Содержание

Как сделать двигатель который будет работать год

Содержание

  1. Как сделать вечный двигатель своими руками
  2. Что такое магнитный двигатель и как его сделать своими руками?
  3. Что такое магнитный двигатель
  4. Общее устройство и принцип работы
  5. История возникновения вечного двигателя
  6. Магнитный униполярный двигатель Тесла
  7. Двигатель Минато
  8. Магнитный мотор Говарда Джонсона
  9. Генератор Перендева
  10. Синхронный двигатель на постоянных магнитах
  11. Как собрать двигатель самостоятельно
  12. Как сделать электродвигатель за 15 минут
  13. 10 попыток создать вечный двигатель
  14. Что такое батарейка Карпена
  15. Как работает энергетическая машина Джо Ньюмана
  16. Водяной винт Роберта Фладда — вечный двигатель?
  17. Колесо Бхаскары
  18. Что такое часы Кокса
  19. «Тестатика» Пауля Бауманна
  20. Колесо Бесслера
  21. НЛО-двигатель Отиса Т. Карра
  22. «Перпетуум-мобиле» Корнелиуса Дреббеля
  23. Где антигравитационная машина Дэвида Хамела
  24. Видео

Эту статью прислал на сайт Электрик Инфо Николай Капитанов. По его утверждению, он придумал и создал модель работающего вечного двигателя. Николай очень настойчиво просил дать ему возможность рассказать о своем изобретении с помощью нашего сайта. Что-же, давайте помотрим на вечный двигатель автора статьи. Буду рад выслушать ваши комментарии. Что вы думаете по этому поводу? Ну а сначала сама статья:

Вечный двигатель все-таки существует?

По представленной ниже схеме, была разработана реальная и вполне работоспособная модель вечного двигателя.

На схеме представлено более упрощенное соединение работающих элементов, а именно, соединение якорей двигателя и генераторов и единого агрегатного вала, в реальном исполнении применялась ременная передача.

Генератор и электродвигатель был зафиксирован таким образом, чтобы при запуске электродвигатель мог одновременно вращать генераторные валы.

Чтобы создать макет двигателя использовался обычный автомобильный аккумулятор и такой же электрогенератор 1 со стандарным 12 в напряжением. Генератор 2, относительно генератора 1 был сделан меньше размером, тем самым он вырабатывает меньше рабочей энергии и снижает нагрузку на электродвигатель.

Для вечного двигателя использовался обычный двигатель от шлифовальной машины, который может работать без перегрева может вращать якоря генератора в пределах от 2000-5000 об./мин., так он может работать как и с нагрузкой, так и с добавлением дополнительным генератором меньшей нагрузки. Усиливает или обеспечивает переменным током преобразователь МАП «Энергия», который получает входную энергию от аккумулятора.

Преобразователь или усилитель тока «Энергия» увеличивает напряжение поступающего тока от аккумулятора, со стандартных переменных 12в до 220в. Уже преобразованный постоянный ток обеспечивал работу электродвигателя с потребляемой мощностью 1200 Ватт.

Схема «вечного двигателя»

В электрическую цепь, с помощью проводов соединяются: Генератор 1, аккумулятор, электродвигатель и усилитель. Энергия, которая поступает от аккумулятора усиливается, преобразуется до 220В, а от усилителя переменный ток поступает к электродвигателю, который в свою очередь начинает вращать валы якорей, одновременно двух генераторов, а уже сами генераторы начинают вырабатывать электрический ток.

При том, что генератор 1 начинает вырабатывать постоянный ток 12 в и подзаряжает аккумулятор, а потребности потребиля, то есть уже целевой ток для населения будет обеспечивать генератор 2.

После запуска механизма накопленная энергия аккумулятора абслютно не тратится, за счет непрерывной подзарядки, тем и обеспечивается непрерывная цепь работы.

Источник

Что такое магнитный двигатель и как его сделать своими руками?

Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.

Специалисты отмечают высокий уровень бесшумности и вместе с этим, эффективность. Как утверждает его создатель, такой самовращающийся двигатель магнитного типа как этот имеет коэффициент полезного действия, выше 300%.

Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.

Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.

Магнитный мотор Говарда Джонсона

Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.

Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.

Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.

Генератор Перендева

Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.

Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Источник

Как сделать электродвигатель за 15 минут

Всегда интересно наблюдать за изменяющимися явлениями, особенно если сам участвуешь в создании этих явлений. Сейчас мы соберем простейший (но реально работающий) электродвигатель, состоящий из источника питания, магнита и небольшой катушки провода, которую мы сами и сделаем.

Существует секрет, который заставит этот набор предметов стать электродвигателем; секрет, который одновременно умен и изумительно прост. Вот что нам нужно:

— 1,5В батарея или аккумулятор.

— Держатель с контактами для батареи.

— 1 метр провода с эмалевой изоляцией (диаметр 0,8-1 мм).

— 0,3 метра неизолированного провода (диаметр 0,8-1 мм).

Мы начнем с намотки катушки, той части электродвигателя, которая будет вращаться. Чтобы сделать катушку достаточной ровной и круглой, намотаем ее на подходящем цилиндрическом каркасе, например, на батарейке типоразмера АА.

Оставляя свободными по 5 см провода с каждого конца, намотаем 15-20 витков на цилиндрическом каркасе.

Не старайтесь особенно плотно и ровно наматывать катушку, небольшая степень свободы поможет катушке лучше сохранить свою форму.

Теперь аккуратно снимите катушку с каркаса, стараясь сохранить полученную форму.

Затем оберните несколько раз свободные концы провода вокруг витков для сохранения формы, наблюдая за тем, чтобы новые скрепляющие витки были точно напротив друг друга.

Катушка должна выглядеть так:

Сейчас настало время секрета, той особенности, которая заставит мотор работать. Это секрет, потому что это изысканный и неочевидный прием, и его очень сложно обнаружить, когда мотор работает. Даже люди, много знающие о работе двигателей, могут быть удивлены способностью мотора работать, пока не обнаружат эту тонкость.

Держа катушку вертикально, положите один из свободных концов катушки на край стола. Острым ножом удалите верхнюю половину изоляции, оставляя нижнюю половину в эмалевой изоляции.

Проделайте тоже самое со вторым концом катушки, наблюдая за тем, чтобы неизолированные концы провода были направлены вверх у двух свободных концов катушки.

В чем смысл этого приема? Катушка будет лежать на двух держателях, изготовленных из неизолированного провода. Эти держатели будут присоединены к разным концам батареи, так, чтобы электрический ток мог проходить от одного держателя через катушку к другому держателю. Но это будет происходить только тогда, когда неизолированные половины провода будут опущены вниз, касаясь держателей.

Теперь необходимо изготовить поддержку для катушки. Это просто витки провода, которые поддерживают катушку и позволяют ей вращаться. Они сделаны из неизолированного провода, так как кроме поддержки катушки они должны доставлять ей электрический ток.

Просто оберните каждый кусок неизолированного провода вокруг небольшого гвоздя – и получите нужную часть нашего двигателя.

Основанием нашего первого электродвигателя будет держатель батареи. Это будет подходящая база, потому что при установленной батарее она будет достаточно тяжелой для того, чтобы электродвигатель не дрожал.

Соберите пять частей вместе, как показано на снимке (вначале без магнита). Положите сверху аккумулятора магнит и аккуратно подтолкните катушку…

Если все сделано правильно, КАТУШКА НАЧНЕТ БЫСТРО ВРАЩАТЬСЯ! Надеемся, что у Вас, как и в нашем эксперименте, все заработает с первого раза.

Если все-таки мотор не заработал, тщательно проверьте все электрические соединения. Вращается ли катушка свободно? Достаточно ли близко расположен магнит (если недостаточно, установите дополнительные магниты или подрежьте проволочные держатели)?

Когда мотор заработает, единственное, на что нужно обратить внимание – чтобы не перегрелся аккумулятор, так как ток достаточно большой. Просто снимите катушку – и цепь будет разорвана.
Давайте выясним, как именно работает наш простейший электродвигатель. Когда по проводу любой катушки течет электрический ток, катушка становится электромагнитом. Электромагнит действует как обычный магнит. Он имеет северный и южный полюс и может притягивать и отталкивать другие магниты.

Наша катушка становится электромагнитом тогда, когда неизолированная половина выступающего провода катушки касается неизолированного держателя. В этот момент по катушке начинает течь ток, у катушки возникает северный полюс, который притягивается к южному полюсу постоянного магнита, и южный полюс, который отталкивается от южного полюса постоянного магнита.

Мы снимали изоляцию с верхней части провода, когда катушка стояла вертикально, поэтому полюса электромагнита будут направлены вправо и влево. А это значит, что полюса придут в движение, чтобы расположиться в одной плоскости с полюсами лежащего магнита, направленными вверх и вниз. Поэтому катушка повернется к магниту. Но при этом изолированная часть провода катушки коснется держателя, ток прервется, и катушка больше не будет электромагнитом. Она провернется по инерции дальше, вновь коснется неизолированной частью держателя и процесс повториться вновь и вновь, пока в батареях не кончится ток.

Каким образом можно заставить электромотор вращаться быстрее?

Один из способов – добавить сверху еще один магнит.

Поднесите магнит во время вращения катушки, и случится одно из двух: или мотор остановится, или начнет вращаться быстрей. Выбор одного из двух вариантов будет зависеть от того, какой полюс нового магнита будет направлен к катушке. Только не забудьте придержать нижний магнит, а то магниты прыгнут друг к другу и разрушат хрупкую конструкцию!

Другой способ – посадить на оси катушки маленькие стеклянные бусинки, что уменьшит трение катушки о держатели, а также лучше сбалансирует электродвигатель.

Существует еще много способов усовершенствования этой простой конструкции, но основная цель нами достигнута – Вы собрали и полностью поняли, как работает простейший электродвигатель.

Источник

10 попыток создать вечный двигатель

Технология вечного двигателя привлекала людей во все времена. Сегодня она считается скорее псевдонаучной и невозможной, нежели наоборот, но это не останавливает людей от создания все более диковинных штуковин и вещиц в надежде нарушить законы физики и произвести мировую революцию. Хотя многие ученые уже доказали, что вечный двигатель невозможен, ничто не мешает одному из них в один день найти решение многовекового вопроса. Ведь когда-то человечество и о полетах только мечтало! Перед вами десять исторических и крайне занимательных попыток создать что-то, похожее на вечный двигатель.

Человечество пыталось создать вечный двигатель на протяжении многих столетий

Что такое батарейка Карпена

Батарейка Карпена пусть и не стала вечным двигателем, но все равно способна проработать 60 лет

В 1950-х годах румынский инженер Николае Василеску-Карпен изобрел батарею. Ныне расположенная (хотя и не на стендах) в Национальном техническом музее Румынии, эта батарея по-прежнему работает, хотя ученые до сих пор не сошлись во мнении, как и почему она вообще продолжает работать.

Батарея в устройстве остается той же одновольтной батарейкой, которую Карпен установил в 50-х годах. Долгое время машина была забытой, пока музей не был в состоянии качественно выставлять ее и обеспечивать безопасность такой странной штуковине. Недавно обнаружили, что батарея работает и по-прежнему выдает стабильное напряжение — спустя уже 60 лет.

Успешно защитив докторскую степень на тему магнитных эффектов в движущихся телах в 1904 году, Карпен наверняка мог создать что-то из ряда вон выходящее. К 1909 году он занялся исследованием высокочастотных токов и передачи телефонных сигналов на большие расстояния. Строил телеграфные станции, исследовал тепло окружающей среды и продвинутые технологии топливных элементов. Однако современные ученые до сих пор не пришли к единым выводам о принципах работы его странной батареи.

Было выдвинуто множество догадок, от преобразования тепловой энергии в механическую в процессе цикла, термодинамический принцип которого мы пока не обнаружили. Математический аппарат его изобретения кажется невероятно сложным, потенциально включая понятия вроде термосифонного эффекта и температурных уравнений скалярного поля. Хотя мы не смогли создать вечный двигатель, способный вырабатывать бесконечную и бесплатную энергию в огромных количествах, ничто не мешает нам радоваться батарейке, непрерывно работающей в течение 60 лет.

Как работает энергетическая машина Джо Ньюмана

Джо Ньюман и его энергетическая машина

В 1911 году Бюро патентов США выпустило огромный указ. Они больше не будут выдавать патенты на устройства вечных двигателей, поскольку кажется научно невозможным создать такое устройство. Для некоторых изобретателей это означало, что сражаться за признание своей работы законной наукой теперь будет немного сложнее.

В 1984 году Джо Ньюман попал на вечерний выпуск новостей CMS с Дэном Разером и показал нечто невероятное. Живущие во время нефтяного кризиса люди были в восторге от идеи изобретателя: он представил вечный двигатель, который работал и производил больше энергии, чем потреблял.

Ученые, впрочем, не поверили ни единому слову Ньюмана.

Национальное бюро стандартов испытало устройство ученого, состоящее по большей части из аккумуляторов, заряжаемых магнитом, вращающимся внутри катушки из провода. Во время испытаний все заявления Ньюмана оказались пустыми, хотя некоторые люди продолжали верить ученому. Поэтому он решил взять свою энергетическую машину и отправиться в тур, по дороге демонстрируя ее работу. Ньюман утверждал, что его машина выдает в 10 раз больше энергии, чем поглощает, то есть работает с КПД свыше 100%. Когда его патентные заявки были отвергнуты, а научное сообщество буквально выбросило его изобретение в лужу, горю его не было предела.

Будучи ученым-любителем, который даже не закончил среднюю школу, Ньюман не сдавался, даже когда никто не поддерживал его план. Убежденный, что Бог ниспослал ему машину, которая должна изменить человечество к лучшему, Ньюман всегда считал, что истинная ценность его машины всегда была сокрыта от властей предержащих.

Водяной винт Роберта Фладда — вечный двигатель?

Многие ученые брали воду за основу своих потенциальных вечных двигателей

Роберт Фладд был своего рода символом, который мог появиться лишь в определенное время в истории. Наполовину ученый, наполовину алхимик, Фладд описывал и изобретал разные вещи на рубеже 17 века. У него были довольно странные идеи: он считал, что молнии были земным воплощением гнева Божьего, который поражает их, если те не бегут. При этом Фладд верил в ряд принципов, принятых нами сегодня, даже если большинство людей в те времена их не принимало.

Его версией вечного двигателя было водяное колесо, которое может молоть зерно, постоянно вращаясь под действием рециркулирующей воды. Фладд назвал его «водяным винтом». В 1660 году появились первые гравюры по дереву с изображением такой идеи (появление которой приписывают 1618 году).

Стоит ли говорить, что устройство не работало. Тем не менее Фладд не только пытался сломать законы физики своей машины. Он также искал способ помочь фермерам. В то время обработка огромных объемов зерна зависела от потоков. Те, кто жил далеко от подходящего источника текущей воды, были вынуждены загружать свои посевы, тащить их на мельницу, а затем обратно на ферму. Если бы эта машина с вечным двигателем заработала, она существенно упростила жизнь бы бесчисленным фермерам.

Колесо Бхаскары

Одно из самых ранних упоминаний вечных двигателей приходит от математика и астронома Бхаскары, из его трудов 1150 года. Его концепция заключалась в несбалансированном колесе с серией изогнутых спиц внутри, заполненных ртутью. По мере вращения колеса, ртуть начинала двигаться, обеспечивая толчок, необходимый для поддержания вращения колеса.

За многие века вариаций этой идеи было придумано огромное количество. Совершенно понятно, почему она должна работать: колесо, пребывающее в состоянии дисбаланса, пытается привести себя в покой и, в теории, будет продолжать движение. Некоторые дизайнеры так сильно верили в возможность создания такого колеса, что даже спроектировали тормоза на случай, если процесс выйдет из-под контроля.

Колесо Бхаскары любой может сделать дома

С нашим современным пониманием силы, трения и работы, мы знаем, что несбалансированное колесо не достигнет желаемого эффекта, поскольку мы не сможем получить всю энергию обратно, не сможем извлекать ее ни много, ни вечно. Однако сама идея была и остается интригующей людей, незнакомых с современной физикой, особенно в индуистской религиозном контексте реинкарнации и круга жизни. Идея стала настолько популярна, что колесообразные вечные двигатели позднее вошли в исламские и европейские писания.

Что такое часы Кокса

До нашего времени дошли только такие фото часов Кокса

Когда знаменитый лондонский часовщик Джеймс Кокс построил свои часы вечного движения в 1774 году, они работали в точности так, как описывала сопроводительная документация, объясняющая, почему эти часы не нуждаются в дозаводке. Документ на шесть страниц пояснял, как часы были созданы на основе «механических и философских принципов».

Согласно Коксу, работающий от алмаза вечный двигатель часов и пониженное внутреннее трение почти до полного его отсутствие гарантировали, что металлы, из которых сконструированы часы, будут распадаться гораздо медленнее, чем кто-либо когда-либо видел. Помимо этого грандиозного заявления, тогда множество презентаций новой технологии включали мистические элементы.

Помимо того что часы Кокса были вечным двигателем, они были гениальными часами. Заключенные в стекле, которое защищало внутренние рабочие компоненты от пыли, позволяя на них также смотреть, часы работали от перемен в атмосферном давлении. Если ртутный столбик рос или падал внутри часового барометра, движение ртути поворачивало внутренние колесики в том же направлении, частично заводя часы. Если часы заводились постоянно, шестерни выходили из пазов, пока цепь не ослаблялась до определенной точки, после чего все вставало на свои места и часы снова начинали заводить себя.

Первый широко принятый экземпляр часов с вечным двигателем был показан самим Коксом в Весеннем саду. Позже он был замечен на недельных выставках Механического музея, а после в Институте Клеркенвилл. На то время показ этих часов был таким чудом, что их запечатлели в бесчисленных художественных произведениях, а к Коксу регулярно приходили толпы желающих поглазеть на его чудесное творение.

Тестатика больше религиозный культ, нежели физическая машина

Часовщик Пауль Бауманн основал духовное общество Meternitha в 1950-х годах. В дополнение к воздержанию от алкоголя, наркотиков и табака, члены этой религиозной секты живут в самодостаточной, экологически сознательной атмосфере. Чтобы достичь этого, они полагаются на чудесный вечный двигатель, созданный их основателем.

Машина под названием «Тестатика» (Testatika) может использовать якобы неиспользуемую электрическую энергию и превращать ее в энергию для сообщества. По причине закрытости, «Тестатику» не удалось целиком и полностью исследовать ученым, хотя машина и стала объектом короткого документального фильма в 1999 году. Было показано немного, но достаточно, чтобы понять, что секта почти боготворит эту сакральную машину.

Планы и особенности «Тестатики» были ниспосланы Бауманну напрямую Богом, пока он отбывал тюремное наказание за совращение молоденькой девушки. Согласно официальной легенде, он был опечален темнотой своей камеры и нехваткой света для чтения. Затем его посетило загадочное мистичное видение, которое открыло ему секрет вечного движения и бесконечной энергии, которую можно черпать прямо из воздуха. Члены секты подтверждают, что «Тестатика» была послана им Богом, отмечая также, что несколько попыток сфотографировать машину выявили разноцветный ореол вокруг нее.

В 1990-х годах болгарский физик проник в секту, чтобы выведать проект машины, надеясь открыть секрет этого волшебного энергетического устройства миру. Но ему не удалось убедить сектантов. Покончив с собой в 1997 году, выпрыгнув из окна, он оставил предсмертную записку: «Я сделал то, что мог, пусть те, кто смогут, сделают лучше».

Колесо Бесслера

Иоганн Бесслер начал свои исследования в сфере вечного движения с простой концепцией, как у колеса Бхаскары: применим вес к колесу с одной стороны, и оно будет постоянно несбалансированным и постоянно двигаться. 12 ноября 1717 года Бесслер запечатал свое изобретение в комнате. Дверь была закрыта, комната охранялась. Когда ее открыли две недели спустя, 3,7-метровое колесо по-прежнему двигалось. Комнату снова запечатали, схему повторили. Открыв дверь в начале января 1718 года, люди обнаружили, что колесо все еще вертится.

Хотя и став знаменитостью после всего этого, Бесслер не распространялся о принципах работы колеса, отмечая только, что оно полагается на грузы, которые поддерживают его несбалансированным. Более того, Бесслер был настолько скрытным, что когда один инженер прокрался поближе взглянуть на творение инженера, Бесслер психанул и уничтожил колесо. Позже инженер сказал, что не заметил ничего подозрительного. Впрочем, он увидел только внешнюю часть колеса, поэтому не мог понять, как оно работает. Даже в те времена идея вечного двигателя встречалась с некоторым цинизмом. Столетиями раньше сам Леонардо да Винчи насмехался над идеей такой машины.

Схема колеса Бесслера. В чем-то он не уступал Леонардо Да Винчи

И все же понятие бесслерова колеса никогда не уходило полностью из поля зрения. В 2014 году уорикширский инженер Джон Коллинз сообщил, что изучал дизайн колеса Бесслера в течение многих лет и был близок к раскрытию его тайны. Однажды Бесслер написал, что уничтожил все доказательства, чертежи и рисунки о принципах работы его колеса, но добавил, что любой, кто будет достаточно умен и сообразителен, сможет понять все наверняка.

НЛО-двигатель Отиса Т. Карра

Включенные в Реестр объектов авторских прав (третья серия, 1958: июль-декабрь) объекты кажутся немного странными. Несмотря на то, что Патентное ведомство США давно постановила, что не будет выдавать никакие патенты на устройства вечного движения, потому что их не может существовать, OTC Enterprises Inc. и ее основатель Отис Карр числятся владельцами «системы бесплатной энергии», «энергии мирного атома» и «гравитационного двигателя».

В 1959 году OTC Enterprises планировала осуществить первый рейс своего «космического транспорта четвертого измерения», работающего на вечном двигателе. И хотя по крайней мере один человек коротко ознакомился с беспорядочными частями хорошо охраняемого проекта, само устройство никогда не раскрывалось и не «отрывалось от земли». Сам Карр был госпитализирован с неопределенными симптомами в день, когда устройство должно было отправиться в свое первое путешествие.

И правда очень похоже на летающую тарелку

Возможно, его болезнь была умным способом уйти от демонстрации, но ее было недостаточно, чтобы упрятать Карра за решетку. Продав опционы на технологию, которая не существовала, Карр заинтересовал инвесторов проектом, а также людей, которые верили, что его аппарат доставит их на другие планеты.

Чтобы обойти патентные ограничения своих безумных проектов, Карр запатентовал все как «развлекательное устройство», имитирующее поездки во внешний космос. Это был американский патент # 2 912 244 (10 ноября 1959 года). Карр утверждал, что его космический аппарат работает, потому что один уже улетел. Двигательной установкой была «круговая фольга свободной энергии», которая обеспечивала бесконечную поставку энергии, необходимой для доставки аппарата в космос.

Разумеется, странность происходящего открыла дорогу теориям заговора. Некоторые люди предположили, что Карр действительно собрал свой вечный двигатель и летающий аппарат. Но, конечно, его быстро прижало американское правительство. Теоретики не могли договориться, не то правительство не хочет раскрывать технологию, не то хочет использовать ее самостоятельно.

«Перпетуум-мобиле» Корнелиуса Дреббеля

Самое странное в вечном двигателем Корнелиуса Дреббеля то, что хотя мы и не знаем, как и почему он работал, вы точно видели его чаще, чем думаете

Впервые Дреббель продемонстрировал свою машину в 1604 году и поразил всех, включая английскую королевскую семью. Машина была чем-то вроде хронометра; она никогда не нуждалась в заводке и показывала дату и фазу Луны. Движимая изменениями в температуре или в погоде, машина Дреббеля также использовала термоскоп или барометр, подобно часам Кокса.

Никто не знает, что обеспечивало движение и энергию дреббелевскому устройству, поскольку он говорил об обуздании «огненного духа воздуха», как заправский алхимик. В то время мир по-прежнему мыслил терминологией четырех элементов, и сам Дреббель экспериментировал с серой и селитрой.

Как указано в письме от 1604 года, самое раннее известное представление устройства показало центральный шар, окруженный стеклянной трубкой, заполненной жидкостью. Золотые стрелочки и отметины отслеживали фазы Луны. Другие изображения были более сложными, показывая машину, украшенную мифологическими существами и украшениями в золоте. Perpetuum mobile Дреббеля также появился в некоторых картинах, в частности кистей Альбрехта и Рубенса. На этих картинах странная тороидальная форма машины вообще ничем не напоминает сферу.

Работа Дреббеля привлекла внимание королевских судов по всей Европе, и он гастролировал по континенту в течение некоторого времени. И, как это часто бывает, умер в нищете. Будучи необразованным сыном фермера, он получил покровительство Букингемского дворца, изобрел одну из первых подводных лодок, ближе к старости стал завсегдатаем пабов и в конце концов завязался с несколькими проектами, подпортившими его репутацию.

Где антигравитационная машина Дэвида Хамела

В своей самопровозглашенной «невероятно истинной истории жизни», Дэвид Хамел утверждает, что является обычным плотником без формального образования, который был избран стать хранителем машины вечной энергии и космического аппарата, который с ее помощью должен работать. После встречи с инопланетянами с планеты Кладен, Хамел заявил, что получил информацию, которая должна изменить мир — если только люди ему поверят.

Хотя все это немного обескураживает, Хамел говорил, что его вечный двигатель использует те же энергии, что и пауки, прыгающие с одной паутинки на другую. Эти скалярные силы сводят на нет притяжение гравитации и позволяют создать аппарат, который позволит нам воссоединиться с нашими кладенскими родственниками, которые и снабдили Хамела нужной информацией.

Антигравитационная машина Дэвида Хамела — самый необычный способ победить гравитацию

Если верить Хамелу, он уже построил такое устройство. К сожалению, оно улетело.

Проработав 20 лет, чтобы построить свое межзвездное устройство и двигатель, используя серию магнитов, он наконец включил его, и произошло вот что. Исполнившись свечения красочных ионов, его антигравитационная машина поднялась в воздух и полетела над Тихим океаном. Чтобы избежать повторения этого трагического события, Хамел строит свою следующую машину из материалов потяжелее, вроде гранита.

Чтобы понять принципы, лежащие в основе этой технологии, Хамел говорит, что вам нужно смотреть на пирамиды, изучать некоторые запрещенные книги, принять присутствие невидимой энергии и представлять скаляры и ионосферу почти как молоко и сыр.

Источник

Видео

Как сделать электродвигатель. Урок №7

Как сделать простой двигатель Стирлинга — обогреватель

Как разоряют и убивают изобретателей двигателей на воде. Почему беЗтопливные технологии под запретом

Вечный двигатель ( Оно работает ) !!!! Электричество из двух моторчиков . Проверка DIY.

ПРОСТЕЙШИЙ ВЕЧНЫЙ ДВИГАТЕЛЬ Работает от запрещенного конденсатора TESLA 😂

МЫ СДЕЛАЛИ ВЕЧНЫЙ ДВИГАТЕЛЬ НА ВОДЕ!

Электродвигатель на подшипниках ● 1

Испытание доработанного двигателя от стиральной машины!

ДВИГАТЕЛЬ СТИРЛИНГА своими руками

Как работает двигатель внутреннего сгорания автомобиля?

Магнитный вечный двигатель делаем своими руками.

Магнитный двигатель Принцип работы двигателя на магнитах

Со времен обнаружения магнетизма идея создать вечный двигатель на магнитах не покидает самые светлые умы человечества. До сих пор так и не удалось создать механизм с коэффициентом полезного действия больше единицы, для стабильной работы которого не требовалось бы внешнего источника энергии. На самом деле концепция вечного двигателя в современном виде вовсе и не требует нарушения основных постулатов физики. Главная задача изобретателей состоит в том, чтобы максимально приблизится к стопроцентному КПД и обеспечить продолжительную работу устройства при минимальных затратах.

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле — это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах

К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.

Самые известные аналоги вечного двигателя магнитах

Многочисленные энтузиасты стараются создать вечный двигатель на магнитах своими руками по схеме, в которой вращательное движение обеспечивается взаимодействием магнитных полей. Как известно, одноименные полюса отталкиваются друг от друга. Именно этот эффект и лежит в основе практически всех подобных разработок. Грамотное использование энергии отталкивания одинаковых полюсов магнита и притяжения разноименных полюсов в замкнутом контуре позволяет обеспечить длительное безостановочное вращение установки без приложения внешней силы.

Антигравитационный магнитный двигатель Лоренца

Двигатель Лоренца можно сделать самостоятельно с использованием простых материалов

Если вы хотите собрать вечный двигатель на магнитах своими руками, то обратите внимание на разработки Лоренца. Антигравитационный магнитный двигатель его авторства считается наиболее простым в реализации. В основе этого устройства лежит использование двух дисков с разными зарядами. Их наполовину помещают в полусферический магнитный экран из сверхпроводника, который полностью выталкивает из себя магнитные поля. Такое устройство необходимо для изоляции половин дисков от внешнего магнитного поля. Запуск этого двигателя выполняется путем принудительного вращения дисков навстречу друг другу. По сути, диски в получившейся система являются парой полувитков с током, на открытые части которых будут воздействовать силы Лоренца.

Асинхронный магнитный двигатель Николы Тесла

Асинхронный «вечный» двигатель на постоянных магнитах, созданный Никола Тесла, вырабатывает электричество за счет постоянно вращающегося магнитного поля. Конструкция довольно сложная и трудно воспроизводимая в домашних условиях.

Вечный двигатель на постоянных магнитах Николы Тесла

«Тестатика» Пауля Баумана


Одна из самых известных разработок – это «тестатика» Баумана. Устройство напоминает своей конструкцией простейшую электростатическую машину с лейденскими банками. «Тестатик» состоит из пары акриловых дисков (для первых экспериментов использовались обычные музыкальные пластинки), на которые наклеены 36 узких и тонких полосок алюминия.

Кадр из документального фильма: к Тестатике подключили 1000-ваттную лампу. Слева — изобретатель Пауль Бауман

После того, как диски толкали пальцами в противоположные стороны, запущенный двигатель продолжал работать неограниченно долгое время со стабильной скоростью вращения дисков на уровне 50-70 оборотов в минуту. В электроцепи генератора Пауля Баумана удается развить напряжение до 350 вольт с силой тока до 30 Ампер. Из-за небольшой механической мощности это скорее не вечный двигатель, а генератор на магнитах.

Вакуумный триодный усилитель Свита Флойда

Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.

Роторный кольцар Лазарева

Большой популярностью пользуется схема вечного двигателя на магнитах на основе проекта Лазарева. На сегодняшний день его роторный кольцар считается устройством, реализация которая максимально близка к концепции вечного двигателя. Важное преимущество разработки Лазарева состоит в том, что даже без профильных знаний и серьезный затрат можно собрать подобный вечный двигатель на неодимовых магнитах своими руками. Такое устройство представляет собой емкость, разделенную пористой перегородкой на две части. Автор разработки использовал в качестве перегородки специальный керамический диск. В него устанавливается трубка, а в емкость заливается жидкость. Для этого оптимально подходят улетучивающиеся растворы (например, бензин), но можно использовать и простую водопроводную воду.



Механизм работы двигателя Лазарева очень просто. Сначала жидкость подается через перегородку вниз емкости. Под давлением раствор начинает подниматься по трубке. Под получившейся капельницей размещают колесо с лопастями, на которых устанавливают магниты. Под силой падающих капель колесо вращается, образуя постоянное магнитное поле. На основе этой разработки успешно создан самовращающийся магнитный электродвигатель, на которой зарегистрировало патент одно отечественное предприятие.

Мотор-колесо Шкондина

Если вы ищете интересные варианты, как сделать вечный двигатель из магнитов, то обязательно обратите внимание на разработку Шкондина. Конструкцию его линейного двигателя можно охарактеризовать как «колесо в колесе». Это простое, но в то же время производительное устройство успешно используется для велосипедов, скутеров и другого транспорта. Импульсно-инерционное мотор-колесо представляет собой объединение магнитных дорожек, параметры которых динамично изменяются путем переключения обмоток электромагнитов.

Общая схема линейного двигателя Василия Шкондина

Ключевыми элементами устройства Шкондина являются внешний ротор и статор особой конструкции: расположение 11 пар неодимовых магнитов в вечном двигателе выполнено по кругу, что образует в общей сложности 22 полюса. На роторе установлены 6 электромагнитов в форме подков, которые установлены попарно и смещены друг к другу на 120°. Между полюсами электромагнитов на роторе и между магнитами на статоре одинаковое расстояние. Изменение положения полюсов магнитов относительно друг друга приводит к созданию градиента напряженности магнитного поля, образуя крутящий момент.

Неодимовый магнит в вечном двигателе на основе конструкции проекта Шкондина имеет ключевое значение. Когда электромагнит проходит через оси неодимовых магнитов, то образуется магнитный полюс, который является одноименным по отношению к преодоленному полюсу и противоположным по отношению к полюсу следующего магнита. Получается, что электромагнит всегда отталкивается от предыдущего магнита и притягивается к следующему. Такие воздействия и обеспечивают вращение обода. Обесточивание элетромагнита при достижении оси магнита на статоре обеспечивается размещением в этой точке токосъемника.

Житель г.Пущино Василий Шкондин изобрел не вечный двигатель, а высокоэффективные мотор-колёса для транспорта и генераторы электроэнергии.

Коэффициент полезного действия двигателя Шкондина составляет 83%. Конечно, это пока еще не полностью энергонезависимый вечный двигатель на неодимовых магнитах, но очень серьезный и убедительный шаг в правильном направлении. Благодаря особенностям конструкции устройства на холостом ходу удается вернуть часть энергии батареям (функция рекуперации).

Вечный двигатель Перендева

Альтернативный движок высокого качества, производящий энергию исключительно за счет магнитов. База — статичный и динамичный круги, на которых в задуманном порядке располагается несколько магнитов. Между ними возникает самооталкивающая сила, из-за которой и возникает вращение подвижного круга. Такой вечный двигатель считают очень выгодным в эксплуатации.



Вечный магнитный двигатель Перендева

Существует и множество других ЭМД, схожих по принципу действия и конструкции. Все они еще несовершенны, поскольку не способны долгое время функционировать без каких-либо внешних импульсов. Поэтому работа над созданием вечных генераторов не прекращается.

Как сделать вечный двигатель с помощью магнитов своими руками

Понадобится:

  • 3 вала
  • Диск из люцита диаметром 4 дюйма
  • 2 люцитовых диска диаметром 2 дюйма
  • 12 магнитов
  • Алюминиевый брусок

Валы прочно соединяются между собой. Причем один лежит горизонтально, а два другие расположены по краям. К центральному валу крепится большой диск. Остальные присоединяются к боковым. На дисках располагаются — 8 в середине и по 4 по бокам. Алюминиевый брусок служит основанием для конструкции. Он же обеспечивает и ускорение устройства.

Недостатки ЭМД

Планируя активно использовать подобные генераторы, следует соблюдать осторожность. Дело в том, что постоянная близость магнитного поля приводит к ухудшению самочувствия. К тому же для нормального функционирования устройства необходимо обеспечить ему специальные условия работы. Например, защитить от воздействия внешних факторов. Итоговая стоимость готовых конструкций получается высокой, а вырабатываемая энергия слишком мала. Поэтому и выгода от использования подобных конструкций сомнительна.

Экспериментируйте и создавайте собственные версии вечного двигателя. Все варианты разработок вечных двигателей продолжают совершенствоваться энтузиастами, а в сети можно обнаружить множество примеров реально достигнутых успехов. Интернет-магазин «Мир Магнитов» предлагает вам выгодно купить неодимовые магниты и своими руками собрать различные устройства, в которых бы шестеренки безостановочно крутились благодаря воздействиям сил отталкивания и притяжения магнитных полей. Выбирайте в представленном каталоге изделия с подходящими характеристиками (размеры, форма, мощность) и оформляйте заказ.

В интернете можно почерпнуть много полезной информации, и мне хотелось бы обсудить с сообществом возможность создания аппаратов (двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

В обсуждениях данных двигателей говорят что теоретически они возможно могут работать НО согласно закона сохранения энергии это невозможно.

Тем не менее что же собой представляет постоянный магнит:

Есть в сети информация о таких аппаратах:

По замыслу их изобретателей они созданы для получения полезной энергии но очень многие считают что в их конструкциях скрываются некие недоработки препятствующие свободной работе аппаратов для получения полезной энергии,(а работоспособность аппаратов всего лишь ловко скрытое мошенничество) . Попробуем обойти эти препятствия и проверить существование возможности создания аппаратов(двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

И вот вооружившись листом бумаги карандашом и резинкой попробуем добиться усовершенствования приведённых выше аппаратов

ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ

Настоящая полезная модель относится к магнитным аппаратам вращения, а также к области энергетического машиностроения.

Формула полезной модели:

Аппарат магнитного вращения состоящий из роторного (вращающегося) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и статорного (статического) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и расположенных на одной оси вращения, где роторный диск неподвижно соединён с валом вращения, а статорный диск соединён с валом посредством подшипника; какой отличается
тем что в его конструкции применены постоянные магниты, сконструированные таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, а так же в конструкции применены статорный (статический) и роторный (вращающийся) диски с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами.

Предшествующий уровень техники:

А) Хорошо известен магнитный двигатель Кохеи Минато.
Патент США № 5594289

В патенте описано магнитный аппарат вращения в котором на валу вращения расположены два ротора с размещёнными на них постоянными магнитами обычной формы (прямоугольный параллелепипед), где все постоянные магниты размещены наискосок радиальной линии направления ротора. А с наружной периферии роторов расположено два электромагнита на импульсном возбуждении которых и базируется вращение роторов.

Б)Так же хорошо известен магнитный двигатель Перендев

В патенте на него описан аппарат магнитного вращения в котором на валу вращения расположен ротор из немагнитного материала в котором расположены магниты, вокруг которого расположен статор из немагнитного материала в котором расположены магниты.

Изобретение обеспечивает магнитный двигатель, который включает: вал (26) с возможностью вращения вокруг своей продольной оси, первый набор (16) магнетиков (14) расположены на валу (26) в роторе (10) для вращения вала (26), и второй набор (42) магниты (40), расположенных в статоре (32), расположенных вокруг ротора (10), причем второй набор (42) магнетиков (40), во взаимодействии с первого набора (16) магнетиков (14), в котором магнетизм (14,40) первого и второго множеств (16,42) магнетизма, по крайней мере частично магнитно экранированы, чтобы сосредоточить свое магнитное поле в направлении разрыва между ротор (10) и статора (32)

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройстве вместо статора, используемого в обычных электродвигателях, или как в патенте,где используется два электромагнита на импульсном возбуждении, задействована система кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, и для сокращения,в данном ниже описании, названая статорным (статическим) диском.

В) Имеется ещё и такая схема аппарата магнитного вращения:

В схеме используется двухстаторная система и при этом в роторе по получению энергии вращения задействованы оба полюса постоянных магнитов. Но в данном ниже устройстве эффективность по получению энергии вращения будет гораздо выше.

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройства, вместо статора, используемого в обычных электродвигателях, или как в патенте, где используется два статора, внешний и внутренний; задействована система кольцеобразных обойм (секций) из постоянных магнитов измененной конфигурации, и для сокращения, в данном ниже описании, названа статорных (статическим) диском

В данном ниже устройстве ставится цель улучшить технические характеристики, а так же увеличить мощность аппаратов магнитного вращения использующих силу отталкивания одноимённых полюсов постоянных магнитов.

Реферат:

Настоящая заявка на полезную модель предлагает аппарат магнитного вращения.(схема 1, 2, 3, 4, 5.)

Устройство магнитного вращения содержит: вращающийся вал-1 к которому неподвижно закреплён диск-2 являющийся роторным (вращающимся) диском, на котором неподвижно закреплены а)кольцеобразная-3а и б)цилиндрическая-3б обоймы с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Так же Устройство магнитного вращения содержит и статорный диск-4 (схема: 1а, 3.) стационарно закреплённый и соединённый с вращающимся валом-1 посредством подшипника-5. к стационарному диску неподвижно прикреплены кольцеобразные (схема 2,3) магнитные обоймы (6а, 6б) с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Сами постоянные магниты (7) сконструированы таким образом что противоположные полюса расположены под углом 90 град. друг к другу (схема 1, 2.) и только на внешнем статоре (6б) и внутреннем роторе (3б) они обычной конфигурации: (8).

Обоймы с магнитами (6а, 6б, 3а.) выполнены кольцеобразной формы, а обойма (3б) цилиндрической формы, таким образом чтобы при совмещении статорного диска (4) с роторным диском (2) (схема 1, 1а.) обойма с магнитами(3а) на роторном диске (2) помещалась в середину обоймы с магнитами (6б) на статорном диске (4) ; обойма с магнитами (6а) на статорном диске (4) помещалась в середину обоймы с магнитами (3а) на роторном диске (2) ; и обойма с магнитами (3б) на роторном диске (2) помещалась в середину обоймы с магнитами (6а)на статорном диске (4).

Работа устройства:

При соединении (совмещении) статорного диска (4) с роторным диском (2) (схема 1, 1а, 4)

Магнитное поле постоянного магнита (2а) обоймы с магнитами статорного диска (2) воздействует на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска.

Начинается поступательное движение отталкивания одноимённых полюсов постоянных магнитов (3а) и (2а) которое преобразуется во вращательное движение роторного диска на котором неподвижно закреплены кольцеобразная (3) и цилиндрическая (4) обоймы с магнитами согласно направлению (на схеме 4).

Далее роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (1а) обоймы с магнитами (1) статорного диска начинает воздействовать на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (1а) и (3а) порождает поступательное движение отталкивания одноимённых полюсов магнитов (1а) и (3а), которое преобразуется во вращательное движение роторного диска согласно направления (на схеме 4) И роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска начинает воздействовать на магнитное поле постоянного магнита (4а) из обоймы с магнитами (4) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (4а) порождает поступательное движение отталкивания одноимённых полюсов постоянных магнитов (2а) и (4а), которое преобразуется во вращательное движение роторного диска согласно направлению (на схеме 5) .

Роторный диск поворачивается в положение при котором, магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска, начинает воздействовать на магнитное поле постоянного магнита (3б) из обоймы постоянных магнитов (3) роторного диска; воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (3б) порождает поступательное движение отталкивания одноимённых полюсов магнитов (2а) и (3б) положив, при этом, начало нового цикла, магнитных взаимодействий между постоянными магнитами, в рассматриваемом, для примера работы устройства, 36-градусном секторе дисков вращающего устройства.

Таким образом по окружности дисков с магнитными обоймами, состоящими из постоянных магнитов, предлагаемого устройства, расположено 10 (десять) секторов, процесс который был описан выше происходит в каждом из которых. И за счёт описанного выше процесса происходит движение вращения обойм с магнитами (3а и 3б) , и так как обоймы (3а и 3б) неподвижно присоединены к диску (2) то синхронно с движением вращения обойм (3а и 3б) происходит движение вращения диска (2) . Диск (2) неподвижно соединён (с помощью шпонки, либо шлицевое соединение) с валом вращения (1) . А через вал вращения (1) вращательный момент передаётся далее, предположительно на электрогенератор.

Для увеличения мощности двигателей такого типа можно использовать добавление в схеме дополнительных магнитных обойм,состоящих из постоянных магнитов, на дисках (2) и (4) (согласно схеме № 5).

А так же с той же целью (для увеличения мощности) в схему двигателя можно добавить ещё не одну пару дисков (роторного и статического). (схема № 5 и № 6)

Хочу ещё дополнить что данная схема именно магнитного двигателя будет более эффективной если в магнитных обоймах роторного и статического дисков будет разное количество постоянных магнитов, подобранное таким образом, чтобы в системе вращения было или минимальное количество, либо не было совсем «точек баланса»- определение именно для магнитных двигателей. Это точка в которой во время вращательного движения обоймы с постоянными магнитами (3)(схема 4) постоянный магнит (3а) во время своего поступательного движения наталкивается на магнитное взаимодействие одноименного полюса постоянного магнита (1а) которое и следует преодолеть с помощью грамотной расстановки постоянных магнитов в обоймах роторного диска (3а и 3б) и в обоймах статического диска (6а и 6б) таким образом чтобы при прохождении таких точек сила отталкивания постоянных магнитов и последующее их поступательное движение, компенсировали силу взаимодействия постоянных магнитов при преодолении магнитного поля противодействия в данных точках. Либо использовать метод экранизации.

Ещё в двигателях такого типа можно использовать вместо постоянных магнитов электромагниты (соленоид).

Тогда схема работы (уже электродвигателя) описанная выше будет подходить, только уже в конструкцию будет включена электрическая цепь.

Вид сверху разреза аппарата магнитного вращения.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией -(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

3б) Цилиндрическая обойма (секция) с постоянными магнитами обычной конфигурации.

6а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

6б) Кольцеобразная обойма (секция) с постоянными магнитами обычной конфигурации.

7) Постоянные магниты изменённой конфигурации-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

8) Постоянные магниты обычной конфигурации.

Вид сбоку в разрезе аппарата магнитного вращения

1) Вал вращения.

2) Роторный (вращающийся) диск.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией- (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

1а) постоянный магнит обычной конфигурации из обоймы (1) статорного диска.

2) сектор в 36 градусов обоймы с постоянными магнитами (2а) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу статорного диска.

2а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (2) статорного диска.

3) сектор в 36 градусов обоймы с постоянными магнитами (3а) и (3б) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу роторного диска.

3а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

3б) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

4) сектор в 36 градусов обоймы с постоянными магнитами (4а) обычной конфигурации статорного диска.

4а) постоянный магнит обычной конфигурации из обоймы (4) статорного диска.

Рисунок разреза вида сбоку АМВ(аппарата магнитного вращения) с двумя статорными дисками и двумя роторными дисками. (Прототип заявляемого большей мощности)

1) Вал вращения.

2), 2а) Роторные (вращающиеся) диски, на которых неподвижно закреплены обоймы: (2 рот), и (4 рот) с постоянными магнитами с изменённой конфигурацией — (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4), 4а) Статорные (статические, неподвижные) диски, на которых неподвижно закреплены обоймы: (1стат) и (5s) с постоянными магнитами обычной конфигурации; а также обойма (3стат) с постоянными магнитами с изменённой конфигурацией — (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4 рот) Кольцеобразная обойма с постоянными магнитами (4а) с изменённой конфигурацией — (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу). Роторного (вращающегося) диска.

5) Цилиндрическая обойма с постоянными магнитами (5а) обычной конфигурации (прямоугольный параллелепипед). статорного (статического) диска.

К сожалению рисунок № 1 содержит ошибки.

Как Мы видим в схемы существующих магнитных двигателей можно вносить существенные изменения всё более их совершенствуя….

Устройство и принцип работы двигателя на постоянных магнитах

Двигатели на протяжении многих лет используются для преобразования электрической энергии в механическую различного типа. Эта особенность определяет столь высокую его популярность: обрабатывающие станки, конвейеры, некоторые бытовые приборы – электродвигатели различного типа и мощности, габаритных размеров используются повсеместно.

Основные показатели работы определяют то, какой тип конструкции имеет двигатель. Существует несколько разновидностей, некоторые пользуются популярностью, другие не оправдывают сложность подключения, высокую стоимость.

Двигатель на постоянных магнитах используют реже, чем асинхронный вариант исполнения. Для того, чтобы оценить возможности этого варианта исполнения, следует рассмотреть особенности конструкции, эксплуатационные качества и многое другое.

Устройство

устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем, изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Принцип работы

Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  1. Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  2. Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  3. Магнитное поле создается установленными магнитами.
  4. Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид, год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделять корпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

slarkenergy.ru

Двигатель на неодимовых магнитах

Содержание:

  1. Видео

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует особо отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации. Поэтому прежде чем пытаться изготовить такой двигатель для бытовых нужд, следует тщательно ознакомиться с его конструкцией и принципом работы.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен электрический ток. В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса постоянного магнита должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.

electric-220.ru

правда или миф, возможности и перспективы, линейный двигатель своими руками

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.
Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.
  • Негативное влияние магнитных полей на человека;
  • Большинство экземпляров не могут пока что работать в нормальных условиях. Но это дело времени;
  • Сложности в подключении даже готовых образцов;
  • Современные магнитные импульсные моторы имеют довольно высокую цену.

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

220v.guru

Нетрадиционные моторы на постоянных магнитах

Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov.

Введение

Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.

По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.

Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс — это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.

Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея — Количественные эксперименты» способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.

Двигатели с переключаемым магнитным сопротивлением

При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 («Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.

В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.

Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.

Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.

Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в .

Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.

Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.

Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку. Вместо этого было предложено использовать проводники Вейганда , а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.

Тороидальный мотор

По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.

Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.

Линейные моторы

Тема линейных индукционных моторов широко освещена в литературе. В издании объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.

Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.

Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.

Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации .

Статический электромагнитный момент импульса

В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге , представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.

Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.

Униполярный мотор

В книге подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.

Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй — эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в .

С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора .

Эффект №2, имеющий место внутри каждого роликового магнита, описан в , где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла , в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.

Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 — это радиальный эффект, что уже было отмечено выше . Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя , который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).

В связанной с данной темой работе исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.

Заключение

Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.

Литература

1. Motion Control Handbook (Designfax, May, 1989, p.33)

2. «Faraday’s Law — Quantitative Experiments», Amer. Jour. Phys.,

3. Popular Science, June, 1979

4. IEEE Spectrum 1/97

5. Popular Science (Популярная наука), May, 1979

6. Schaum’s Outline Series, Theory and Problems of Electric

Machines andElectromechanics (Теория и проблемы электрических

машин и электромеханики) (McGraw Hill, 1981)

7. IEEE Spectrum, July, 1997

9. Thomas Valone, The Homopolar Handbook

10. Ibidem, p. 10

11. Electric Spacecraft Journal, Issue 12, 1994

12. Thomas Valone, The Homopolar Handbook, p. 81

13. Ibidem, p. 81

14. Ibidem, p. 54

Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07

Томас Валон Integrity Research Institute, www.integrityresearchinstitute.org

1220 L St. NW, Suite 100-232, Washington, DC 20005

zaryad.com

Вечный двигатель на постоянных магнитах

Проблемой вечного двигателя до сих пор занимаются очень многие энтузиасты из числа ученых и изобретателей. Эта тема особенно актуальна в свете возможного топливно- энергетического кризиса, с которым может столкнуться наша цивилизация.

Одним из наиболее перспективных вариантов считается вечный двигатель на постоянных магнитах, работающий, благодаря уникальным свойствам этого материала. Здесь скрывается большое количество энергии, которой обладает магнитное поле. Основная задача состоит в том, чтобы выделить и преобразовать ее в механическую, электрическую и другие виды энергии. Постепенно, магнит теряет свою силу, однако, она вполне восстанавливаться под действием сильного магнитного поля.

Общее устройство магнитного двигателя

В стандартную конструкцию устройства входят три основные составные части. Прежде всего, это сам двигатель, статор с установленным электромагнитом и ротор с постоянным магнитом. На один вал, совместно с двигателем, устанавливается электромеханический генератор.

В состав магнитного двигателя входит статический электромагнит, представляющий собой кольцевой магнитопроводс вырезанным сегментом или дугой. В электромагните имеется индуктивная катушка, к которой подключается электронный коммутатор, обеспечивающий реверс тока. Сюда же подключается и постоянный магнит. Для регулировки используется простой электронный коммутатор, схема которого представляет собой автономный инвертор.

Как работает магнитный двигатель

Запуск магнитного двигателя осуществляется с помощью электротока, подаваемого в катушку из блока питания. Магнитные полюса в постоянном магните располагаются перпендикулярно электромагнитному зазору. В результате возникающей полярности, постоянный магнит, установленный на роторе, начинает вращаться вокруг своей оси. Происходит притяжение магнитных полюсов к противоположным полюсам электромагнита.

Когда разноименные магнитные полюса и зазоры совпадают, в катушке выключается ток и тяжелый ротор проходит по инерции эту мертвую точку совпадения, вместе с постоянным магнитом. После этого, в катушке происходит изменение направления тока и в очередном рабочем зазоре значения полюсов на всех магнитах становятся одноименными. Дополнительное ускорение ротора, в этом случае, происходит за счет отталкивания, возникающего под действием полюсов одноименного значения. Получается так называемый вечный двигатель на магнитах, который обеспечивает постоянное вращение вала. Весь рабочий цикл повторяется после того, как ротор сделает полный круг вращения. Действие электромагнита на постоянный магнит, практически не прерывается, что и обеспечивает вращение ротора с необходимой скоростью.

electric-220.ru

АЛЬТЕРНАТИВНЫЕ РЕШЕНИЯ — RU: ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ СВОИМИ РУКАМИ

ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ — RU,
НОВЫЙ ВАРИАНТ

Действующий макет магнитного двигателя МД-500-RU со скоростью

вращения до 500 об/мин.

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет сил взаимодействия магнитных полей, без устройства управления (синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Имнульсные магнитные двигатели, работающие за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим максимальной скорости вращения.3. Манитные двигатели использующие 1 и 2 варианты, например МД Нarry Paul Sprain, Минато и другие.

***

Макет доработанного варианта работающего импульсного магнитного двигателя (МД-RU)

с устройством управления (синхронизации),обеспечивающий скорость вращения до 500 об/мин.

1. Технические параметры двигателя МД_RU:.

Число магнитов 8, 600Гс.Электромагнит 1 шт.Радиус R диска 0,08м.Масса m диска 0,75 кг.

Скорость вращения диска 500 об/мин.

Число оборотов в секунду 8,333 об/сек.. Период вращения диска 0.12 сек. (60сек/500 об/мин= 0,12сек).Угловая скорость диска ω = 6,28/0,12 = 6,28/(60/500) = 52,35 рад./sec.Линейная скорость диска V = R* ω = 0,08*52,35 = 4,188 m/сек.2.Вычисление основных энергетических показателей МД.Полный момент инерции диска:Jпми = 0,5 * mкг *R2 = 0,5*0,75*(0,08) 2 = 0,0024[кг *m2]. Кенетическая энергия Wke на валу двигателя:Wke = 0,5*Jпми* ω2 = 0,5*0,0024*(52,35) 2 = 3,288 дж/сек= 3,288 Вт*сек. При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ.

3. Получив результат вычисления кинетической энергии на валу диска (ротора) в

Ваттах (3,288), для вычисления энергетической эффективности этого вида МД,

необходимо вычислить мощность, потребляемую устройством управления (синхронизации). Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток напротяжении 0,333 сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005 сек., магнитов 8, за одну секунду происходит 8,33 оборота, поэтому время потреблен ия тока устройством управления равно произведению:

0,005*8*8,33 об/сек = 0,333сек.-Напряжения питания устройства управления 12В.-Ток, потребляемый устройством 0,13 А.-Время потребления тока на протяжении 1 секунды равно — 0,333 сек. Следовательно мощность Руу, потребляемая устройством за 1 секунду непрерывного вращения диска составит:Pуу = U* A = 12 * 0,13А * 0,333 сек. = 0,519 Вт*сек.Это в (3,288 Вт*сек) /(0,519 Вт *сек) = 6,33 раз больше энергии потребляемой устройством управления. Фрагмент конструкции МД.

4. ВЫВОДЫ: Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД.

5. Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости. 6. Надо иметь в виду, этот вид двигателя вращался со скоростью 500 об/мин. без нагрузки на валу. Для получения на его основе генератора электрического напряжения на его ось вращения следует насадить генератор постоянного или переменного тока. При этом скорость вращения, естественно, уменьшится в зависимости от силы магнитного сцепления в зазоре стотор — ротор используемого генератора.

7. Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания патентов и других источников информации порассматриваемой теме.

При этом, наиболее походящие виды NdFeB — магнитов можно найти на сайте http://www.magnitos.ru/.Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»К-40-04-02-N (длиной до 40 x 4 x 2 mm) с намагничиванием N40 и сцеплением 1 — 2 kg. ***

8. Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении вида МД, которые называют импульсными магнитнами двигателями. На рисунке приведен один из известных вариантов импульсных МД с электромагнитом, «выполняющим роль поршня», похожий на игрушку. В реальной полезной модели диаметр колеса (маховика), например, велосипедного колеса, должен быть не менее метра и, соответственно, длинее путь перемещения сердечника электромагнита.

Создание импульсного МД — это только 50% пути до достижения цели — изготовления источника электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе, которая так же зависит и от скорости вращения.

8. Аналогичные МД:1. Magnetic Wankel Motor,http://www.syscoil.org/index.php?cmd=nav&cid=116Мощность этой модели достаточна только для того, чтобы колыхать воздух, тем не менее, она подсказывает путь к достижению цели. 2. НARRY PAUL SPRAIN http://www.youtube.com/watch?v=mCANbMBujjQ&mode=related&search;

Это двигатель, аналогичный Magnetic Wankel Motor, но значительно большего размера и с устройством управления (синхронизации) с мощностью на валу 6 Вт*сек.

3. Вечный двигатель «PERENDEV»Многие не верят, а он работает! См: http://www.perendev-power.ru/ Патент МД «PERENDEV»:http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2006045333&F=0 Двигатель — генератор на 100 кВт стоит 24 000 евро. Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4(фото приведено выше).

Рисунок действущего макета разработанного импульсного магнитного двигателя МД-500-RU, дополненного асинхронным генераторм переменного тока.

Новые конструкции вечных магнитных двигателей: 1. http://www.youtube.com/watch?v=9qF3v9LZmfQ&feature=related

К выводам каждой катушки подключен транзистор. Катушки содержат магнитный сердечник. Магниты колеса, проскакивая мимо катушек с магнитами, наводит в них эдс, достаточную для возникновения генерации в цепи катушка-транзистор, далее напряжение генератора через, предположительно, согласующее устройство поступает на обмотки двигателя, вращающего колесо и т. д.

Магнитный двигатель LEGO (perpetuum).

Он выполнен на базе элементов из набора для конструирования LEGO.

При медленной прокрутки видео – становится понятным почему эта штуковина вращается непрерывно.

3. «Запрещённая конструкция» вечного двигателя с двумя поршнями. Вопреки известному «не может быть», медленно, — но вращается.

В нем одновременное использование гравитации и взаимодействия магнитов.

4.Гравитационно-магнитный двигатель.

На вид очень простое устройство, но не известно, потянет ли оно генератор

постоянного или переменного тока? Ведь простого вращения колеса не достаточно.

Приведенные виды магнитных двигателей (с пометкой: perpetuum), если даже они работают, — очень маломощны. Поэтому, чтобы они стали эффективными для практического применения их размеры неизбежно придется увеличивать, при этом, они не должны потерять свое важное свойство: непрерывно вращаться.

Страная «качалка» сербского изобретателя В.Милковича, которая, как ни странно, — работает. http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник. Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на одной и той же высоте, но немного выше центра массы, как показано на рисунке. В машине используется различие в потенциальной энергии между состоянием невесомости в положении (вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником. После многих лет испытаний, консультаций и общественных презентаций, много было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях. Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне». Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу. *** Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет. Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником. Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена путем увеличения тяжести (массы).

Демонстрация работы устройства. ***

РУССКАЯ КАЧАЛКА (резонансная качалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0 Cм.RE Магнитогравитационные установки Reply #14: Март 02, 2010, 05:27:22Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)Работает!!!

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT) НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5. L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4. и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп). Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.Другие схемные решения можно найти на youtube.com в видеоматериалах по генераторам «свободной энергии», т.н. TROS, amplifier и др. со схемами этого вида генераторов энергии. Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке.

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

http://4.bp.blogspot.com/_iB7zWfiuCPc/TCw8_UQgJII/AAAAAAAAAf8/xs7eZ4680SY/s1600/Joule+Thief+Circuit+-2___.JPG

3. Наибольший интерес представляет генератор свободной энергии, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В. http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embeddedОднако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой. Кадр из этого видео ролика.

Для кого создают талантливые искатели «свободной энергии» подобные устройства?

Для себя, для потенциального инвестора или для кого — то еще? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как. Тем не менее над этим видом герератора с самозапиткой стоит поработать. Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание. Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htmhttp://www.001-lab.com/001lab/index.php?topic=24.0УСПЕХОВ!

4. Достоверная схема генератора КапанадзеПодробности на http://www.youtube. com/watch?v=tyy4ZpZKBmw&feature=related

5. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0.65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшую индуктивность — лампы могут полыхать и не только от выходного напряжения вторичной обмотки и весьма прилично.

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта. Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В, в большинстве сучаев от микроволновой печи, Рвхода до 1400Вт, Рпо выходу (СВЧ) 800Вт.

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА ВОДЫ

ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_WavesJohn KanziusThe authors have shown that NaCl-h4O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:John_Kanzius показал, что раствор NaCl-h4O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30-40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх сосуда с соленой водой цилиндрической формы. Сосуд на 75-80% заливается соленой водой и плотно закрывается крышкой с патрубком для отвода водорода, у выхода, трубка заполняется ватой для предотвращения свободного проникновения кислорода в сосуд.

*** Подробнее можно посмотреть на:http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF Observations of polarised RF radiation catalysis of dissociation of h4O–NaCl solutions R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h4O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:Я получал водород, заливая водным раствором едкого натра (Na2CO3) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой 2CO3− + h4O ↔ HCO3− + OH− и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция: 2Аl + 3Н2О = A12О3 + 3h4 с выделением тепла и интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза!

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2 и окисью алюминия A12О3. Интенсивность химической реакции через некоторое время начнет снижаться. Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла. ***Аналогичная разработка:Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом) Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю, он позволяет машине нормально двигаться, используя вместо бензина, воду и небольшое количество алюминия. Mr. Francois P. в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель.

Здесь отходом реакции является A12О3. Конструкция этой штуковины Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором? Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево. *** Дополнительно, можете посмотреть подобное устройство здесь: http://macmep.h32.ru/main_gaz.htm и здесь: «Простой народный способ получения водорода»http://new-energy21.ru/content/view/710/179/, а здесь http://www.vodorod.net/ — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

magnets-motor.blogspot.com

Магнитный двигатель: миф или реальность.

Магнитный двигатель – один из наиболее вероятных вариантов «вечного двигателя». Идея его создания была высказана ещё очень давно, однако до сих пор он не был создан. Существует множество устройств, которые на шаг или несколько шагов приближают ученых к созданию этого двигателя, однако ни одно из них не доведено до логического завершения, следовательно, о практическом применении еще нет речи. Существует и множество мифов, связанных с этими устройствами.

Магнитный двигатель – это не обычный агрегат, так как он не потребляет никакой энергии. Движущей силой являются только магнитные свойства элементов. Конечно, электромоторы тоже используют магнитные вещества ферромагнетиков, однако в движение магниты приводятся под действием электрического тока, что уже противоречит главному принципу вечного двигателя. В магнитном двигателе задействуется влияние магнитов на другие объекты, под воздействием которых они начинают двигаться, вращая турбину. Прообразом такого двигателя могут стать многие офисные аксессуары, в которых непрерывно двигаются различные шарики или плоскости. Однако для движения там тоже используются батарейки (источник постоянного тока).

Никола Тесла был одним из первых ученых, серьезно занявшихся созданием магнитного двигателя. Его двигатель содержал турбину, катушку, провода, соединяющие данные объекты. В катушку вкладывался небольшой магнит таким образом, чтобы он захватывал как минимум два её витка. После придания турбине небольшого толчка (раскручивания) она начинала двигаться с неимоверной скоростью. Это движение будет вечным. Магнитный двигатель Теслы является практически идеальным вариантом. Единственным его недостатком является то, что турбине необходимо придать первоначальную скорость.

Магнитный двигатель Перендева – другой возможный вариант, однако он гораздо более сложный. Он представляет собой кольцо из диэлектрического материала (чаще всего древесина) с вмонтированными в него магнитами, наклоненными под определенным углом. В центре располагался ещё один магнит. Такая схема тоже является неидеальной, ведь для запуска двигателя нужен толчок.

Основной проблемой создания такого вечного двигателя является склонность магнитов к постоянному механическому движению. Два сильных магнита будут двигаться до тех пор, пока их противоположные полюса не соприкоснутся. Из-за этого магнитный двигатель не может правильно работать. Эту проблему невозможно решить при современных возможностях человечества.

Создание идеального магнитного двигателя привело бы человечество к источнику вечной энергии. В таком случае все существующие виды электростанций можно было бы с легкостью упразднить, так как магнитный двигатель стал бы не только вечным, но и самым дешевым и безопасным вариантом получения энергии. Но нельзя определенно сказать, будет ли магнитный двигатель лишь источником энергии или его можно будет использовать не только в мирных целях. Этот вопрос существенно меняет положение дел и заставляет задуматься.

Действующий макет магнитного двигателя МД-500-RU
со скоростью

вращения до 500 об/мин.

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет сил
взаимодействия магнитных полей, без устройства управления
(синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Имнульсные магнитные двигатели, работающие за счет сил взаимодействия
магнитных полей
, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД
повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим
максимальной скорости вращения.

3. Манитные двигатели использующие
1 и 2 варианты, например МД
Нarry Paul Sprain, Минато и другие.

***

Макет доработанного варианта работающего импульсного
магнитного двигателя


(МД-RU)

с устройством управления (синхронизации),
обеспечивающий скорость вращения до 500 об/мин.

1.
Технические параметры двигателя МД_RU:

.

Число магнитов 8
, 600
Гс.
Электромагнит 1
шт.
Радиус
R
диска 0,08
м.
Масса
m
диска 0,75 кг

.

Скорость вращения диска 500
об/мин.

Число оборотов в секунду 8,333
об/сек..

Период вращения диска 0.12
сек. (60сек/500 об/мин= 0,12сек).
Угловая скорость диска ω= 6,28/0,12 = 6,28/(60/500) =
52,35
рад
./
sec
.

Линейная скорость диска
V
=
R
* ω = 0,08*
52,35
=
4,188
m
/сек.

2.Вычисление основных энергетических показателей МД.

Полный момент инерции диска:

J
пми
= 0,5 *
m
кг
*
R
2
= 0,5*0,75*(0,08) 2 =
0,0024
[кг
*
m
2
].

Кенетическая энергия
Wke
на валу двигателя
:

Wke
= 0,5*
J
пми
* ω 2 = 0,5*
0,0024
*(52,35) 2 =
3,288
дж/сек=
3,288
Вт*сек
.

При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ.

3.
Получив результат вычисления кинетической энергии на валу диска (ротора) в

Ваттах (3,288
), для вычисления
энергетической эффективности этого вида МД
,

необходимо вычислить мощность, потребляемую
устройством управления
(синхронизации).
Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток на
протяжении 0,333
сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005
сек., магнитов 8
, за одну секунду происходит 8,33 оборота, поэтому
время потреблен ия тока устройством управления равно произведению:

0,005
*8
*8,33
об/сек = 0,333
сек.

-Напряжения питания устройства управления 12
В.

-Ток, потребляемый устройством 0,13
А.

-Время потребления тока на протяжении 1
секунды равно — 0,333
сек.

Следовательно мощность Руу,
потребляемая устройством за 1 секунду непрерывного вращения диска составит:

P
уу
=
U
*
A
= 12 * 0,13А * 0,333 сек
. =
0,519
Вт*сек
.

Это в (3
,288

Вт*сек) /(0,519
Вт *сек) =
6,33
раз больше энергии потребляемой устройством управления.

Фрагмент конструкции МД.

4. ВЫВОДЫ:

Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД.

5.
Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости.


6.
Надо иметь в виду, этот вид двигателя вращался со скоростью 500 об/мин. без нагрузки на валу. Для получения на его основе генератора электрического напряжения на его ось вращения следует насадить генератор постоянного или переменного тока. При этом скорость вращения, естественно, уменьшится в зависимости от силы магнитного с
цепления в зазоре стотор — ротор используемого генератора.

7.
Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания патентов и других источников информации по

рассматриваемой теме.

Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»

К-40-04-02-N (длиной до 40 x 4 x 2 mm)
с намагничиванием N40
и сцеплением 1 — 2 kg
.

***

8.
Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении вида МД, которые называют импульсными магнитнами двигателями.
На рисунке приведен один из известных вариантов импульсных МД с электромагнитом, »
выполняющим роль поршня», похожий на игрушку. В реальной полезной модели диаметр колеса (маховика), например,
велосипедного колеса, должен быть не менее метра и, соответственно, длинее путь перемещения сердечника электромагнита.

Создание импульсного МД — это только 50% пути до достижения цели — изготовления источника

электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД
должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе, которая так же зависит и от скорости вращения.

8
.
Аналогичные МД:

1.
Magnetic
Wankel
Motor
,

http://
www.
syscoil.
org/
index.
php?
cmd=
nav&
cid=116

Мощность этой модели достаточна только для того,
чтобы колыхать воздух, тем не менее, она подсказывает путь
к достижению цели.

2.
Н
ARRY
PAUL
SPRAIN

http://www.youtube.com/watch?v=mCANbMBujjQ&mode=related&search;

3
.
Вечный двигатель
»
PERENDEV
»

Многие не верят, а он работает!

См:

http
://
www
.
perendev

power
.
ru
/

Патент МД «PERENDEV»:

ht

tp
://
v
3.
espacenet
.
com
/
textdoc
?
DB
=
EPODOC
&
IDX
=
WO
2006045333&
F
=0

Двигатель — генератор на 100 кВт стоит 24 000 евро.

Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4

(фото приведено выше
).

Рисунок действущего макета разработанного импульсного магнитного двигателя

МД-500-RU, дополненного
асинхронным генераторм
переменного тока.

Новыеконструкции вечных магнитныхдвигателей
:

1. http://
www.
youtube.
com/
watch?
v=9
qF3
v9
LZmfQ&
feature=
related

Из переводакомментарий и ответов автораследует
:

Автор
магнитногодвигателя(perpetuum
) использует двигатель вентилятора, на
ось которого насажено колесо с постояннымимагнитамиидве или три
неподвижныекатушки,которые наматывается в два провода.

К выводамкаждой катушкиподключен транзистор.Катушкисодержат магнитный сердечник.
Магниты колеса, проскакивая мимокатушекс магнитами, наводит в них эдс,
достаточную длявозникновениягенерации в цепи катушка-транзистор,далее
напряжение генератора через, предположительно, согласующее устройствопоступает на обмотки
двигателя,вращающего колесои т.д.

Подробностисвоего
perpetuum
автор
изобретениянераскрывает, за что его называют шарлатаном. Ну как обычно.

***

Магнитныйдвигатель
LEGO
(perpetuum

).

Он выполненна базе элементов из наборадля конструирования LEGO.

Примедленнойпрокрутки видео – становится понятным почему эта штуковина
вращается непрерывно.

3.
«Запрещённая конструкция»вечного двигателя с двумяпоршнями.
Вопреки известному «не может быть», медленно, — но вращается.

В нем одновременноеиспользование гравитацииивзаимодействиямагнитов.

***

4.Гравитационно-магнитный двигатель.

На вид очень простое устройство, но не известно, потянет ли оно генератор

постоянного или переменного тока?
Ведь простого вращения колеса не достаточно.

Приведенныевидымагнитныхдвигателей (с пометкой:
perpetuum
), если даже
они работают, — очень маломощны. Поэтому, чтобыони сталиэффективными дляпрактического примененияихразмерынеизбежнопридется увеличивать,при
этом,онине должны потерятьсвое важное свойство: непрерывно вращаться.

Страная «качалка» сербского изобретателя В.Милковича, которая,
как ни странно, — работает.

http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:

Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник.
Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на
одной и той же высоте, но немного выше центра массы, как показано на рисунке.
В машине используется различие в потенциальной энергии между состоянием невесомости в положении (вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником.
После многих лет испытаний, консультаций и общественных презентаций, много
было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях.
Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне».
Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу.
***
Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет.
Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником.
Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

К формуле: Ек = М(V1 +V 2)/2

И провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена путем увеличения тяжести (массы).

Демонстрация работы устройства.
***

РУССКАЯ КАЧАЛКА (резонансная к

ачалка RU)

3. Наибольший интерес представляет генератор свободной энергии
, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В.


http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embedded
Однако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой.

Кадр из этого видео ролика.

Для кого создают талантливые искатели «свободной энергии» подобные устройства?

Для себя, для потенциального инвестора или для кого — то еще? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как.
Тем не менее над этим видом герератора с самозапиткой стоит поработать.
Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник
собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание.
Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htm

http://www.001-lab.com/001lab/index.php?topic=24.0
УСПЕХОВ!

5
. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0. 65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшую индуктивность — лампы могут полыхать и не только от выходного напряжения вторичной обмотки и весьма прилично.

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта.
Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В,
в большинстве сучаев от микроволновой печи, Рвхода
до 1400Вт, Рпо выходу
(СВЧ) 800Вт.

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА ВОДЫ

ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_Waves
John Kanzius

The authors have shown that NaCl-h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:

John_Kanzius показал, что раствор NaCl-h3O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц

, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.
Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30- 40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх сосуда с соленой водой цилиндрической формы. Сосуд на 75-80% заливается соленой водой и плотно закрывается крышкой с патрубком для отвода водорода, у выхода, трубка заполняется ватой для предотвращения свободного проникновения кислорода в сосуд.

***
Подробнее можно посмотреть на:
http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF
Observations of polarised RF radiation catalysis of dissociation of h3O–NaCl solutions
R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:


Я получал водород, заливая водным раствором едкого натра (Na2
CO3
) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой
2CO3
− + h3
O ↔ HCO3
− + OH− и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция:
2Аl + 3Н2
О = A12
О3
+ 3h3
с выделением тепла и интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза!

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2
и окисью алюминия A12
О3
. Интенсивность химической реакции через некоторое время начнет снижаться.
Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла.
***
Аналогичная разработка:

Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом)
Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю, он позволяет машине нормально двигаться, используя вместо бензина, воду и небольшое количество алюминия.
Mr. Francois P.
в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель.

Здесь отходом реакции является A12
О3
.

Конструкция этой штуковины

Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором?
Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево.
***
Дополнительно, можете посмотреть подобное устройство здесь: http://macmep.h22.ru/main_gaz.htm
и здесь: «Простой народный способ получения водорода»
http://new-energy21.ru/content/view/710/179/ ,
а здесь http://www.vodorod.net/ — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

С давних пор многие ученые и изобретатели мечтали построить так называемый . Работа над этим вопросом не прекращается и в настоящее время. Основным толчком к исследованиям в данной области послужил надвигающийся топливный и энергетический кризис, который вполне может стать реальностью. Поэтому, уже в течение длительного времени разрабатывается такой вариант, как магнитный двигатель, схема которого основана на индивидуальных свойствах постоянных магнитов. Здесь главной движущей силой выступает энергия магнитного поля. Все ученые, инженеры и конструкторы, занимающиеся этой проблемой, видят основную цель в получении электрической, механической и прочих видов энергии за счет использования магнитных свойств.

Следует отметить, что все подобные изыскания проводятся, в основном, теоретически. На практике такой двигатель еще не создан, хотя определенные результаты уже имеются. Уже разработаны общие направления, позволяющие понять принцип работы этого устройства.

Из чего состоит магнитный двигатель

Конструкция магнитного двигателя коренным образом отличается от обыкновенного электрического мотора, где главной движущей силой является электрический ток.

Магнитный двигатель функционирует исключительно за счет постоянной энергии магнитов, приводящей в движение все части и детали механизма. Стандартная конструкция агрегата состоит из трех основных деталей. Кроме самого двигателя, здесь имеется статор, на который устанавливается электромагнит, а также, ротор, на котором размещается постоянный магнит.

Вместе с двигателем, на один и тот же вал, производится установка электромеханического генератора. Кроме того, весь агрегат оборудован статическим электромагнитом. Он выполнен в виде кольцевого магнитопровода, в котором вырезается сегмент или дуга. Электромагнит дополнительно оборудован . К ней производится подключение электронного коммутатора, с помощью которого обеспечивается реверсивный ток. Регулировка всех процессов осуществляется электронным коммутатором.

Принцип работы магнитного двигателя

В первых моделях применялись железные части, на которые должен был оказывать влияние магнит. Однако, чтобы вернуть такую деталь в исходное положение, нужно затратить столько же энергии.

Для решения этой проблемы был использован медный проводник с пропущенным по нему электрическим током, который мог притягиваться к магниту. При отключении тока, взаимодействие между проводником и магнитом прекращалось. В результате проведенных исследований была обнаружена прямая пропорциональная зависимость силы воздействия магнита от его мощности. Поэтому, при постоянном электрическом токе в проводнике и увеличивающейся силе магнита, воздействие этой силы на проводник также будет расти. С помощью повышенной силы будет вырабатываться ток, который, в свою очередь, будет проходить через проводник.

На этом принципе был разработан более совершенный магнитный двигатель, схема которого включает все основные этапы его работы. Его пуск производится электротоком, поступающим в индуктивную катушку. При этом, расположение полюсов постоянного магнита перпендикулярно к вырезанному зазору в электромагните. Возникает полярность, в результате которой начинается вращение постоянного магнита, установленного на роторе. Его полюса начинают притягиваться к электромагнитным полюсам с противоположным значением.

При совпадении разноименных полюсов, происходит выключение тока в катушке. Ротор, под действием собственного веса, вместе с проходит за счет инерции эту точку совпадения. Одновременно, в катушке изменяется направление тока, и полюса в очередном рабочем цикле принимают одноименное значение. Происходит отталкивание полюсов, заставляющее ротор дополнительно ускоряться.

Магнитный двигатель своими руками | Земля Мастеров

МАГНИТНЫЙ ДВИГАТЕЛЬ — RU, НОВЫЙ ВАРИАНТ

Действующий макет магнитного двигателя МД-500-RU со скоростью вращения до 500 об/мин.

 

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет силвзаимодействия магнитных полей, без устройства управления (синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Магнитные двигатели, работающие за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим максимальной скорости вращения.
3. Манитные двигатели использующие 1 и 2 варианты, например МД Нarry Paul Sprain,  Минато и другие.

***

Макет доработанного варианта работающего магнитного двигателя (МД-RU)

с устройством управления (синхронизации),обеспечивающий скорость вращения до 500 об/мин.

1. Технические параметры двигателя МД_RU:.

Число магнитов 8, 600Гс.
Электромагнит 1 шт.
Радиус R диска 0,08м.
Масса m диска 0,75 кг. 

Скорость вращения диска 500 об/мин.

Число оборотов в секунду 8,333 об/сек.. 
Период вращения диска 0.12 сек. ( 60сек/500 об/мин= 0,12сек).
Угловая скорость диска ω = 6,28/0,12 = 6,28/(60/500) = 52,35 рад./sec.
Линейная скорость диска V = R* ω = 0,08*52,35 = 4,188 m/сек.
2.Вычисление основных энергетических показателей МД.
Полный момент инерции диска:
Jпми = 0,5 * mкг *R2 = 0,5*0,75*(0,08) 2 = 0,0024[кг *m2]. 
Кенетическая энергия Wke на валу двигателя:
Wke = 0,5*Jпми* ω2 = 0,5*0,0024*(52,35) 2 = 3,288 дж/сек= 3,288 Вт*сек. 
При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ.  

 

3. Получив результат вычисления кинетической энергии на валу диска (ротора) в Ваттах (3,288), для вычисления энергетической эффективности этого вида МД, необходимо вычислить мощность, потребляемую устройством управления (синхронизации). Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток напротяжении 0,333 сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005сек., магнитов 8, за одну секунду происходит 8,33 оборота, поэтому время потреблен ия тока устройством управления равно произведению:

0,005*8*8,33 об/сек = 0,333сек.
-Напряжения питания устройства управления 12В.
-Ток, потребляемый устройством 0,13 А.
-Время потребления тока на протяжении 1 секунды равно — 0,333 сек. 
Следовательно мощность Руу, потребляемая устройством за 1 секунду непрерывного вращения диска составит:
Pуу = U* A = 12 * 0,13А * 0,333 сек. = 0,519 Вт*сек.
Это в (3,288 Вт*сек) /(0,519 Вт *сек) = 6,33 раз больше энергии потребляемой устройством управления.

Фрагмент конструкции МД.

 4. ВЫВОДЫ: 
Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД. 

 

5. Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости.

 

6.Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания  патентов и других источников информации по
рассматриваемой теме.

При этом, наиболее походящие виды NdFeB — магнитов можно найти на сайте http://www. magnitos.ru/.

Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»
К-40-04-02-N (длиной до 40 x 4 x 2 mm) с намагничиванием N40 и сцеплением 1 — 2 kg.
***

7. Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении  вида  МД, которые называют импульсными магнитнами двигателями.  На рисунке приведен  один  из  известных  вариантов импульсных МД с электромагнитом, «выполняющим роль поршня»,  похожий на  игрушку. В реальной полезной  модели  диаметр колеса (маховика), например, велосипедного колеса,  должен  быть не менее метра  и, соответственно,   длинее  путь  перемещения  сердечника  электромагнита.

Создание импульсного МД — это только 50% пути  до достижения  цели — изготовления  источника электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе,  которая  так  же зависит и  от скорости вращения.

 

8. Аналогичные МД:
1. Magnetic Wankel Motor,http://www.syscoil.org/index.php?cmd=nav&cid=116
Мощность этой модели достаточна только для того,  чтобы колыхать воздух, тем не менее, она подсказывает путь к достижению цели. 

2. НARRY PAUL SPRAIN
http://www.youtube.com/watch?v=mCANbMBujjQ&mode=related&search;

Это двигатель, аналогичный Magnetic Wankel Motor, но значительно большего размера  и  с устройством управления (синхронизации) с  мощностью на валу 6 Вт*сек.

3. Вечный двигатель «PERENDEV»
Многие не верят, а он работает! 
См: http://www.perendev-power.ru/ 
Патент МД «PERENDEV»:
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2006045333&F=0

Download Patent WO2006045333A1 May 4, 2006. http://www.freeenergynews.com/Directory/Perendev/MagneticMotor/Perendev Magnet Motor Patent WO2006045333A1.pdf (PDF, 23 pp.).

Двигатель — генератор на 100 кВт стоит 24 000 евро. 
Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4 (фото приведено выше).

Рисунок действущего макета  разработанного  импульсного магнитного двигателя МД-500-RU,  дополненного  асинхронным генераторм  переменного тока.

 

Новые конструкции вечных магнитных двигателей: 

 

1.

Из перевода комментарий и ответов автора следует:

Автор магнитного двигателя (perpetuum) использует двигатель вентилятора, на ось которого насажено колесо с постоянными магнитами и две или три неподвижныекатушки, которые наматывается в два провода.

 

К выводам каждой катушки подключен транзистор. Катушки содержат магнитный сердечник. Магниты колеса, проскакивая мимо катушек с магнитами, наводит в них эдс, достаточную для возникновения генерации в цепи катушка-транзистор, далее напряжение генератора через,  предположительно,   согласующее устройство поступает на обмотки двигателя,  вращающего колесо и т.д.

Подробности своего perpetuum автор изобретения не раскрывает, за что его называют шарлатаном. Ну как обычно.

2.

Магнитный двигатель LEGO (perpetuum).

Он выполнен на базе элементов из набора для конструирования LEGO.

При медленной прокрутки видео – становится понятным почему эта штуковина вращается  непрерывно.

 

 

3. «Запрещённая конструкция» вечного двигателя с двумя поршнями.  Вопреки известному «не может быть», медленно, — но вращается.

 

http://rutube.ru/tracks/2280408.html?v=18170172833e160e33264c8a6cf50706

 

В нем одновременное использование гравитации и взаимодействия магнитов.

4.Гравитационно-магнитный двигатель.

 

На вид очень простое устройство, но не известно, потянет ли оно генератор постоянного или переменного тока ? Ведь простого вращения колеса не достаточно.

Приведенные виды магнитных двигателей (с пометкой: perpetuum), если даже они работают, — очень маломощны. Поэтому, чтобы они стали эффективными дляпрактического применения их размеры неизбежно придется увеличивать, при этом, они не должны потерять свое важное свойство: непрерывно вращаться.

+++

Странная «качалка» сербского изобретателя В.Милковича , которая, как ни странно, — работает.

http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:
Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник.
Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на одной и той же высоте, но немного выше центра массы, как показано на рисунке.
В машине используется различие в потенциальной энергии между состоянием невесомости в положении ( вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником.
После многих лет испытаний, консультаций и общественных презентаций, много было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях.
Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне».
Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу.
***
Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет.
Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником.
Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена  путем увеличения тяжести (массы).

Демонстрация работы устройства.
***

РУССКАЯ  КАЧАЛКА (резонансная качалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0 
Cм.
RE Магнитогравитационные установки 
Reply #14 : Март 02, 2010, 05:27:22
Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)
Работает!!!

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT) 
НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5. 
L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4.
и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп).
Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.
Другие схемные решения можно найти  на youtube. com  в видеоматериалах  по генераторам «свободной энергии», т.н. TROS,  amplifier  и  др.  со  схемами  этого вида генераторов энергии.  Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке. 

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

http://4.bp.blogspot.com/_iB7zWfiuCPc/TCw8_UQgJII/AAAAAAAAAf8/xs7eZ4680SY/s1600/Joule+Thief+Circuit+-2___.JPG

3. Наибольший интерес представляет генератор свободной энергии, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В. 

http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embedded
Однако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой. 
Кадр из этого видео ролика.

 

Для кого создают талантливые искатели «свободной энергии» подобные устройства?

Для себя, для потенциального инвестора или для кого — то еще ? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как.  
Тем не менее над этим видом герератора с самозапиткой стоит поработать. 
Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание.
Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htm
http://www.001-lab.com/001lab/index.php?topic=24.0
УСПЕХОВ!

4. Достоверная схема генератора Капанадзе
Подробности на http://www.youtube.com/watch?v=tyy4ZpZKBmw&feature=related

5. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0. 65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшие индуктивности — лампы могут полыхать и только от выходного напряжения вторичной обмотки и весьма прилично. 

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта. 
Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В, в большинстве сучаев от микроволновой печи, Рвхода до 1400Вт, Рпо выходу (СВЧ) 800Вт. 
 

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА  ВОДЫ

             ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_Waves
John Kanzius
The authors have shown that NaCl-h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:
John_Kanzius показал, что раствор NaCl-h3O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.
Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30-40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх  сосуда с соленой водой  цилиндрической формы. Сосуд  на 75-80% заливается соленой водой и плотно закрывается крышкой  с патрубком для отвода водорода, у  выхода,  трубказаполняется ватой для предотвращения  свободного проникновения  кислорода в сосуд.

***
Подробнее можно посмотреть на:
http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF
Observations of polarised RF radiation catalysis of dissociation of h3O–NaCl solutions 
R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:
Я получал водород, заливая водным раствором едкого натра (Na2CO3) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой 
2CO3− + h3O ↔ HCO3− + OH−   и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция: 
2Аl + 3Н2О = A12О3 + 3h3  с выделением тепла  и  интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза! 

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2 и окисью алюминия A12О3. Интенсивность химической реакции через некоторое время начнет снижаться.  
Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла. 
***
Аналогичная разработка:
Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом) 
Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю,  он позволяет  машине  нормально двигаться, используя вместо бензина,  воду и небольшое количество алюминия. 
Mr. Francois P   в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель. 

Здесь отходом реакции является A12О3. 

 

 
       
Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором? 
Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево.
***
Дополнительно, можете посмотреть  подобное устройство здесь: http://macmep.h22.ru/main_gaz.htm
и здесь: «Простой народный способ получения водорода»
http://new-energy21.ru/content/view/710/179/,
а здесь http://www.vodorod.net/  — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

 

Электромагнитный двигатель. Миниэлектростанция. Бестопливный генератор

Электромагнитный двигатель

Альтернативный источник энергии

 

 

Стремительный рост цен на ископаемое топливо, заставил весь мир срочно искать альтернативные источники энергии. Уже предлагается масса вариантов замены традиционному способу производства энергии. Однако все они пока уступают хоть и устаревшим, но испытанным видам производства по многим показателям.

Чтобы стать коммерчески выгодным, новый источник энергии должен обладать рядом свойств:

1. Быть достаточно мощным в сравнительно небольших габаритах.

2.Независимым от внешних условий.

3.Непрерывностью работы.

4.Использовать более дешёвое топливо, либо вообще быть без топливным.
 

В полной мере, таким источником энергии может служить только электромагнитный двигатель, с возбуждением от постоянных магнитов.

Принцип действия данного электромагнитного двигателя основан на законе Ампера для проводника с электротоком в магнитном поле.

F=B L I

Сила, действующая на проводник с электротоком в магнитном поле прямо пропорциональна индукции магнитного поля B, длине проводника L, и силе тока в нём I.
 
Если принять, силу F за мощность электромагнитного двигателя.

Значение B- за мощность магнитного поля постоянных магнитов, а произведение LI   за мощность электромагнитной обмотки, то не сложно заметить, что мощность электромагнитного двигателя с постоянными магнитами может расти только за счёт роста мощности постоянных магнитов. А поскольку — «… постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что либо притягиваешь….». «Магнит за три тысячелетия». В.П. Карцев. Стр. 155 , можно утверждать, что при потреблении подобным двигателем электроэнергии мощностью в 1 КВт. Мощность его может составить и 2 и 3 КВт.

2BLI = 2F

3BLI = 3F

  Так гласит закон.  Более того. Если

2B 2L 2I = 8F

3B 3L 3I = 27F

Закон Ампера для проводника с электротоком известен уже давно и не раз проверялся на практике. Пока претензий к нему не было.

Это значит, что используя постоянные магниты в качестве неисчерпаемого источника энергии можно создать электромагнитный двигатель с КПД больше 100 % , о чем долгие годы мечтало всё человечество и с таким упорством отрицали  учёные – физики.

Но почему до сих пор такой источник энергии не был создан?

На это есть целый ряд причин:

         1.    Учёные не могут признать постоянный магнит неисчерпаемым источником энергии. Это, по их мнению, прямое нарушение закона о сохранении энергии. И хотя постоянный магнит существует реально и его магнитное поле действительно не уменьшается при совершении работы, признать этот факт никто не решается.

        2.     Достаточно сильные постоянные магниты были изобретены сравнительно недавно. А способ концентрации магнитного потока, ещё позже. Но без концентрации источника энергии, электростанция не может получиться достаточно компактной, что является одним из основных условий практичности электростанции.

        3.    Природа постоянного магнита описана учёными не правильно. В учебниках нам объясняли, что ферромагнетики не могут стать магнитами, поскольку домены, носители магнитного заряда, расположены в ферромагнетиках хаотично. И их поля  нивелируют друг друга. (Рис.1.)

 

Рис. 1

Однако это утверждение неверно.

Если взять энное количество прямоугольных магнитов и соединить их разноимёнными полюсами, то в результате получим замкнутый круг. Рис.2

 

Рис. 2

 

Рис.3

 

Точно также ведут себя и домены, которые по своей сути  являются элементарными магнитами. Рис.3

Причём домены пытаются сжаться в минимальное кольцо, что бы занять наименьшее энергетическое положение.

Магнитная энергия заключена в это кольцо, и наружу вырваться не может. Это явление используют для защиты механических часов от магнитного поля. Механизм элементарно помещают внутрь железного кольца, которое является магнитным проводником, и магнитное поле двигаясь по пути наименьшего сопротивления, обходит механизм часов вокруг не проникая внутрь железного кольца.

Чтобы получить постоянный магнит, необходимо кольца доменов разорвать, сориентировать  параллельно и закрепить.

Что бы удостовериться в том, что постоянный магнит обладает энергией достаточно поднести железный предмет к современному магниту из редкоземельных материалов.

Сила, с которой предмет притянется к магниту, развеет все сомнения.

Но энергию постоянного магнита необходимо преобразовать в иную, более привычную и изученную. Например, в механическую.

Это можно сделать лишь, создав электромагнитный двигатель, у которого, за счёт мощных постоянных магнитов, КПД будет значительно превышать 100%.

Конечно, двигатель с КПД больше 100% противоречит закону о сохранении энергии. Но этот закон гласит, что подобное невозможно лишь в замкнутой системе. То есть там, где нет внешнего источника энергии. В данной же конструкции внешним источником энергии служит постоянный магнит.

Рис.4

 

Если взять постоянный магнит в виде кольца и удалить некоторую часть его, получится подковообразный магнит с двумя полюсами. Между этими полюсами поместить якорь электродвигателя с электропроводящей обмоткой. Обмотка состоит из ряда катушек размеры, которых соответствуют размеру зазора между полюсами. Если по катушке пропустить постоянный электроток, то в катушке возникнет электромагнитное поле, которое заменит недостающее звено постоянного магнита и замкнёт собою кольцо магнитного поля постоянного магнита. А катушка притянется к магниту. Но если направление тока в катушке поменять, то  катушка оттолкнётся от магнита.

Разместив на статоре ряд подковообразных магнитов, а на якоре ряд электромагнитных катушек, получим электромагнитный двигатель. Рис.5.

 

Рис.5

Похожие двигатели широко используются в промышленности. Но не один из них не имеет КПД больше 100%. Почему? Теперь уже дело в неправильной трактовке природы как магнитного и электромагнитного поля, так и электрического тока.

Учёные утверждают, что магнитное поле сплошное. Однако это физически невозможно.

Любая материя состоит из атомов, и даже сами атомы из элементарных частиц. Нет ничего сплошного. Мир вокруг нас дискретный.

Постоянный магнит состоит из доменов. Из групп атомов. По своей сути, это уже кристаллы. А из чего же состоит магнитное поле? Из силовых линий. Их легко обнаружить с помощью листа бумаги и железных опилок. Энергия магнита заключена в силовых линиях. Вся беда в том, что никаких полей не существует. Но учённые верят в поля и совершенно не признают силовые линии. Хотя и пользуются ими для объяснения некоторых физических явлений.

И хотя никто не знает, что такое энергия, и каким образом она держится в силовой линии? Что из себя представляет сама  силовая линия, и какова её природа, мы, обязаны использовать это природное явление для своих нужд, оставив  поиск ответов будущим поколениям.

Итак, магнитное поле, это пучок силовых линий. Предположительно каждый домен на поверхности магнитного полюса, содержит одну силовую линию. Но силовая линия должна содержать ещё одну характеристику, толщину. Толщина силовой линии зависит от количества доменов выстроенных в один ряд. Словно ручейки воды сливаясь, образуют большую реку. И чем длиннее постоянный магнит, чем толще силовые линии на его полюсах, а значит и магнитное поле на его полюсах.

Но и электромагнитное поле должно иметь подобную природу. Однако доменов там нет.

Отчего же может зависеть количество силовых линий и их толщина в катушке намотанной проводником электрического тока? Наверняка, количество от напряжения,  а толщина от силы тока.

Ведь известно, что по тонкому проводнику можно пропустить электроток практически любого напряжения, если сила тока будет мала. Всё просто. Много тонких линий можно разместить в проводнике, а вот много толстых там не помещаются. Отсюда и падение напряжения при протекании через проводник электротока большой силы. Лишние силовые линии просто выталкиваются из проводника.

Итак, выясняется, чтобы замкнуть магнитное кольцо электромагнитной катушкой, требуется подать на катушку электроток высокого напряжения и малой силы.

К сожалению, пока нет методик подсчёта силовых линий постоянного магнита в зависимости от индукции магнитного поля и количество силовых линий электромагнита в зависимости от напряжения электротока протекающего по этой катушке. Поэтому  приходится устанавливать величину напряжения индивидуально для каждой конструкции двигателя и подбирать экспериментально.

Наилучшим показателем для двигателя по мощности и экономичности будет момент, когда силовые линии и статора и якоря совпадут как по количеству, так и по толщине. Если силовые линии якоря будут тоньше силовых линий статора, КПД такого двигателя возрастёт, однако мощность уменьшится.

Но из за большой индукции магнитного поля статора, применение классического, железосодержащего якоря невозможно. Якорь просто намагнитится под действием магнитного поля статора в местах против магнитных полюсов до насыщения, и чтобы перемагнитить его потребуется электроток большой мощности. Именно поэтому в классических электродвигателях, магнитное поле статора значительно слабее магнитного поля якоря.

Якорь данного электродвигателя должен быть не только немагнитным, но и диэлектрическим.

Причина этому, большие вихревые токи при движении проводников в сильном магнитном поле. Материалом для якоря может служить текстолит или стеклотекстолит.

Главным, в конструкции данного двигателя является концентрация магнитного потока постоянных магнитов. Для этого, к магнитному полюсу из материала с максимальной степенью магнитного насыщения, например «Пермендюр»,  присоединяются постоянные магниты с пяти сторон одноимёнными полюсами. Шестая грань обращена к якорю, куда и выходит концентрированный магнитный поток. Рис.6.

 

Рис.6

Изобретение данного концентратора в основном и способствовало созданию электромагнитного двигателя с КПД больше 100%.Ведь любой энергоноситель необходимо сконцентрировать. Воду в водохранилище с помощью огромной плотины, пар в турбине, повышая температуру и давление, энергию атома, обогащая урановое топливо. Только та энергия которую есть возможность сконцентрировать с большой плотностью в относительно небольших объёмах, способна служить альтернативой классическим видам энергии.                                                                                                                                           

Но  магнитное поле увеличивается только за счёт увеличения количества силовых магнитных линий. Поэтому в двигателе площадь магнитных полюсов желательно уменьшить, чтобы напряжение в обмотке якоря было меньше, а количество полюсов можно увеличить. Рис7.

Рис.7

 

 

Конечно, при увеличении количества полюсов ,потребляемый ток тоже будет расти. Но если двигатель будет потреблять даже 10 КВт. электроэнергии , а его мощность составит 20 КВт. это будет выгодно.

Правда, дешёвым такой двигатель не назовёшь. И редкоземельные магниты, и магнитные полюса из сплава «Пермендюр», достаточно дороги.

Но эти материалы могут служить десятки лет. И обязательно себя окупят. В данном двигателе изнашиваются только подшипники, контактные кольца и щётки контактных колец. Но эти комплектующие сравнительно не дороги и применяются в обычных электродвигателях много лет.

Применение постоянных магнитов в качестве источника энергии ограничивает мощность двигателя. С их помощью и помощью сплава «Пермендюр» возможно получение магнитных полей всего до 2,5 Тл. И совокупную мощность до 100КВт. Но если применить в качестве источника магнитного поля сверхпроводящий магнит, мощность можно резко увеличить и уже говорить о нескольких мегаваттах.

Постоянный магнит, или постоянное магнитное поле сверхпроводящего магнита, уникальный источник энергии. Без топливный, компактный, экологически безвредный. Он отвечает всем требованиям, предъявляемым к источникам энергии как традиционным, так и альтернативным. И достаточно лишь соединить такой двигатель с самым обычным генератором электротока, и добавить пару аккумуляторов, как  мы получим  автономную электростанцию, которая будет вырабатывать электроэнергию круглосуточно и круглогодично, не взирая ни на погоду, ни на географическое положение.

Конечно, в теории кажется всё очень просто. Сконцентрировали магнитный поток. Замкнули полюса искусственным магнитным полем и всё. Но это в теории. На практике всё гораздо сложнее.

 

Предположим, каждый домен постоянного магнита содержит одну силовую линию. По крайней мере, это логично. А размер домена всего 4 микрона. Значит, на один квадратный сантиметр магнитного полюса, приходится примерно 25 000 силовых линий. Если предположить, что один вольт напряжения тоже даёт одну силовую линию, то не трудно понять, какое напряжение необходимо подать на одну катушку якоря. Теоретически это конечно возможно, но практически сделать очень сложно. Напряжение необходимо снижать. Либо увеличить размер домена. Теоретически это тоже возможно, но пока никто не пытался это сделать.

 

Можно также разделить катушку якоря на множество параллельных ветвей.

Профрезеровать в якоре максимально возможное число пазов и одну катушку уложить в один паз. А каждую катушку подключить параллельно. Тогда напряжённость электрических полей будет суммироваться, а не вычитаться как при последовательном подключении.

Но традиционными методами этого сделать не удастся. Альтернативный двигатель требует альтернативных решений.

Есть два решения этой проблемы.

Первый способ решение это создание многофазного ротора. Каждая секция должна быть отдельной фазой. И с помощью электроники подавать на контактные кольца переменное напряжение чередуя фазы. Ничего сложного в этом нет, хотя колец потребуется больше чем привычных три.

 

 

Второй способ коллекторный. Но тоже необычный. Коллекторов должно быть два. Один с положительным током, а второй с отрицательным.

 

В общем, нет ничего невозможного. Просто необходимо это делать на высоком профессиональном уровне. Конечно, сложно. Но ведь не сложнее термоядерной энергетики. Но зато безопасно и значительно дешевле.

 

Владимир Чернышов. Приморский край. e-mail—[email protected]

Двигатель на постоянных магнитах — схема синхронного устройства, принцип действия и изготовление своими руками

Двигатели на протяжении многих лет используются для преобразования электрической энергии в механическую различного типа. Эта особенность определяет столь высокую его популярность: обрабатывающие станки, конвейеры, некоторые бытовые приборы – электродвигатели различного типа и мощности, габаритных размеров используются повсеместно.

  • Устройство ↓
  • Принцип работы ↓
  • Виды ↓
  • Преимущества и недостатки ↓
  • Как сделать своими руками? ↓
  • Рекомендации ↓

Основные показатели работы определяют то, какой тип конструкции имеет двигатель. Существует несколько разновидностей, некоторые пользуются популярностью, другие не оправдывают сложность подключения, высокую стоимость.

Двигатель на постоянных магнитах используют реже, чем асинхронный вариант исполнения. Для того, чтобы оценить возможности этого варианта исполнения, следует рассмотреть особенности конструкции, эксплуатационные качества и многое другое.

Устройство

устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем, изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Принцип работы

Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  1. Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  2. Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  3. Магнитное поле создается установленными магнитами.
  4. Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид, год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделять корпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Статья была полезна?

0,00 (оценок: 0)

Мастер-класс «Электромагнитный двигатель своими руками»

Используемое оборудование и материалы: Батарейки ААА — 5 шт.;
неодимовые магниты — 10 шт.; саморезы чёрные — 10 шт.; проволока медная — 1 м.; фольга алюминиевая пищевая — 1 шт.

Цель мастер-класса — пробудить интерес учащихся школы к занятию электро- и радиотехническим творчеством посредством изготовления различных вариантов простейших электромагнитных двигателей.

вовлечь учащихся в практическую деятельность по изготовлению простейших электромагнитных двигателей;

Структура мастер-класса, планируемое время

Деятельность ведущего (педагога-мастера)

Деятельность участников

1

Организационно-подготовительный этап

1. 1. Организация рабочих мест

(3 мин.)

На каждое рабочее место выдаётся и заготавливается по 1 батарейке, 2 магнита, 1 саморез, по отрезку медной проволоки и фольги.

Проходят в кабинет, занимают свободные места

1.2. Вступление

(2 мин. )

Приветствует участников, называет тему мастер-класса.

Сегодня мы будем делать электромагнитные двигатели.

Настраиваются на работу

2

Теоретическая часть

2.2. Выделение проблемной ситуации

(7 мин.)

Что такое двигатель?

Ответ: это устройство, приводящее в движение что-либо, мотор.

А вы знаете какие бывают двигатели?

Ответ: верно, разновидностей двигателей много, начиная от ветряных и водяных колес и до двигателей внутреннего сгорания.

А вы слышали про вечный двигатель?

Что означает это понятие?

Существует ли он?

Почему его до сих пор не изобрели?

Ответ: Энергия не может появиться ниоткуда и исчезнуть в никуда. Она лишь может преобразовываться из одного вида энергии в другую. Например, из электрической в световую (с помощью электрической лампы) или из механической в электрическую (с помощью электрогенератора тока).

Любому двигателю нужен источник энергии. Двигателю внутреннего сгорания -бензин, электродвигателю — источник электроэнергии, например, аккумуляторы.

Но бензин не вечен, его запас нужно постоянно пополнять, да и аккумуляторы требуют периодической подзарядки.

Однако если использовать источник энергии, который бы не нуждался в пополнении, идея вечного двигателя смогла бы осущетсвиться.

На первый взгляд существование такого источника в природе невозможно.

Как известно, постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что-либо притягиваешь. Если постоянный магнит притянул к себе железный предмет, он тем самым совершил работу, но его сила при этом не уменьшилась. (демонстрирует)

Это уникальное свойство постоянного магнита позволяет использовать его в качестве источника неисчерпаемой энергии.

Двигатели на основе магнитов самые энергоэффективные. Это электромагнитные двигатели. Поэтому существует мнение, что вечный двигатель возможно создать на базе электромагнитного.

Отвечают

Отвечают: вечный двигатель, который работает сам по себе (без топлива и электричества)неограниченное время. Его ещё не изобрели.

Высказывают свои предположения по поводу причин

2.3. Актуализация знаний по проблеме

(3 мин.)

Что такое электромагнитный двигатель? Где мы с ним встречаемся в повседневной жизни?

Ответ: в стиральных машинах, блендерах, фенах, лазерных принтерах…везде!

Отвечают

2.4. Определение цели

(3 мин.)

Почему же всё-таки этот двигатель называют электромагнитный?

Как создать электромагнитный двигатель?

Цель — из имеющихся материалов создать свой электромагнитный двигатель

Отвечают: потому что в нём есть электричество и магнит

Отвечают: нужно соединить электричество и магнит

2. 5. Изложение краткой теоретической информации по теме мастер-класса

(3 мин.)

Как устроен электромагнитный двигатель на примере с простым магнитом. Магнит может двигать металлические предметы. (демонстрирует).

Для того, чтобы электромагнитный двигатель работал нужен магнит и электричество. В устройстве электромагнитного двигателя есть ротор — подвижная часть и статор — неподвижная. В сочетании электричества и

Роль ротора будет выполнять саморез и магнит, статор — батарейка.

Проверяют электромагнитные свойства металлического самореза с помощью неодимового магнита

3

Практическая часть

3.1. Организация практической работы участников

(2 мин. )

Разбиваются на группы по 3 человека самостоятельно.

3.2. Практическая работа
(10 мин.)

Во-первых, попробуйте соединить магнит и саморез — вы получите ротор своего электродвигателя.

Во-вторых, возьмите батарейку — это статор. Соедините его медной проволокой с ротором.

Ещё у нас есть фольга. Используя её, мы изготовим другой вариант электромагнитного двигателя.

Во-первых, положите перед собой фольгу — это статор.

Во-вторых, 2 магнита прикрепите к батарейке с двух сторон — это ротор.

В третьих, кладите на фольгу

Соединяют магниты и саморезы

Присоединяют питание от батарейки

Взаимодействуют группами по совместному использованию неодимовых магнитов

3. 3. Представление результатов работы

(7 мин.)

У вас получились действующие электромагнитные двигатели.

Продемонстрируйте, что из имеющегося можно назвать ротор.

А теперь, продемонстрируйте, статор.

Как устроен двигатель в первом случае?

Как устроен двигатель во втором случае?

Демонстрируют оба варианта статоров и роторов.

Описывают устройство изготовленных двигателей.

3.4. Обсуждение и корректировка результатов работы

(5 мин.)

Всё ли было понятно? У всех ли получилось? Какие затруднения были?

Что новое для себя узнали?

Везде используются электромагнитные моторы.

Устройство электромагнитного двигателя работает по простым принципам. Узнали что такое ротор и статор.

Обычно затруднений не должно быть

Как сделать простой электродвигатель | Научный проект

Научный проект

Энергия бывает разных форм. Электрическая энергия может быть преобразована в полезную работу, или механическую энергию с помощью машин, называемых электродвигателями. Электродвигатели работают за счет электромагнитных взаимодействий : взаимодействия тока (потока электронов) и магнитного поля .

Узнайте, как сделать простой электродвигатель.

Скачать проект

  • Батарея D
  • Провод изолированный 22G
  • 2 длинные металлические швейные иглы с большими ушами (уши должны быть достаточно большими, чтобы продеть проволоку)
  • Пластилин для лепки
  • Изолента
  • Хобби-нож
  • Малый круглый магнит
  • Тонкий маркер
  1. Начиная с центра проволоки, плотно и аккуратно обмотайте ее вокруг маркера 30 раз.
  2. Сдвиньте спираль, которую вы сделали, с маркера.
  3. Оберните каждый свободный конец провода вокруг катушки несколько раз, чтобы скрепить ее, затем направьте провода от петли, как показано на рисунке:

Что это? Какова его цель?

  1. Попросите взрослого с помощью канцелярского ножа снять верхнюю половину изоляции провода на каждом свободном конце катушки. Открытый провод должен быть обращен в одном направлении с обеих сторон. Как вы думаете, почему половина провода должна оставаться изолированной?
  1. Проденьте каждый свободный конец катушки проволоки через большое игольное ушко. Старайтесь, чтобы катушка была как можно более прямой, не сгибая концы проволоки.
  1. Положите батарею D боком на ровную поверхность.
  2. Наклейте пластилин для лепки с обеих сторон батареи, чтобы она не скатилась.
  3. Возьмите 2 маленьких шарика пластилина и накройте ими острые концы иглы.
  4. Поместите иглы вертикально рядом с клеммами каждой батареи так, чтобы сторона каждой иглы касалась одной клеммы батареи.
  1. Используйте изоленту, чтобы прикрепить иглы к концам батареи. Ваша катушка должна висеть над батареей.
  2. Прикрепите небольшой магнит к боковой стороне батареи так, чтобы он располагался по центру под катушкой.
  1. Покрутите катушку. Что происходит? Что происходит, когда вы вращаете катушку в другом направлении? Что произойдет с большим магнитом? Аккумулятор побольше? Более толстый провод?

Двигатель будет продолжать вращаться при нажатии в правильном направлении. Двигатель не будет вращаться, когда первоначальный толчок будет в противоположном направлении.

Металл, иглы и проволока создали замкнутый контур цепи , которая может проводить ток. Ток течет от отрицательной клеммы батареи через цепь к положительной клемме батареи. Ток в замкнутом контуре также создает собственное магнитное поле , которое можно определить по «Правилу правой руки». Делая знак «большой палец вверх» правой рукой, большой палец указывает в направлении тока, а изгиб пальцев показывает, в какую сторону ориентировано магнитное поле.

В нашем случае ток проходит через созданную вами катушку, которая называется якорем двигателя. Этот ток индуцирует магнитное поле в катушке, что помогает объяснить, почему катушка вращается.

Магниты имеют два полюса, северный и южный. Взаимодействие север-юг скрепляет друг друга, а взаимодействия север-север и юг-юг отталкивают друг друга. Поскольку магнитное поле, создаваемое током в проводе, не перпендикулярно магниту, прикрепленному лентой к батарее, по крайней мере, некоторая часть магнитного поля провода будет отталкиваться и заставлять катушку продолжать вращаться.

Так почему же нам нужно было снимать изоляцию только с одной стороны каждого провода? Нам нужен способ периодически разрывать цепь, чтобы она пульсировала и выключалась в такт вращению катушки. В противном случае магнитное поле медной катушки выровняется с магнитным полем магнита и перестанет двигаться, потому что оба поля будут притягиваться друг к другу. То, как мы настроили наш двигатель, делает так, что всякий раз, когда ток проходит через катушку (придавая ей магнитное поле), катушка находится в хорошем положении, чтобы отталкиваться магнитным полем неподвижного магнита. Всякий раз, когда катушка не отталкивается активно (в течение тех долей секунды, когда цепь выключена), импульс переносит ее вокруг, пока она не окажется в правильном положении, чтобы замкнуть цепь, создать новое магнитное поле и оттолкнуться от стационарного снова магнит.

После перемещения катушка может продолжать вращаться, пока батарея не разрядится. Причина того, что магнит вращается только в одном направлении, заключается в том, что вращение в неправильном направлении заставит магнитные поля не отталкивать друг друга, а притягивать.

Заявление об отказе от ответственности и меры предосторожности

Education.com предоставляет идеи проекта научной ярмарки для ознакомления
только цели. Education.com не дает никаких гарантий или заявлений
относительно идей проекта научной ярмарки и не несет ответственности за
любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких
Информация. Получая доступ к идеям проекта научной ярмарки, вы отказываетесь и
отказаться от любых претензий к Education.com, возникающих в связи с этим. Кроме того, ваш
доступ к веб-сайту Education.com и проектным идеям научной ярмарки покрывается
Политика конфиденциальности Education.com и Условия использования сайта, включая ограничения
об ответственности Education.com.

Настоящим предупреждаем, что не все проектные идеи подходят для всех
отдельных лиц или во всех обстоятельствах. Реализация любой идеи научного проекта
следует проводить только в соответствующих условиях и с соответствующими родителями.
или другой надзор. Чтение и соблюдение мер предосторожности всех
материалы, используемые в проекте, является исключительной ответственностью каждого человека. За
дополнительную информацию см. в справочнике по научной безопасности вашего штата.

Строите свой собственный электродвигатель

88888888
:

88888888888888
:

888888888888
:

Цена: $ 1
Страницы: 161
ISBN: 978-91-633-6172-2
Publoded:

888-6172-2
: -91-633-6172-2
978-91-633-6172-2

Вы можете загрузить электронную книгу, как только ваша покупка будет завершена.

 

 

Это практическое руководство, которое шаг за шагом
описывает, как построить мощный электродвигатель
способ «сделай сам». Весь процесс строительства описан в
подробно с фотографиями, документирующими каждый шаг на пути.

Двигатель, изготовленный в соответствии с настоящими инструкциями
весит около 10 кг. Внешний диаметр 366.
мм, а ширина около 120 мм, выходной вал
и резьбовые монтажные стержни/болты в комплект не входят.
Максимальная потребляемая мощность пока не определена.
Двигатель, описанный в этой книге, непрерывно развивает мощность 7 кВт.
со всплесками до 18 кВт без видимых повреждений.

Двигатель можно использовать для приведения в движение легкого мотоцикла,
лодка меньшего размера, сверхлегкий самолет и
много других интересных творений.
Двигатель представляет собой «бесщеточный двухсторонний осевой
поток постоянный магнит 3-фазный переменный ток воздух сердечник воздух
охлаждаемый датчик на эффекте Холла «Дельта подключенный двигатель».
Одной из уникальных особенностей является то, что этот двигатель может быть построен
в версии с раздельным статором без датчика с питанием от
7 радиоуправляемых регуляторов для хобби. Эта версия раздельного статора может,
в некоторых приложениях быть экономически привлекательным
альтернатива версии с датчиком холла, которая
обычно питается от более дорогого датчика холла
зависимый контроллер.

Содержание

Часть 1: Общие сведения о самодельных осевых электродвигателях
Общая информация и внешние границы
Характеристики осевого магнитного двигателя с воздушным сердечником
Два различных способа определения положения ротора
Информация о раздельном статоре
Мощность и эффективность
Электромагнитные катушки и инструменты для намотки катушек
Постоянные магниты
Конструкция статора
Конструкция ротора

Часть 2: Пошаговые инструкции по сборке
Покомпонентное изображение с названными деталями
Изготовление инструмента для намотки катушки
Расчет длины медных проводов
Намотка катушки
Изготовление статора и инструмента для ламинирования статора
Изготовление роторов
Сборка и пробный пуск двигателя

Часть 3: Разное
Список требований к материалам и инструментам
Где купить материалы онлайн
Вдохновляющие картинки
Технические чертежи

Заглянуть в книгу

Вдохновляющие фото и видео

Сборка двигателя, описанная в книге, привела к созданию двигателя, который используется для переделки электрического мотоцикла.

 

 

В первой части видео вы можете увидеть положение постоянных магнитов относительно катушек электромагнита.
Вторая половина фильма раскрывает некоторые проблемы, с которыми вы столкнетесь, если решите провести динамическое испытание с помощью пропеллера и в то же время захотите задокументировать испытание с помощью видеокамеры.

 

Экспериментальная бессенсорная версия электродвигателя.
В этом клипе он питается от 7x HobbyCity супер простых 100A 24V ESC.

 

youtube.com/v/k-dgtUXvRIs&hl=sv_SE&fs=1″ type=»application/x-shockwave-flash» allowscriptaccess=»always» allowfullscreen=»true»>

В этом видео показана значительно более мощная версия мотора для кикбайка, около 500 Вт.

Если вы заинтересованы в сборке этого мотора, вы можете купить неотредактированную пошаговую инструкцию по сборке.

 

Простой однофазный бесщеточный двигатель.

 

Смотрите другие видеоролики об электродвигателе своими руками на нашем канале YouTube.

Дальнейшая разработка/испытания

Испытание на максимальную мощность с 11 аккумуляторами Thundersky 90 Ач.

youtube.com/v/zWMLVC9Rif0&hl=sv_SE&fs=1″ type=»application/x-shockwave-flash» allowscriptaccess=»always» allowfullscreen=»true»>

Настройка ESC 7x120A нуждается в помощи, чтобы определить направление вращения, поэтому добавлены пусковой двигатель и звездочка свободного хода. Пусковой двигатель управляется левой рукояткой дроссельной заслонки и развивает скорость до 5-6 км/ч. Правая рукоятка газа, которая управляет ESC 7x120A, может использоваться на скоростях выше 3-4 км/ч.

Экспериментальный высокоэффективный и мощный двигатель.
840 параллельных нитей 0,05 мм по 3,9 м каждая. Было немного сложно намотать катушки, фотографии в видео дают вам представление о том, как это сделать. Сопротивление фазы 3,5 мОм.
Контроллер Kelly на левой (датчик холла) рукоятке дроссельной заслонки и 6x 180 A пиковый Hobbywing
R/C ESC на правой ручке газа (потенциометр Magura 5 кОм).
Келли контроллер действует как стартер.

 

 

Новый статор с воздушным сердечником, улучшенное охлаждение.

Ссылки по теме

Сборка двигателя, описанная в книге, привела к созданию двигателя, который используется для переоборудования электрического мотоцикла. Для получения дополнительной информации: http://www.evalbum.com/3318.

Часто задаваемые вопросы

Вопрос:

Люблю вашу работу! Это очень вдохновляет. У меня есть один вопрос по теории двигателя. Поскольку вы не используете массив Хальбаха, выиграет ли ваш двигатель от стальной задней пластины для магнитов, завершающих магнитную цепь? Или, может быть, вы используете стальную заднюю пластину? Как вы думаете, насколько сильнее поле между зазорами вы можете получить со стальными задними пластинами? Заранее спасибо!

Ответ:

Стальная задняя пластина снижает число оборотов/V для данной версии двигателя примерно на 20%, что позволяет построить еще более эффективный двигатель; это все есть в книге!

Вопрос:

Меня очень интересуют ваши планы сборки двигателя с осевым потоком, однако я хотел бы построить такой, который мог бы выдерживать 20 кВт. Ваш усовершенствованный дизайн, проиллюстрированный в ваших новых разработках, делает это?

Ответ:

Я не проводил систематических испытаний двигателя в лаборатории, а скорее в реальных условиях, а именно в качестве тягового двигателя в переоборудовании электрического мотоцикла. В этом приложении двигатель выдерживает импульсную мощность 20 кВт при скорости вращения около 1500 об/мин. Я бы не ожидал, что двигатель будет выдерживать 20 кВт на низких оборотах в течение более длительных периодов времени. Тем не менее, работа двигателя на более высоких оборотах позволила бы передавать большую мощность через двигатель без его перегрева. Этого можно было бы достичь разными способами, либо путем установки более высокого напряжения, либо путем намотки катушек в направлении более высоких об / мин. Также, конечно, есть возможность масштабировать мотор.

 

Вопрос:
Хорошо, это потрясающе. У меня есть мельница, но нет токарного станка. Токарный станок обязателен?

Ответ:
Нет, в этой сборке нет необходимости использовать токарный станок.
Есть две детали сборки, которые можно изготовить на токарном станке, но это не обязательно для достижения хорошего конечного результата.

 

Вопрос:
Я заинтересован в создании собственного электродвигателя для своего электромобиля. Однако у меня есть определенные значения двигателя (крутящий момент и обороты), которых мне нужно достичь. Как правило, для этого приложения требуется низкоскоростной двигатель с высоким крутящим моментом. Предоставляет ли ваша книга необходимую информацию для определения обмотки катушки на основе целевой производительности двигателя (Kt и Kv)? Хорошая работа, кстати…

Ответ:
В книге вы найдете грубый способ расчета нужной длины медного провода/катушки, необходимой для определенной скорости вращения/напряжения. В целом книга представляет собой практическую инструкцию по сборке и не охватывает лежащую в ее основе математику. Однако в процессе создания электродвигателей я приобрел большой практический опыт, который постарался изложить в письменной форме.
Говоря об опыте, двигатель с осевым потоком с воздушным сердечником без надлежащей передачи не был бы моим первым выбором для двигателя с низким числом оборотов в минуту и ​​высоким крутящим моментом.

Как создать собственный электромагнит и двигатель постоянного тока

 

В Интернете можно найти множество «схем» «простых двигателей постоянного тока», но большинство из них очень неэффективны и не обеспечивают выходной мощности, способной управлять оборудованием. Эта конструкция отличается тем, что в ней используется фиксированная катушка (статор) и намагниченный ротор.

Вам понадобится очень мало предметов.

Перечень деталей

  1. деревянный плинтус. Около 6 «* 4» будет хорошо, около 0,5 дюйма толщиной.
  2. старая деревянная ватная катушка (или если не пластиковая).
  3. отрезок стальной шпильки (диаметром 8 0 или 10 мм) и несколько гаек и шайб по размеру.
  4. 2 плоские шайбы или аналогичные
  5. медная водопроводная труба (12 мм или 18 мм) всего несколько дюймов. Или припаиваемая медная трубная муфта.
  6. пластиковая или резиновая трубка для установки внутри вышеперечисленного.
  7. 4 стальных уголка длиной от 4 до 6 дюймов.
  8. Жесткая медная проволока

  9. (для изготовления щеток) — можно взять из сетевого кабеля T&E с одножильным сердечником на 30 А. Около фута.
  10. Многожильный провод «bell wire» для соединения.
  11. катушка с изоляционной лентой.
  12. соединитель клеммной колодки.
  13. 250 г эмалированной медной проволоки диаметром около 0,2 мм. (36SWG, 32AWG) (ebay) (катушечный провод) — вы получаете почти 1 км провода!
  14. 2 сильных неодимовых магнита диаметром около 10 мм и глубиной 4 мм (можно склеить, если они тонкие)

Строительство:

Готовый двигатель должен выглядеть так. .

Ротор:

Возьмите хлопковую катушку и просверлите центральное отверстие (при необходимости), чтобы оно подошло к шпильке.

Вырежьте отверстия для магнитов на противоположных сторонах катушки с хлопком и приклейте первый на место. Приложите второй магнит к другой стороне так, чтобы он притягивался к первому; затем приклейте на место. Вы можете заполнить катушку гипсом, чтобы добавить веса.

* Если вы не можете найти подходящую катушку, вы можете отлить ротор, используя в качестве формы небольшую жестяную банку (например, банку из-под томатного пюре). Смешайте гипс или полифиллу, добавьте немного клея ПВА и добавьте немного армирующего материала, например, древесную стружку или лоскуты тонкой ткани, например, бинта. Смажьте форму и наполните ее гипсом. Когда он высохнет, его можно просверлить и обработать напильником. После установки на вал может потребоваться его балансировка.

Катушка:

Отрежьте полоску бумаги шириной 2 дюйма и длиной около 6 дюймов и оберните вокруг шипа, чтобы получилась трубка длиной 2 дюйма. Приклейте конец скотчем.
Установите пенни-шайбы на каждый конец рулона и зафиксируйте их гайками. Капля лака для ногтей предотвратит расшатывание орехов.
Возьмите проволочную катушку и приклейте ее вдоль трубки от конца до конца, оставив хвост длиной 6 дюймов. Лента плотно на месте. Теперь начинайте равномерно наматывать проволоку, спускаясь по трубке с плотным интервалом. Когда вы дойдете до конца, накройте катушку слоем тонкой бумаги и продолжайте наматывать в том же направлении, но теперь вверх по трубке. Повторяйте, пока не будет использована вся проволока, кроме хвоста длиной 6 дюймов. (или остановитесь, когда вы намотали 4 или 5 витков.
Наконец, обмотайте катушку изолентой, чтобы предотвратить отсоединение провода.

Это электромагнит. Вы можете проверить это, прикоснувшись батареей АА к концам катушки (после очистки изолирующего лака на концах).

Коммутатор

Возьмите кусок медной трубы или разъема и очистите его мелким наждаком или мочалкой.
Разрежьте его пополам, как показано здесь; затем вырежьте часть из каждой, чтобы сделать две части в форме буквы «L».
Соедините две детали вместе на трубе, чтобы зазоры между ними были симметричными.
Теперь наденьте трубу на вал. Если она свободная, ее нужно упаковать, чтобы она не болталась. Вы можете обернуть полоску бумаги вокруг стержня, как вы это делали с катушкой. Теперь коллектор можно закрепить на валу с помощью гайки с любого конца.

 

 

Сборка

См. схему ниже.

Установив
ротор и коллектор к валу, теперь вы можете установить его между L-образными кронштейнами на плинтусе. Возможно, вам придется просверлить или напилить отверстия, чтобы вал прошел через них. Закрепите его на месте с помощью гаек и шайб, чтобы он мог свободно вращаться. Капля лака для ногтей остановит болтание орехов.

Теперь поместите катушку между второй парой уголков и прикрепите к плинтусу.

Возьмите 4 куска жесткой проволоки и надежно прикрепите их к плинтусу. Между ними можно установить деревянный брусок, чтобы удерживать их на месте. Убедитесь, что у вас есть доступ к нижним концам проводов. Привяжите концы концов катушки к щеткам 3 и 4.

Отрегулируйте щетки, согнув проволоку так, чтобы они слегка прижимались к коллектору, как показано здесь.

Теперь подключите элемент AA 1,5 В между щетками 1 и 2 с помощью провода звонка.

Двигатель должен вращаться. Вам нужно будет отрегулировать ориентацию якоря на валу для достижения наилучших результатов.

Схема подключения

Здесь показано, как щетки подключены к катушке и аккумулятору. Вы можете использовать клеммную колодку, подобную этой, для выполнения соединений.

Как это работает

Батарея заставляет ток течь через катушку.
При повороте коммутатора:

  1. плюс батареи подключается через щетку 1 к коммутатору, затем через щетку 3 к вершине катушки. Ток проходит через катушку и возвращается через щетку 4, а затем щетку 2 к минусу аккумулятора.
    Создается магнитное поле, которое притягивает магниты якоря и вал вращается.
  2. Щетки 3 и 4 мгновенно теряют контакт с коллектором.
  3. плюс аккумулятора подключается через щетку 1 к коммутатору, затем через щетку 4 к нижней части катушки. Ток проходит через катушку и возвращается через щетку 3, а затем щетку 2 к минусу аккумулятора.
    Создается магнитное поле, которое притягивает магниты якоря и вал вращается.
  4. Щетки 3 и 4 мгновенно теряют контакт с коллектором.

и цикл повторяется

Если вам трудно понять это, попробуйте нарисовать схему и показать, как меняется ток, когда коммутатор переключается из одного положения в другое.


Проще говоря, «сила» электромагнита (при большом зазоре между полюсами) дана
по m = N I A / L
где

N=число витков
I = ток в амперах
A = площадь поперечного сечения жилы
L = длина между полюсами.

Таким образом (в идеале) вам нужно максимизировать N, I и A и минимизировать L. Однако в реальной жизни, если вы сделаете A большим, вы будете использовать больше проводов для каждого витка, поэтому увеличивается сопротивление, а также стоимость.

Чтобы минимизировать L, сделаем подковообразный магнит.

Вот как сделать ДЕЙСТВИТЕЛЬНО ХОРОШИЙ электромагнит.

Сначала возьмите шпильку (300 мм) или ДВА стальных болта диаметром около 8–12 мм и, скажем, 4 дюйма = 100 мм в длину. Вам понадобится около дюжины гаек и шайб.

Сделайте катушку, как описано выше, но немного длиннее, скажем, 70 мм. Вы можете проверить силу этого электромагнита, когда он будет сделан, но мы еще не закончили!

Расчеты — (пропустите это, если хотите)

36SWG = 32AWG = диаметр 0,2 мм — получается 5 витков на мм, поэтому одна катушка 70 мм (туго намотанная) будет иметь 350 витков.
(скорее всего 330)

Диаметр каждого витка, скажем, 12 мм, поэтому длина витка равна 2 * pi * r = pi * d = 40 мм.

Таким образом, мы используем 330 * 40 мм = 13,2 м (= 0,013 км) провода.

Масса катушки 36SWG составляет 260 ед. кг/м = 0,26 г/м, поэтому на 1 виток уходит 0,26 * 13,2 = 3,4 г. Ом.

Четырехслойная катушка (4 витка) будет иметь 1300 витков, использовать 15 г провода и иметь сопротивление R = 32 Ом. Лучший способ сделать это — установить сердечник в настольную дрель или токарный станок на низкой скорости и осторожно наматывать проволоку по мере вращения сердечника. Когда каждая обмотка дойдет до конца, оберните ее слоем тонкой ткани (можно туалетной бумаги). Капля клея ПВА удержит его на месте. Затем продолжайте наматывать сердечник вверх или вниз. Когда ваша катушка будет завершена, свяжите концы проводов катушки вместе, чтобы предотвратить разматывание последних витков.

Вот и готов электромагнит. Вам нужно будет сделать пару катушек и соединить их вместе, просверлив отверстия в куске железа, чтобы они образовали форму подковы, как показано здесь.

Теперь вам нужно подключить катушки.

Очистите концы 1 катушки от лака и коснитесь креста батареи 1,5 В. Магнит должен притягивать любой железный или стальной предмет. Проделайте то же самое с другой катушкой.

Если вы хотите, чтобы магнит работал от низкого напряжения (от 1,5 до 6 вольт), соедините катушки параллельно.
(т.е. подключите A к C к положительному, а B к D к отрицательному источнику питания)

Для работы от более высокого напряжения, скажем, 12 В, подключите их последовательно.

(т. е. подключите положительный к A, B к C и отрицательный к D.)

Если получившийся магнит кажется очень слабым, значит, вы подключили их неправильно, и вам нужно поменять местами соединения ТОЛЬКО ДЛЯ ОДНОЙ КАТУШКИ.

 

 

Как собрать простой двигатель постоянного тока (видео)

ByRookie Parenting Science

Перейти к инструкциям

Электрическим устройствам, таким как холодильник, телевизор и пылесос, для работы требуется электричество.

Вы знаете, как создается электричество?

А как батарейки приводят в действие двигатель?

Электричество создается с помощью магнитного поля.

Если у вас есть сильный магнит и батарея, вы можете сделать простой самодельный мотор.

Попробуйте этот очень крутой эксперимент.

И посмотрите это крутое видео!

Материалы

  • неодимовый дисковый магнит
  • (толстый) медный провод или этот более тонкий вариант, который мы использовали (что более сложно, но все же выполнимо)
  • щелочная батарея типа AA или AAA

Инструменты

  • кусачки для проволоки
  • пластиковое кольцо для поддержки магнита (дополнительно)
  • присмотр за взрослыми

Инструкции

  1. Отрежьте кусок медного провода длиной примерно 6-8 дюймов.

  2. Согните провод посередине, чтобы создать точку контакта, чтобы стоять на верхней части батареи.

  3. Пока середина провода находится над батареей, согните обе стороны провода вниз.

  4. Вы можете сделать любую форму, если центр может балансировать на батарее, когда она вращается, а проволочный каркас может касаться магнита, который будет расположен под батареей.

  5. (дополнительно) Поместите магнит поверх пластикового кольца. Я использую его, потому что моя проволочная рамка довольно длинная, и она будет касаться стола без кольца.

  6. Аккуратно поместите батарею в центр дискового магнита. Поскольку неодимовые магниты очень сильные, будьте осторожны, чтобы не прищемить пальцы при этом. Если вам нужно отсоединить аккумулятор от магнита, сдвиньте его с диска. Не тяните батарею прямо сверху, иначе вы рискуете сломать магнит (или вам будет очень трудно это сделать).
  7. Медленно поместите проволочную рамку на батарею и наблюдайте, как она вращается.

Предупреждение: Отпустите провод, как только он коснется клеммы аккумулятора. Подведение стационарного провода к клеммам аккумулятора вызовет короткое замыкание, которое может выделить много тепла и обжечь руку.

Примечания

Изучение

Создание проволочного каркаса, который может балансировать и вращаться без падения, может потребовать некоторых проб и ошибок.

Но как только вы освоите основы, вы можете попробовать делать рамки других форм.

Один из особенно искусных вариантов этого эксперимента — это канатная танцовщица.

Почему

Вы только что построили мотор. Удивительно, не так ли?

То, что вы построили, называется униполярным двигателем , который использует постоянный ток от батареи для обеспечения вращательного движения.

Он называется униполярным двигателем, потому что, в отличие от обычных двигателей постоянного тока , полярность магнитного поля от магнита не меняется.

Когда электричество движется через магнитное поле, возникает сила, называемая Сила Лоренца, генерируется .

В нашем эксперименте медный провод проводит электричество от одного конца батареи через магнит к другому концу.

Когда электрический ток проходит через магнитное поле, исходящее от неодимового магнита, возникает сила Лоренца, которая заставляет провод вращаться.

Рекомендуемые продукты

Как партнер Amazon я зарабатываю на соответствующих покупках.

  • Неодимовый магнит

  • Медный провод

  • Батарейки АА

Первый униполярный двигатель такого типа был построен Майклом Фарадеем в 1821 году.

Майкл Фарадей был английским ученым, внесшим огромный вклад в изучение электромагнетизма.

Проводят ли электричество неодимовые магниты?

Неодимовые магниты проводят электричество, особенно если их поверхность покрыта никелем. Несмотря на то, что это проводник, он не так хорош, как другие, такие как алюминий, медь или железо.

Похожие сообщения

Научные проекты для 10-х классов | Научные проекты для 11-х классов | Научные проекты 12-го класса

Эксперимент с поднимающейся водой

Автор Rookie Parenting Science

Обычно мы не играем с огнем (по понятным причинам). Но вот эксперимент, который я не ожидал, что будет так легко и весело. В то же время, результаты очень трудно понять, поскольку, к сожалению, в Интернете много вводящей в заблуждение информации. Как всегда, требуется присмотр взрослых! ИМЕЕТ СВОЙ ОГОНЬ Почему…

Подробнее Эксперимент с поднимающейся водойПродолжить

Создание электромагнита — действие

(10 оценок)

Нажмите здесь, чтобы оценить

Quick Look

Уровень: 4
(3-5)

Необходимое время: 45 минут

Расходные материалы Стоимость/группа: 2,00 долл. США

Размер группы: 2

Зависимость от активности: Нет

Связанное неформальное учебное задание: Создание электромагнита!

Тематические области:
Физические науки, физика

NGSS Ожидаемые характеристики:

3-ПС2-3
3-ПС2-4

Доля:

TE Информационный бюллетень

Резюме

Студенческие группы исследуют свойства электромагнитов. Они создают свои собственные маленькие электромагниты и экспериментируют со способами изменения их силы, чтобы поднять больше скрепок. Студенты узнают о том, как инженеры используют электромагниты в повседневных приложениях.

Эта учебная программа по инженерному делу соответствует научным стандартам следующего поколения (NGSS).

Инженерное подключение

Инженеры проектируют электромагниты, которые являются основной частью двигателей. Электромагнитные двигатели являются большой частью повседневной жизни, а также промышленности и фабрик. Мы можем даже не осознавать, что ежедневно взаимодействуем с электромагнитами, поскольку используем самые разные двигатели, чтобы облегчить себе жизнь. Распространенными устройствами, в которых используются электромагнитные двигатели, являются: холодильники, сушилки для белья, стиральные машины, посудомоечные машины, пылесосы, швейные машины, мусоропроводы, дверные звонки, компьютеры, компьютерные принтеры, часы, вентиляторы, автомобильные стартеры, двигатели стеклоочистителей, электрические зубные щетки, электрические бритвы. , консервные ножи, динамики, музыкальные или магнитофонные проигрыватели и т. д.

Цели обучения

После этого задания учащиеся должны уметь:

  • Расскажите, что электрический ток создает магнитное поле.
  • Опишите, как делают электромагнит.
  • Исследуйте способы изменения силы электромагнита.
  • Перечислите несколько предметов, разработанных инженерами с использованием электромагнитов.

Образовательные стандарты

Каждый урок или занятие TeachEngineering соотносится с одной или несколькими науками K-12,
технологические, инженерные или математические (STEM) образовательные стандарты.

Все более 100 000 стандартов K-12 STEM, включенных в TeachEngineering , собираются, поддерживаются и упаковываются сетью стандартов достижений (ASN) ,
проект D2L (www.achievementstandards.org).

В ASN стандарты структурированы иерархически: сначала по источнику; напр. по штатам; внутри источника по типу; напр. , естественные науки или математика;
внутри типа по подтипу, затем по классам, и т.д. .

NGSS: научные стандарты следующего поколения — наука
Ожидаемая производительность NGSS

3-ПС2-3.
Задайте вопросы, чтобы определить причинно-следственные связи электрических или магнитных взаимодействий между двумя объектами, не контактирующими друг с другом.

(3-й степени)

Согласны ли вы с таким раскладом?

Спасибо за ваш отзыв!

Нажмите, чтобы просмотреть другую учебную программу, соответствующую этому ожидаемому результату

Это занятие сосредоточено на следующих аспектах трехмерного обучения NGSS:
Научная и инженерная практика Основные дисциплинарные идеи Концепции поперечной резки
Задавайте вопросы, которые можно исследовать на основе шаблонов, таких как причинно-следственные связи.

Соглашение о согласовании:
Спасибо за ваш отзыв!

Электрические и магнитные силы между парой объектов не требуют, чтобы объекты находились в контакте. Величина сил в каждой ситуации зависит от свойств объектов и их расстояний друг от друга, а для сил между двумя магнитами — от их ориентации относительно друг друга.

Соглашение о согласовании:
Спасибо за ваш отзыв!

Причинно-следственные связи обычно выявляются, проверяются и используются для объяснения изменений.

Соглашение о примирении:
Спасибо за ваш отзыв!

Ожидаемая производительность NGSS

3-ПС2-4.
Определите простую задачу проектирования, которую можно решить, применяя научные идеи о магнитах.

(3-й степени)

Согласны ли вы с таким раскладом?

Спасибо за ваш отзыв!

Нажмите, чтобы просмотреть другую учебную программу, соответствующую этому ожидаемому результату

Это занятие сосредоточено на следующих аспектах трехмерного обучения NGSS:
Научная и инженерная практика Основные дисциплинарные идеи Концепции поперечной резки
Определите простую проблему, которую можно решить путем разработки нового или улучшенного объекта или инструмента.

Соглашение о согласовании:
Спасибо за ваш отзыв!

Электрические и магнитные силы между парой объектов не требуют, чтобы объекты находились в контакте. Величина сил в каждой ситуации зависит от свойств объектов и их расстояний друг от друга, а для сил между двумя магнитами — от их ориентации относительно друг друга.

Соглашение о примирении:
Спасибо за ваш отзыв!

Научные открытия в мире природы часто могут привести к новым и улучшенным технологиям, которые разрабатываются в процессе инженерного проектирования.

Соглашение о согласовании:
Спасибо за ваш отзыв!

Общие базовые государственные стандарты — математика
  • Представлять и интерпретировать данные.
    (Оценка
    4)

    Подробнее

    Посмотреть согласованную учебную программу

    Согласны ли вы с таким раскладом?

    Спасибо за ваш отзыв!

  • Представляйте реальный мир и математические задачи, изображая точки в первом квадранте координатной плоскости и интерпретируя значения координат точек в контексте ситуации.
    (Оценка
    5)

    Подробнее

    Посмотреть согласованную учебную программу

    Согласны ли вы с таким раскладом?

    Спасибо за ваш отзыв!

  • Графические точки на координатной плоскости для решения реальных и математических задач.
    (Оценка
    5)

    Подробнее

    Посмотреть согласованную учебную программу

    Согласны ли вы с таким раскладом?

    Спасибо за ваш отзыв!

Международная ассоциация преподавателей технологий и инженерии – Технология
  • Студенты будут развивать понимание отношений между технологиями и связей между технологиями и другими областями обучения.
    (Оценки
    К —
    12)

    Подробнее

    Посмотреть согласованную учебную программу

    Согласны ли вы с таким раскладом?

    Спасибо за ваш отзыв!

  • Энергия приходит в разных формах.
    (Оценки
    3 —
    5)

    Подробнее

    Посмотреть согласованную учебную программу

    Согласны ли вы с таким раскладом?

    Спасибо за ваш отзыв!

  • Описывать свойства различных материалов.
    (Оценки
    3 —
    5)

    Подробнее

    Посмотреть согласованную учебную программу

    Согласны ли вы с таким раскладом?

    Спасибо за ваш отзыв!

ГОСТ

Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Подписывайся

Подпишитесь на нашу рассылку новостей, чтобы получать внутреннюю информацию обо всем, что связано с TeachEngineering, например, о новых функциях сайта, обновлениях учебных программ, выпусках видео и многом другом!

PS: Мы никому не передаем личную информацию и электронные письма.

Список материалов

Каждой группе нужно:

  • гвоздь длиной 3 дюйма (7,6 см) или длиннее (из цинка, железа или стали, но не из алюминия)
  • Медный изолированный провод длиной 2 фута (0,6 м) (не менее AWG 22 или выше)
  • Аккумулятор D-cell
  • несколько металлических скрепок, кнопок или булавок
  • широкая резинка
  • Рабочий лист по созданию электромагнита

Для каждой станции электромагнитного поля:

  • картонный тубус от туалетной бумаги
  • изолированный медный провод (не ниже AWG 22), несколько футов (1 м)
  • картон (~ 5 x 5 дюймов или 13 x 13 см)
  • прищепки или зажимы (дополнительно)
  • малярная лента
  • резинка
  • 2-3 батареи типа D
  • Батарея 9 В (вольт)
  • несколько металлических скрепок, кнопок и/или булавок
  • дополнительные батареи, при наличии: 6-В, 12-В, фонарные батареи
  • (дополнительно) изолента
  • 2 маленьких компаса для ориентирования

Для всего класса:

  • кусачки
  • Инструмент для зачистки проводов

Рабочие листы и вложения

Рабочий лист по созданию электромагнита (docx)

Рабочий лист по созданию электромагнита (pdf)

Создание рабочего листа электромагнита Ответы (docx)

Ответы на рабочий лист «Создание электромагнита» (pdf)

Посетите [www. teachengineering.org/activities/view/cub_mag_lesson2_activity1], чтобы распечатать или загрузить.

Больше учебных программ, подобных этому

Высший элементарный урок

Две стороны одной силы

Студенты узнают больше о магнетизме и о том, как магнетизм и электричество связаны в электромагнитах. Они изучают основы работы простых электродвигателей и электромагнитов. Учащиеся также узнают о гибридных бензиново-электрических автомобилях и их преимуществах по сравнению с обычными бензиновыми…

Две стороны одной силы

Урок средней школы

Изменение полей

Учащиеся индуцируют ЭДС в катушке провода с помощью магнитных полей. Учащиеся рассматривают векторное произведение по отношению к магнитной силе и знакомят с магнитным потоком, законом индукции Фарадея, законом Ленца, вихревыми токами, ЭДС движения и ЭДС индукции.

Изменение полей

Высший элементарный урок

Магнетическая личность

Учащиеся исследуют свойства магнитов и то, как инженеры используют магниты в технике. В частности, учащиеся узнают о хранении в магнитной памяти, то есть о чтении и записи данных с использованием магнитов, например, на жестких дисках компьютеров, zip-дисках и флэш-накопителях.

Магнетическая личность

Высший элементарный урок

Электрические и магнитные личности мистера Максвелла

Студенты кратко знакомятся с уравнениями Максвелла и их значением для явлений, связанных с электричеством и магнетизмом. Основные понятия, такие как ток, электричество и линии поля, рассматриваются и усиливаются. Благодаря множеству тем и заданий учащиеся узнают, как электричество и магне…

Электрические и магнетические личности мистера Максвелла

Предварительные знания

Некоторые знания о магнитных силах (полюса, силы притяжения). Обратитесь к блоку Магнетизм, Урок 2: Две стороны одной силы , для получения этой информации об электромагнитах.

Введение/Мотивация

Сегодня мы поговорим об электромагнитах и ​​создадим собственные электромагниты! Во-первых, кто-нибудь может сказать мне, что такое электромагнит? (Послушайте идеи учащихся.) Что ж, название электромагнита помогает нам понять, что это такое. (Напишите слово «электромагнит» на классной доске, чтобы учащиеся могли его увидеть.) Давайте разберем его. Первая часть слова  электро , звучит как электричество. Вторая часть слова, магнит , звучит как магнит! Итак, электромагнит — это магнит, который создается электричеством.

Сегодня действительно важно помнить, что электричество может создавать магнитное поле . Это может показаться странным, потому что мы привыкли к магнитным полям, исходящим только от магнитов, но это действительно так! Провод, по которому проходит электрический ток , создает магнитное поле. На самом деле простейший электромагнит представляет собой скрученный провод, по которому течет электрический ток. Магнитное поле, создаваемое катушкой проволоки, похоже на обычный стержневой магнит. Если мы пропустим железный (или никелевый, кобальтовый и т. д.) стержень (возможно, гвоздь) через центр катушки (см. рис. 1), стержень станет магнитом, создающим магнитное поле. Где взять электричество для электромагнита? Что ж, мы можем получить это электричество несколькими способами, например, от батарея или розетка.

Мы можем усилить это магнитное поле, увеличив количество электрического тока, проходящего через провод, или мы можем увеличить количество витков провода в катушке электромагнита. Как вы думаете, что произойдет, если мы сделаем обе эти вещи? Вот так! Наш магнит будет еще сильнее!

Инженеры используют электромагниты при проектировании и сборке двигателей . Двигатели используются вокруг нас каждый день, поэтому мы постоянно взаимодействуем с электромагнитами, даже не осознавая этого! Можете ли вы вспомнить какие-нибудь моторы, которые вы использовали? (Возможные ответы: стиральная машина, посудомоечная машина, консервный нож, мусоропровод, швейная машина, компьютерный принтер, пылесос, электрическая зубная щетка, проигрыватель компакт-дисков [CD], проигрыватель цифровых видеодисков [DVD], видеомагнитофон, компьютер, электрическая бритва. , электрическая игрушка [радиоуправляемые машины, движущиеся куклы] и т. д.)

Процедура

Перед занятием

  • Соберите материалы и сделайте копии рабочего листа «Создание электромагнита».
  • Установите достаточное количество станций электромагнитного поля, чтобы вместить команды из двух студентов в каждой.
  • В качестве альтернативы, проведите обе части задания в виде классных демонстраций под руководством учителя.

Рис. 2. Установка станции электромагнитного поля.

авторское право

Авторское право © 2006 Минди Зарске, Программа ITL, Инженерный колледж, Колорадский университет в Боулдере

  • Подготовка к работе с электромагнитными полевыми станциями: Оберните провод вокруг картонной втулки от туалетной бумаги 12–15 раз, чтобы получилась проволочная петля. Оставьте два длинных конца проволоки свисающими с катушки. Проделайте четыре отверстия в картоне. Проденьте концы проволоки через отверстия в картоне так, чтобы трубка и катушка из картона были прикреплены к картону (см. рис. 2). Используйте прищепки, зажимы или скотч, чтобы прикрепить картон к столу или столу. Используя малярный скотч или резинку, подключите один конец провода катушки к любой батарее, оставив другой конец провода не подключенным к батарее. Поместите несколько булавок, скрепок или кнопок на станцию. Кроме того, поместите на эту станцию ​​любые другие доступные дополнительные батареи (6 В, 12 В и т. д.) и два небольших компаса для ориентирования.
  • Подготовка к сборке электромагнита: для этой части задания либо разложите материалы на станции, либо раздайте их парам учащихся для работы за партами.
  • Отложите несколько дополнительных батареек, чтобы учащиеся могли проверить свои собственные электромагниты. Это могут быть 9-вольтовые батареи. Вы можете создать 3-вольтовую батарею, соединив последовательно 2 D-элемента, или 4,5-вольтовую батарею, соединив 3 D-элемента последовательно.
  • Отрежьте по одному отрезку провода длиной 2 фута (0,6 м) для каждой команды. С помощью инструмента для зачистки проводов снимите около 1,3 см (½ дюйма) изоляции с обоих концов каждого отрезка провода.

Со студентами: Станции электромагнитного поля

  1. Разделите класс на пары учеников. Раздайте по одному рабочему листу на команду.
  2. Работая с предварительной установкой (см. рис. 2), в которой один конец намотанной проволоки прикреплен к одному концу батареи, попросите учащихся соединить другой конец проволоки с другим концом батареи с помощью ленты или резинка.
  3. Чтобы определить магнитное поле электромагнита, попросите учащихся перемещать компас по кругу вокруг электромагнита, обращая внимание на направление, которое указывает компас (см. рис. 3). Предложите учащимся нарисовать батарею, катушку и магнитное поле на своих рабочих листах. Используйте стрелки, чтобы показать магнитное поле. Отметьте положительный и отрицательный полюсы батареи и полюса магнитного поля. Что произойдет, если вы подвесите скрепку рядом с другой скрепкой рядом с катушкой (см. рис. 3)? (Ответ: болтающаяся скрепка движется, меняет направление и/или качается.)

Рис. 3. Эксперименты с магнитным полем электромагнита.

авторское право

Авторское право © 2006 Минди Зарске, Программа ITL, Инженерный колледж, Колорадский университет в Боулдере

  1. Затем поменяйте местами подключение электромагнита, поменяв оба конца провода на противоположные концы аккумулятора. (Когда направление тока в катушке или электромагните изменяется на противоположное, магнитные полюса меняются местами: северный полюс становится южным, а южный — северным.) Используйте компас, чтобы проверить направление магнитного поля. Сделайте второй рисунок. Снова повесьте скрепку рядом с катушкой. Что случается? (Ответ: Опять же, болтающаяся скрепка движется, меняет направление и/или качается.)
  2. Отсоедините хотя бы один конец провода от аккумулятора для экономии заряда аккумулятора.
  3. Если позволяет время, используйте другие батареи и следите за изменениями. Более высокое напряжение приводит к большему току, а при большем токе электромагнит становится сильнее.

Со студентами: создание электромагнита

  1. Убедитесь, что у каждой пары учащихся есть следующие материалы: 1 гвоздь, 2 фута (0,6 м) изолированного провода, 1 батарея типа D, несколько скрепок (или кнопок или булавок) и резиновая лента.
  2. Оберните проволоку вокруг гвоздя не менее 20 раз (см. рис. 4). Убедитесь, что учащиеся плотно оборачивают ногти, не оставляя зазоров между проволоками и не перекрывая витки.
  3. Дайте учащимся несколько минут, чтобы проверить, смогут ли они самостоятельно создать электромагнит, прежде чем давать им остальные инструкции.
  4. Чтобы продолжить изготовление электромагнита, соедините концы скрученного провода с каждым концом батареи, используя резиновую ленту, чтобы зафиксировать провода на месте (см. рис. 4).

Рис. 4. Установка для изготовления электромагнита из батареи, проволоки и гвоздя.

авторское право

Авторское право © 2006 Минди Зарске, Программа ITL, Инженерный колледж, Колорадский университет в Боулдере

  1. Проверьте силу электромагнита, увидев, сколько скрепок он может поднять.
  2. Запишите количество скрепок на листе.
  3. Отсоедините провод от аккумулятора после проверки электромагнита. Может ли электромагнит захватывать скрепки, когда ток отключен? (Ответ: Нет)
  4. Проверьте, как изменение конструкции электромагнита влияет на его силу. Две переменные, которые нужно изменить, — это количество витков вокруг гвоздя и ток в витом проводе с использованием другого размера или количества батарей. Для экономии заряда батареи не забывайте отсоединять провод от батареи после каждого теста.
  5. Заполните рабочий лист; составить список способов, которыми инженеры могли бы использовать электромагниты.
  6. В заключение проведите обсуждение в классе. Сравните результаты среди команд. Задайте учащимся вопросы для обсуждения после оценки, представленные в разделе «Оценка».

Словарь/Определения

батарея: Ячейка, несущая заряд, который может питать электрический ток.

ток: поток электронов.

Электромагнит: Магнит, сделанный из изолированного провода, намотанного вокруг железного сердечника (или любого магнитного материала, такого как железо, сталь, никель, кобальт), через который протекает электрический ток для создания магнетизма. Электрический ток намагничивает материал сердечника.

электромагнетизм: Магнетизм, создаваемый электрическим током.

инженер: человек, который применяет свое понимание науки и математики для создания вещей на благо человечества и нашей планеты. Сюда входит проектирование, производство и эксплуатация эффективных и экономичных конструкций, машин, продуктов, процессов и систем.

магнит: Объект, создающий магнитное поле.

магнитное поле: пространство вокруг магнита, в котором присутствует магнитная сила магнита.

двигатель: Электрическое устройство, преобразующее электрическую энергию в механическую.

постоянный магнит: Объект, который генерирует магнитное поле сам по себе (без помощи тока).

соленоид: катушка провода.

Оценка

Предварительная оценка

Предсказание : Попросите учащихся предсказать, что произойдет, если проволока намотается на гвоздь и к нему добавится электричество. Запишите их прогнозы на классной доске.

Мозговой штурм : В небольших группах учащиеся должны участвовать в открытом обсуждении. Напомните им, что никакая идея или предложение не является «глупой». Все идеи должны быть выслушаны с уважением. Спросите учащихся: Что такое электромагнит?

Встроенная оценка деятельности

Рабочий лист : В начале занятия раздайте рабочий лист «Создание электромагнита». Предложите учащимся сделать рисунки, записать измерения и выполнить задание в своих рабочих листах. После того, как учащиеся закончат рабочий лист, попросите их сравнить ответы с одноклассником или другой парой, дав всем учащимся время на выполнение. Просмотрите их ответы, чтобы оценить их мастерство в предмете.

Гипотеза : Когда учащиеся будут делать свой электромагнит, спросите у каждой группы, что произойдет, если они изменят размер своей батареи. Как насчет большего количества витков проволоки вокруг гвоздя? (Ответ: электромагнит можно сделать сильнее двумя способами: увеличив количество электрического тока, проходящего через провод, или увеличив количество витков провода в катушке электромагнита. )

Оценка после активности

Вопросы для обсуждения по инженерным вопросам : запрашивать, объединять и обобщать ответы учащихся.

  • Каким образом инженер может модифицировать электромагнит, чтобы изменить силу его магнитного поля? Какие модификации могут быть самыми простыми или дешевыми? (Возможные ответы: Увеличение количества катушек, используемых в соленоиде [электромагните], вероятно, является наименее дорогим и простым способом увеличения силы электромагнита. Или инженер может увеличить силу тока в электромагните. Или инженер может использовать металлический сердечник, который легче намагничивается.)
  • Как инженеры могут использовать электромагниты для разделения перерабатываемых материалов? (Ответ: некоторые металлы в мусорной или перерабатываемой куче притягиваются к магниту и могут быть легко отделены. Цветные металлы должны пройти двухэтапный процесс, в котором к металлу прикладывается напряжение, чтобы временно индуцировать ток в нем, который временно намагничивает металл, поэтому он притягивается к электромагниту для отделения от неметаллов. )
  • Какими способами инженеры могут использовать электромагниты? (Возможные ответы: инженеры используют электромагниты в конструкции двигателей. Примеры см. в возможных ответах на следующий вопрос.)
  • Как электромагниты используются в повседневной жизни? (Возможные ответы: Мы ежедневно используем моторы, например, холодильник, стиральная машина, посудомоечная машина, консервный нож, мусоропровод, швейная машина, компьютерный принтер, пылесос, электрическая зубная щетка, проигрыватель компакт-дисков [CD], цифровой видеодиск. [DVD] плеер, видеомагнитофон, компьютер, электрическая бритва, электрическая игрушка [радиоуправляемые транспортные средства, движущиеся куклы] и т. д.)

Практика построения графиков : Представьте классу следующие задачи и попросите учащихся изобразить в виде графика свои результаты (или результаты всего класса). Обсудите, какие переменные больше изменили силу электромагнита.

  • Постройте график, показывающий, как сила электромагнита изменялась при изменении количества витков проволоки в электромагните.
  • Постройте график, показывающий, как сила вашего электромагнита изменялась при изменении тока (при изменении размера батареи).

Вопросы безопасности

Электромагнит может сильно нагреваться, особенно на клеммах, поэтому учащиеся должны часто отключать свои батареи.

Советы по устранению неполадок

Высокая плотность витков ногтей важна для создания магнитного поля. Если завернутые гвозди не действуют как магниты, проверьте обмотки катушек учащихся, чтобы убедиться, что они не перекрещиваются и что обмотки тугие. Кроме того, используйте тонкую проволоку, чтобы сделать больше витков по длине гвоздя.

Железные гвозди работают лучше, чем болты, поскольку резьба болтов не позволяет плавно наматывать медную проволоку, что может нарушить магнитное поле.

Не используйте батареи, которые не полностью заряжены. Частично разряженные аккумуляторы не вызывают сильной и заметной магнитной реакции.

Если электромагниты сильно нагреваются, пусть учащиеся будут обращаться с ними в резиновых кухонных перчатках.

Расширения деятельности

Другой способ варьировать ток в электромагните — использовать провода разного сечения (толщины) или из разных материалов (например, медь или алюминий). Попросите учащихся протестировать различные типы проводов, чтобы увидеть, как это влияет на силу электромагнита. В качестве контроля поддерживайте постоянным количество витков и величину тока (батареи) для всех тестов проводов. Затем, основываясь на результатах отдыха, попросите учащихся сделать предположения о сопротивлении различных проводов.

Масштабирование активности

  • В младших классах попросите учащихся следовать демонстрации под руководством учителя, чтобы создать простой электромагнит. Обсудите основное определение электромагнита и то, как электромагниты используются в повседневных приложениях.
  • Предложите учащимся старших классов изучить способы изменения силы своих электромагнитов, не давая им никаких подсказок или подсказок. Предложите учащимся графически изобразить данные своего рабочего листа в зависимости от количества катушек и/или размера батареи в их электромагните.

Авторские права

© 2004 Регенты Университета Колорадо

Авторы

Сочитл Замора Томпсон; Джо Фридрихсен; Эбигейл Уотрус; Малинда Шефер Зарске; Дениз В. Карлсон

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж Колорадского университета в Боулдере

Благодарности

Содержание этой учебной программы цифровой библиотеки было разработано в рамках грантов Фонда улучшения высшего образования (FIPSE), Министерства образования США и Национального научного фонда (грант GK-12 № 0338326). Однако это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вы не должны исходить из того, что оно одобрено федеральным правительством.

Последнее изменение: 30 июля 2020 г.

Как сделать двигатель постоянного тока

Перейти к основному содержанию

Убедитесь сами, как силы электричества и магнетизма могут работать вместе, собрав простой электродвигатель постоянного тока из простых материалов, которые можно найти в любом хозяйственном магазине!

Электричество и магнетизм — это силы, вызванные движением мельчайших заряженных частиц, из которых состоят атомы, строительные блоки всей материи. Когда провод подключен к батарее, по проводу течет ток, потому что отрицательно заряженные электроны текут от к отрицательной клемме батареи к к положительной клемме батареи, потому что противоположные заряды притягиваются, а одноименные отталкиваются. Этот поток электронов через провод представляет собой электрический ток, и он создает магнитное поле.

В магните атомы выстроены так, что все отрицательно заряженные электроны вращаются в одном направлении. Подобно электрическому току, движение электронов создает магнитную силу. Область вокруг магнита, в которой действует сила, называется магнитным полем. Металлические предметы и другие магниты, попадающие в это поле, будут притягиваться к магниту.

То, как атомы выстроены в линию, создает два разных полюса в магните, северный полюс и южный полюс. Как и в случае электрических зарядов, противоположные полюса притягиваются друг к другу, а одноименные полюса отталкиваются.

Узнайте об электромагнетизме и его многочисленных применениях здесь.

Теперь давайте посмотрим, как это работает, пока мы собираем мотор.
(Примечание: этот научный проект требует наблюдения взрослых.)

Как построить простой электродвигатель

  1. Чтобы сделать пучок, оберните концы проволоки несколько раз вокруг петель, чтобы зафиксировать их на месте. Расположите концы так, чтобы они находились прямо напротив друг друга и выходили по прямой линии с обеих сторон пучка, образуя ось. То, что вы только что сделали, называется арматурой .
  2. Держите сделанный вами пучок проводов так, чтобы он был прижат к стене, а не к столу, и покрасьте маркером верхнюю сторону каждого конца провода. Оставьте нижнюю сторону каждого провода оголенной.
  3. Аккуратно согните каждую скрепку, сформировав небольшую петлю, обернув один конец вокруг небольшого предмета, например карандаша или ручки. При желании вместо скрепки можно использовать толстую проволоку и плоскогубцы. Будьте осторожны при использовании плоскогубцев.
  4. Если вы используете держатель батареи, прикрепите скрепку к любой стороне и вставьте батарею. Если у вас нет держателя батареи, плотно оберните резинку по всей длине батареи. Вставьте скрепки так, чтобы каждая из них касалась одной из клемм и надежно удерживалась резинкой. Надежно прикрепите изогнутую сторону батареи к столу или другой плоской поверхности с помощью глины или липкой ленты.
  5. Установите один неодимовый магнит поверх батареи в центре. Расположите каркас в петлях скрепки так, чтобы блестящая неокрашенная сторона касалась скрепок. Убедитесь, что он не касается магнита.
  6. Если двигатель не запускается сразу, попробуйте запустить его, покрутив жгут проводов. Поскольку двигатель будет вращаться только в одном направлении, попробуйте вращать его в обе стороны.
  7. Если двигатель по-прежнему не работает, убедитесь, что скрепки надежно закреплены на клеммах аккумулятора. Вам также может понадобиться отрегулировать изолированный провод так, чтобы оба конца были прямыми, а собранный пучок был аккуратным, а концы проводов находились прямо напротив друг друга.
  8. При вращении двигателя поднимите другой магнит над якорем. Когда вы приближаете его, что происходит? Переверните магнит и попробуйте еще раз, чтобы увидеть, что произойдет.
Что произошло:

Якорь представляет собой временный магнит, получающий силу от электрического тока в батарее. Неодимовый магнит является постоянным, а это означает, что он всегда будет иметь два полюса и не может потерять свою силу.

Эти две силы — электричество и магнетизм — работают вместе, чтобы вращать двигатель. Полюса постоянного магнита отталкивают полюса временного магнита, в результате чего якорь поворачивается на пол-оборота. После пол-оборота изолированная сторона провода (часть, которую вы закрасили перманентным маркером) касается скрепки, останавливая электрический ток. Сила тяжести завершает поворот якоря до тех пор, пока оголенная сторона снова не соприкоснется, и процесс начнется заново.

Созданный вами двигатель использует постоянный ток для вращения якоря. Магнитная сила может течь только в одном направлении, поэтому двигатель вращается только в одном направлении. Переменный ток, или переменный ток, использует тот же принцип потока электронов, но полюс вращается, а не на одном месте. Двигатели переменного тока часто бывают более сложными, чем двигатели постоянного тока, например, тот простой, который вы смогли сделать. В отличие от фиксированного двигателя постоянного тока, двигатели переменного тока могут менять направление вращения.

(Сделанный вами двигатель постоянного тока может вращаться только в одном направлении, потому что его направление определяется полюсами постоянного магнита. Если вы перевернете магнит так, чтобы другой полюс был направлен вверх, он изменит направление вращения. двигатель вращается.)

Когда вы держали второй магнит над верхней частью якоря, он либо останавливался, либо ускорял вращение двигателя. Если он остановился, то это потому, что полюс был в направлении, противоположном первому магниту, в некотором смысле компенсируя вращение якоря. Если он движется быстрее, то одинаковые полюса первого и второго магнитов, которые отталкиваются друг от друга, работают на вращение якоря быстрее, чем с одним магнитом.

Создание больших и быстрых двигателей

Экспериментируйте с батареями более высокого напряжения, а также с более мощными магнитами. Вы также можете попробовать использовать керамические магниты. Одна конструкция, которая, как мы обнаружили, работала хорошо, заключалась в том, чтобы установить якорь на 4 керамических кольцевых магнита и подключить поддерживающие скрепки к батарее 6 В.

Вы также можете попробовать увеличить размер якоря и количество катушек, чтобы сделать электромагнит более сильным. При использовании аккумуляторов более высокого напряжения и оголенных проводов будьте очень осторожны. Цепь может выделять достаточно тепла, чтобы вызвать ожог, если провод удерживается слишком долго.

Другие научные проекты по электричеству:

Эти эксперименты идеально подходят для научных выставок или для продолжения изучения электричества и магнетизма дома.

  • Эксперименты по электромагнетизму
  • Эксперименты с электричеством (включая изготовление самодельной батареи!)
  • Сделать лампочку

Моторы, Моторы, везде!

Без двигателей в вашем доме не было бы электричества! Двигатели переменного тока необходимы для генераторов электростанций, которые снабжают нас электричеством.