Содержание

принцип роботи, будова, класифікація. Все про електродвигуни.

Інтернет-магазин інженерного обладнання «ОВК Комплект»пропонує своїм відвідувачам ознайомитися з принципом роботи, пристроєм та класифікацією електродвигунів, а згодом купити електродвигун за найрозумнішою ціною в Україні! Ці пристрої є незамінною основою для функціонування більшої частини техніки як побутового, так і промислового застосування. Тому в сучасному суспільстві їх сфера застосування не має меж. А актуальність такої покупки може виникнути будь-якої пори року.

На сьогоднішній день практично в будь-якому механічному пристосуванні використовується поєднання кінетичної та потенційної енергії — механічна енергія, яка є джерелом рушійної сили, що відповідає за роботу всієї системи. З відкриттям електрики механічну енергію можна перетворювати з електричної, шляхом застосування електромеханічної машини — електродвигуна.

Принцип роботи електродвигуна

Функціонує електричний двигун із принципу електромагнітної індукції — фізичний процес генерації електричного струму в замкнутому контурі за умови зміни магнітного потоку, що переміщується крізь нього. Перший електродвигун за таким принципом був створений в 1821 році вченим з Британії Майклом Фарадеєм і був не закріплений сталевий дріт, який був занурений у чан із ртуттю, де в середині був встановлений вічний магніт. Під впливом електричного впливу на провід останній утворював навколо себе циклічне магнітне поле, що змушувало його кружляти навколо магніту.

Надалі принцип дії електродвигуна (електромагнетизму) до розуму довів російський учений Б. С. Якобі. Він перший у 1834 році зміг винайти технічне пристосування, яке було в змозі створювати кругове обертання, що породжувало привид у рух механічні пристрої. Розвиваючи цю ідею, Якобі досяг зростання потужності свого першого прототипу електродвигуна з 15 Вт до 550 Вт. У 1839 році електричний двигун цього генія міг розвинути 1 кінську силу, що дозволяло переміщати човен з вагою близько тонни річкою проти течії.

Пристрій електродвигуна

В основі конструкції будь-якого електродвигуна лежить наявність двох найважливіших елементів — нерухома частина «статор» («індуктор» для двигунів постійної напруги) і рухома частина «ротор» («якір» для машин постійної напруги). Під впливом електричного струму на обмотки статора, генерується електромагнітне поле, що обертається, під впливом якого на обмотку ротора і викликаючи тим самим струм індукції, примушує його обертатися в певному напрямку. Цей процес пояснюється законом Ампера: на провідник під напругою, впроваджений у зону електромагнітного поля, діє електрорушійна сила (ЕРС). Електродвигуни відрізняються за параметром частоти обертання ротора (якоря), який залежить від кількості пар магнітних полюсів та частоти напруги живлення мережі.

1. КОРПУС

2. РОТОР

3. КЛЕМНА КОРОБКА

4. СТАТОР

5. ВАЛ

Типи електродвигунів

Сучасні види електродвигунів мають широку класифікацію за різними конструктивними та функціональними ознаками. Насамперед їх прийнято ділити за принципом виникнення крутного моменту на:

  • Електродвигун гістерезисний — у процесі перемагнічування ротора виникає властивість фізичної системи, гістерез, який власне і створює крутний момент. Електрообладнання даного типу дуже рідко знаходять застосування у промисловій сфері.
  • Електромагнітний електродвигун — найпоширеніший тип, що застосовується практично у всіх побутових та промислових областях.

Ця група, у свою чергу, ділиться за характером споживання харчування на:

  • Ел двигун постійного струму — живиться від мережі з постійною напругою. Такий вид пристрою може бути виконаний також у різних варіантах: з відсутністю щітково-колекторного вузла або з його наявністю. В останньому передбачена градація за типом збудження на: двигуни з незалежним збудженням та самозбудженням, які теж можуть різнитися за характером обмотки та бути виконані у таких формах: паралельно, послідовно, змішано.
  • Електричний двигун змінного струму — живлення здійснюється від мережі зі змінним типом напруги.

Такий вид електромагнітних перетворювачів класифікуються за принципом роботи на:

  • Синхронний електродвигун — суть полягає в синхронному обертанні ротора з електромагнітним полем статора при однаковій частоті. Такі пристрої відрізняються особливо високою потужністю, що досягає сотні кіловат і більше того.
  • Асинхронний двигун змінного струму — функціонує на основі того, що частота обертання електромагнітного поля статора не збігається з частотою обертання ротора, за типом виконання обмотки який може бути короткозамкнутим або фазовим. За кількістю фаз асинхронні електродвигуни виступають в однофазному або трифазному варіантах.

Электромагнитные двигатели: схема, принцип работы

Электромагнитные двигатели — это устройства, которые работают по принципу индукции. Некоторые люди называют их электромеханическими преобразователями. Побочным эффектом данных устройств считается обильное выделение тепла. Существуют модели постоянного и переменного типа.

Также устройства различают по типу ротора. В частности, есть короткозамкнутые и фазные модификации. Сфера применения электромагнитных двигателей очень широкая. Встретить их можно в бытовых приборах, а также промышленных агрегатах. Активно используются они и в самолетостроении.

Схема двигателя

Схема электромагнитного двигателя включает в себя статор, а также ротор. Коллекторы, как правило, применяются щеточного типа. Ротор состоит из вала, а также наконечника. Для охлаждения системы часто устанавливаются вентиляторы. Для свободного вращения вала имеются роликовые подшипники. Также существуют модификации с магнитопроводами, которые являются неотъемлемой частью статора. Над ротором располагается контактное кольцо. В мощных модификациях используется втягивающее реле. Непосредственно подача тока осуществляется через кабель.

Принцип работы двигателя

Как говорилось ранее, принцип действия построен на электромагнитной индукции. При подключении модели образуется магнитное поле. Затем на обмотке возрастает напряжение. Под силой действия магнитного поля в действие приводится ротор. Частота вращения устройства в первую очередь зависит от количества магнитных полюсов. Коллектор в данном случае играет роль стабилизатора. Подача тока в цепь происходит через статор. Также важно отметить, что для защиты двигателя используются кожухи и уплотнители.

Как сделать своими руками?

Сделать обычный электромагнитный двигатель своими руками довольно просто. В первую очередь следует заняться ротором. Для этого придется найти металлический стержень, который будет играть роль вала. Также потребуется два мощных магнита. На статоре должна находиться обмотка. Далее останется лишь установить щеточный коллектор. Электромагнитные двигатели-самоделки подсоединяются к сети через проводник.

Модификации для машин

Электромагнитные двигатели для автомобилей изготавливаются только коллекторного типа. Мощность их в среднем составляет 40 кВт. В свою очередь, параметр номинального тока равняется 30 А. Статоры в данном случае используются двухполюсные. У некоторых модификаций имеется клеммная коробка. Для охлаждения системы применяются вентиляторы.

Также в устройствах предусмотрены специальные отверстия для циркуляции воздуха. Роторы в двигателях устанавливаются с металлическими сердечниками. Для защиты вала используются уплотнители. Статор в данном случае находится в кожухе. Электромагнитные двигатели для машин с втягивающими реле встречаются редко. В среднем диаметр вала не превышает 3.5 см.

Устройства для самолетов

Работа двигателей данного типа построена на принципе электромагнитной индукции. Для этого статоры применяются трехполюсного типа. Также электромагнитные двигатели летательных аппаратов включают в себя бесщеточные коллекторы. Клеммные коробки в устройствах располагаются над контактными кольцами. Неотъемлемой частью статора является якорь. Вал вращается благодаря роликовым подшипникам. У некоторых модификаций применяются щеткодержатели. Также важно упомянуть о различных типах клеммных коробок. В данном случае многое зависит о мощности модификации. Электромагнитные двигатели для самолетов с целью охлаждения оборудуются вентиляторами.

Двигатели-генераторы

Электромагнитные двигатели-генераторы выпускаются со специальными бендиксами. Также схема устройства включает в себя втягивающие реле. Для запуска ротора применяются сердечники. Статоры в устройствах используются двухполюсного типа. Непосредственно вал у них крепится на роликовых подшипниках. У большинства двигателей имеется резиновая заглушка. Таким образом, ротор изнашивается медленно. Еще есть модификации с щеткодержателями.

Модели с короткозамкнутым ротором

Электромагнитный двигатель с короткозамкнутым ротором часто устанавливается в бытовых приборах. Мощность моделей в среднем равняется 4 кВт. Непосредственно статоры используются двухполюсного типа. Роторы крепятся в задней части двигателя. Вал у моделей применяется небольшого диаметра. На сегодняшний день чаще всего выпускаются асинхронные модификации.

Клеммные коробки в устройствах отсутствуют. Для подачи тока используются специальные полюсные наконечники. Также схема двигателя включает в себя магнитопроводы. Крепятся они возле статоров. Еще важно отметить, что выпускаются устройства с щеткодержателями и без них. Если рассматривать первый вариант, то в данном случае устанавливаются специальные зубчатые передачи. Таким образом, статор ограждается от магнитного поля. Устройства без щеткодержателя имеют уплотнитель. Бендиксы в двигателях устанавливаются за статором. Для их фиксации применяются шпонки. Недостатком данных устройств считается быстрый износ сердечника. Возникает он из-за повышенной температуры в двигателе.

Модификации с фазным ротором

Электромагнитный двигатель с фазным ротором устанавливается на станки и часто используется в тяжелой промышленности. Магнитопроводы в данном случае имеются с якорями. Отличительной чертой устройств принято считать большие валы. Непосредственно напряжение на обмотку подается через статор. Для вращения вала используется щеткодержатель. В некоторых из них установлены контактные кольца. Также важно отметить, что мощность моделей в среднем составляет 45 кВт. Непосредственно питание двигателей может осуществляться только от сети с переменным током.

Коллекторный электромагнитный двигатель: принцип работы

Коллекторные модификации активно применяются для электроприводов. Принцип действия у них довольно простой. После подачи напряжения в цепь задействуется ротор. Электромагнитное поле запускает процесс индукции. Возбуждение обмотки заставляет вал ротора вращаться. Тем самым приводится в действие диск устройства. Для уменьшения силы трения используются подшипники. Также важно отметить, что в моделях устанавливаются щеткодержатели. В задней части устройств часто имеется вентилятор. Для того чтобы вал не терся об уплотнитель, применяется защитное кольцо.

Бесколлекторные модификации

Бесколлекторные модификации в наше время не являются распространенными. Используются они для вентиляционных систем. Отличительной их особенностью считается бесшумность. Однако следует учитывать, что модели выпускаются небольшой мощности. В среднем указанный параметр не превышает 12 кВт. Статоры в них часто устанавливаются двухполюсного типа. Валы используются короткие. Для ограждения ротора применяются специальные уплотнители. Иногда двигатели заключаются в кожух, у которого имеются вентиляционные каналы.

Модели с независимым возбуждением

Модификации данного типа отличаются клеммными магнитопроводами. В данном случае устройства работают в сети только с переменным током. Непосредственно напряжение в первую очередь подается на статор. Роторы у моделей изготавливаются с коллекторами. У некоторых модификаций мощность достигает 55 кВт.

По типу якорей устройства отличаются. Щеткодержатели часто устанавливаются на стопорном кольце. Также важно отметить, что коллекторы в устройствах используются с уплотнителями. Диски в данном случае располагаются за статорами. У многих двигателей бендиксы отсутствуют.

Схема двигателя с самовозбуждением

Электромагнитные двигатели данного типа способны похвастаться высокой мощностью. В данном случае обмотки имеются высоковольтного типа. Подача напряжения происходит через клеммные контакты. Непосредственно ротор крепится за щеткодержателем. Уровень рабочего тока в устройствах составляет 30 А. В некоторых модификациях применяются якоря с щеткодержателями.

Также есть устройства с однополюсными статорами. Непосредственно вал находится в центре двигателя. Если рассматривать устройства большой мощности, то у них применяются вентилятор для охлаждения системы. Также на кожухе располагаются небольшие отверстия.

Модели с параллельным возбуждением

Электромагнитные двигатели данного типа изготавливаются на базе щеточных коллекторов. Якоря в данном случае отсутствуют. Вал в устройствах крепится на роликовых подшипниках. Также для уменьшения силы трения используются специальные лапы. У некоторых конфигураций есть магнитопроводы. Подключаться модели могут только к сети с постоянным током.

Еще важно отметить, что на рынке в основном представлены трехтактные модификации. Щеткодержатели в устройствах выполнены в форме цилиндров. По мощности модели отличаются. В среднем параметр рабочего тока на холостом ходе не превышает 50 А. Для усиления электромагнитного поля применяются роторы с высоковольтной обмоткой. У некоторых конфигураций используются наконечники на магнитопроводах.

Устройства последовательного возбуждения

Принцип работы двигателей данного типа довольно простой. Непосредственно напряжение подается на статор. Далее ток проходит по обмотке ротора. На данном этапе происходит возбуждение первичной обмотки. Вследствие этого приводится в действие ротор. Однако следует учитывать, что работать двигатели способны только в сети с переменным током. Наконечники в данном случае применяются с магнитопроводом.

Некоторые устройства оснащены щеткодержателями. Мощность моделей колеблется от 20 до 60 кВт. Для фиксации вала используются стопорные кольца. Бендиксы в данном случае располагаются в нижней части конструкции. Клеммники отсутствуют. Также важно отметить, что вал устанавливается различного диаметра.

Двигатели смешанного возбуждения

Электромагнитные двигатели данного типа могут использоваться только для приводов. Ротор здесь чаще всего устанавливается с первичной обмоткой. В данном случае показатель мощности не превышает 40 кВт. Номинальная перегрузка системы составляет около 30 А. Статор в устройствах применяется трехполюсного типа. Подключать указанный двигатель можно только в сеть с переменным током. Клеммные коробки у них используются с контактами.

Некоторые модификации оснащены щеткодержателями. Также на рынке представлены устройства с вентиляторами. Уплотнители чаще всего располагаются над статорами. Действуют устройства по принципу электромагнитной индукции. Первичное возбуждение осуществляется на магнитопроводе статора. Также важно отметить, что в устройствах применятся высоковольтная обмотка. Для фиксации вала используются защитные кольца.

Устройства переменного тока

Схема модели данного типа включает статор двухполюсного типа. В среднем мощность устройства равняется 40 кВт. Ротор здесь применяется с первичной обмоткой. Также есть модификации, у которых имеются бендиксы. Устанавливаются они у статора и играю роль стабилизатора электромагнитного поля.

Для вращения вала применяется ведущая шестерня. В данном случае лапы устанавливаются для уменьшения силы трения. Также используются полюсные наконечники. Для защиты механизма применяются кожухи. Магнитопроводы у моделей устанавливаются лишь с якорями. В среднем рабочий ток в системе поддерживается на уровне 45 А.

Синхронные устройства

Схема синхронного двигателя включает в себя двухполюсный статор, а также щеточный коллектор. В некоторых устройствах применяется магнитопровод. Если рассматривать бытовые модификации, то в них используются щеткодержатели. В среднем параметр мощности составляет 30 кВт. Устройства с вентиляторами встречаются редко. У некоторых моделей применяются зубчатые передачи.

Для охлаждения двигателя на кожухе имеются вентиляционные отверстия. В данном случае стопорное кольцо устанавливается у основания вала. Обмотка используется низковольтного типа. Принцип работы синхронной модификации построен на индукции электромагнитного поля. Для этого в статоре устанавливаются магниты разной мощности. При возбуждении обмотки вал начинается вращаться. Однако частотность у него невысокая. Мощных модели имеют коллекторы с реле.

Схема асинхронного двигателя

Асинхронные модели являются компактными и часто используются в бытовых приборах. Однако в тяжелой промышленности они также являются востребованными. В первую очередь следует отметить их защищенность. Роторы в устройствах применяются только однополюсного типа. Однако статоры устанавливаются с магнитопроводами. В данном случае обмотка применяется высоковольтного типа. Для стабилизации электромагнитного поля есть бендикс.

Крепится он в устройстве благодаря шпонке. Втягивающее реле в них располагается за якорем. Вал устройства вращается на специальных роликовых подшипниках. Также важно отметить, что есть модификации с бесщеточными коллекторами. Используются они в основном для приводов различной мощности. Сердечники в данном случае установлены удлиненные, и располагаются они за магнитопроводами.

Как работает электродвигатель?

Электродвигатель помогает преобразовывать электрическую энергию в механическую. Он основан на принципах электромагнетизма.

Для работы многих устройств требуются вращающиеся детали. Одним из таких используемых устройств является
электродвигатель. Электродвигатель представляет собой вращающееся устройство. Он играет роль в энергетике.
преобразование. Теории электродвигателей изучаются в физике.

Электродвигатель является широко используемым инструментом. Он используется в повседневной жизни.
Электродвигатель полезен для преобразования одного вида энергии в другой. Электрический
двигатель используется в транспортных средствах, устройствах и т. д. Он работает по принципу
электромагнетизм. Эта статья поможет вам понять работу, строительство,
и т. д. электродвигателя.

Что такое электродвигатель?

Электродвигатель — это прибор, преобразующий энергию. Электродвигатель представляет собой тип вращающегося устройства. Он преобразует электрическую форму энергии в механическую. Он работает по принципу электромагнетизма. Он работает из-за взаимодействия между магнитным полем двигателя. Магнитное поле взаимодействует с электрическим током в проводах обмотки. Это взаимодействие создает силу в виде крутящего момента. Этот крутящий момент приложен к валу двигателя.

Постоянный или переменный ток используется для питания электродвигателя. Постоянный ток передается батареями или выпрямителями. Переменный ток передается инверторами, электрическими генераторами и электрическими сетями. Электродвигатели классифицируются на основе многих факторов. Например, тип источника питания, области применения и т. д.

Принцип работы электродвигателя

Каждый инструмент имеет свой принцип. Принцип описывает теорию, по которой работает прибор. Электродвигатель также имеет определенный принцип. Принцип работы электродвигателя заключается в том, что при пропускании тока через прямоугольную катушку, помещенную в магнитное поле, к катушке прикладывается сила. Эта сила отвечает за непрерывное вращение двигателя.

Благодаря этому вращению происходит преобразование энергии. Простыми словами, принцип работы электродвигателя переносится на проводник с током. Этот проводник с током создает магнитное поле. Этот проводник с током расположен перпендикулярно направлению магнитного поля. Благодаря этому он испытывает силу.

Конструкция электродвигателя

Каждое устройство имеет уникальную конструкцию. Необходимо понимание конструкции. Вот объяснение конструкции электродвигателя.

Конструкция электродвигателя
  • Он имеет прямоугольную катушку провода ABCD.

  • У него сильный подковообразный магнит. Катушка ABCD расположена перпендикулярно этому магниту.

  • Концы катушки ABCD соединены с разъемными кольцами P и Q. Эти разъемные кольца играют роль коммутатора. Это помогает изменить направление тока.

  • Внутренняя часть разрезных колец изолирована. Он прикреплен к оси. Ось свободно вращается.

  • Внешняя сторона токопроводящих кромок разрезных колец соединена со стационарными щетками. Эти щетки X и Y соединены с аккумулятором. Это завершает схему.

Это общая конструкция электродвигателя.

Детали электродвигателя

 Электродвигатель состоит из множества частей. Эти детали необходимы для бесперебойной работы двигателя. Вот описание основных частей электродвигателя.

Детали электродвигателя
  • Ротор: это движущаяся часть двигателя. Его роль заключается во вращении вала двигателя. Это вращение на валу производит механическую энергию. Ротарь также содержит проводник. По этому проводнику текут токи. Это также помогает в общении с магнитным полем, присутствующим в статоре.

  • Подшипники: Подшипники используются для поддержки вращателя. Это необходимо для активации оси ротора. С помощью них расширяется вал двигателя. Он распространяется до нагрузки двигателя.

  • Статор: это неактивная часть электромагнитной цепи двигателя. Он состоит из постоянного магнита и обмотки. Статор можно изготовить из тонких металлических листов. Их называют ламинатами. Они помогают уменьшить потери энергии.

  • Обмотки: Провода, проложенные внутри катушки электродвигателя, называются обмотками. Обычно они намотаны на гибкий железный магнитный сердечник. Это создает магнитные полюса при подаче тока.

Это были все важные части и их использование в электродвигателе.

Работа электродвигателя

Упомянутый электродвигатель представляет собой вращающееся устройство. Работа электродвигателя объясняет его механизм. Вот несколько шагов, которые объясняют работу электродвигателя.

Работа электродвигателя
  • Когда аккумулятор двигателя включен, в нем протекает ток. Ток течет через катушку AB от A к B. При этом направление магнитного поля с севера на юг. О правиле левой руки Флеминга сила действует вниз на AB. Подобно этому восходящая сила применяется к CD. Благодаря этому катушка вращается. AB движется вниз, а CD движется вверх.

  • Теперь обе катушки AB и CD поменялись местами. Теперь поток тока идет от C к D. А направление магнитного поля — с севера на юг. Катушка CD получает направленную вверх силу и движется вверх. Катушка AB движется вниз. Таким образом, обе катушки делают половину оборота.

  • Электродвигателю для работы требуется полный оборот. Для этого направление тока меняется. Направление тока меняется с помощью коммутатора. Коммутатор имеет два разрезных кольца. Щетки также присоединены к его контуру.

  • Когда катушка начинает вращаться, кольца тоже вращаются. Как только катушка становится параллельной магнитному полю, щетки касаются зазора между кольцами. Из-за этого цепь разрывается.

  • Из-за инерции кольцо продолжает двигаться. Противоположный конец кольца подключается к положительному концу провода.

  • Разрезные кольца P и Q прикреплены к катушке CD и AB соответственно. Благодаря этому направление тока в цепи меняется на противоположное.

  • Катушка CD слева, катушка AB справа. Ток в катушке CD меняется на противоположный. Теперь ток течет от D к C. На AB действует восходящая сила, а на CD — направленная вниз сила. Это удерживает катушку во вращении.

  • Эта реверсия электрического тока происходит после каждого полуоборота. Это позволяет катушке вращаться до тех пор, пока батарея не будет отключена.

Это детальная работа электродвигателя.

Преимущества электродвигателя

Электродвигатель имеет множество преимуществ. Это лучше, чем другие устройства преобразования энергии. Есть много преимуществ использования электродвигателя. Вот некоторые из них:

  • Первоначальная стоимость электродвигателя довольно низкая. Это лучше, чем двигатели, использующие ископаемое топливо.

  • Электродвигатель имеет различные рабочие части. За счет этого электродвигатель имеет более длительный срок службы.

  • Двигатель требует меньше обслуживания. Электродвигатель имеет среднюю мощность 30 000 часов.

  • Электродвигатель имеет автоматическое управление. Он упрощает управление и имеет функции автоматического запуска и остановки. Кроме того, электрические двигатели очень эффективны.

  • Они не используют ископаемое топливо. Это потому, что им не нужно моторное масло.

Это различные преимущества электродвигателя. Благодаря этим преимуществам он является широко используемым инструментом для преобразования энергии.

Применение электродвигателя

Широко используется электродвигатель. Он получил много приложений. Эти приложения описывают использование электродвигателя. Электродвигатели являются неотъемлемой частью многих приборов. Он имеет множество приложений. Некоторые из них:

  • Электродвигатель используется в воздуходувках, станках, электроинструментах, насосах и турбинах. Он также используется во вращающихся устройствах, таких как компрессоры, прокатные станы, вентиляторы, корабли, двигатели и т. д.

Применение электродвигателя

Электродвигатель также является обязательным компонентом многих устройств. К ним относятся отопительное и охлаждающее оборудование, различная бытовая техника, а также автомобили.

Вот несколько вариантов применения электродвигателя.

Заключение:

Электродвигатель является широко используемым инструментом. Его основная цель — преобразование энергии. Он эффективен в преобразовании электрической энергии в механическую форму энергии. Его функционирование можно объяснить принципами электромагнетизма.

Имеет различные части и уникальные конструкции. Это дешевле и эффективнее любого другого преобразователя энергии. Он имеет широкий спектр применения. Габаритный электродвигатель представляет собой эффективное устройство.

Двигатель, который может работать от источников переменного и постоянного тока, называется универсальным двигателем.

Электродвигатели, демонстрирующие преобразование энергии переменного тока в механическую, называются двигателями переменного тока. А те, которые показывают преобразование энергии постоянного тока в механическую, называются двигателями постоянного тока.

Нет. В вакууме электродвигатель будет работать некоторое время, а затем остановится, потому что смазочные материалы и изоляционные материалы испарятся из-за низкого давления и вакуума, это явление называется дегазацией.

Электродвигатель — введение, работа, детали и использование

В начале 1800-х годов Майкл Фарадей раскрывал аспекты и использование электричества.

Электродвигатель, в целом хорошо известный как двигатель, является одним из самых больших достижений в области науки. Жизнь, которую мы ведем сегодня, связана с изобретением двигателей, иначе мы использовали бы электричество только для того, чтобы зажечь лампочку. Электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Проще говоря, электродвигатель — это устройство, используемое для производства вращательной энергии.

Принцип работы электродвигателя

Электродвигатель работает по принципу, когда катушка помещается в магнитное поле и через нее проходит ток, что приводит к вращению катушки.

Работа электродвигателя

Теперь давайте начнем с работы электродвигателя. Схематическое изображение электродвигателя показано ниже.

Прежде чем мы поймем, как это работает, давайте посмотрим на части электродвигателя. Базовая конструкция электродвигателя состоит из прямоугольного провода, двух сильных магнитов и аккумулятора. Если нас спросят, каковы два основных компонента электродвигателя, ответом будут магниты для создания магнитного поля и катушка для демонстрации эффекта магнитного поля.

Детали электродвигателя

  • Прямоугольная катушка ABCD.

  • Два сильных магнита любого типа, будь то подковообразный или стержневой магнит. Они используются для создания сильного магнитного поля.

  • Разрезные кольца используются для вращения прямоугольной катушки.

  • Щетки используются в качестве контакта между разрезными кольцами.

Рабочий

  • Теперь при пропускании электрического тока через прямоугольную катушку ABCD. Мы замечаем, что ток между плечами BC и AD параллелен магнитному полю, тогда как ток между AB и CD перпендикулярен магнитному полю. Поэтому магнитное поле будет действовать только на плечи AB и CD.

  • Согласно правилу левой руки Флеминга, в плече АВ сила направлена ​​вниз, а магнитное поле направлено с севера на юг. Точно так же в руке CD направление силы направлено вверх.

  • Следовательно, силы в плечах AB и CD направлены в противоположные стороны, это приведет к вращению прямоугольной катушки ABCD.

  • После половины оборота кольцо Q соприкоснется со щеткой X, а кольцо P соприкоснется с Y, это приведет к изменению направления тока.

  • Поскольку направление тока изменилось, направление сил в плечах AB и CD также изменится, поэтому катушка продолжает вращаться в том же направлении.

После изучения двигателей обычно возникает вопрос, каково использование электродвигателей. Электродвигатели широко используются в большинстве бытовых приборов, таких как вентиляторы, миксеры и т. д.

Использование электродвигателей

  • Они используются в электрических вентиляторах.

  • Используются в стиральных машинах.

  • Используется в водяных насосах.

Типы электродвигателей

Существует три основных типа электродвигателей: двигатели постоянного тока, двигатели переменного тока и другие двигатели специального назначения.

Ниже перечислены подтипы и пояснения к двигателям постоянного и переменного тока, а также двигателям специального назначения:

(A) Двигатель постоянного тока: Электродвигатель, который используется для преобразования постоянного электрического тока в механическую работу, называется двигателем постоянного тока. Различные типы двигателей постоянного тока включают шунтирующий двигатель постоянного тока, двигатель с независимым возбуждением, серийный двигатель, двигатель с постоянным током и комбинированный двигатель.

  1. Шунтовой двигатель постоянного тока. Подобно обмоткам якоря и обмоткам возбуждения, обмотки шунтирующего двигателя постоянного тока соединены параллельно; эта параллельная связь называется шунтом, а обмотка называется шунтирующей обмоткой.

  2. Двигатель с независимым возбуждением. В этом типе двигателя обмотки якоря сделаны более прочными для создания большего потока, а соединение между статором и ротором построено с использованием различных источников питания. Электродвигатель с независимым возбуждением управляется из каскада.

  3. Двигатель постоянного тока — обмотки ротора в этом типе двигателя соединены последовательно. Двигатель постоянного тока работает по простому закону электромагнетизма. Электромагнитный закон гласит, что для создания электродвижущей силы электромагнитное поле приводится во взаимодействие с электрической цепью. Электромагнитный закон приводит к вращательному движению двигателя. Этот тип двигателя в основном используется в автомобилях или лифтах в качестве стартеров.

  4. Двигатель постоянного тока с постоянными магнитами. Двигатель постоянного тока с постоянными магнитами или постоянный магнит поставляется со встроенным магнитом, который постоянно находится внутри двигателя. Этот магнит обеспечивает формирование крайне необходимого для работы электродвигателя магнитного поля.

  5. Составной двигатель постоянного тока. Составной двигатель постоянного тока представляет собой сочетание последовательного двигателя постоянного тока и шунтирующего двигателя постоянного тока. Поскольку в этом двигателе присутствуют как последовательная, так и шунтирующая обмотки, пуск и ротор соединены друг с другом через соединение последовательной и шунтирующей обмотки.

(B) Двигатель переменного тока: AC в двигателе переменного тока означает переменный ток, который используется для его работы. Этот тип двигателя обычно состоит из внешней и внутренней частей; внешний статор состоит из катушек, через которые пропускается переменный заряд или ток для создания вращения в магнитном поле. В то время как внутренняя часть ротора соединена с выходным валом, который генерирует второе магнитное поле при вращении. Двумя основными типами двигателей переменного тока являются синхронный двигатель и асинхронный двигатель.

Ниже приведены объяснения работы двух типов двигателей переменного тока:

  1. Асинхронный двигатель. Асинхронный двигатель — это тип двигателя переменного тока, который работает на асинхронной скорости; поэтому его также называют асинхронным двигателем. Этот двигатель использует электромагнитную индукцию для преобразования электрической энергии в механическое движение двигателя. Существует два типа асинхронных двигателей: двигатель с короткозамкнутым ротором и двигатель с фазной обмоткой.

  2. Синхронный двигатель- Синхронный двигатель работает от трехфазной сети. Статор генерирует ток вращающегося поля, от которого также зависит работа ротора. Когда точность вращения очень высока, эти типы двигателей можно использовать в робототехнике и автоматике.

(C) Двигатель специального назначения: Проще говоря, двигатели специального назначения включают в себя все другие типы двигателей, кроме двигателей переменного тока и двигателей постоянного тока общего назначения. Некоторыми из широко используемых двигателей специального назначения являются шаговые двигатели, бесщеточные двигатели постоянного тока, гистерезисные двигатели и реактивные двигатели.

Ниже приводится объяснение работы этих двигателей специального назначения:

  1. Шаговый двигатель. Эффективной альтернативой устойчивому вращению является шаговое вращение, которое может быть обеспечено шаговыми двигателями. Мы знаем, что угол поворота любого ротора составляет 180 градусов. Однако в шаговых двигателях этот угол поворота делится на несколько шагов, например 9.шаг 20 градусов. Некоторые приложения шаговых двигателей включают генераторы, плоттеры, изготовление схем и инструменты управления технологическим процессом.

  2. Бесщеточный двигатель постоянного тока. Инновационный бесщеточный двигатель постоянного тока предназначен для достижения высокого качества работы при меньшем занимаемом пространстве. Эти типы двигателей меньше, чем двигатели переменного тока. Отсутствие коммутатора и токосъемного кольца восполняется имплантацией контроллера в шаговый двигатель.