Содержание

Электродвигатели переменного тока WEG WEG W22 IE3 200027590

К наиболее эффективным устройствам, образующим механическую энергию из электрической относится асинхронный двигатель. Асинхронный электродвигатель постоянного тока – это устройство, имеющее в своём строении вращающийся ротор. При этом в данном агрегате скорость оборотов магнитного поля ротора отличается от его собственной скорости вращения, что составляет ключевую особенность работы асинхронного двигателя. Исходя именно из такой особенности двигатель получил дополнительную составляющую «асинхронный», ведь если скорость в агрегате выровняется, тогда действие силы на основную (роторную) часть и наведение тока магнитным полем прекратится.

Устройство асинхронного электродвигателя

Устройство самого агрегата имеет в своём составе следующие ключевые компоненты:

  • Ротор, который может быть, как фазным, так и короткозамкнутым. Первый вариант включает в себя трёхфазную обмотку и наиболее часто имеет соединение «звездой». Второй же тип ротора представлен сердечник, имеющий стержни из алюминия, которые коротко изолированы так называемой «беличьей клеткой» – торцевыми кольцами;

  • Конструктивные составляющие (детали) – подшипники, крыльчатку, вал, лапы, вентиляторный кожух, подшипниковые шиты и коробку выводов – которые собственно и обеспечивают устройству охлаждение, вращение и защиту всего механизма;

  • Статор, состоящий из стальных листов. Во включённом в устройство ротора сердечнике имеются пазы, в которые в свою очередь уложены обмотки. Их оси сдвинуты по отношению друг к другу на 120°.

Принцип работы ассинхронного электродвигателя

Перед тем, как купить асинхронный электродвигатель, вам стоит узнать о его принципе работы поближе.

Сам принцип работы агрегата уже заложен в его присоединённом прилагательном слове «асинхронный», что обозначает несинхронную работу. Из него следует, что при включении устройства, имеющиеся в нём ротор и статор, образуют вращающиеся магнитные поля. Эти поля создаются с отличающимися частотами. При этом магнитные поля от частоты вращения ротора во всех случаях меньше, чем частоты от тех же полей, но образующихся от статора.

Для более детального усвоения принципа работы асинхронного двигателя, вы можете для себя визуально представить такой процесс в голове или на реальном примере в жизни: возьмите в руки постоянный магнит и медный диск. Положите медный диск на стол, а магнит вращайте несколько раз вокруг своей оси: вы сразу же заметите, что диск стал вращаться вслед за магнитом, но с небольшой задержкой. Так в структуре медного диска порождаются так называемые индукционные токи (Фуко), которые осуществляют своё движение по замкнутому кругу. При этом в нём образуется личное магнитное поле, которое в последующем и взаимодействует с магнитным полем от самого магнита.

В случае с асинхронным двигателем для создания такого вращающегося поля применяются статорные обмотки, а образуемый ими магнитный поток, порождает в проводниках ротора ЭДС. Взаимодействие же тока Фуко и статорного магнитного поля внутри самой обмотки ротора образует электромагнитную силу, которая в дальнейшем приводит вращение вала в действие.

Сферы применения ассинхронных двигателей

Область применения асинхронных электродвигателей затрагивает все сферы жизнедеятельности человека. К примеру, те виды устройств, которые работают от одной фазы, встречаются в эл. инструментах, бытовой технике и любых механизмах с малой мощностью работы. Это могут быть следующие:

  • Кухонная вытяжка;

  • Домашний вентилятор;

  • Советские стиральные машины;

  • Триммеры;

  • И прочие предметы.

В промышленности такие типы двигателей можно найти также в системах вентиляции, насосах или компрессорах, механизмах лебёдок и кранов, в металло- и деревообрабатывающих станках и так далее. К тому же сегодня такие устройства активно применяются и в электротранспорте.

Купить асинхронный электродвигатель в компании «Салютех»

Если вы желаете приобрести асинхронный электродвигатель, но всё ещё не знаете куда обратиться – компания «Салютех» рада приветствовать вас в своём интернет-магазине. Здесь вы найдёте широкий спектр товаров для промышленности и личного применения, а также огромное количество деталей и оборудования для ваших устройств. Электродвигатель асинхронный, цена которого ниже, чем где-либо есть только на «Салютех»!

Среди множества наименований товаров здесь вы можете найти асинхронные двигатели любой мощности, любого назначения и в различной ценовой категории. Доставка товаров активна различными способами по всей территории Российской Федерации и за её пределами!

Поспешите приобрести максимально качественное оборудование, которое прослужит вам долгие годы, вместе с Салютех!

Асинхронный двигатель | Строение и принцип работы асинхронного электродвигателя

Электрическими двигателями называют механизмы, предназначенные для преобразования электрической энергии в механическое движение. Электромоторы сопровождают человека практически во всех сферах его деятельности. Без них невозможно представить современную жизнь. Несмотря на надежность и долговечность, все же случаются поломки и сбои в работе таких устройств. Знание характеристик, особенностей поможет правильно выбирать, обслуживать и при необходимости ремонтировать асинхронные двигатели.

В асинхронных двигателях переменного тока (АД) частота вращения ротора не синхронизирована с частотой магнитного поля, индуцируемого током обмотки статора. От этого принципа произошло определение этой группы электромашин. В синхронных электрических машинах частоты совпадают.

В настоящее время разработано и применяется множество различных разновидностей АД, которые различаются конструктивно и по характеристикам. Бывают однофазные, двухфазные, трехфазные, многофазные конструкции, которые работают от сети переменного тока. Различается количество полюсов. Применяются модификации с постоянной и переменной частотой тока, последние называются инверторными. По типу ротора различают 2 вида: фазные электродвигатели и с короткозамкнутым ротором. Асинхронные электрические моторы выгодно отличаются от других преобразователей энергии компактностью, долговечностью высоким КПД.

АД распространены очень широко, и являются самым популярным типом электромашин. Асинхронные электродвигатели используют в компрессорах, системах водоснабжения, отопления, кондиционирования, автомобилестроении. Особенно востребованы такие устройства в областях, где требуется точно выдерживать скорость вращения вала, например при производстве полимеров, стеклотканей, проволоки.

Относительно маломощные однофазные агрегаты работают в вентиляторах, маломощной бытовой технике. Более производительные двухфазные агрегаты популярнее, их применяют в приводах стиральных машин, холодильников, иных приборов.

Значительно шире используются трехфазные асинхронные электромашины, в первую очередь в промышленности. Ими оснащают электроприводы станков, подъемных кранов, лифтов, многого другого. Этому способствуют надежность и экономичность электродвигателей.

Как устроен АД

Асинхронный электродвигатель состоит из двух основных узлов: неподвижного статора и вращающегося вокруг своей оси ротора. Статор представляет собой стандартную конструкцию, где сердечник выполнен как полый цилиндр, изготовленный из стальных пластин, изолированных друг от друга. В расположенных на внутренней окружности открытых пазах уложена первичная обмотка, на которую подается напряжение электрической сети.

Внутри статора расположен ротор, опирающийся на вал через подшипники. Сами подшипники с обеих сторон закрыты фиксирующими их крышками. Весь агрегат помещается в металлический корпус. У асинхронных двигателей средней и высокой мощности для более эффективного охлаждения в корпусе предусмотрены ребра, а также вентилятор на валу. Предусмотрена клеммная коробка, куда выводятся концы обмоток.

Ротор может быть двух типов: короткозамкнутым и фазным. Конструктивно они различаются, соответственно асинхронные двигатели принадлежат к одной из двух групп по типу ротора.

Асинхронный двигатель с короткозамкнутым ротором

Конструкция такого ротора предельно проста. Сердечник выполнен из штампованных листов, а роль вторичной обмотки играет набор параллельных друг другу металлических стержней, торцы которых замкнуты между собой стальными кольцами. Механизм напоминает беличье колесо.

Обмотки статора расположены под углом 120°. Если подать на них переменное напряжение со сдвигом 120°, внутри возникает вращающееся магнитное поле. Если поместить эту самую беличью клетку внутрь вращающегося поля, его силовые линии будут пересекать проводники ротора, и наводить в них электродвижущую силу, а соответственно появятся токи. В результате там создается собственное магнитное поле, которое будет взаимодействовать с вращающимся полем, входить с ним в «зацепление». Это означает, что ротор начинает вращаться в ту же сторону, что и магнитное поле статора.

Частота вращения ротора всегда меньше, чем частота поля статора. Если он «догонит» частоту статора, ЭДС наводиться не будет, вращающий момент станет равным нулю, и электродвигатель перестанет работать. В этом эффекте и кроется смысл асинхронности. Относительная величина отставания, выраженная в условных единицах, называется скольжением. Этот параметр зависит от характеристик ротора, в том числе его сопротивления.

Асинхронные двигатели с короткозамкнутым ротором не имеют подвижных контактов, их узлы проще, благодаря чему надежны и долговечны. Применяются в системах, не требующих регулировки скорости вращения, поскольку она затруднена, конструкция усложняется.

Асинхронный двигатель с фазным ротором

Фазный ротор по конструкции незначительно отличается от статора. Сердечник состоит из набора изолированных пластин, изготовленных из электростатической стали и закрепленных на вале. Между пластинами предусмотрены пазы, ориентированные вдоль продольной оси. В них укладываются витки вторичной обмотки, ее называют фазной. Число фаз обмоток статора и ротора должно быть одинаковым. Электрические цепи ротора подключается тремя контактными кольцами, на которых закреплены концы обмотки. Фазы соединяются звездочкой или треугольником. В двухполюсном асинхронном двигателе оси обмоток смещены друг относительно друга на 120°.

Предусмотрена возможность подключения дополнительного внешнего сопротивления для улучшения пусковых характеристик. Обычно используется реостат со ступенчатой регулировкой. Двигатель в такой конфигурации набирает обороты тоже ступенчато. При достижении оптимальных оборотов реостат отключается путем закорачивания токосъемных колец.

Особенности разных типов роторов

Электродвигатели с короткозамкнутыми роторами характеризуются следующими достоинствами:

  • постоянная скорость, которая не зависит от изменения нагрузки;
  • устойчивость к кратковременным механическим перегрузкам;
  • простой пуск и подключение.

Отмечают более высокий КПД и легкую автоматизацию. В то же время данный тип электрических моторов имеет и недостатки, основной из которых — сложная регулировка скорости. Поэтому такая конструкция применяется в системах с постоянной скоростью вращения электродвигателя. Помимо этого, недостатками считают большой ток и недостаточное усилие при пуске.

Электромоторы с фазным ротором уступают короткозамкнутым по потерям мощности из-за более сложной конструкции. Их применяют при необходимости регулировки скорости, уменьшении пускового тока и увеличении крутящего момента в момент старта.

Способы подключения

Запуск электромотора должен происходить с минимальным скачком тока в обмотках. Для этого применяется 5 основных способов подключения:

  • непосредственный — питание подается прямо на контакты электродвигателя через контактор или пускатель, когда падение напряжения не критично;
  • снижение напряжения в течение времени старта;
  • схема соединения обмоток статора переключается на треугольник со звезды;
  • плавный запуск;
  • изменение частоты напряжения сети.

Для однофазных версий используют расщепление полюсов, конденсаторный или резисторный пуск. Трехфазные электродвигатели запускаются или напрямую, переключением на треугольник, или посредством преобразователя напряжения, будь то реостат, трансформатор. Применяют изменение числа пар полюсов.

Как обеспечивается регулировка скорости

Регулировать частоту вращения асинхронного двигателя не так просто. Существуют 3 возможности. Можно изменить:

  • частоту питающей сети;
  • число пар полюсов;
  • величину скольжения.

Чтобы изменить число пар полюсов нужно специальным образом заложить обмотку статора. Дальнейшие действия заключаются в возможности переключаться на одну, две или три пары полюсов. Такое переключение будет ступенчатым. Соответственно, дискретно будет меняться и частота вращения ротора асинхронного двигателя. В многополюсных обмотках статора частота выше.

Второй способ — изменить скольжение. Его величина зависит, в том числе, и от сопротивления. Для этого ротор оснащают обмотками и делают выводы через кольца. Появляется скользящий контакт, надежность уменьшается. Но помощью реостата или ступенчатого переключения можно вводить дополнительное сопротивление в ротор и плавно, либо дискретно, изменять величину скольжения. Посредством этого действия появляется возможность регулировать частоту вращения асинхронных двигателей.

Однако эти способы не очень экономичны или неудобны. С развитием силовой электроники появился третий, самый действенный способ — изменять частоту питающей сети, для чего служат частотные преобразователи. При плавном изменении частоты питающего тока можно получить непрерывный ряд частот магнитного поля статора асинхронного двигателя в определенном диапазоне, а значит так же плавно изменять скорость вращения вала. Силовая электроника дала АД новый толчок в развитии, их доля превышает 80% всех электродвигателей в мире.

Как обеспечивается высокий пусковой момент

Одним из достоинств асинхронного двигателя с фазным ротором является высокий пусковой момент, тогда как короткозамкнутые роторы такого преимущества не обеспечивают. Об этом говорит его механическая характеристика. В момент пуска токи достигают 5 –7 значений номинальной величины, а произведение силы тока на магнитный поток и дает момент вращения.

Если представить, что ротор конструктивно устроен в виде двух беличьих колес разного диаметра, вставленных друг в друга, то в момент пуска первоначальный момент будет приложен к внешнему колесу большего диаметра. Происходит это из-за явления вытеснения тока на высокой частоте, он называется скин-эффект. При двыхполюсной катушке, частоте сети 50 Гц, магнитное поле ротора развивает угловую скорость 3 тыс. об/мин. Скин-слой при этом составляет 9 мм. В многополюсных машинах этот слой больше. Поэтому, при пуске ток вытесняется наружу, и за счет более длинного рычага возрастает момент. Когда электрическая машина набирает номинальные обороты и переходит в двигательный режим, скин-эффект нивелируется. С ростом частоты вращения ротора падает частота индукции в обмотке. Тогда ток идет уже по внутренней части. По этому принципу и обеспечивается высокая тяга на пуске.

В реальной практике в асинхронных двигателях с повышенным пусковым моментом скин-эффект обеспечивается за счет формирования глубокого паза в фазном роторе. Ток распределяется в разные моменты времени по глубине паза в разных областях. При пуске ток концентрируются во внешней части, потом когда двигатель раскручивается, скин-эффект исчезает. Ток перераспределяется в глубину паза, рабочий вращающий момент становится меньше. Это означает, что в устоявшемся двигательном режиме АД значительно экономичнее, частые старты повышают затраты.

Асинхронный преобразователь энергии как генератор

Генераторы предназначены для преобразования механической энергии вращения в электроэнергию. Если вращать ротор асинхронного двигателя и достигнуть частоты вращения поля статора, ток перестанет наводиться, и вращающий момент не будет создаваться. Если приложить внешнюю силу и продолжить вращать этот ротор по направлению поля с еще более высокой частотой вращения, в роторе начнет вновь начнет наводиться ЭДС, но противоположного направления. Электрический ток будет идти в другую сторону, не как в двигательном режиме. Эти токи будут наводить противоЭДС в обмотке статора. В ней будет создаваться ток. Такая конструкция является асинхронным генератором.

Если асинхронный двигатель включить в сеть, а потом начать вращать его ротор быстрее, чем частота поля статора в том же направлении, то возникнет генерация в сеть. При этом асинхронный двигатель будет потреблять из сети реактивную энергию для создания магнитного поля, а выдавать активную энергию. Пример — знаменитые электромобили «Tesla» первого поколения. Их оснащали современным инновационным асинхронным преобразователем энергии. Он работал как в режиме двигателя на разгоне, так и в режиме генератора при рекуперативном торможении, когда электроэнергия через инвертор поступает на зарядку батареи.

Асинхронные генераторы принадлежат к группе приборов, вырабатывающих переменный ток разной частоты. В схему включают инвертор, где ток преобразуется в постоянный. Затем снова в переменный, но уже с точно заданной частотой сети — 50 герц.

Преимущества и недостатки асинхронных двигателей

АД, благодаря своим качествам, снискали высокую популярность. К несомненным преимуществам таких устройств относят:

  • простую и отработанную конструкцию;
  • низкие затраты в эксплуатации: себестоимость единицы мощности в асинхронных двигателях самая низкая;
  • надежность, простоту обслуживания, чему способствует отсутствие щеток
  • невысокую стоимость.

Благодаря сдвигу фаз не требуются дополнительные устройства и преобразователи для формирования крутящего момента. Не последнюю роль играют малые потери. КПД при работе с максимальной нагрузкой может достигать 97 % благодаря минимальному количеству узлов.

Как и всем устройствам, асинхронным преобразователям присущи недостатки. Среди них:

  • затрудненное регулирование скорости вращения вала, узкий диапазон изменения.
  • высокие токи при пуске, что может привести к скачкам напряжения в сети.
  • инерционность ротора в момент старта: асинхронный двигатель может не запуститься, если приводит массивный агрегат.
  • зависимость от параметров сети.

Современные механические и электротехнические конструктивные решения почти полностью нивелируют эти недостатки.

И все же, несмотря на все достоинства, ресурс асинхронных электрических моторов не вечен. Бывают проскальзывания ротора относительно вала, замыкания обмоток, обрывы, повреждения корпуса, износ подшипников, другие неисправности. Все это проявляет себя падением мощности, посторонними звуками и запахами, а то и полным отказом. Приобретать новый агрегат бывает накладно, да и не всегда имеет смысл. В подавляющем большинстве случаев рациональнее устранить неисправность и продолжить эксплуатацию электрического двигателя.

Ремонтом электромоторов любого типа и мощности в Санкт- Петербурге занимается компания «Хельд Вэй». Оперативно и качественно выполняются все работы по восстановлению работоспособности электромоторов независимо от сложности. Каждая отремонтированная электрическая машина проходит испытания, чтобы убедиться в соответствии параметров требованиям к новому агрегату.

На работу предоставляются скидки, гарантии. Текущий ремонт возможен по месту эксплуатации, с выездом мастеров. Капитальный и ремонт средней степени производятся на территории предприятия. Имеются запчасти и комплектующие.

Звоните, обращайтесь.

Китай Производство: Производитель электродвигателей, Генератор переменного тока, Продажа: Поставщик генераторных установок

Дом

Производители/Поставщики

Подробнее

Список продуктов

Выбранные поставщики, которые могут вам понравиться

OEM-производитель Mono 500W PV Солнечная панель для проектов

Рекомендуемый продукт


Свяжитесь сейчас

Монокристаллическая солнечная панель 380 Вт, 400 Вт, 410 Вт, 420 Вт, 450 Вт, лучшее качество 1, черная панель солнечных батарей

Рекомендуемый продукт


Свяжитесь сейчас

Полуэлементная солнечная панель Longi Trina Ja 182 мм 210 мм 400 Вт 420 Вт 450 Вт 550 Вт 580 Вт 600 Вт 700 Вт 9bb 10bb 12bb Perc


Свяжитесь сейчас

Плоский универсальный двигатель переменного тока 230 В для умного кухонного комбайна

Рекомендуемый продукт


Свяжитесь сейчас

Робот-пылесос 25V BLDC Motor

Рекомендуемый продукт


Свяжитесь сейчас

Робот-пылесос 25V BLDC Motor

Рекомендуемый продукт


Свяжитесь сейчас

Ec Motor — Бесщеточный двигатель для вентилятора

Рекомендуемый продукт


Свяжитесь сейчас

Вентилятор двигателя Ecm для морозильных камер


Свяжитесь сейчас

Вентилятор двигателя Ecm для морозильных камер


Свяжитесь сейчас

Осевой вентилятор охлаждения двигателя с регулируемым углом наклона лопастей с низким уровнем шума и высоким расходом воздуха


Свяжитесь сейчас

Обслуживание и замена осевого вентилятора диаметром 1600 мм Оптимизация системы охлаждения двигателя


Свяжитесь сейчас

9wr P9t 10лопастной осевой вентилятор охлаждения для большого дизельного двигателя


Свяжитесь сейчас

Вертикальный химический технологический насос Fys для водяных насосов для химических жидкостей


Свяжитесь сейчас

Hj Горизонтальный нефтяной нефтехимический химический технологический водяной насос


Свяжитесь сейчас

Многофункциональный нержавеющий бетононасос типа Fub для грязной воды


Свяжитесь сейчас

Основы двигателей переменного тока | Асинхронные двигатели

Содержание

Двигатели переменного тока используются по всему миру во многих жилых, коммерческих, промышленных и коммунальных приложениях. Двигатель переменного тока может быть частью насоса, воздуходувки, конвейера или смесителя.

Двигатели преобразуют электрическую энергию в механическую.

Электродвигатели переменного тока в основном делятся на две категории: синхронный двигатель , и асинхронный двигатель .

 

Синхронный двигатель

Синхронный двигатель преобразует переменный ток в механическую энергию. Он работает на синхронной скорости. Скорость вращающегося магнитного поля называется синхронной скоростью (N s ) .

Ниже приведена простая формула для определения синхронной скорости:

N с = (120F/P), где F=частота и N=количество полюсов

Например, синхронная скорость для двух -полюсный двигатель, работающий на частоте 50 Гц, составляет 3000 об/мин.

 

Синхронная скорость уменьшается по мере увеличения числа полюсов.

Количество полюсов Синхронная скорость
2 3000
4 1500
6 1000
8 750
10 600

 

Асинхронный двигатель

Асинхронный двигатель обычно называют асинхронным двигателем переменного тока . Асинхронный двигатель преобразует переменный ток в механическую энергию со скоростью, меньшей синхронной скорости, поэтому он известен как асинхронный двигатель.

ссылка на изображение из Википедии

Асинхронные двигатели переменного тока обычно используются в промышленности. Важные части индукционного двигателя являются, как ниже:

⇒ Статор

⇒ Ротор

⇒ Подшипники

⇒ Конечная кронштейна

⇒ Охлаждающий вентилятор

6 Статор

6 . асинхронного двигателя. Статор состоит из тонких пластин из высококачественной легированной стали для уменьшения потерь на вихревые токи.

Статор в основном состоит из трех частей: Внешняя рама , Сердечник статора и Обмотки статора .

Внешняя рама — это внешний корпус двигателя, в котором находится сердечник статора и который защищает внутренние части асинхронного двигателя. Как правило, он отливается от небольших двигателей и изготавливается для больших двигателей.

 

Сердечник статора состоит из нескольких сотен тонких пластин из высококачественной кремнистой стали. Пластины статора закреплены вместе в пазах в корпусе статора. В пазы сердечника статора вставлены витки изолированного провода.

Каждая пластина изолирована от другой тонкими слоями лака. Каждая группа катушек вместе со стальным сердечником, который она окружает, образует электромагнит.

Обмотки статора напрямую связаны с трехфазным источником питания. В клеммной коробке асинхронного двигателя подключено шесть клемм (по две на каждую фазу).

Имеется определенное количество полюсов обмоток статора. Если количество полюсов увеличивается, скорость двигателя уменьшается, а если количество полюсов уменьшается, скорость двигателя увеличивается.

 

Ротор

Ротор — вращающаяся электрическая часть асинхронного двигателя. В основном существует два типа роторов: ротор с короткозамкнутым ротором и ротор с фазовой обмоткой .

 

Ротор с короткозамкнутым ротором

Ротор с короткозамкнутым ротором состоит из пакета стальных пластин с равномерно расположенными токопроводящими стержнями по окружности. Токопроводящие стержни состоят из алюминия или меди, которые соединяются концевыми кольцами.

Через этот проводник протекает ток, образуя электромагнит. Пазы ротора обычно скошены, а не параллельны валу. Это снижает гудящий шум двигателя, а также обеспечивает равномерный крутящий момент.

 

Ротор с фазной обмоткой

Конструкция ротора с фазной обмоткой отличается от конструкции ротора с короткозамкнутым ротором. Ротор с фазовой обмоткой также называют ротором с контактными кольцами. Он имеет цилиндрический многослойный сердечник. Он имеет полузакрытый паз на внешней периферии, в котором находится трехфазная изолированная обмотка.

Обмотки ротора с контактными кольцами соединены в звезду. Кольца скольжения установлены на валу, как показано на схеме. На контактных кольцах есть щетки. Щетки соединены с переменным сопротивлением. Он добавляет внешний резистор в цепь ротора.

Основной функцией контактного кольца является увеличение пускового момента и уменьшение пускового тока. Он также контролирует начальную скорость двигателя.

 

Концевой кронштейн

Торцевые кронштейны известны как корпуса подшипников. Подшипники установлены на концевых кронштейнах. С каждой стороны рамы двигателя установлены два концевых кронштейна.

Концевые кронштейны поддерживают ротор таким образом, что между статором и ротором остается небольшой воздушный зазор. Между статором и ротором нет прямой физической связи.

 

Подшипники

Подшипники устанавливаются на вал, который затем устанавливается на концевые кронштейны. Целью подшипников в электродвигателе является поддержка ротора и поддержание небольшого и постоянного воздушного зазора.

 

Охлаждающий вентилятор

Охлаждающий вентилятор обычно устанавливается на противоположном конце выходного вала. Вентилятор охлаждения вращается вместе с двигателем. Целью охлаждающего вентилятора является обеспечение увеличенного потока воздуха к двигателям при вращении.