Содержание
частота вращения якоря двигателя постоянного тока | Маркет
Описание товара
Здравствуйте! Вы попали на доску объявлений. Сотрудники Promelectrica.com разместили тут товары, которые Вам могут быть интересны. Информация о наличии по телефону (495)640-04-53
Коллекторный электродвигатель постоянного тока с электромагнитным возбуждением Д-16Б предназначен для привода специального механизма, а также может быть использован в различных областях техники.
Структура условного обозначения
Д-16Б:
Д — двигатель;
16 — порядковый номер разработки;
Б — модификация исполнения двигателя.
Условия эксплуатации
Температура окружающего воздуха при эксплуатации от минус 60 до 50°С. Пониженное атмосферное давление однократно в течение 5 мин при номинальном вращающем моменте — не ниже 667 Па (5 мм рт.ст).
Верхнее значение относительной влажности воздуха в течение 48ч — 98% при температуре (35±5)°С.
Электродвигатель стоек к воздействию:
Вибрационных нагрузок с диапазоном частот от 5 до 35 Гц и амплитудой не более 1 мм в течение 3 мин.
Вибрационных нагрузок с диапазоном частот от 35 до 2000 Гц и ускорением от 39,2 до 147,2 мс-2 (от 4 до 15 g) в течение 23 мин.
Линейных (центробежных) нагрузок с ускорением 98,1 мс-2 (10 g) в течение 5 мин.
Механические нагрузки воздействуют на места крепления двигателя в любом направлении.
Двигатель выдерживает воздействие:
Вибрационных нагрузок с частотой вибрации от 10 до 2000 Гц и ускорением, действующим вдоль и перпендикулярно оси двигателя, от 20 до 40 мс-2 (от 2 до 4 g) в течение 46 ч в обесточенном состоянии и 2,8 ч при электрической нагрузке.
Ударных многократных нагрузок с ускорением 50 мс-2 (5 g) при количестве ударов 5000 с частотой от 40 до 100 ударов в час и длительностью удара от 5 до 10 мс.
Номинальный режим работы двигателя кратковременный при напряжении питания 27 В:
15 мин при вращающем моменте 1,47 Нм.
5 мин при вращающем моменте 1,76 Нм.
1 с при вращающем моменте 3,43 Нм.
Конструктивное исполнение по способу монтажа в соответствии с ГОСТ 2479-79 IМ3081.
Направление вращения вала левое со стороны выхода вала.
Сопротивление изоляции электрических цепей относительно корпуса двигателя в нормальных климатических условиях при практически холодном состоянии двигателя до ввода в эксплуатацию — не менее 20 МОм.
В течение срока службы и минимальной наработки сопротивление изоляции при практически холодном состоянии двигателя — не менее 1 МОм.
Изоляция электрических цепей относительно корпуса двигателя в нормальных климатических условиях выдерживает без пробоя и перекрытия воздействие испытательного напряжения 500 В (действующее значение) переменного тока частотой 50 Гц.
Степень искрения на коллекторе двигателя при номинальном вращающем моменте и номинальном напряжении питания в нормальных климатических условиях не превышает 2 по ГОСТ 183-74.
Двигатель соответствует требованиям технических условий ОДС.515.151 и комплекта конструкторской документации согласно 1ДС.599.112 СД.
Условия транспортирования двигателя в упаковке предприятия-изготовителя в части воздействия механических факторов соответствуют условиям Л по ГОСТ 23216-78; в части воздействия климатических факторов внешней среды — таким же, как условия хранения 5 по ГОСТ 15150 — 69.
Условия хранения двигателя соответствуют условиям I (отапливаемое хранилище), условиям 3 (неотапливаемое хранилище) и условиям 5 (навесы в макроклиматических районах с умеренным и холодным климатом) по ГОСТ 15150-69.
Эксплуатацию двигателей следует проводить в соответствии с техническим описанием и инструкцией по эксплуатации 1ДС.599.112 ТО.
В процессе хранения двигатель, вмонтированный в аппаратуру изделия, должен подвергаться проверке на функционирование не реже одного раза в год.
При проверке на функционирование двигатель работает при напряжении питания 27 В на холостом ходу или при номинальном вращающем моменте в течение одной минуты.
Изготовитель гарантирует качество двигателя при соблюдении режимов работы и условий эксплуатации. ОДС.515.151
Технические характеристики
Номинальное напряжение питания, В — 27 Номинальный вращающий момент, Нм — 1,76 Номинальная частота вращения, мин-1 — 8000 Потребляемый ток при номинальном вращающем моменте, А, не более — 78 Потребляемый ток при холостом ходе, А, не более — 17 Частота вращения при холостом ходе, мин-1, не более — 10900 КПД, % — 70 Момент инерции якоря, кгм2 — 8,310-4 Масса двигателя, кг, не более — 7
Двигатель в течение 5 мин допускает работу при номинальном вращающем моменте и напряжении питания, лежащем в пределах от 22 до 30 В. При этом в нормальных климатических условиях: частота вращения изменяется в пределах от 6100 до 9000 мин-1; потребляемый ток — не более 88 А.
Двигатель в течение 5 мин работы в выше указанном режиме допускает в течение 30 с работу при вращающем моменте 3,43 Нм. Параметры двигателя при этом не оговариваются.
Двигатель в течение 10 мин допускает работу при вращающем моменте 0,49 Нм, температуре 50°С и напряжении питания, лежащем в пределах от 22 до 30 В с последующей работой при пониженном атмосферном давлении; в течение 20 мин в нормальных климатических условиях с последующим охлаждением.
Частота вращения после работы в указанном режиме с последующим охлаждением и при последующей работе в течение 5 мин при номинальном вращающем моменте и напряжении питания 27 В — не менее 7000 мин-1.
Потребляемый ток в этих же условиях — не более 84 А.
Напряжение трогания при нижнем значении температуры и вращающем моменте 1,47 Нм — не более 8 В.
Напряжение трогания в нормальных климатических условиях при холостом ходе — не более 7 В.
Минимальная наработка двигателя при номинальном напряжении питания 60 ч, в том числе:
20 ч непрерывно при вращающем моменте 0,98 Нм;
40 ч в номинальном режиме, из них 6 ч при верхнем значении температуры и 6 ч при нижнем значении температуры.
Перерыв между включениями двигателя до полного охлаждения.
Минимальный срок службы двигателя — 10,5 лет.
Минимальный срок сохраняемости двигателя в отапливаемом хранилище — 10,5 лет, в том числе:
не более 1 года в упаковке предприятия-изготовителя;
не более 10,5 лет вмонтированным в аппаратуру изделия.
В пределах срока сохраняемости допускается хранение двигателя вмонтированным в аппаратуру защищенного изделия:
не более 5 лет в неотапливаемом хранилище;
не более 1 года под навесом.
Гарантийная наработка в пределах гарантийного срока эксплуатации — 60 ч.
Гарантийный срок эксплуатации — 10,5 лет.
Гарантийный срок хранения — 10,5 лет.
Точную информацию о товарах, ценах и наличии вы можете получить по запросу через электронную почту. Выставленный счет-договор является единственным информационным обязательством, все другие сведения могут содержать неточности. Мы затрачиваем все возможные силы для улучшения сервиса и благодарны тысячам юридических и частных лиц, воспользовавшимся нашими услугами, и сотням постоянных клиентов, которые продолжают с нами работать.
Каталог:
- Выключатели, концевики, джойстики
- Бесконтактные датчики
- Реле, контакторы, автоматы
- Маячки, колонны, сирены
- Приводная техника
- Разъемы и кабели
- Трансформаторы, источники питания
- Энкодеры, муфты
- Автоматизация и измерение
- Тиристоры, диоды, предохранители
Видео «Как добраться»:
Информация о технических характеристиках, комплекте поставки, стране изготовления, внешнем виде и цвете товара носит справочный характер и основывается на последних доступных к моменту публикации сведениях от продавца.
Товарное предложение №14961088689 обновлено 23 ноября 2022 г. в 08:14.
Электродвигатель постоянного тока.
Хотя система своременного электроснабжения основана на применении переменного тока, тем не менее машины постоянного находят широкое использование в самых различных отраслях промышленности и в быту.
Основными частями машины постоянного тока (см. рис. 1) являются неподвижная станина, несущая электромагниты, и вращающаяся часть – якорь. Часто их называют по аналогии с машинами переменного тока статором – неподвижную часть и ротором – вращающуюся часть. Станина с электромагнитами служит для возбуждения главного магнитного поля машины, а во вращающемся якоре индуктируется э.д.с. и проходят токи, создающие в генераторе тормозящий момент, а в двигателе – вращающий момент.
Станина изготавливается из литой стали и представляет собой полый цилиндр, на внутренней стороне которого укреплены сердечники полюсов: главных и дополнительных. На сердечники главных полюсов надеты катушки, составляющие обмотку возбуждения машины. Сердечники полюсов снабжаются наконечниками, служащими для более равномерного распределения магнитной индукции вдоль окружности якоря. Дополнительные полюса имеются имеются только на более крупных машинах. Эти полюса устанавливаются на станине посредине между главными полюсами. Их обмотка соединяется последовательно с обмоткой якоря. Назначение этих полюсов – поддерживать магнитное поле работающей машины относительно постоянным независимо от нагрузки. Это нужно для безыскровой работы щеток на коллекторе.
Сердечник якоря собран из изолированных друг от друга листов электротехнической стали. Он снабжен пазами, в которые закладывается обмотка якоря, обычно состоящая из отдельных секций.
Характерной для машин постоянного тока деталью является коллектор – полый цилиндр, собранный из изолированных одна от другой и от вала машины клинообразных медных пластин. Последние определенным образом соединяются с витками обмотки якоря. На коллекторе в щеткодержателях устанавливаются неподвижные щетки, через которые обмотка якоря соединяется с внешней цепью. Щетки к коллектору прижимаются пружинами. щеткодержатели укрепляются на щеточных траверсах. Последние устанавливаются на подшипниках машины и их можно поворачивать, изменяя таким путем положение щеток по отношению к полюсам машины.
Коллектор в генераторах постоянного тока служит для выпрямления переменной э.д.с., индуктируемой во вращающейся обмотке якоря, а в двигателях постоянного тока – для получения постоянного по направлению вращающего момента. Одна и та же машина постоянного тока может работать в режимах генератора и двигателя, т.е. она обратима, как все электрические машины.
В режиме генератора машина работает тогда, когда ее вращает какой-либо первичный двигатель (паровая или гидравлическая турбина, двигатель внутреннего сгорания и т.д.), главное магнитное поле возбуждено, а обмотка якоря через щетки замкнута на нагрузку. В этой обмотке индуктируется э. д.с. и возникает ток, протекающий через якорь и нагрузку. Ток в якоре, взаимодействуя с главным магнитным полем, создает тормозящий момент, который должен преодолеть первичный двигатель. В режиме двигателя внешний источник электроэнергии посылает электрические токи в цепи якоря и возбуждения машины, а ток якоря, взаимодействуя с главным магнитным полем, образует вращающий момент. Под действием этого момента якорь вращается, а машина преобразует электрическую энергию в механическую.
Почему сердечники якоря двигателя постоянного тока изготавливаются из пластин?
Вы здесь: Домашняя страница / Часто задаваемые вопросы + основы / Часто задаваемые вопросы: Почему сердечники якоря двигателя постоянного тока изготавливаются из пластин?
By Danielle Collins Оставить комментарий
Двигатели постоянного тока состоят из двух основных частей: ротора и статора. Ротор имеет кольцеобразный железный сердечник с прорезями, которые удерживают катушки или обмотки. Согласно закону Фаради, когда сердечник вращается в магнитном поле, в катушках индуцируется напряжение или ЭДС. Эта индуцированная ЭДС вызывает протекание тока, известного как вихревой ток.
Вихревые токи являются результатом вращения сердечника якоря в магнитном поле.
Изображение предоставлено: electric4u.com
Вихревые токи представляют собой форму магнитных потерь, а потеря мощности из-за потока вихревых токов называется потерями на вихревые токи. (Потери на гистерезис — еще один компонент магнитных потерь.) Эти потери выделяют тепло и снижают КПД двигателя.
Величина потерь на вихревые токи зависит от нескольких факторов, включая:
- плотность магнитного потока
- частота ЭДС индукции (частота, при которой меняется полярность потока)
- толщина магнитного материала
P E = K E * B 2 * F 2 * T 2
, где:
P E 1111112
P E 111112
P E
P E 112
P E . e = константа вихревого тока
B = плотность потока
f = частота инверсий магнитного поля
t = толщина материала
На развитие вихревых токов влияет сопротивление материала, в котором они протекают. Для любого магнитного материала существует обратная зависимость между площадью поперечного сечения материала и его сопротивлением, а это означает, что уменьшение площади вызывает увеличение сопротивления и, в свою очередь, уменьшение вихревых токов. Один из способов добиться уменьшения площади поперечного сечения — сделать материал тоньше.
Вот почему сердечники арматуры состоят из множества тонких кусков железа, а не из одного большого цельного куска. Эти отдельные тонкие детали имеют более высокое сопротивление, чем цельная деталь, и, следовательно, создают меньше вихревых токов и имеют меньшие потери на вихревые токи.
Отдельные железные детали, из которых состоит арматура, называются пластинами.
На верхнем изображении показана сплошная арматура, а на нижнем изображена арматура, состоящая из пяти пластин. Сумма вихревых токов в слоистом сердечнике меньше, чем в сплошном сердечнике.
Изображение предоставлено: wikipedia.org
Эти пластины изолированы друг от друга, как правило, лаковым покрытием, чтобы предотвратить «скачки» вихревых токов от пластины к пластине. Обратно-квадратичная зависимость между толщиной материала и потерями на вихревые токи означает, что любое уменьшение толщины окажет значительное влияние на величину потерь. Из-за этого производители стремятся сделать пластины сердечника якоря как можно более тонкими с точки зрения производства и стоимости, при этом в современных двигателях постоянного тока обычно используются пластины толщиной от 0,1 до 0,5 мм.
Источник изображения: Brighthubengineering.com
Испытание якоря двигателя постоянного тока
Управление двигателем
Главная » Блог » Управление двигателем » Испытание якоря двигателя постоянного тока
Для якоря двигателя постоянного тока существует простой метод определения состояния якоря.
Метод испытания на ударную нагрузку: Подайте напряжение постоянного тока на сегменты коммутатора для одного шага полюсов от источника питания или батареи. Подключите положительный конец источника питания постоянного тока к одному концу и отрицательный конец к противоположному концу.
Например, если общее количество сегментов коммутатора составляет, скажем, 40 в испытуемом якоре, а общее количество полюсов равно 4, то площадь шага одного полюса будет равна 10 сегментам.
Теперь измерьте милливольтметром, скажем, в диапазоне от 0 до 10 милливольт падение напряжения в центральной точке, то есть между 5-м и 6-м сегментами. снова поверните якорь по часовой стрелке или против часовой стрелки и измерьте следующий набор сегментов.
Вот так выполните полные измерения для всех 40 пар сегментов. одновременно записывая показания.
Если есть какой-либо дефект в обмотке, то есть короткое замыкание или обрыв, это будет отображаться в показаниях.
Если показания милливольтметра одинаковы для всех 40 пар сегментов, то якорь исправен. Если есть короткое замыкание между обмоткой или катушкой обмотки между одной конкретной парой сегментов, показание будет меньше падения в милливольтах. Если есть какой-либо свободный или открытый, чтение будет больше, чем нормальные показания. Таким образом, можно определить состояние якоря постоянного тока на наличие короткого замыкания, обрыва или обрыва обмотки.
При испытании якоря постоянного тока есть ряд вопросов, которые необходимо выполнить. Первый есть. Испытание изоляции заземления или, более известное как испытание на ограбление, обычно проводится при напряжении 500 В постоянного тока. Если сопротивление заземления превышает 1 МОм, якорь готов к следующему испытанию, которое представляет собой испытание между стержнями. Есть 2 единицы оборудования, чтобы лучше всего провести этот тест. Один из них в сочетании с тестом на грабителя скажет вам, удовлетворительно ли арматура возвращается в эксплуатацию. Первое испытание от полосы к полосе проводится цифровым омметром низкого сопротивления «DLRO». Счетчик будет циркулировать около 8-10 ампер через соседние последовательные стержни и измерять миллиомное сопротивление цепи. Если отклонение составляет более 5%, то якорь закорочен виток к витку. Следующий тестер, который называется высокочастотным тестером от полосы к полосе. Тестер имеет 4 тет-точки, и когда вы перемещаете его вокруг якоря, на пары последовательных обмоток подается высокочастотное напряжение, и измеритель покажет изменение, если есть короткое замыкание. Если он проходит какое-либо из этих двух испытаний между стержнями и испытание на изоляцию заземления, его можно вернуть в эксплуатацию.
Оставить комментарий:
Вычислить (2 + 7) =
Вам также может понравиться:
Информация о пульсациях крутящего момента из сигнала скорости с низким разрешением
Я пытаюсь разработать контроллер для вентильного реактивного двигателя, который сводит к минимуму пульсации крутящего момента. Моя конструкция заключается в получении информации о пульсациях крутящего момента из сигнала скорости. В моделировании фильтр высоких частот для скорости …
Основы частотно-регулируемого привода (принцип работы)
Базовая конфигурация преобразователя частоты следующая.
Рис. 1 Базовая конфигурация частотно-регулируемого привода
Каждая часть частотно-регулируемого привода имеет следующие …
Длина кабеля между ЧРП и двигателем
Для длинных кабелей комбинация импеданса кабеля, высокочастотного входного импеданса двигателя и частоты переключения частотно-регулируемого привода может привести к отражению импульсов напряжения, что приведет к большим выбросам напряжения …
Функции кнопок частотно-регулируемого привода
Преобразователь частоты способен плавно запускать двигатели переменного тока (линейное изменение от 0 до 100% нагрузки) и, соответственно, будет достигаться экономия энергии. Также могу ли я подтвердить, что VFD также действует как …
Управление серводвигателем с частотно-регулируемым приводом
Выгодно выбирать приводы переменного тока, так как они поддерживают SLVC [ЧРП дает крутящий момент, почти аналогичный сервоприводу, на низких оборотах, если вы даете ему обратную связь от энкодера], можно получить доступ к нескольким двигателям, требование по крутящему моменту может быть выполнено, если …
Блог Gozuk: все об управлении электродвигателями и развитии приводов в области энергосбережения.
Избранное
Преобразователь частоты экономит энергию вентиляторов
Как и насосы, вентиляторы потребляют значительное количество электроэнергии, обслуживая несколько приложений. На многих заводах частотно-регулируемые приводы (переменные …
Как преобразователь частоты экономит энергию?
Преобразователь частоты управляет скоростью двигателя переменного тока.