Двигатель внутреннего сгорания — что это такое, как работает и какие у него перспективы

Все тепловые машины внутреннего сгорания (ДВС) преобразуют какую-нибудь (в нашем случае — тепловую) энергию в работу. Двигатели бывают разные – электрические, гидравлические, тепловые и т.д., в зависимости от того, какой вид энергии они преобразуют в работу. ДВС — двигатель внутреннего сгорания, это тепловой двигатель, в котором в полезную работу преобразуется теплота сгорающего в рабочей камере топлива, внутри двигателя. Также существуют двигателя с внешним сгоранием — это реактивные двигатели самолётов, ракет и т.д. в этих двигателях сгорание внешнее, поэтому они называются двигателями с внешним сгоранием.

Но простой обыватель чаще сталкивается с двигателем автомобиля и понимают под двигателем именно поршневой двигатель внутреннего сгорания. В поршневом ДВС, сила давления газов, возникающая при сгорании топлива в рабочей камере, воздействует на поршень, который совершает возвратно-поступательное движение в цилиндре двигателя и передаёт усилие на кривошипно-шатунный механизм, который преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Но это очень упрощенный взгляд на ДВС. На самом деле, в ДВС сосредоточены сложнейшие физические явления, пониманию которых посвятили себя многие выдающиеся ученые. Чтобы ДВС работал, в его цилиндрах, сменяя друг друга, происходят такие процессы, как подача воздуха, впрыск и распыление топлива, его смешивание с воздухом, воспламенение образовавшейся смеси, распространение пламени, удаление отработавших газов. На каждый процесс отводится несколько тысячных долей секунды. Добавьте к этому процессы, которые протекают в системах ДВС: теплообмен, течение газов и жидкостей, трение и износ, химические процессы нейтрализации отработавших газов, механические и тепловые нагрузки. Это далеко не полный перечень. И каждый из процессов должен быть организован наилучшим образом. Ведь из качества протекающих в ДВС процессов складывается качество двигателя в целом — его мощность, экономичность, шумность, токсичность, надежность, стоимость, вес и размеры.

Двигателя внутреннего сгорания бывают разные: 2-х танктные, 4-х тактные, дизельные, бензиновые, со смешенным питанием, карбюраторные, инжекторные и т. д. и это далеко не полный список! Как видите, вариантов двигателей внутреннего сгорания очень много, но если стоит затронуть классификацию ДВС, то для подробного рассмотрения всего объёма материала понадобится минимум 20-30 страниц — большой объём, не так ли? И это только классификация…


Принципиальный ДВС автомобиля НИВА


1 — Щуп для замера уровня масла в картере

2 — Шатун

3 — Маслозаборник

4 — Насос шестеренчатый

5 — Ведущая шестерня насоса

6 — Приводной вал НШ

7 — Подшипник скольжения (вкладыш)

8 — Вал коленчатый

9 — Манжета хвостовика коленчатого вала

10 — Болт для крепления шкива

11 — Шкив, служит для привода генератора, насоса водяного охлаждения

12 — Ремень клиноременной передачи

13 — Ведущая звездочка КШМ

14 — Звездочка привода НШ

15 — Генератор

16 — Лобовая часть ДВС

17 — Натяжитель цепи

18 — Вентилятор

19 — Цепь привода ГРМ

20 — Клапан впускной

21 — Клапан выпускной


22 — Звездочка распределительного вала

23 — Корпус распределительного вала

24 — Вал распределительный ГРМ

25 — Пружина клапана

26 — Крышка ГРМ

27 — Крышка заливная

28 — Толкатель

29 — Втулка клапан

30 — Головка блока цилиндров

31 — Пробка системы охлаждения

32 — Свеча зажигания

33 — Прокладка головки блока цилиндров

34 — Поршень

35 — Корпус манжеты

36 — Манжета

37 — Полукольцо от осаго смещения

38 — Крышка опоры коленчатого вала

39 — Маховик

40 — Блок цилиндров

41 — Крышка картера сцепления

42 — Поддон картера

Ни одна область деятельности несравнима с поршневыми ДВС по масштабам, количеству людей занятых в разработке, производстве и эксплуатации. В развитых странах деятельность четверти самодеятельного населения прямо или косвенно связана с поршневым двигателестроением. Двигателестроение, как исключительно наукоемкая область, определяет и стимулирует развитие науки и образования. Общая мощность поршневых двигателей внутреннего сгорания составляет 80 — 85% мощности всех энергоустановок мировой энергетики. На автомобильном, железнодорожном, водном транспорте, в сельском хозяйстве, строительстве, средствах малой механизации, ряде других областей, поршневой ДВС как источник энергии пока не имеет должной альтернативы. Мировое производство только автомобильных двигателей непрерывно увеличивается, превысив 60 миллионов единиц в год. Количество производимых в мире малоразмерных двигателей также превышает десятки миллионов в год. Даже в авиации поршневые двигатели доминируют по суммарной мощности, количеству моделей и модификаций и количеству установленных на самолеты двигателей. В мире эксплуатируется несколько сотен тысяч самолетов с поршневыми ДВС (бизнес-класса, спортивных, беспилотных и т. д.). В США на долю поршневых двигателей приходится около 70% мощности всех двигателей, установленных на гражданских летательных аппаратах.

Ознакомьтесь с работами по тепловому и динамическому расчету ДВС

Но со временем всё меняется и скоро мы увидим и будем эксплуатировать принципиально другие типы двигателей, которые будет иметь высокие эксплуатационные показатели, высокий КПД, простота конструкции и главное — экологичность. Да, всё верно, главным минусом двигателя внутреннего сгорания является его экологическая характеристика. Как бы не оттачивали работу ДВС, какие бы системы не внедряли, он всё равно оказывается существенное влияние на наше здоровье. Да, теперь можно с уверенностью сказать, что существующая технология моторостроения чувствует «потолок» — это такое состояние, когда та, или иная технология полностью исчерпала свои возможность, полностью выжато, всё что можно было сделать — уже сделано и с точки зрения экологии принципиально НИЧЕГО уже не изменить в существующих типах ДВС. Стоит вопрос: нужно полностью менять принцип работы двигателя, его энергоноситель (нефтяные продукты) на что-то новое, принципиально иное (водород, электричество, энергия атома, гравитацию, инерцию и т.д.). Но, к сожалению, это дело не одного дня или даже года, нужны десятилетия…

Пока ещё не одно поколение ученых и конструкторов будут исследовать и совершенствовать старую технологию постепенно подходя всё ближе и ближе к стенке, через которую уже будет невозможно перескочить. Еще очень долго ДВС будет давать работу тем, кто его производит, эксплуатирует, обслуживает и продает. Почему? Всё очень просто, но в то же время эту простую истину далеко не все понимают и принимают. Главная причина замедления внедрения принципиально иных технологий — капитализм. Да, как бы это странно не звучало, но именно капитализм, та система, которая как кажется должна быть заинтересована в новых технологиях, тормозит развитие человечества. Всё очень просто — нужно зарабатывать больше, а вкладывать меньше. Как же быть с теми нефтяными вышками, нефтезаводами и доходами? Никак. К сожалению, все измерятеся деньгами.

ДВС «хоронили» неоднократно. В разное время на смену ему приходили электродвигатели на аккумуляторах, топливные элементы на водороде и многое другое. ДВС неизменно побеждал в конкурентной борьбе. И даже проблема исчерпания запасов нефти и газа – это не проблема ДВС. Существует неограниченный источник топлива для ДВС. По последним данным, нефть может восстанавливаться, а что это значит для нас ?

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рисунок слева), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике. Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Пунктирной линией на графике выше показаны более оптимальные характеристики двигателя.

Статьи по теме:
1. Краткий обзор основных видов конструкций и тенденций развития бензиновых двигателей;
2. Альтернативное топливо — топливо будущено и настоящего.

Двигатели и передача механической энергии (к параграфу 14)

Каталог

Поиск книг

Электронные приложения

Авторизация

Подписка на рассылку

Стихи о нас

Богатство
Идей,
Новизна,
Оптимизм и
Мудрость
Рождению гениев пусть помогает трудность.

Трудности эти уже превратились в смыслы.
Борьба,
Интерес,
Наука,
Ответственность,
Мысли…

Тивикова С.К., зав. каф. начального образования НИРО

Обратная связь

Отправить сообщение с сайта

Партнёры

  • Главная
  •  > 
  • Методист
  •  > 
  • Авторские мастерские
  •  > 
  • Технология
  •  > 
  • Бешенков С. А.
Двигатели и передача механической энергии (к параграфу 14)

Двигатель – одна из самых важных автомобильных систем.

Двигатель является источником механической энергии, необходимой для движения автомобиля.

Для того, чтобы получить механическую энергию, в двигателе автомобиля преобразуется другой вид энергии (энергия сгорания топлива, электрическая энергия и др.). Источник энергии при этом должен находиться непосредственно на автомобиле и периодически пополняться.

Передача механической энергии от двигателя на ведущие колеса осуществляется через трансмиссию. Силовая установка – это конструктивное объединение двигателя и трансмиссии носит устоявшееся название.

В зависимости от вида преобразуемой энергии различают следующие основные виды автомобильных двигателей:

  • двигатели внутреннего сгорания (ДВС)
  • электродвигатели
  • комбинированные двигатели, т.н. гибридные силовые установки

Двигатель внутреннего сгорания преобразует химическую энергию сгорающего топлива в механическую работу. Известными типами ДВС являются:

  • поршневой двигатель
  • роторно-поршневой двигатель
  • газотурбинный двигатель

Наибольшее распространение получили поршневые двигатели внутреннего сгорания, использующие в качестве источника энергии жидкое топливо (бензин, дизельное топливо) или природный газ.

Автомобиль, использующий в качестве двигателя электродвигатель, называется электромобилем. Для работы электродвигателя требуется электрическая энергия, источником которой могут быть аккумуляторные батареи или топливные элементы. Основным недостатком электромобилей, ограничивающим их широкое применение, является небольшая емкость источника электрической энергии и соответственно низкий запас хода.

Гибридная силовая установка объединяет двигатель внутреннего сгорания и электродвигатель, связь которых осуществляется через генератор. Передача энергии на ведущие колеса в гибридном автомобиле может производиться последовательно (ДВС – генератор – электродвигатель – колесо) или параллельно (ДВС – трансмиссия – колесо и ДВС – генератор – электродвигатель – колесо). Предпочтительной является параллельная компоновка гибридной силовой установки.

gif»>
 

МОТОР И ДВИГАТЕЛЬ

МОТОР И ДВИГАТЕЛЬ


МОТОР И ДВИГАТЕЛЬ

Фред Лэндис


Автономные устройства, преобразующие электрические, химические,
или ядерную энергию в механическую энергию называют двигателями и
двигатели. Во многих регионах мира они заменили человека и
сила животных, обеспечивая энергию для транспортировки и вождения
все виды машин. Химическая энергия топлива может быть преобразована
при сгорании в тепловую или тепловую энергию в тепловом двигателе.
Двигатель, в свою очередь, преобразует тепловую энергию в механическую.
энергии, как в двигателях, приводящих в движение валы. Когда происходит возгорание
в той же единице, которая производит механическую энергию,
устройство называется двигателем внутреннего сгорания. Автомобильный бензин
или дизельные двигатели — это двигатели внутреннего сгорания. Паровой двигатель,
с другой стороны, это двигатель внешнего сгорания котел
находится отдельно от двигателя. Электродвигатели преобразуют электрические
энергию в механическую энергию.

Тепловые двигатели

Термин «тепловой двигатель» включает в себя все двигатели, производящие
работу или передачу энергии, работая между высокими
и низких температурах и часто между высоким и низким давлением
также. Наиболее распространены тепловые двигатели внутреннего сгорания.
двигателей, особенно бензиновых.

Бензиновые двигатели работают на
смесь воздуха и паров бензина, которая обычно втягивается в
цилиндро-поршневой компоновки и сжат поршнем. Как
объем камеры уменьшается, давление и температура
внутри него увеличиваются. Вблизи точки максимального сжатия
пары топлива воспламеняются от искры. Горячие газы расширяются и заставляют
поршень вниз в так называемом рабочем такте, доставляя
работа через шток поршня к коленчатому валу. Остаточные газы
затем удаляются, и процесс повторяется.

В обычном четырехтактном двигателе компрессия
а процесс расширения происходит за один оборот коленчатого вала.
Первый такт называется тактом впуска, второй — тактом сжатия.
Инсульт. Во время второго оборота следует рабочий ход
тактом выпуска, когда отработавшие газы выбрасываются. затем
всасывается свежая смесь паров воздуха и бензина. В двухтактных двигателях
выхлоп происходит в конце рабочего такта, а
свежая бензино-воздушная смесь подается в начале
такта сжатия. Большинство двухтактных двигателей ограничены
для небольших двигателей, таких как те, которые используются в газонокосилках и некоторых небольших
мотоциклы. Двигатели инжекторного типа впрыскивают бензин мелко
распылять непосредственно перед сжиганием. Другой тип бензинового двигателя
представляет собой вращающийся двигатель Ванкеля. Он состоит из треугольного ротора.
в почти эллиптическом корпусе. Образуются воздушные камеры серповидной формы.
между ротором и корпусом служат камерами сгорания.

Дизельные двигатели изначально
сжимать воздух до гораздо более высокого давления и температуры, чем
бензиновые двигатели. Затем топливо впрыскивается и воспламеняется без
Искра. Требуемое более высокое давление делает дизельные двигатели тяжелее.
и дороже бензиновых двигателей; однако они, как правило,
более эффективным. Они используются в основном в автобусах, грузовиках, локомотивах,
и на некоторых электростанциях.

Газотурбинные двигатели использовать
роторный компрессор для сжатия непрерывного потока поступающего
воздуха, тем самым повышая температуру воздуха. Затем воздух проходит
через камеру сгорания, где топливо впрыскивается и сгорает.
Газ, находящийся под высоким давлением и температурой, расширяется.
через турбину, обеспечивающую мощность для привода компрессора.
На выходе из турбины газы все еще находятся при температуре и давлении
выше, чем у наружного воздуха. В авиационном реактивном двигателе остальные
газ расширяется через сопло, образуя высокоскоростную струю, которая
создает тягу для движения самолета. Альтернативно,
газ, выходящий из первой турбины, может быть расширен через вторую
турбина, которая затем может приводить в действие электрогенератор или, в
корпус пропеллера, авиационного винта. Газотурбинные двигатели
менее эффективны, чем дизели, но могут производить больше энергии для
заданный размер. Таким образом, они часто используются для резервного питания от электросети.
коммунальные услуги.

Ракетные двигатели используют два
химические вещества, которые при соединении выделяют химическую энергию, увеличивающую
температура и давление в камере ракеты. Горячие газы
затем им позволяют расширяться через сопло для создания тяги.
Топливо может быть жидким или твердым. Потому что ракетные двигатели могут работать
за пределами земной атмосферы это двигательные установки
используется в космических аппаратах.

Паровые машины внешнего сгорания
двигатели, которые сжигают топливо в отдельном котле для производства пара при
высокое давление и температура. Затем пар расширяется, совершая возвратно-поступательное движение.
двигатель или турбина. Пар низкого давления обычно конденсируется
в воду перед закачкой обратно в котел. В паре
локомотив, однако, расширенный пар сдувается.

Паровые двигатели медленны, тяжелы и неэффективны.
сегодня используются редко. Вместо этого сегодняшние крупные паровые электростанции
использовать паровые турбины, которые могут работать при гораздо более высоких температурах
и давления и может обрабатывать больше пара. Паровые турбины могут поставлять
больше мощности, чем у больших дизелей, при меньших затратах.

Ионные двигатели были
предлагается для космических полетов. Их источником топлива будет легко
ионизируемое вещество, такое как металлический цезий, для подачи ионов или
заряженные частицы. Генератор или солнечные батареи будут производить
электрическое поле, которое достаточно сильно отталкивало бы ионы
выбрасывать их из двигателя, тем самым создавая тягу. Такой
двигатели будут производить очень небольшую тягу, но они должны быть в состоянии
работать в течение длительного времени в межзвездном полете.

Электродвигатели

Электродвигатели состоят из двух механических частей a
статор, или неподвижная часть, и ротор, или вращающаяся часть, и
два комплекта электрических обмоток возбуждения и якоря. электромагнитный
поля, создаваемые в воздушном зазоре между статором и ротором
взаимодействуют друг с другом и создают крутящий момент или вращающую силу,
который вращает двигатель. Выходная мощность является произведением
крутящий момент и скорость вращения. Двигатель классифицируется как двигатель постоянного тока (прямой
ток) или AC (переменный ток), в зависимости от источника питания.

Асинхронные двигатели являются
Наиболее распространенные двигатели переменного тока. Обмотка возбуждения обычно намотана
в пазы, расположенные вокруг стального статора, чтобы сформировать магнитные полюса.
В обмотках статора создается вращающееся электрическое поле.
индуцирует токи в обмотках ротора. Взаимодействие между
эти два поля создают крутящий момент для вращения двигателя. Мотор
скорость меняется в зависимости от нагрузки.

Синхронные двигатели работать
с фиксированной скоростью независимо от нагрузки. Однофазный гистерезис
двигатели используются в небольших устройствах с постоянной скоростью, таких как электрические
часы и фонографы. Обмотки статора соответствуют
Индукционный двигатель. Источник поля обеспечивается либо прямым
током или постоянным магнитным материалом.

Двигатели постоянного тока обеспечивают крутящий момент
и управление скоростью по более низкой цене, чем блоки переменного тока, и механически
более сложный. Полюсная обмотка возбуждения на статоре состоит
магнитных полюсов, каждый из которых имеет множество витков, несущих небольшой ток.
Обмотка якоря размещена на роторе концами каждого
катушка, соединенная с противоположными стержнями. По мере вращения ротора удельная
катушка, несущая ток, изменяется, но ее относительное расположение относительно
стационарное поле остается фиксированным.


Источник: Интерактивная энциклопедия Комптона.

Насколько эффективны двигатели: термодинамика и эффективность сгорания

Насколько эффективны двигатели? Двигатели внутреннего сгорания ошеломляюще неэффективны. Большинство дизельных двигателей не имеют даже 50-процентного теплового КПД. Из каждого галлона дизельного топлива, сжигаемого двигателем внутреннего сгорания, менее половины вырабатываемой энергии становится механической энергией. Другими словами, из энергии, производимой дизельным двигателем в пикапе, например, менее половины произведенной энергии фактически толкает пикап по дороге.

А автомобили с бензиновым двигателем еще неэффективнее, значительно более неэффективны.

Хотя может показаться, что транспортное средство, которое преобразует только 50% тепловой энергии, вырабатываемой при сгорании, в механическую энергию, чрезвычайно неэффективно, многие транспортные средства на дороге фактически тратят впустую около 80% энергии, вырабатываемой при сгорании топлива. Бензиновые двигатели часто выбрасывают более 80% произведенной энергии через выхлопную трубу или отдают эту энергию в окружающую среду вокруг двигателя.

Причины низкой эффективности двигателей внутреннего сгорания являются следствием законов термодинамики. Термодинамика определяет тепловой КПД — или неэффективность — двигателя внутреннего сгорания.

«Двигатели внутреннего сгорания производят механическую работу (мощность) за счет сжигания топлива. В процессе сгорания топливо окисляется (сгорает). Этот термодинамический процесс высвобождает тепло, которое частично преобразуется в механическую энергию», — сообщает X-Engineer.org. Но большая часть произведенной энергии теряется. Большая часть энергии, вырабатываемой двигателем внутреннего сгорания, тратится впустую.

В то время как даже краткое объяснение того, почему двигатели внутреннего сгорания обязательно требуют несколько длинного объяснения термодинамики, объяснение длины в Твиттере легко понять: разница в температуре между сгоранием топлива, двигателем и воздухом снаружи двигателя определяет тепловой КПД. — то есть неэффективность двигателя внутреннего сгорания.

Что такое тепловой КПД и законы термодинамики

КПД двигателя внутреннего сгорания измеряется как сумма теплового КПД. Тепловой КПД является следствием термодинамики. Существует и определение, и формула для теплового КПД. Согласно LearnThermo.com, «тепловой КПД — это мера производительности энергетического цикла или теплового двигателя».

Строгое определение теплового КПД, согласно словарю Merriam-Webster Dictionary, это «отношение тепла, используемого тепловым двигателем, к общему количеству тепловых единиц в потребленном топливе». Более практичное непрофессиональное определение теплового КПД заключается в том, что количество энергии, вырабатываемой при сжигании топлива в двигателе внутреннего сгорания, по отношению к количеству этой энергии, которая становится механической энергией.

Однако формула для теплового КПД может дать самое простое объяснение. Тепловая энергия – это количество потерянного тепла, деленное на количество тепла, переданного в систему, причем тепло является синонимом энергии. Результатом деления потерь на вход является коэффициент теплового КПД этой системы. Коэффициент теплового КПД — это количество энергии, которое идет на приведение в действие коленчатого вала двигателя внутреннего сгорания — по крайней мере, с поршнями.

Существуют два закона термодинамики, определяющие тепловой КПД двигателя внутреннего сгорания.

Первый закон термодинамики

Тепловой КПД — следовательно, КПД двигателя внутреннего сгорания — определяется законами термодинамики. Согласно первому закону термодинамики выход энергии не может превышать энерговклад. Другими словами, энергия, которую вырабатывает двигатель — будь то потерянная энергия или энергия, используемая для передвижения, — никогда не будет больше энергетического потенциала топлива, подаваемого в камеру сгорания.

Первый закон термодинамики интуитивно понятен. Первый закон термодинамики является неотъемлемой частью закона сохранения энергии. Энергия не может быть ни создана, ни уничтожена. Первый закон термодинамики — это просто еще одна формула, доказывающая, что энергия не может быть создана. Используя деньги в качестве метафоры для первого закона термодинамики, вы не можете получить больше четырех четвертей с доллара.

В то время как первый закон имеет отношение к эффективности двигателя внутреннего сгорания, именно второй закон термодинамики объясняет, почему двигатели внутреннего сгорания настолько неэффективны.

Второй закон термодинамики

Согласно второму закону термодинамики невозможно достичь 100% тепловой эффективности.

Существует предел потенциальной эффективности двигателя внутреннего сгорания. Второй закон термодинамики, называемый теоремой Карно, гласит: «Даже идеальный двигатель без трения не может преобразовывать почти 100% поступающего тепла в работу. Ограничивающими факторами являются температура, при которой тепло поступает в двигатель, и температура окружающей среды, в которую двигатель отводит отработанное тепло».

Чрезвычайно большой процент энергии, вырабатываемой при сгорании топлива, теряется. Потеря энергии является причиной перегрева двигателя. Нагрев двигателя происходит за счет кондуктивной теплопередачи. Потеря энергии в виде тепла является причиной нагрева воздуха вокруг двигателя за счет конвективной теплопередачи. Вместо того, чтобы производить механическую энергию, обогреватель нагревает двигатель и атмосферу вокруг двигателя. В результате конвекции и теплопроводности энергия теряется в воздухе вокруг двигателя и в двигателе, потому что и двигатель, и воздух вокруг двигателя имеют более низкую температуру, чем температура сгорания топлива.

Кроме того, огромная часть энергии, производимой двигателем внутреннего сгорания, просто выбрасывается выхлопными газами, опять же, никогда не превращаясь в механическую энергию.

Теплота — энергия — потери и теорема Карно

Чем больше разница температур между температурой сгорания топлива и температурой окружающей среды, тем ниже тепловой КПД двигателя. Другими словами, чем больше разница между температурой горящего топлива и металла и воздуха вокруг него, тем больше потери энергии. Чем больше разница температур, тем больше неэффективность двигателя — факт, доказанный теоремой Карно.

Предел Карно – это количество энергии, выделяемой при сгорании, которая становится механической энергией. Этот предел определяется разницей в теплоте сгорания и температуре элементов и атмосферы вокруг процесса сгорания. Чем больше разница между температурой горящего топлива и температурой окружающей среды вокруг процесса горения, тем ниже предел Карно .

Каков тепловой КПД бензинового двигателя по сравнению с дизельным двигателем?

Термический КПД бензинового двигателя чрезвычайно низок. В то время как есть компании, стремящиеся улучшить тепловую эффективность бензиновых двигателей, чрезвычайно сложно даже сравнить эффективность сгорания со старыми дизельными двигателями. По словам Toyota, компании, пытающейся повысить тепловую эффективность своих автомобилей, «большинство двигателей внутреннего сгорания невероятно неэффективны в преобразовании сожженного топлива в полезную энергию. Эффективность, с которой они это делают, измеряется с точки зрения «теплового КПД», и большинство бензиновых двигателей внутреннего сгорания в среднем имеют тепловой КПД около 20 процентов.

Дизель обычно имеет более высокий тепловой КПД, в некоторых случаях тепловой КПД приближается к 40 процентам. Toyota находится в процессе разработки нового бензинового двигателя, который, по утверждению компании, имеет максимальную тепловую эффективность 38 процентов, тепловую эффективность, которая «больше, чем у любого другого серийного двигателя внутреннего сгорания».

Другой взгляд на тепловую эффективность связан с затратами на топливо. На каждый доллар бензина, который покупает человек, уходит почти 80 центов в виде отходов. Только 20 центов из каждого доллара фактически приводят в движение бензиновый двигатель. Несмотря на то, что это поразительно мало, даже обычные дизельные двигатели стоят не менее 40 центов за доллар при механическом использовании.

Несмотря на то, что 60 центов из каждого доллара дизельного топлива теряется из-за термической неэффективности, это все же в два раза лучше, чем средний бензиновый двигатель.

Почему тепловой КПД дизельного двигателя выше, чем у бензинового

В то время как Toyota утверждает, что тепловой КПД бензиновых двигателей составляет 20%, а дизельных двигателей — 40%, MDPI из Базеля, Швейцария, считает, что эти цифры на самом деле выше. Согласно MDPI, бензиновые двигатели имеют тепловой КПД от 30% до 36%, тогда как дизельные двигатели могут достигать термического КПД почти 50%. «Двигатели с искровым зажиганием современного производства работают с тормозным тепловым КПД (КПД) порядка 30–36 % [12], двигатели с воспламенением от сжатия давно признаны одними из самых эффективных силовых агрегатов, текущий КПД дизелей может достигать до 40–47%.

Тем не менее, это означает, что тепловой КПД дизельного двигателя примерно на 25% выше, чем у бензинового двигателя. Согласно Popular Mechanics, причина, по которой дизельные двигатели имеют более высокий тепловой КПД, чем бензиновые, заключается в двух факторах: степени сжатия и сгорании на обедненной смеси. «Когда дело доходит до преодоления больших расстояний на скоростях по шоссе, дизельные двигатели с более высокой степенью сжатия и сгоранием на обедненной смеси обеспечивают эффективность, с которой в настоящее время не может сравниться ни один газовый двигатель — по крайней мере, без серьезной помощи со стороны дорогой гибридной системы».

Тепловой КПД и степень сгорания

В двигателе внутреннего сгорания тепловой КПД частично определяется степенью сжатия. Степень сжатия — это разница между наибольшим объемом в камере сгорания — когда поршень опущен — и объемом в камере сгорания, когда она достигает точки, в которой топливо, впрыскиваемое в камеру, взрывается. Степень сжатия бензинового двигателя намного ниже, чем у дизельного двигателя.

Коэффициент сгорания типичного бензинового двигателя составляет от 8:1 до 12:1. «Если компрессия бензинового двигателя выше примерно 10,5, если октановое число топлива не высокое, происходит детонационное сгорание». Детонация является результатом предварительного сгорания, когда бензин воспламеняется из-за давления сжатия, а не сжатия в результате воздействия искры.

Дизельные двигатели имеют гораздо более высокую степень сжатия. На это есть две причины. Во-первых, дизельные двигатели являются двигателями сжатия. Компрессия — это то, что заставляет дизель в камере сгорания взрываться. В компрессионном двигателе нет искры, которая воспламеняет дизель. Кроме того, дизельные двигатели имеют более высокую степень сжатия, поскольку дизель является более стабильным топливом. Для воспламенения дизельного топлива необходимо большее давление — более высокая степень сжатия. Степень сжатия большинства дизельных двигателей составляет от 14:1 до 25:1.

Решения для повышения эффективности двигателя

Владелец транспортного средства мало что может сделать для повышения теплового КПД двигателя. Ограничения конструкции и ограничения технологий не позволяют владельцам вносить значительные улучшения в транспортное средство в отношении теплового КПД. Тем не менее, возможно улучшение эффективности сгорания.

Эффективность сгорания — это скорость, с которой двигатель преобразует топливо в энергию. В частности, применительно к тяжелому топливу с высокой плотностью энергии — дизельному топливу, мазуту, бункерному топливу и т. д. — существуют технологии, позволяющие значительно повысить эффективность сгорания. Из-за природы топлива с высокой плотностью энергии, а именно из-за того, что топливо с высокой плотностью энергии состоит из больших и длинных молекул углеводородов, тяжелое топливо может иметь низкую эффективность сгорания.

Топлива с низкой плотностью энергии, такие как бензин и природный газ, обычно имеют постоянную скорость сгорания по сравнению с более тяжелыми видами топлива, поскольку они состоят из более мелких молекул углеводородов с короткой цепью. Но более крупные и длинные молекулы углеводородов и молекулярные цепи в тяжелом топливе имеют тенденцию объединяться в кластеры, что означает, что молекулы внутри кластера не подвергаются воздействию воздуха. Без воздуха углеводороды не воспламеняются.

Топливные катализаторы являются одним из простейших средств повышения эффективности сгорания тяжелого топлива. Благородные металлы — также известные как катализаторы — в составе благородных металлов разрушают кластеры топлива, деполяризуя внутренние заряды, которые заставляют углеводороды собираться вместе.