонент базового масла — различные типы базовых масел, процессы их производства и их влияние на конечные свойства смазочных материалов.

 

Работа двигателей. Чтобы это «сердце» деятельности работало бесперебойно и эффективно, двигателю требуется правильная смазка и защита в различных условиях. Смазочные материалы выполняют пять основных функций:

  • Смазка движущихся частей для уменьшения трения и предотвращения износа
  • Помощь в очистке двигателя или машины от загрязняющих веществ за счет уменьшения накопления шлама и удерживания частиц во взвешенном состоянии
  • Уплотнение поршень и цилиндр для оптимальной эффективности работы
  • Охлаждение высокотемпературных зон двигателя и механизмов
  • Защита металлических деталей от ржавчины и коррозии

Независимо от того, являетесь ли вы опытным профессионалом в отрасли или начинающим талантом, ниже приведен краткий обзор основ базовых масел — их различных типов, производственных процессов — чтобы объяснить их важность для определения конечных свойств смазочного материала.

Основные эксплуатационные характеристики смазочных материалов

Моторные масла по своим характеристикам несколько отличаются от более широкой категории индустриальных масел. Вот краткая таблица, чтобы разбить их:

Моторные масла

Индустриальные масла

Окислительная стабильность

Окислительная стабильность

Низкотемпературная реология

Платежеспособность

Защита от износа

Защита от износа

Защита от коррозии

Ингибитор ржавчины

Волатильность

Водоотделяемость

Снижение образования отложений

 

Диспергирование

 

Что такое смазочное масло?

Моторные/смазочные масла изготавливаются из отборных базовых масел в сочетании с присадками, улучшающими рабочие характеристики.

  • Присадки, улучшающие исходные свойства базового масла
  • Присадки, улучшающие эксплуатационные характеристики базового масла
  • Присадки помогают продлить срок службы масла

В современном мире смазочных материалов базовые масла/базовые компоненты, используемые в моторных маслах, обычно делятся на две основные категории – минеральные и синтетические.

Минеральные базовые масла перегоняются из сырой нефти на обычном нефтеперерабатывающем заводе, в результате чего молекулы масла имеют неоднородные размеры.

Синтетические базовые масла , с другой стороны, получают химическим путем из чистых нефтяных газов на химическом заводе или перерабатывают из сырой нефти с помощью жесткой каталитической гидрообработки.

Эти два базовых масла последовательно подразделяются на 4 основных класса ниже. Состав базового масла оказывает существенное влияние на общие характеристики моторного масла. Смесь типов базовых масел часто используется, чтобы сбалансировать производительность и затраты.

 

·       Группа API I

Обычный

Минеральное масло

·       Группа API II

Гидрообработка

Минеральное масло высокой степени очистки

·       Группа API III

Глубокая гидрообработка

Минеральное масло очень высокой степени очистки (обычно называемое синтетическим)

·       Группа API IV

ПАО Синтетика

Химически построенный, т.е. синтезированный

ПАО = полиальфаолефин

 

Различия в составе базовых компонентов

 

 

Группа I

Группа II

Группа III

Группа IV

Сера (частей на миллион)

2 000 – 7 000

10 – 300

< 10,0

нет

Азот (частей на миллион)

60

1 – 5

< 1,0

нет

Ароматические соединения (мас. %)

15 – 30

1 – 10

< 1,0

ноль

Индекс вязкости

95 мин.

95 – 119

120 – 130

120 – 200+

Как производство базовых пейзажей

9000 9000 4.1278

Недвижимость

Что это значит?

Профи

 

Высокий индекс вязкости (VI)

Требуется меньше улучшителя индекса вязкости, следовательно, меньше отложений

Уменьшает пригорание колец и полировку отверстия

Моторное масло, скорее всего, останется в классе

Хорошая волатильность

Снижение расхода масла и выбросов

Низкая пожароопасность

Моторное масло, скорее всего, останется в классе

Низкая температура застывания

Лучшая текучесть при низких температурах (температура застывания -57⁰C)

Улучшение пусковых характеристик, что снижает износ

Устойчивость к окислению

Увеличенные интервалы замены

Более низкие уровни шлама, отложений и нагара

Минусы

 

Высокая стоимость

Стоимость ок. В 4 раза больше, чем на минеральной основе

Плохая платежеспособность

Добавки должны быть специально подобраны

Совместимость с уплотнениями

Масло способно воздействовать на материалы уплотнений

В целом, синтетические смазочные материалы обычно обеспечивают более надежную работу, особенно с точки зрения прокачиваемости при низких температурах. высокая температурная стабильность и защита от отложений. Эти свойства могут способствовать снижению износа двигателя, потенциальной экономии топлива и увеличению срока службы двигателя.

Синтетические смазочные материалы также могут значительно улучшить экономию топлива, работая намного быстрее, чем минеральные моторные масла, поэтому двигатель достигает максимальной эффективности намного раньше.

Еще одно преимущество синтетических масел, особенно в наше время, заключается в том, что они чище и безвреднее для окружающей среды, что помогает сократить выбросы двигателя по сравнению с обычными минеральными моторными маслами. Обычные минеральные моторные масла также содержат большее количество примесей, таких как сера, реактивные и нестабильные углеводороды и другие нежелательные загрязнители, которые невозможно полностью удалить при обычной очистке сырой нефти.

Чтобы максимизировать преимущества моторного масла и свести к минимуму любые проблемы, мы настоятельно рекомендуем предприятиям поговорить со своим дистрибьютором смазочных материалов и экспертом, чтобы оценить и определить лучшее моторное масло, наиболее подходящее для их использования, а также оптимальные методы продления срока его службы. долголетие.

Во второй части нашего руководства по моторным маслам мы поговорим о том, какие существуют типы присадок, почему они важны и почему нам необходимо сбалансировать количество присадок в рецептуре смазочного материала.

У вас есть вопросы о роли базовых масел в моторном масле? Поделитесь ими с нами в комментариях ниже или нажмите «Нравится» на панели инструментов справа, если вы нашли это обновление полезным!

Требования и характеристики смазочных материалов для поршневых двигателей

Несмотря на то, что масло для поршневых двигателей должно обладать несколькими важными свойствами, его вязкость наиболее важна для работы двигателя. Сопротивление масла течению известно как его вязкость. Масло, которое течет медленно, является вязким или имеет высокую вязкость; если он течет свободно, он имеет низкую вязкость. К сожалению, на вязкость масла влияет температура. Нередко более ранние сорта масла становились практически твердыми в холодную погоду, что увеличивало сопротивление и делало циркуляцию практически невозможной. Другие масла могут становиться настолько жидкими при высоких температурах, что масляная пленка разрушается, что приводит к снижению грузоподъемности и быстрому износу движущихся частей.

Масло, выбранное для смазки авиационных двигателей, должно быть достаточно легким, чтобы свободно циркулировать при низких температурах, и достаточно тяжелым, чтобы образовывать надлежащую масляную пленку при рабочих температурах двигателя. Поскольку смазочные материалы различаются по свойствам и поскольку ни одно масло не подходит для всех двигателей и всех условий эксплуатации, крайне важно использовать только одобренный сорт или рейтинг Общества автомобильных инженеров (SAE).

При выборе надлежащего сорта масла для использования в конкретном двигателе необходимо учитывать несколько факторов, наиболее важными из которых являются рабочая нагрузка, частота вращения и рабочая температура. Класс используемого смазочного масла определяется условиями эксплуатации, которые должны соблюдаться в различных типах двигателей. Масло, используемое в авиационных поршневых двигателях, имеет относительно высокую вязкость, необходимую для:

  1. Большие рабочие зазоры двигателя из-за относительно большого размера движущихся частей, использования различных материалов и различной скорости расширения различных материалов;
  2. Высокие рабочие температуры; и
  3. Высокое давление в подшипниках.

Вязкость

Как правило, масла для коммерческой авиации классифицируются по номеру (например, 80, 100, 140 и т. д.), который приблизительно соответствует вязкости, измеренной с помощью испытательного прибора, называемого универсальным вискозиметром Сейболта. В этом приборе трубка содержит определенное количество тестируемого масла. Масло доводится до точной температуры с помощью жидкой ванны, окружающей трубу. Время в секундах, необходимое для прохождения точно 60 кубических сантиметров масла через точно откалиброванное отверстие, записывается как мера вязкости масла. Если бы фактические значения Сейболта использовались для обозначения вязкости нефти, вероятно, было бы несколько сотен сортов нефти.

Для упрощения выбора масел их часто классифицируют по системе SAE, которая делит все масла на семь групп (SAE от 10 до 70) в зависимости от вязкости при температуре 130 °F или 210 °F. Рейтинги SAE являются чисто произвольными и не имеют прямого отношения к рейтингам Сейболта или другим рейтингам.

Буква W иногда включается в номер SAE, давая обозначение, например, SAE 20W. Этот W указывает на то, что масло, помимо соответствия требованиям по вязкости при температуре испытаний, является удовлетворительным маслом для зимнего использования в холодном климате. Это не следует путать с буквой W, используемой перед номером сорта или веса, который указывает на то, что масло относится к типу беззольных диспергаторов.

Хотя шкала SAE устранила некоторую путаницу в обозначениях смазочных масел, не следует полагать, что эта спецификация охватывает все важные требования к вязкости. Номер SAE указывает только класс вязкости или относительную вязкость; он не указывает на качество или другие существенные характеристики. Общеизвестно, что есть хорошие масла и некачественные масла, которые имеют одинаковую вязкость при данной температуре и, следовательно, подлежат отнесению к одному и тому же сорту.

Буквы SAE на контейнере с маслом не являются одобрением или рекомендацией масла SAE. Хотя каждый сорт масла оценивается по номеру SAE, в зависимости от его конкретного использования, ему может быть присвоен номер класса коммерческой авиации или номер спецификации армии и флота. Соотношение между этими системами нумерации марок показано на рисунке 1.

Рисунок 1. Обозначения марок авиационных масел

Индекс вязкости

Индекс вязкости — это число, указывающее влияние изменений температуры на вязкость масла. Когда масло имеет низкий индекс вязкости, это означает относительно большое изменение вязкости при повышении температуры. Масло становится жидким при высоких температурах и густым при низких температурах. Масла с высоким индексом вязкости имеют небольшие изменения вязкости в широком диапазоне температур.

Для большинства целей лучше всего подходит масло, сохраняющее постоянную вязкость при изменении температуры. Масло с высоким индексом вязкости противостоит чрезмерному загустеванию, когда двигатель подвергается воздействию низких температур. Это обеспечивает высокую скорость проворачивания коленчатого вала при запуске и быструю циркуляцию масла при первом запуске. Это масло устойчиво к чрезмерному разжижению при рабочей температуре двигателя и обеспечивает полную смазку и защиту подшипников от нагрузки.

Температура вспышки и воспламенения

Температура вспышки и температура воспламенения определяются лабораторными испытаниями, которые показывают температуру, при которой жидкость начинает выделять горючие пары, вспышку, а также температуру, при которой паров достаточно для поддержания огня. Эти точки устанавливаются для моторных масел, чтобы определить, могут ли они выдерживать высокие температуры, встречающиеся в двигателе.

Температура помутнения и температура застывания

Температура помутнения и температура застывания также помогают определить пригодность. Точка помутнения масла — это температура, при которой содержащийся в нем парафин, обычно находящийся в растворе, начинает затвердевать и разделяться на крошечные кристаллы, в результате чего масло становится мутным или мутным. Температура застывания масла – это самая низкая температура, при которой оно течет или может быть залито.

Удельный вес

Удельный вес – это сравнение веса вещества с весом равного объема дистиллированной воды при определенной температуре. Например, вода весит примерно 8 фунтов на галлон; нефть с удельным весом 0,9 будет весить 7,2 фунта на галлон.

В первые годы характеристики авиационных поршневых двигателей были таковы, что их можно было удовлетворительно смазывать чистыми минеральными маслами, смешанными из специально отобранных базовых масел. Масла марок 65, 80, 100 и 120 представляют собой чистые минеральные масла, смешанные из отобранных базовых масел с высоким индексом вязкости. Эти масла не содержат никаких присадок, за исключением очень небольшого количества депрессорной присадки, которая помогает улучшить текучесть при очень низких температурах, и антиоксиданта. Этот тип масла используется в период обкатки новых авиационных поршневых двигателей или недавно отремонтированных.

Спрос на масла с более высокой степенью термической и окислительной стабильности обусловил необходимость их обогащения добавлением небольшого количества ненефтяных материалов. Первые присадки, введенные в минеральные масла для поршневых двигателей прямого действия, были основаны на металлических солях бария и кальция. В большинстве двигателей характеристики этих масел в отношении окислительной и термической стабильности были превосходными, но камеры сгорания большинства двигателей не выдерживали присутствия зольных отложений, образующихся из-за этих металлосодержащих присадок. Чтобы преодолеть недостатки вредных отложений в камере сгорания, была разработана неметаллическая (т. е. не образующая золы, полимерная) присадка, которая вводилась в смеси выбранных базовых масел на основе минеральных масел. Масла W относятся к беззольному типу и используются до сих пор. Беззольные марки диспергаторов содержат присадки, одна из которых обладает стабилизирующим вязкость эффектом, устраняющим склонность масла к разжижению при высоких температурах масла и загустеванию при низких температурах масла.

Присадки в этих маслах расширяют диапазон рабочих температур и улучшают запуск холодного двигателя и смазку двигателя в критический период прогрева, позволяя преодолевать более широкие диапазоны климатических изменений без необходимости замены масла.

Полусинтетическое всесезонное масло SAE W15 W50 для поршневых двигателей используется уже некоторое время. Масла W80, W100 и W120 представляют собой беззольные диспергирующие масла, специально разработанные для авиационных поршневых двигателей. Они сочетают в себе неметаллические присадки с выбранными базовыми маслами с высоким индексом вязкости, что обеспечивает исключительную стабильность, диспергируемость и антивспенивающие свойства. Дисперсность – это способность масла удерживать частицы во взвешенном состоянии до тех пор, пока они не будут уловлены фильтром или слиты при следующей замене масла. Диспергирующая присадка не является моющим средством и не очищает ранее образовавшиеся отложения из салона двигателя.

Некоторое всесезонное масло представляет собой смесь синтетического и полусинтетического масла на минеральной основе, а также высокоэффективный пакет присадок, который добавляется из-за опасений, что полностью синтетическое масло может не иметь растворяющей способности для обработки свинцовых отложений, возникающих в результате использования этилированное топливо. Будучи всесезонным маслом, оно обеспечивает эффективную смазку в более широком диапазоне температур, чем моносезонные масла. По сравнению с сезонным маслом всесезонное масло обеспечивает лучшую защиту от холодного пуска и более прочную смазочную пленку (более высокую вязкость) при типичных рабочих температурах. Комбинация неметаллических противоизносных присадок и отобранных минеральных и синтетических базовых масел с высоким индексом вязкости обеспечивает исключительную стабильность, диспергирующие и антипенные характеристики. Запуск может способствовать до 80 процентов нормального износа двигателя из-за отсутствия смазки во время цикла запуска. Чем легче масло поступает к компонентам двигателя при запуске, тем меньше происходит износ.

Беззольные марки диспергаторов рекомендуются для авиационных двигателей, подверженных большим колебаниям температуры окружающей среды, особенно для двигателей с турбонаддувом, которым требуется масло для активации различных турбоконтроллеров. При температуре ниже 20 °F обычно требуется предварительный подогрев двигателя и маслобака независимо от типа используемого масла.

Полусинтетическое всесезонное беззольное диспергирующее масло премиум-класса представляет собой специальную смесь высококачественного минерального масла и синтетических углеводородов с усовершенствованным пакетом присадок, специально разработанным для всесезонного применения. Беззольная противоизносная присадка обеспечивает исключительную защиту от износа изнашиваемых поверхностей.

Многие производители самолетов добавляют одобренные консервирующие смазочные масла для защиты новых двигателей от ржавчины и коррозии, когда самолет покидает завод. Это консервирующее масло следует удалить в конце первых 25 часов работы. При добавлении масла в период, когда в двигателе находится консервационное масло, используйте только минеральное масло авиационного класса или беззольное диспергирующее масло требуемой вязкости.

Если в новом двигателе или двигателе после капитального ремонта используется беззольное масло-диспергатор, может наблюдаться высокий расход масла. Присадки в некоторых из этих беззольных масел-диспергаторов могут замедлять приработку поршневых колец и стенок цилиндров.