Содержание
Установки на будущее
Стоимость запуска ракеты-носителя в современной космонавтике остается довольно высокой, достигая порой нескольких сотен миллионов долларов. Чтобы существенно снизить ее, конструкторы из разных стран мира разрабатывают принципиально новые виды ракетных двигателей, способные выводить полезный груз на орбиту при меньших энергозатратах по сравнению с обычными силовыми установками. На сегодня из различных перспективных проектов такого рода наиболее близки к реализации три. Мы решили разобраться в их особенностях.
Во всем мире в 2015 году были произведены 87 запусков ракет-носителей с различной полезной нагрузкой: 29 запусков пришлись на Россию, 20 — на США, 19 — на Китай, девять — на Европейское космическое агентство, пять — на Индию, четыре — на Японию и один — на Иран. Из этого количества пять запусков были неудачными и окончились потерей двух автоматических космических кораблей и десяти спутников. В 2014 году страны осуществили 92 запуска ракет-носителей, а годом ранее — 80. Сегодня стоимость выведения полезного груза на орбиту составляет от 15 до 25 тысяч долларов за один килограмм при выводе спутников на геопереходную орбиту, откуда они переходят на геостационарную. Запуск космического аппарата на низкую орбиту обходится дешевле, но все равно достаточно дорого — от 2,4 до 6 тысяч долларов на килограмм.
Неудивительно поэтому, что во многих странах ведутся работы по созданию технологий, способных существенно снизить стоимость космических запусков. При этом разные разработчики идут разными путями. Например, американская компания SpaceX занимается созданием ракет-носителей Falcon Heavy с возвращаемой первой ступенью. В компании уверены, что многоразовость первой ступени Falcon Heavy позволит снизить стоимость запуска полезного груза на низкую орбиту Земли до двух тысяч долларов за килограмм и до 9–11 тысяч при запуске на геопереходную орбиту. А американская же компания JP Aerospace занимается созданием многоступенчатой системы запуска, в которой первые две ступени будут представлены дирижаблями.
Словом, различных технологий, нацеленных на снижение стоимости запусков, сегодня разрабатывается много. К ним относятся и ракеты-носители с корпусами из современных материалов, и способные на самолетные взлет и посадку ракетопланы, и навигационные системы возвращаемых ступеней ракет. Но главное место среди них занимают новые двигатели. Правда, в этой области чаще всего речь идет об усовершенствовании конструкций уже существующих ракетных двигателей. Например, двигатель Merlin компании SpaceX обладает значительной мощностью, но при этом относится к традиционным жидкостным ракетным двигателям. Впрочем, есть и оригинальные решения, прежде не применявшиеся для ракет-носителей. О трех наиболее интересных из них, с точки зрения конструкции и потенциальной выгоды, мы расскажем ниже.
Гибридный двигатель
В начале 1990-х годов британская компания Reaction Engines занялась разработкой нового типа ракетного двигателя, который потреблял бы существенно меньше жидкого окислителя, но был бы эффективен на всех высотах полета. Предполагалось, что он будет совмещать в себе качества воздушного турбореактивного и ракетного двигателей. Новый проект получил название SABRE (Synergistic Air-Breathing Rocket Engine, синергичный атмосферный ракетный двигатель). Принцип силовой установки относительно прост: при полете в атмосфере для сжигания топлива используется атмосферный кислород, а при выходе в безвоздушное пространство двигатель переключается на использование жидкого кислорода из баков.
Согласно проекту, двигатель SABRE получит универсальную камеру сгорания и сопло, по конструкции во многом схожие с подобными элементами обычного ракетного двигателя. На старте и при разгоне SABRE будет работать как обычный прямоточный реактивный двигатель. В полете воздух будет поступать в воздухозаборник, а дальше по специальным обводным каналам — в охладитель и камеру сгорания. В зоне охладителя предусмотрена установка турбины и компрессора: при выходе реактивной струи из сопла воздух будет затягиваться в двигатель и раскручивать турбину, которая в свою очередь будет раскручивать компрессор. Последний станет сжимать охлажденный воздух, что позволит увеличить его подачу в камеру сгорания, а следовательно и полноту сгорания топлива и его энергетическую отдачу.
Предполагается, что в атмосферном режиме новый гибридный ракетный двигатель будет работать на скоростях полета до пяти чисел Маха (6,2 тысячи километров в час). По мере увеличения скорости воздух в воздухозаборнике — из-за его резкого торможения и сжатия — будет становиться все горячее и горячее. Это ухудшит его компрессию, а значит, и общую эффективность двигателя. Поэтому для охлаждения поступающего воздуха предполагается использовать специальную сеть трубок диаметром один миллиметр и общей протяженностью около двух тысяч километров. Их установят в воздуховоде. В сами трубки под давлением в 200 бар (197 атмосфер) будет подаваться гелий, выполняющий роль теплоносителя.
По расчетам разработчиков, система позволит охлаждать поступающий воздух с более чем одной тысячи градусов Цельсия до минус 150 градусов Цельсия за одну сотую секунды. При этом сжижения воздуха, способного резко снизить эффективность двигателя, не произойдет. После превышения скорости в пять чисел Маха воздухозаборник будет перекрыт, а двигатель переключится на потребление жидкого кислорода из бака. В таком варианте он сможет функционировать в разреженных верхних слоях атмосферы и в безвоздушном пространстве. В качестве топлива планируется использовать жидкий водород. Испытания отдельных узлов SABRE проводились Reaction Engines с 2012 года и признаны успешными.
В настоящее время британская компания занимается сборкой демонстратора технологий двигателя, испытания которого запланированы на конец 2017-го — первую половину 2018 года. В атмосферном режиме этот аппарат сможет развивать тягу в 196 килоньютонов. По своим размерам прототип силовой установки будет соответствовать габаритам турбореактивного двухконтурного двигателя с форсажной камерой F135. Такие двигатели ставятся на американские истребители F-35 Lightning II. Длина F135 составляет 5,6 метра, а диаметр — 1,2 метра. Эта силовая установка способна развивать тягу до 191 килоньютона в режиме форсажа. Полноценная установка SABRE будет немного крупнее и в атмосферном режиме сможет развивать тягу в 667 килоньютонов. Ее испытания запланированы на 2020–2021 годы.
В британской компании полагают, что благодаря ее двигателю ракету-носитель можно будет сделать одноступенчатой. Причем эта единственная ступень станет возвращаемой. Новая силовая установка будет потреблять топлива и особенно окислителя гораздо меньше обычного ракетного двигателя, ведь для полета на атмосферном участке кислород для сжигания горючего предполагается брать из воздуха. Британские двигатели планируется использовать в перспективных американских многоразовых двухступенчатых космических кораблях, которые, по предварительным расчетам, позволят выводить полезную нагрузку на низкую околоземную орбиту по 1,1–1,4 тысячи долларов за килограмм.
Гиперзвуковой двигатель
Поделиться
Запуск ракеты с гиперзвуковым прямоточным воздушно-реактивным двигателем в Индии на полигоне Шрихарихота
ISRO
В конце августа 2016 года индийская Организация космических исследований провела первые успешные испытания гиперзвуковых прямоточных воздушно-реактивных двигателей. Успешное испытание силовых установок состоялось на полигоне Шрихарихота на востоке страны. Для проверки разработчики использовали обычную твердопливную двухступенчатую ракету-носитель ATV, ко второй ступени которой и были прикреплены гиперзвуковые двигатели. Во время летных испытаний силовых установок исследователи проверили зажигание на сверхзвуковой скорости, устойчивое горение топлива, механизм забора воздуха и систему впрыска топлива. Общая продолжительность полета второй ступени составила 300 секунд, из которых пять секунд работали гиперзвуковые двигатели.
Индийские силовые установки, создаваемые в рамках проекта SRE (Scramjet Rocket Engine, гиперзвуковой прямоточный воздушно-реактивный ракетный двигатель), работали на скорости полета чуть больше шести чисел Маха. Ступень с двигателями поднялась на высоту 70 километров. Целью первого испытания гиперзвуковых двигателей была проверка стабильности их работы, а не возможности этих силовых установок разгонять носители до гиперзвуковых скоростей. В ближайшее время разработчики планируют завершить обработку данных, полученных во время первого запуска силовых установок, и провести еще серию их испытаний. Предполагается, что гиперзвуковые двигатели будут разгонять вторую ступень ракет-носителей до восьми-девяти чисел Маха.
Технические подробности о своих гиперзвуковых установках индийцы не раскрывают. Однако общая схема таких двигателей, разрабатываемых в нескольких странах мира с 1970-х годов, известна. Гиперзвуковой прямоточный воздушно-реактивный двигатель отличается от обычных тем, что топливо в его камере сгорает в сверхзвуковом воздушном потоке. При этом воздух для процесса горения подается в камеру прямотоком без использования дополнительных компрессоров. Выглядит это так: набегающий воздушный поток попадает в воздухозаборник, а затем в заужающуюся компрессорную камеру, где сжимается и откуда поступает в камеру сгорания. Что самое интересное, такие гиперзвуковые двигатели могут вообще не иметь никаких подвижных частей.
youtube.com/embed/eY8f_VBACQ0?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»» title=»ISRO successfully test fires newly developed Scramjet rocket engine»>
Гиперзвуковые силовые установки способны работать при скорости полета не менее четырех-пяти чисел Маха — именно при такой скорости обеспечивается необходимое сжатие воздуха и стабильное сгорание топлива. Теоретическим верхним пределом скорости гиперзвукового двигателя считаются 24 числа Маха. При этом силовая установка сможет развивать и большие скорости, если в камеру сгорания будет дополнительно впрыскиваться жидкий окислитель. Максимальная высота полета, на которой гиперзвуковые двигатели могут работать без потребности в дополнительном впрыске окислителя, составляет 75 километров. Для сравнения, низкая околоземная орбита начинается с отметки в 160 километров.
Помимо Индии, активными работами по созданию гиперзвуковых ракетных двигателей сегодня занимаются США, Россия, Китай и Австралия. США и Россия планируют устанавливать новые силовые установки на гиперзвуковые боевые ракеты, разведывательные аппараты и истребители шестого поколения. Австралия, ведущая разработки совместно с американцами, тоже намерена оснастить новыми двигателями ракеты. Китай, помимо боевого применения силовых установок, намерен использовать их и в ракетах-носителях. По неподтвержденным данным, гиперзвуковые двигатели будут разгонять китайские ракеты-носители до 10–12 чисел Маха, а боевые ракеты — до 20 чисел Маха. Первые испытания китайской гиперзвуковой ракеты состоялись в июне прошлого года.
В США и России полагают, что использование гиперзвуковых двигателей в ракетах-носителях усложнит, а не упростит их конструкцию. Кроме того, исследователи считают, что такие силовые установки не смогут развивать достаточную для запуска больших грузов тягу. Индийские же и китайские разработчики уверены, что использование гиперзвуковых прямоточных воздушно-реактивных двигателей в ракетах-носителях позволит отказаться от большей части жидкого окислителя, который будет необходим лишь на заатмосферном участке полета. А проблему возможной недостаточности тяги можно будет решить установкой нескольких гиперзвуковых силовых установок, причем выгода от отказа от окислителя нивелирована не будет — совокупная масса двигателей благодаря простой конструкции будет невелика.
Детонационный двигатель
Между тем в России специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» занимается разработкой спинового детонационного жидкостного ракетного двигателя, работающего на топливной паре кислород-керосин. О первом успешном испытании такой силовой установки было объявлено 26 августа текущего года. Следует отметить, что это первый в мире спиновый детонационный двигатель, разрабатываемый специально для использования на ракетах-носителях. Аналогичную силовую установку сегодня создают и в США, однако ее планируется использовать в качестве более экономичной и эффективной замены газотурбинных двигателей на кораблях ВМС.
Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Впервые ими занялись еще в Германии в 1940-е годы. Правда, тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1». В силовых установках таких ракет топливо подавалось в камеру сгорания небольшими порциями через равные промежутки времени. При этом распространение процесса горения по топливу происходило на скорости, меньшей скорости звука. Такое сгорание называется дефлаграцией, оно лежит в основе работы всех обычных двигателей внутреннего сгорания.
В детонационном двигателе фронт горения распространяется по топливной смеси быстрее скорости звука. Такой процесс горения называется детонацией. Детонационные двигатели сегодня делятся на два типа: импульсные и спиновые. Последние иногда называют ротационными. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей: топливо и окислитель подаются в камеру сгорания с высокой частотой через равные промежутки времени. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. Благодаря детонации топливо сгорает полнее, выделяя большее количество энергии, чем при дефлаграции.
В спиновых детонационных двигателях используется кольцевая камера сгорания. В ней топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает, пока подаются топливо и окислитель. Во время работы двигателя детонационная волна «обегает» кольцевую камеру сгорания, причем топливная смесь за ней успевает обновиться. При этом, если в импульсном двигателе в камеру сгорания следует подавать предварительно подготовленную смесь топлива и окислителя, то в спиновом двигателе этого делать не нужно — фронт высокого давления, движущийся перед детонационной волной, вполне эффективно смешивает необходимые компоненты. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.
В новом российском спиновом детонационном ракетном двигателе частота спиновой детонации составляет 20 килогерц, то есть за одну секунду детонационная волна успевает «обежать» кольцевую камеру сгорания 20 тысяч раз. Теоретически, детонационные двигатели способны работать в широком пределе скоростей полета — от нуля до пяти чисел Маха, а при использовании дополнительных агрегатов, например компрессора, верхний предел можно поднять до семи-восьми чисел Маха. Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в базовом варианте в них отсутствует компрессор и многие движущиеся части.
Благодаря своей экономичности при высокой выдаваемой мощности спиновые детонационные двигатели в ракетах-носителях позволят существенно сократить объемы топлива и окислителя, необходимые для вывода полезного груза на орбиту. На практике (и это свойственно всем уже перечисленным проектам), уменьшение массы двигателя (а силовая установка будет весить меньше обычной ракетной), топлива и окислителя позволит либо увеличить забрасываемый вес носителя при сохранении его габаритов, либо оставить забрасываемый вес неизменным при уменьшении габаритов ракеты. Забрасываемый вес ракеты-носителя — это масса последней ступени, ее топлива и полезного груза.
В перспективе гонку на рынке космических запусков выиграет тот, кто сможет как можно дешевле выводить на орбиту как можно больше грузов. Некоторые компании полагают, что благодаря использованию новых технологий стоимость вывода грузов на низкую орбиту можно будет опустить ниже тысячи долларов за килограмм и ниже десяти тысяч за килограмм при запуске на геопереходную орбиту. Правда, когда именно такое будет возможно, пока неясно. По самым смелым оценкам, новые ракетные двигатели будут использоваться на ракетах-носителях с середины 2020-х годов.
Василий Сычёв
Воздушно-реактивный двигатель. Большая энциклопедия техники
Воздушно-реактивный двигатель
Воздушно-реактивный двигатель – реактивный двигатель, принцип действия которого основан на сжигании жидкого или твердого горючего для создания силы тяги. Окислителем в реакции горения будет являться кислород из окружающего атмосферного воздуха. Для работы двигателя необходимо чтобы воздух был в сжатом состоянии, его сжатие происходит либо непосредственно в воздухозаборнике, либо в компрессоре. Первоначальная теория воздушно-реактивных двигателей разрабатывалась советским академиком Б. С. Стечкиным. В 1929 г. была опубликована его работа «Теория воздушно-реактивного двигателя».
Воздушно-реактивные двигатели применяются в авиации для приведения в движение вертолетов, самолетов, крылатых ракет. Все воздушно-реактивные двигатели можно разделить на 3 типа в зависимости от способа сжатия воздуха. Первый тип – прямоточный. Сжатие воздуха в таких двигателях происходит непосредственно в воздухозаборнике за счет кинетической энергии набегающего потока воздуха. Основным недостатком такого типа двигателей является прямая зависимость силы тяги, а соответственно, и скорости от потока воздуха. Но так как на скоростях ниже скорости звука давление воздуха незначительно, то для достижения необходимой рабочей скорости надо использовать различные ускорители. Преимущества же заключаются в следующем:
1) двигатель гораздо экономичнее в сравнении с ракетными двигателями, потому что окислителем служит кислород из окружающего воздушного пространства;
2) двигатель обладает преимуществом перед турбореактивным двигателем в максимальной высоте подъема и скорости передвижения;
3) двигатель конструктивно прост и не имеет движущихся элементов.
В настоящее время на стадии испытаний находится модернизированный прямоточный воздушно-реактивный двигатель. Его планируется использовать при достижении гиперзвуковых скоростей. Основным преимуществом гиперзвукового прямоточного воздушно-реактивного двигателя в сравнении с обычной модификацией будет являться сверхзвуковая скорость сгорания топлива.
В пульсирующем воздушно-реактивном двигателе топливо и воздух подаются с некоторой периодичностью. Конструктивно он отличается наличием входных клапанов в камере сгорания и длинного сопла цилиндрической формы. Подача рабочей смеси происходит через входные клапаны, после чего происходит поджиг смеси при помощи свечи зажигания, установленной в камере сгорания. Клапан закрывается в результате образования избыточного давления в камере сгорания. Наиболее известным аппаратом, использовавшим в своей конструкции пульсирующий воздушнореактивный двигатель, является немецкая ракета «Фау-1». В современной авиации практически не применяется из-за низкой экономичности по сравнению с газотурбинными двигателями. Используется для силовых установок самолетов-мишеней. Турбореактивный воздушно-реактивный двигатель в своей конструкции имеет компрессор, привод которого идет непосредственно от газовой турбины. Это дает необходимый коэффициент сжатия воздуха независимо от скорости полета, что является явным преимуществом в сравнении с прямоточными двигателями. Преимуществом является большая скорость истечения газов и создания в результате большой силы тяги.
Данный текст является ознакомительным фрагментом.
Артрит реактивный
Артрит реактивный
Артриты реактивные возникают после инфекций (иерсипиозных энтероколитов, дизентерии, гонореи, хламидийных инфекций мочевых путей), имеют иммуннокомплексную природу. Преимущественно воспаляются суставы нижних конечностей, особенно пальцев стоп,
Реактивный снаряд
Реактивный снаряд
Реактивный снаряд – неуправляемый в полете боеприпас современных авиационных, наземных и морских реактивных систем залпового огня, который доставляется к цели за счет использования тяги реактивного двигателя.Всякий снаряд боевого назначения
Воздушно-реактивный двигатель
Воздушно-реактивный двигатель
Воздушно-реактивный двигатель (ВРД) – реактивный двигатель, в котором воздух является основным компонентом рабочего тела. При этом воздух, поступающий в двигатель из окружающей атмосферы, подвергается сжатию и нагреву.Нагрев
Воздушно-ракетный двигатель
Воздушно-ракетный двигатель
Воздушно-ракетный двигатель представляет собой комбинированный воздушно-реактивный и ракетный двигатель. При создании комбинированного двигателя руководствовались возможностью сочетать характеристики обоих типов прямоточных двигателей
Воздушно-реактивный двигатель
Воздушно-реактивный двигатель
Воздушно-реактивный двигатель – реактивный двигатель, принцип действия которого основан на сжигании жидкого или твердого горючего для создания силы тяги. Окислителем в реакции горения будет являться кислород из окружающего атмосферного
Реактивный двигатель
Реактивный двигатель
Реактивный двигатель (двигатель прямой реакции) – двигатель, принцип работы которого основан на создании тяги посредством реакции на вытекающее из двигателя рабочее тело. Это двигатель, который в отличие от двигателя непрямой реакции сочетает
Разработка электрического реактивного двигателя
Что такое турбореактивный двигатель?
Все начинается с гальванического компрессора. Это вращающийся вентилятор, который вы видите на передней части реактивного двигателя. Этот компрессор вращается и нагнетает воздух под высоким давлением в камеру сгорания. В этой камере топливо смешивается до тех пор, пока не будет достигнуто идеальное соотношение воздух-топливо. В этот момент происходит воспламенение смеси, которая создает выхлопные газы и тягу и продвигает двигатель вперед.
Чтобы продвинуться дальше, вторая турбина (причудливый вентилятор) может быть помещена внутрь выхлопной камеры. Эта турбина соединяется с компрессором с помощью вала, поэтому по мере увеличения тяги, создаваемой выхлопом, количество воздуха, нагнетаемого в систему, также увеличивается, отсюда и название «ТРД». Он работает так же, как турбо на вашем автомобиле, но у него другая форма и он стреляет огромным пламенем сзади!
Что такое электрический реактивный двигатель?
Электрический реактивный двигатель работает по тому же принципу, что и турбореактивный двигатель, за исключением того, что вместо вращения второй турбины для увеличения мощности компрессора он использует электроэнергию. Есть много проблем, которые может создать эта модификация, в основном значительно сниженная долговечность (подумайте о всех электрических компонентах, находящихся в прямом контакте с горящими выхлопными газами!), но краткосрочные результаты могут быть удивительными.
Создание электрического турбореактивного двигателя
На видео в основе конструкции лежат пустые канистры из-под бутана. Это позволяет ему получать грубые металлические формы без какого-либо реального изготовления; ему просто нужно слить воду и разрезать их. После удаления всей краски и добавления нескольких надрезов они готовы к пайке. Пайка — это простой метод соединения металла, аналогичный пайке.
Компрессор, он же вентилятор на впускной стороне двигателя, не подвергается сильному нагреву, поэтому он может спроектировать его в САПР и на 3D-принтере. Он заставил этот компрессор функционировать как электродвигатель, благодаря чему вся «турбо» функция происходит в передней части агрегата, а не набирает тягу от выхлопных газов, толкающих турбину в задней части двигателя. Это аккуратное маленькое решение.
С добавлением горения все становится сложнее. Типичный реактивный двигатель использует «кольцевую камеру сгорания» для создания точного соотношения воздуха и топлива и потока. Они имеют сложную форму, которая может быть сложной и может потребовать точечной сварки для изготовления.
Сборка аппарата для точечной сварки с нуля [Не пытайтесь: опасность поражения электрическим током]
Присоединение двух латунных электродов к острогубцам и пропускание через них большого тока НЕ является рекомендуемым способом сварки металла. К счастью, металл, который он сваривает, очень тонкий, а сила тока относительно низкая.
Он добавляет топливо через изогнутую медную трубку, закрывая один конец и добавляя крошечные отверстия для выхода газа. Добавление небольшой искры от газового гриля обеспечивает возгорание и небольшое пламя, которое можно усилить по мере увеличения количества воздуха в топливе.
Собираем все вместе
СВЯТАЯ КОРОВА, эта штука работает! Этот электрический реактивный двигатель издает очень устрашающий рев, несмотря на то, что он такой маленький. Свечение, исходящее из камеры сгорания, — еще один уровень страха. Этот чувак должен быть одет НАМНОГО больше защитной экипировки! Его микрофон был зажарен в процессе. Помидор также постигла участь гризли, но стеклянная посуда, на которой он стоял, стала еще хуже (перейдите на отметку 11:00, чтобы увидеть).
После уничтожения микрофона и помидора электрический турбореактивный двигатель наконец-то прошел испытание. Хотите верьте, хотите нет, но эта маленькая граната действительно производит тягу! Поначалу 300-граммовый двигатель, толкающий трехкилограммовый скейтборд, дает не так много тяги (извините, ребята, сегодня я не занимаюсь конверсиями). Однако после тонкой настройки впускного отверстия, топливного бака и системы зажигания этот маленький двигатель действительно оживает!
Чтобы увидеть больше таких сумасшедших сборок, посмотрите Integza на YouTube!
Электрический двигатель самолета и принцип его работы
Существует несколько способов приведения самолета в движение.
Несмотря на то, что большинство авиационных двигателей сегодня работают на ископаемом топливе, таком как Jet A, Jet B, Avgas или дизельное топливо, многие читатели могут быть шокированы (каламбур), узнав, что электрические технологии изменят наши представления о двигателях самолетов — и скорее раньше, чем позже.
Фактически, в настоящее время во всем мире разрабатывается около 215 типов самолетов с электрическим приводом, и отраслевые обозреватели говорят, что электрические самолеты станут обычным явлением до конца следующего десятилетия.
Беспилотные авиационные системы (БАС), платформы городской воздушной мобильности (UAM), другие небольшие пассажирские и грузовые самолеты и, в конечном итоге, более крупные коммерческие пассажирские самолеты — все это хорошие кандидаты на электрические и гибридно-электрические силовые установки. Но независимо от того, какую форму примут эти новые самолеты, они будут эффективнее, тише, безопаснее и намного экологичнее, чем самолеты, использующие только традиционные двигатели внутреннего сгорания.
В Honeywell мы применяем свой уникальный опыт, накопленный в портфолио двигателей и энергосистем, и работаем с DENSO, мировым лидером в производстве электродвигателей и контроллеров для автомобильной промышленности, чтобы трансформировать авиационные силовые установки такими, какими мы их знаем. Вместе мы стремимся предоставлять инновационные и интегрированные решения текущим (модернизированным) и будущим (чистым листам) клиентам в быстрорастущем секторе электрических самолетов.
Логический путь к электрическим двигателям
Две ключевые технологии будущего полета имеют долгую историю. Электродвигатели были изобретены в 1830-х годах, а автомобили с батарейным питанием — в 1890-х годах. Их потомки сегодня встречаются в различных отраслях промышленности, в том числе в современных самолетах, которые уже полагаются на электричество для питания авионики, электродистанционных систем, исполнительных и других систем и выполняют задачи, которые когда-то выполнялись механическим оборудованием.
Бортовая электроэнергия вырабатывается главными двигателями и сверхэффективными вспомогательными силовыми установками, которые компания Honeywell изобрела более 50 лет назад. Все это готовит почву для электрических двигателей, которые являются следующим шагом в эволюции к электрическим самолетам.
Когда мы говорим об электрических силовых установках, мы имеем в виду ряд архитектур силовых установок, разработанных для удовлетворения потребностей конкретных самолетов, которые используют электрические двигатели для обеспечения тяги. Не существует «универсального» или «наилучшего» решения без понимания ключевых требований заказчика и профиля миссии самолета.
Компания Honeywell изучила несколько различных архитектур силовых установок — от устаревших двигателей большинства современных самолетов до полностью электрических аккумуляторных решений. В этом континууме существуют различные гибридные архитектуры, в том числе турбоэлектрические, частично турбоэлектрические, последовательные гибридные, параллельные гибридные и последовательно-параллельные гибридные. Все они по-разному используют электродвигатели как часть общей силовой установки.
Каждая архитектура имеет свои сильные стороны и характеристики, поэтому Honeywell также разработала сложный программный инструмент, который может анализировать компромиссы между весом, дальностью полета, высотой над уровнем моря, скоростью и различным химическим составом аккумуляторов, чтобы помочь производителям самолетов выбрать оптимальное решение, отвечающее их конкретным требованиям.
Как работает электрическая силовая установка
В отличие от силовых установок, построенных исключительно на двигателе внутреннего сгорания, в полностью электрических и гибридно-электрических архитектурах используется электродвигатель. Двигатель может быть единственным источником тяги или его можно использовать в сочетании с обычным двигателем, либо обеспечивая дополнительный источник тяги, либо даже повышая мощность двигательной установки на ключевых этапах полета.
В дополнение к двигателю полностью интегрированная электрическая силовая установка включает в себя другие важные компоненты, такие как аппаратное и программное обеспечение контроллера двигателя, редукторы и системы охлаждения. Эта интегрированная система известна как электрическая силовая установка (EPU), и Honeywell и DENSO разрабатывают современные решения для удовлетворения сегодняшних и будущих потребностей.
По мере развития аккумуляторных технологий гибридно-электрическим самолетам потребуются как батареи, так и другие источники энергии, такие как сверхэффективные генераторы или топливные элементы, для питания самолета, перезарядки батарей и повышения безопасности, эффективности и дальности полета самолета.
Производство и преобразование электроэнергии являются основными преимуществами Honeywell, и за последние годы наши инновационные инженерные группы добились огромных успехов в области генераторов. Например, мы разрабатываем турбогенератор мощностью один мегаватт, который может работать на биотопливе, чтобы еще больше сократить выбросы углерода. Кроме того, недавнее приобретение компанией Honeywell компании Ballard Unmanned Systems ставит нас прямо в центр другого важного средства обеспечения энергией: водородных топливных элементов, которые уже используются для выработки электроэнергии для небольших платформ БПЛА класса I и класса II.
Что стоит за партнерством Honeywell и DENSO?
Электрические силовые установки быстро созреют, чтобы удовлетворить потребности развивающегося сегмента беспилотных летательных аппаратов/беспилотных летательных аппаратов, которые навсегда изменят способ передвижения по городу, перевозки грузов в отдаленные места и выполнения многих важных задач, выполняемых сегодня с помощью самолетов, вертолетов и наземных транспортных средств. . Тысячи, а со временем и миллионы небольших высокопроизводительных самолетов станут частью глобальной авиационной инфраструктуры.
Предстоит проделать важную работу по обеспечению качества и сертификации в соответствии с авиационными стандартами, которые хорошо известны Honeywell и другим опытным авиационным компаниям. Но многие другие проблемы, связанные с удовлетворением потребностей этих новых клиентов, более актуальны для автомобильной промышленности. Наш партнер DENSO имеет проверенную способность серийно производить сложные системы, такие как EPU, в больших масштабах, поддерживая при этом самые высокие стандарты качества и надежности.