Содержание

Какак разница между короткозамкнутым и фазным ротором

Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела или отдающие её рабочему телу.

Как вы знаете, асинхронные электродвигатели имеют трехфазную обмотку (три отдельные обмотки) статора, которая может формировать разное количество пар магнитных полюсов в зависимости от своей конструкции, что влияет в свою очередь на номинальные обороты двигателя при номинальной частоте питающего трехфазного напряжения. При этом роторы двигателей данного типа могут отличаться, и у асинхронных двигателей они бывают короткозамкнутыми или фазными. Чем отличается короткозамкнутый ротор от фазного ротора — об этом и пойдет речь в данной статье.

Короткозамкнутый ротор

Представления о явлении электромагнитной индукции подскажут нам, что произойдет с замкнутым витком проводника, помещенным во вращающееся магнитное поле, подобное магнитному полю статора асинхронного двигателя. Если поместить такой виток внутри статора, то когда ток на обмотку статора будет подан, в витке будет индуцироваться ЭДС, и появится ток, то есть картина примет вид: виток с током в магнитном поле. Тогда на такой виток (замкнутый контур) станет действовать пара сил Ампера, и виток начнет поворачиваться вслед за движением магнитного потока.

Так и работает асинхронный двигатель с короткозамкнутым ротором, только вместо витка на его роторе расположены медные или алюминиевые стержни, замкнутые накоротко между собой кольцами с торцов сердечника ротора. Ротор с такими короткозамкнутыми стержнями и называют короткозамкнутым или ротором типа «беличья клетка» поскольку расположенные на роторе стержни напоминают беличье колесо.

Проходящий по обмоткам статора переменный ток, порождающий вращающееся магнитное поле, наводит ток в замкнутых контурах «беличьей клетки», и весь ротор приходит во вращение, поскольку в каждый момент времени разные пары стержней ротора будут иметь различные индуцируемые токи: какие-то стержни — большие токи, какие-то — меньшие, в зависимости от положения тех или иных стержней относительно поля. И моменты никогда не будут уравновешивать ротор, поэтому он и будет вращаться, пока по обмоткам статора течет переменный ток.

К тому же стержни «беличьей клетки» немного наклонены по отношению к оси вращения — они не параллельны валу. Наклон сделан для того, чтобы момент вращения сохранялся постоянным и не пульсировал, кроме того наклон стержней позволяет снизить действие высших гармоник индуцируемых в стержнях ЭДС. Будь стержни без наклона — магнитное поле в роторе пульсировало бы.

Скольжение s

Для асинхронных двигателей всегда характерно скольжение s, возникающее из-за того, что синхронная частота вращающегося магнитного поля n1 статора выше реальной частоты вращения ротора n2.

Скольжение возникает потому, что индуцируемая в стержнях ЭДС может иметь место только при движении стержней относительно магнитного поля, то есть ротор всегда вынужден хоть немного, но отставать по скорости от магнитного поля статора. Величина скольжения равна s = (n1-n2)/n1.

Если бы ротор вращался с синхронной частотой магнитного поля статора, то в стержнях ротора не индуцировался бы ток, и ротор бы просто не стал вращаться. Поэтому ротор в асинхронном двигателе никогда не достигает синхронной частоты вращения магнитного поля статора, и всегда хоть чуть-чуть (даже если нагрузка на валу критически мала), но отстает по частоте вращения от частоты синхронной.

Скольжение s измеряется в процентах, и на холостом ходу практически приближается к 0, когда момент противодействия со стороны ротора почти отсутствует. При коротком замыкании (ротор застопорен) скольжение равно 1.

Вообще скольжение у асинхронных двигателей с короткозамкнутым ротором зависит от нагрузки и измеряется в процентах. Номинальное скольжение — это скольжение при номинальной механической нагрузке на валу в условиях, когда напряжение питания соответствует номиналу двигателя.

Фазный ротор

Асинхронные двигатели с фазным ротором, в отличие от асинхронных двигателей с короткозамкнутым ротором, имеют на роторе полноценную трехфазную обмотку. Подобно тому, как на статоре уложена трехфазная обмотка, так же и в пазах фазного ротора уложена трехфазная обмотка.

Выводы обмотки фазного ротора присоединены к контактным кольцам, насаженным на вал, и изолированным друг от друга и от вала. Обмотка фазного ротора состоит из трех частей — каждая на свою фазу — которые чаще всего соединены по схеме «звезда».

К обмотке ротора через контактные кольца и щетки присоединяется регулировочный реостат. Краны и лифты, например, пускаются под нагрузкой, и здесь необходимо развивать существенный рабочий момент. Невзирая на усложненность конструкции, асинхронные двигатели с фазным ротором обладают лучшими регулировочными возможностями касательно рабочего момента на валу, чем асинхронные двигатели с короткозамкнутым ротором, которым требуется промышленный частотный преобразователь.

Обмотка статора асинхронного двигателя с фазным ротором выполняется аналогично тому, как и на статорах асинхронных двигателей с короткозамкнутым ротором, и аналогичным путем создает, в зависимости от количества катушек (три, шесть, девять или более катушек), два, четыре и т. д. полюсов. Катушки статора сдвинуты между собой на 120, 60, 40 и т. д. градусов. При этом на фазном роторе делается столько же полюсов, сколько и на статоре.

Регулируя ток в обмотках ротора, регулируют рабочий момент двигателя и величину скольжения. Когда регулировочный реостат полностью выведен, то для уменьшения износа щеток и колец их закорачивают при помощи специального приспособления для подъема щеток.

Ранее ЭлектроВести писали, что в Атлантическом океане первый в мире телескопический ветрогенератор обеспечивает электроэнергией 5000 домохозяйств на одном из Канарских островов — Гран-Канария.

По материалам: electrik.info.

Асинхронные двигатели с фазным ротором

В закладки ↑

Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

  • Технические характеристики ↓
  • Устройство ↓
  • Принцип работы ↓
  • Преимущества и недостатки ↓
  • Применение ↓

Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

  1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
  2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
  3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
  4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
  5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
  6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
  7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
  8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
  9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
  10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
  11. Параметры напряжения могут достичь значения, которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.

Технические характеристики

Основные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

Устройство

Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

  1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
  2. Воздушный зазор разделяет оба элемента между собой.
  3. И статор, и ротор обладают специальной обмоткой.
  4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
  5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
  6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
  7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
  8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
  9. Катушки составляют фазы самого двигателя, к которым происходит подключение фазы от питающей электросети.
  10. Ротор состоит из вала и сердечника.
  11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
  12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
  13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
  14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

Принцип работы

После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

  1. На статор, обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
  2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
  3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
  4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
  5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
  6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

Востребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

  1. Значительные показатели, которых способен достигать начальный вращающий момент после запуска машины.
  2. Механические перегрузки, которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
  3. При возникновении разнообразных перегрузок в системе, двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
  4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
  5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
  6. Конструкция и устройство таких машин являются довольно простыми.
  7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
  8. Относительно невысокая стоимость.
  9. Обслуживание таких машин не требует значительных затрат сил и времени.

Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

  1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
  2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования, предназначенного для осуществления аудиозаписи.

Статья была полезна?

0,00 (оценок: 0)

Загрузка…

Понравилась статья? Поделиться с друзьями:

Асинхронный электродвигатель с короткозамкнутым и фазным ротором: устройство и принцип действия

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаK1K2
вторая фазаL1L2
третья фазаM1M2
Соединение в звезду (число выводов 3 или 4)
первая фазаK
вторая фазаL
третья фазаM
точка звезды (нулевая точка)Q
Соединение в треугольник (число выводов 3)
первый выводK
второй выводL
третий выводM

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фазаР1
вторая фазаР2
третья фазаР3
нулевая точка
Соединение треугольником (число выводов 3)
первый выводР1
второй выводР2
третий выводР3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Однофазные и трехфазные д0вигатели асинхронного типа

Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

  1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
  2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
  3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.

  4. Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.

Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

  1. Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.

  2. Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.

Особенности электродвигателя переменного тока, его достоинства и недостатки

На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.

Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.

Основное отличие электродвигателя переменного тока от его ближайшего родственника – электродвигателя постоянного тока – заключается в том, что первый питается переменным током. Если сравнивать их функциональные возможности, первый менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.

Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.

Устройство синхронного электродвигателя

Строение агрегата данного вида типично. Двигатель состоит из:

  • Неподвижной части (якорь или статор).
  • Подвижной части (ротор или индуктор).
  • Вентилятора.
  • Контактных колец.
  • Щеток.
  • Возбудителя.

Статор представляет собой сердечник, состоящий из обмоток, который заключен в корпус. Индуктор комплектуется электромагнитами постоянного тока (полюсами). Конструкция индуктора может быть двух видов – явнополюсная и неявнополюсная. В статоре и роторе расположены ферромагнитные сердечники, изготовленные из специальной электротехнической стали. Они необходимы для уменьшения магнитного сопротивления и улучшения прохождения магнитного потока.

Частота вращения ротора в синхронном двигателе равна частоте вращения магнитного поля. Независимо от подключаемой нагрузки частота ротора неизменна, так как число пар полюсов магнитного поля и ротора совпадают. Их взаимодействие обеспечивает постоянную угловую скорость, не зависящую от момента, приложенного к валу.

Принцип работы синхронного электродвигателя

Самые распространенные типы такого рода агрегатов – однофазный и трехфазный. Принцип работы синхронного электродвигателя в обоих случаях примерно одинаков. После подключения обмотки якоря к сети ротор остается неподвижным, в то время как постоянный ток поступает в обмотку возбуждения. Направление электромагнитного момента меняется дважды за время одного изменения напряжения. При значении среднего момента равном нулю, ротор под влиянием внешнего момента (механического воздействия) разгоняется до частоты, близкой по значению частоте вращения магнитного поля в зазоре, после чего двигатель переходит в синхронный режим.

В трехфазном устройстве проводники расположены под определенным углом относительно друг друга. В них возбуждается вращающееся с синхронной скоростью электромагнитное поле.

Разгон двигателя может осуществляться в двух режимах:

  • Асинхронный. Обмотки индуктора замыкаются с помощью реостата. Вращающееся магнитное поле, возникающее при включении напряжения, пересекает короткозамкнутую обмотку, установленную на роторе. В ней индуцируются токи, взаимодействующие с вращающимся полем статора. По достижении синхронной скорости крутящий момент начинает уменьшаться и сводится к нулю после замыкания магнитного поля.
  • С помощью вспомогательного двигателя. Для этого синхронный двигатель механически соединяется со вспомогательным (двигателем постоянного тока либо трехфазным индукционным двигателем). Постоянный ток подается только после того, как вращение двигателя достигает скорости, близкой к синхронной. Магнитное поле замыкается, и связь со вспомогательным двигателем прекращается.

Характеристики синхронного электродвигателя

Хотя асинхронные двигатели считаются более надежными и дешевыми, их синхронные «собратья» имеют некоторые преимущества и широко применяются в различных областях промышленности. К отличительным характеристикам синхронного электродвигателя можно отнести:

  • Работу при высоком значении коэффициента мощности.
  • Высокий КПД по сравнению с асинхронным устройством той же мощности.
  • Сохранение нагрузочной способности даже при снижении напряжения в сети.
  • Неизменность частоты вращения независимо от механической нагрузки на валу.
  • Экономичность.

Синхронным двигателям также присущи некоторые недостатки:

  • Достаточно сложная конструкция, делающая их производство дороже.
  • Необходимость источника постоянного тока (возбудителя или выпрямителя).
  • Сложность пуска.
  • Необходимость корректировать угловую частоту вращения путем изменения частоты питающего напряжения.

Однако в некоторых случаях использование синхронных двигателей предпочтительнее:

  • Для улучшения коэффициента мощности.
  • В длительных технологических процессах, где нет необходимости в частых запусках и остановках.

Таким образом, «плюсы» двигателей такого типа значительно превосходят «минусы», поэтому на данный момент они высоко востребованы.

Изучив синхронный двигатель, устройство и принцип его действия и учтя условия, в которых он будет эксплуатироваться, вы сможете быстро и с легкостью подобрать оптимально подходящий для ваших целей тип агрегата (защищенный, закрытый, открытый) и использовать его с максимальной эффективностью.

Принцип работы

Рассмотрим асинхронный двигатель принцип работы и устройство. Для корректного подключения агрегата к сети, обмотки соединяются по схеме «звезда» или «треугольник». Действие механизма основано на использовании вращающегося магнитного поля статора. Частота вращения многофазной обмотки переменного поля (n1) определяется по формуле:

Здесь:

  • f – частота сети в Герцах;
  • p – Количество пар полюсов (как правило, 1-4 пары, поскольку чем их больше, тем ниже мощность и КПД, использование полюсов даёт возможность не применять редуктор, при низкой частоте вращения).

Магнитное поле, пронизывающее статор с обмоткой пронизывает и обмотку ротора. За счёт этого индуцируется электродвижущая сила. Электродвижущая сила самоиндукции в обмотке статора (Е1) направлена навстречу приложенному напряжению сети, ограничивая величину тока в статоре. Поскольку обмотка ротора замкнута, или идёт через сопротивление (короткозамкнутый ротор в первом случае, фазный ротор во втором случае), то под действием электродвижущей силы ротора (Е2) в ней образуется ток. Взаимодействие индуцируемого тока в обмотке ротора и магнитного поля статора создаёт электромагнитную силу (Fэл). Направление силы определяется по правилу левой руки.

Согласно правилу: левая рука устанавливается таким образом, что бы магнитно силовые линии входили в ладонь, а вытянутые четыре пальца направлялись вдоль движения тока в обмотке. Тогда отведённый большой палец покажет направление действия электромагнитной силы для конкретного проводника с током.

Совокупность электромагнитных сил двигателя будет равна общему электромагнитному моменту (М), который приводит в действие вал электродвигателя с частотой (n2). Скорость ротора не равна скорости вращения поля, поэтому эта скорость называется асинхронной скоростью. Вращающий момент в асинхронном двигателе развивается только при асинхронной скорости, когда скорость вращения ротора не равна скорости вращения магнитного поля

Важно, что бы при работе двигателя скорость ротора была меньше скорости поля (n2

Таким образом, частота вращения ротора (обороты) будет равна:

Принцип работы асинхронного электрического двигателя легко объясняется с помощью устройства, называющегося диск Арго – Ленца.

Постоянный магнит закрепляют на оси, которая устанавливается в устройстве, способном обеспечить её вращение. Перед полюсами магнита (N-S) помещают диск, выполненный из меди. Диск так же крепится на оси и свободно вращается вокруг неё.

Если вращать магнит за рукоятку, диск тоже будет вращаться в том же направлении. Эффект объясняется тем, что магнитные линии поля, создаваемые магнитом, замыкаются от северного полюса к южному полюсу, пронизывая диск. Эти линии образуют в диске вихревые токи, которые взаимодействуя с полем, приводят к возникновению силы, вращающей диск. Закон Ленца гласит, что направление всякого индукционного тока противодействует величине, вызвавшей его. Вихревые токи пытаются остановить магнит, но поскольку это не возможно, диск следует за магнитом.

Примечательно, что скорость вращения диска всегда меньше скорости вращения магнита. В асинхронных электродвигателях магнит заменяет вращающееся магнитное поле, созданное токами трёхфазной обмотки статора.

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Определение асинхронной машины звучит следующим образом:

Статор асинхронного двигателя

Статор асинхронного двигателя представляет из себя сердечник, состоящий из пластин электротехнической стали и содержащий в себе медные обмотки, которые определенным образом уложены в пазах статора.

Как было упомянуто, сердечник статора состоит из пластин, которые изолированы друг от друга. С внутренней стороны статора есть пазы

в которые укладывается изоляция

Далее в эти пазы наматывается медный лакированный провод определенным образом, который представляет из себя обмотки статора

Асинхронный двигатель имеет три “куска” медного провода

Которые определенным образом уложены в пазы статора под углом в 120 градусов друг относительно друга.

Все 6 концов обмоточных проводов выведены в клеммную коробку, которая находится на корпусе двигателя.

Статор двигателя, а точнее, размеры сердечника, количество катушек в каждой обмотке и толщина моточного провода из которого намотаны катушки определяют основные параметры двигателя. Например, от числа катушек в каждой обмотке зависит номинальное число оборотов двигателя, а от толщины провода, которым они намотаны, зависит номинальная мощность двигателя. Количество обмоток для трехфазного асинхронного двигателя всегда равно трем. А вот количество катушек в каждой из этих обмоток разное. Катушки могут наматывать в один или два провода. Учитывая, что номинальное число оборотов двигателя обратно пропорционально номинальной нагрузке, можно смело сказать, что скорость вращения вала асинхронного двигателя будет уменьшаться при увеличении нагрузки. Если при работе двигателя начнут уменьшаться его обороты из-за роста нагрузки, то не остановка этого процесса может привести к полной остановке двигателя. Двигатель начнет сильно гудеть, вал ротора не будет крутиться – возникнет сильный нагрев катушек, с последующим разрушением изоляции моточного провода, что приведет к короткому замыканию и возгоранию обмоток.

Реальное фото статора одного из асинхронного двигателя выглядит вот так.

Разновидности простейших движков-трансформаторов

Движки переменного тока могут быть синхронными. Схема получается проще, а мотор дешевле. Хотя все асинхронные двигатели содержат статор, аналогичный синхронной машине, конструкция ротора определяет их существенное отличие от них. Его не нужно намагничивать тем или иным способом, как это делается в синхронном движке. Несмотря на отличия моделей асинхронных машин, конструкция их ротора — это эквивалент короткозамкнутой вторичной обмотки.

Самый простой вариант — короткозамкнутый ротор. Его можно просто отлить из ферромагнитного материала и обработать надлежащим образом. Сплавы на основе железа проводят электрический ток и взаимодействуют с магнитным полем. Цельнометаллическая конструкция обладает следующими преимуществами:

  • наиболее проста в изготовлении и по этой причине обладает минимальной себестоимостью;
  • лучше всего переносит усилия, возникающие при работе двигателя;
  • хорошо разгоняется из-за эффективного взаимодействия магнитных полей.

Цельнометаллический вариант

Как преодолеваются недостатки болванки

Однако вполне очевидно то, что такой короткозамкнутый ротор будет не лучшим проводником для токов, индуцируемых статором. Сплавы железа проводят электроток заметно хуже алюминия или меди. Кроме этого ведь неспроста магнитопроводы трансформаторов изготавливают из стальных пластин, а не из цилиндрических болванок. Вихревые токи нагревают литой металл и уменьшают общую эффективность электроустановки. Поэтому недостатки массивности конструкции из железного сплава конструктивно учитывает наиболее эффективный двигатель с короткозамкнутым ротором.

В таком электродвигателе используются алюминиевые или медные детали. Функции применительно к созданию магнитного поля и проводимости тока конструктивно разделяются. Для получения переменного магнитного поля с малыми потерями по аналогии с трансформаторами применяются тонкие изолированные пластины. Каждая из них содержит выемки и по форме эквивалентна поперечному сечению ротора. Ее материалом является трансформаторная сталь.

Как получается беличье колесо (клетка)

После того как пластины собраны, получается цилиндр с канавками. Они образованы выемками, в которые укладываются стержни из алюминия или меди. На торцы цилиндра надеваются пластины или кольца из такого же металла, что и стержни, концы которых крепятся к ним. Каждая пара диаметрально противоположных стержней, таким образом, создает короткозамкнутый виток. Его сопротивление индуцируемому току гораздо меньше, чем у железного сплава. Стержни с пластинами выглядят, как беличья клетка.

Беличья клетка

Поэтому двигатель с короткозамкнутым ротором такой конструкции имеет меньше потерь и по этой причине широко распространен. Но сходство этого электромотора асинхронного электродвигателя короткозамкнутым ротором своим похожего на обычный нагруженный силовой трансформатор ограничено к применению в некоторых электросетях. Не каждая из них может выдержать большой пусковой ток. Если асинхронные электродвигатели с короткозамкнутым ротором будут стартовать одновременно, величина тока будет велика и сравнима с коротким замыканием.

В начале их пуска происходит процесс, аналогичный включению трансформатора с вторичной обмоткой, замкнутой накоротко. В этом начальном положении магнитное поле почти неподвижно, и в этой связи так называемое скольжение получается самым большим. Неподвижный короткозамкнутый ротор асинхронного двигателя создает при пуске наиболее мощное электромагнитное поле. Ведь он собран из листовой стали, отличающейся минимальными вихревыми потерями, а беличье колесо характеризуется минимальным электрическим сопротивлением.

Как устроен асинхронный двигатель

Первая главная деталь в электромоторе называется статором, вторая – ротором. Статор сделан в форме цилиндра из крепкого листа нержавеющей стали. Внутри сердечника статора установлены обмотки из специальных проводов. Оси проводов укладываются под углом в 120°. Для работы на разных электросетях концы кабелей скрепляются в виде треугольника или звезды.

Роторы в асинхронном двигателе подразделяются на 2 типа:

  1. Короткозамкнутый. Он является сердечником, в который заливается раскаленный металл. После этого в нем появляются железные стержни, замыкающиеся маленькими торцевыми колечками. Подобная схема конструкции именуется “беличьей клеткой”. В устройствах с высокой мощностью алюминий заменяется на медь.
  2. С фазами. Мотор имеет толстую трехфазную обмотку, которая почти не отличается от обмотки статора. В основном концы проводов скрепляются в форме звезды, а затем дополнительно закрепляются колечками. Используя щетку, которая подсоединена к обручам, к цепи можно подключить дополнительный резистор. Последний необходим для того, чтобы человек мог контролировать переменное сопротивление в фазе ротора.

Устройство и конструкция

Желая купить асинхронный электродвигатель с фазным ротором, необходимо хорошо разбираться в его устройстве и конструкционных особенностях. В первую очередь нужно знать, что к основным частям установки относятся статор, который является неподвижным, и ротор — вращающийся механизм внутри статора. Между обоими элементами расположен воздушный зазор, а их поверхность покрыта специальной обмоткой.

Обмотка статора подключена к электрической сети с переменным напряжением, которое передается на обмотку ротора. Взаимодействие узлов обусловлено магнитным потоком.

Что касается корпуса статора, то в качестве него используется корпус двигателя, внутри которого расположен запрессованный сердечник. В последнем находятся проводники обмотки, защищенные от замыкания изоляцией. Обмотка сердечника состоит из нескольких секций, заключенных в катушки.

В роторе установлены вал и сердечник из набранных пластин. Последний элемент создается на основе высокотехнологичной стали и обладает симметричными пазами с проводниками. При работе вал ротора передает крутящий момент к приводу установки. В зависимости от типа ротора выделяют две разновидности двигателей:

  1. С короткозамкнутым ротором.
  2. С фазным ротором.

В первом типе роторов присутствуют алюминиевые стержни, которые находятся внутри сердечника и замкнуты на торцах кольцами. Их также называют «беличьим колесом». Обычно пазы установки обрабатываются алюминием, что повышает их прочность.

Подписка на рассылку

Рис. 1. Асинхронный электродвигатель с фазным ротором Асинхронные электродвигатели с фазным ротором (рис. 1) характеризуются лучшими пусковыми и регулировочными свойствами. Основными компонентами любых электродвигателей являются статор и ротор. В качестве статора используется шихтованный магнитопровод, запрессованный в станину (рис. 2). Три катушки, оси которых расположены под углом 120 градусов друг к другу, уложены в пазах магнитопровода. В зависимости от используемого напряжения, фазы обмоток соединяются по одной из известных в электротехнике схем: «треугольник» или «звезда».

Ротор имеет вид цилиндра. Он собран из специальных листов, изготовленных из электротехнической стали, расположенных на валу. Обмотка ротора тоже трехфазная. При этом в ней содержится такое же количество пар полюсов, что и в обмотке статора. Концы фазных катушек соединяются с контактными кольцами, которые закреплены также на валу. Выход во внешнюю цепь осуществляется с помощью специальных металлографитовых щеток.

Электродвигатели с фазным ротором характеризуются следующими особенностями, выгодно отличающими их от двигателей с короткозамкнутым ротором:

  • большим начальным вращающим моментом;
  • возможностью кратковременно перегружать механически;
  • практически постоянной скоростью вращения при возможных перегрузках;
  • меньшим пусковым током;
  • возможностью применять автоматические пусковые устройства.

Каталог асинхронных электродвигателей богат и разнообразен, так как они находят применение во многих отраслях народного хозяйства. Такие электродвигатели отличаются как своими характеристиками, так и назначением. Так, если рассматривать условия их работы, то двигатели бывают открытого, защищенного, закрытого и взрывоопасного исполнения. Если за основу брать способ охлаждения, то их можно поделить на 4 группы:

  • естественного воздушного охлаждения;
  • с внутренней самовентиляцией;
  • с наружной самовентиляцией;
  • независимого охлаждения.

По рабочему положению, двигатели бывают горизонтального и вертикального исполнения.

Двигатели снабжаются техническим паспортом, который содержит основные характеристики асинхронных электродвигателей. Рассмотрим расшифровку этих данных на примере двигателя типа 4А10082УЗ, относящегося к асинхронным двигателям серии 4А. Из маркировки следует, что высота оси вращения равна 100 мм, корпус короткий; является двухполюсным, климатическое исполнение — У, категория — 3. Кроме того, принято указывать количество фаз и частоту переменного тока, а также номинальную мощность и коэффициент мощности двигателя (cos φ).

Асинхронные двигатели широко применяются в различных сферах: металлургии, экструдерах, машинах для литья, печатных и упаковочных оборудованиях, в станках с ЧПУ, в пищевой и текстильной промышленности и так далее.

Фазный ротор электродвигателя


Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.


 

Конструкция фазного ротора


 


Фазный ротор  АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.


В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.


Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Зачем нужно добавочное сопротивление?


Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.


Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.


Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Отличие короткозамкнутого ротора от фазного


В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название — “беличья клетка”.


Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Преимущества и недостатки электродвигателя с фазным ротором


Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.


Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

  Область применения электродвигателей с фазным ротором


Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.


За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

  Проверка электродвигателя с фазным ротором


Как известно, электродвигатели с фазным ротором имеют обмотки как на статоре, так и на роторе, что повышает вероятность выхода из строя именно одной из них.


Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.


Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.


О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата


 Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Асинхронный двигатель с фазным и короткозамкнутым ротором принцип работы

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат.

Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы.

У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства.

Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение.

Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата. Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Коллекторный двигатель: устройство и подключение

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки.

Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов.

Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Тяговый электродвигатель: назначение и применение

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле.

Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться.

Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1.

Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе.

Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Как проверить якорь электродвигателя

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети.

Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам.

В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток.

Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Лекция 12. устройство и принцип работы асинхронного двигателя

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение.

Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель — это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный.

При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали.

В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой».

В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.

С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Подробнее о фазном роторе можно прочитать в статье -асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС.

Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора.

Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частотаn1магнитного поля статора больше, чем частота вращения ротораn2, в процентном соотношении.

Скольжение это крайне важная величина.

В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр-критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Трехфазный асинхронный электродвигатель

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени

Ток протекающий в витках электродвигателя (сдвиг 60°)

Вращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике.

В свою очередь ЭДС вызовет ток в проводнике.

Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор

Магнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Асинхронный электродвигатель — устройство, принцип работы, виды асинхронных двигателей

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя. Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Будет интересно➡  Однофазные асинхронные двигатели на службе человечества

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов. Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Из чего состоит асинхронный электродвигатель

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора

  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров.

    Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.

  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.

Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки. В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Будет интересно➡  Малоизвестные факты о двигателях постоянного тока

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).

Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему.

Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье.

остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Будет интересно➡  Все что нужно знать о шаговых электродвигателях

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

Какие недостатки и достоинства у асинхронных электродвигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

Заключение

Асинхронные электродвигатели: схема, принцип работы и устройство

Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора.

Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится.

Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

Устройство и принцип действия

Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

Асинхронный двигатель

Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

Виды асинхронных двигателей

  • Можно выделить 3 базовых типа асинхронных электродвигателей:
  • Схема устройства асинхронного двигателя с короткозамкнутым ротором

То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

Ещё одна разновидность – асинхронный двигатель с массивным ротором.

Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки).

Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

Какой ротор лучше, фазный или короткозамкнутый?

  1. Преимущества короткозамкнутого:
  2. Недостатки:
  3. Преимущества фазного:
  4. Недостатки:

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

Тем не менее, у асинхроников есть недостатки. А именно:

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:
  • Как избежать снижения КПД?
  • Для этого используются:

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.

Асинхронные электродвигатели

Асинхронный электродвигатель: принцип работы и устройство

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века.

Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом.

Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл.

В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

Техническая информация по Электродвигатель АК4 с фазным ротором

  • Заказать электродвигатель АК4

 
Электродвигатели переменного тока с фазным ротором серии АК4 предназначены для привода механизмов с тяжелыми условиями пуска и требующих регулирования частоты вращения:

— для механизмов, момент которых не зависит от частоты вращения, регулирование частоты вращения допускается в диапазоне (1,0-0,8)nnom

— для механизмов, момент которых изменяется по вентиляторной характеристике, регулирование частоты вращения допускается в диапазоне (1,0-0,5)nnom

Двигатели предназначены для работы от сети переменного тока частотой 50 Гц напряжением 6000 В и 3000 В.

По просьбе заказчика на базе вышеуказанных машин могут быть изготовлены двигатели на другие мощности, напряжения и частоту сети с учетом требования контракта.

Пуск двигателей от полного напряжения сети с включенными в цепь ротора пусковыми сопротивлениями с помощью станции управления.

Соединение двигателей с приводным механизмом осуществляется посредством упругой муфты.

Двигатели имеют подшипники качения с пластичной смазкой.

Изоляционные материалы обмотки статора и ротора класса нагревостойкости «F» с температурным использованием по классу «В». Изоляция обмотки статора термореактивная типа «Монолит2».

Обмотка статора имеет шесть выводных концов, закрепленных на четырех изоляторах в коробке выводов.

Соединение фаз обмоток звезда.

Двигатели допускают правое и левое направление вращения. Изменение направления вращения

осуществляется только из состояния покоя.

Структура условного обозначения:АК4-HL-XK

АК— асинхронный двигатель с фазным ротором;

4— номер серии;

H(400, 450) — высота оси вращения в мм;

L(Х,У. ХК,УК) — условная длина двигателя;

X(4,6,8,10,12) — число полюсов;

K(У3, Т3) — климатическое исполнение и категория размещения.

Характеристики и особенности:

АО «Электромаш» первое и базовое предприятие, освоившее двигатели АК4 как часть единой, унифицированной серии А4, ДАЗО с короткозамкнутым ротором и АК4 с фазным ротором;

Выпускаются взамен поставлявшихся ранее электродвигателей серии АК, АКЗ 12 и 13 габарита и могут быть поставлены на замену комплектно с переходной плитой или балками для установки без переделки фундамента;

Имеют оптимальное соотношение энергетических показателей и удельной материалоемкости;

Усиленная обшивка по сравнению с аналогами;

Полная унификация по статорам с электродвигателями А4 и ДАЗО4;

Возможна поставка в исполнении, позволяющем обеспечить подключение принудительной вентиляции;

Обеспечиваемая комплектная поставка с пусковой аппаратурой типа УПРФ, пускорегулирующей по типу ТПРС и по типу тиристорного коммутатора ТТРЕ, ТТРП.


Рис.1 Габаритный чертеж электродвигателя АК4



Таблица 1. Основные технические характеристики двигателей АК4


Тип
двигателя
Мощность,
кВт
Частота вращения,
об/мин
КПД,
%
Коэффициент
мощности
Масса,
кг
АК4-400XK-4У3400150093,50,882100
АК4-400X-4У3500150094,00,872250
АК4-400Y-4У3630150094,70,892480
АК4-450X-4У3800150094,70,892800
АК4-450Y-4У31000150095,20,903120
АК4-400XK-6У3315100092,90,852140
АК4-400X-6У3400100093,30,862300
АК4-400Y-6У3500100093,60,872500
АК4-450X-6У3630100094,00,872850
АК4-450Y-6У3800100094,40,873170
АК4-400X-8У325075092,50,822240
АК4-400Y-8У331575092,80,832450
АК4-450YK8У350075093,60,842990
АК4-450X-8У340075093,20,832750
АК4-450Y-8У363075094,00,843280
АК4-400X-10У320060091,10,782210
АК4-400Y-10У325060091,90,792410
АК4-450X-10У331560092,30,832650
АК4-450Y-10У340060092,60,832890
АК4-450X-12У325050091,30,772740
АК4-450Y-12У331550092,10,772970
АК4-400X-4Т3 6/6,6 кВ400150093,4/93,70,89/0,882250
АК4-400Y-4Т3 6/6,6 кВ500150093,8/94,00,89/0,882480
АК4-450X-4Т3 6/6,6 кВ630150094,3/94,30,89/0,892800
АК4-450Y-4Т3 6/6,6 кВ800150094,5/94,60,90/0,893120
АК4-400XK-6Т3 6/6,6 кВ250100092,8/93,00,85/0,832140
АК4-400X-6Т3 6/6,6 кВ315100093,0/93,30,86/0,852300
АК4-400Y-6Т3 6/6,6 кВ400100093,5/93,80,85/0,852850
АК4-450X-6Т3 6/6,6 кВ500100093,6/93,80,87/0,863170
АК4-450Y-6Т3 6/6,6 кВ630100094,2/94,40,88/0,872240
АК4-400X-8Т320075092,40,802450
АК4-400Y-8Т3 6/6,6 кВ25075093,0/93,20,81/0,802850
АК4-450X-8Т3 6/6,6 кВ31575093,0/93,10,84/0,822990
АК4-450YK-8Т3 6/6,6 кВ40075093,2/93,40,85/0,833280
АК4-450Y-8Т3 6/6,6 кВ50075093,9/94,00,85/0,822410
АК4-400Y-10Т3 6/6,6 кВ20060091,6/91,60,77/0,772650
АК4-450X-10Т3 6/6,6 кВ25060092,0/92,40,83/0,812890
АК4-450X-12Т320050091,30,722740
АК4-450Y-12Т3 6/6,6 кВ25050091,6/91,60,77/0,732970

Асинхронный двигатель

: как это работает? (Основы и типы)

Содержание

Что такое асинхронный двигатель?

Асинхронный двигатель (также известный как асинхронный двигатель ) представляет собой широко используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с обмоткой.

Асинхронные двигатели называются «асинхронными двигателями», поскольку они работают со скоростью, меньшей, чем их синхронная скорость. Итак, первое, что нужно понять — что такое синхронная скорость? Типичный асинхронный двигатель

Синхронная скорость

Синхронная скорость — это скорость вращения магнитного поля во вращающейся машине, и она зависит от частоты и числа полюсов двигателя. машина. Асинхронный двигатель всегда работает на скорости меньше, чем его синхронная скорость.

Вращающееся магнитное поле, создаваемое в статоре, создаст магнитный поток в роторе, что приведет к вращению ротора. Из-за отставания между током потока в роторе и током потока в статоре ротор никогда не достигнет своей скорости вращения магнитного поля (то есть синхронной скорости).

Существует два основных типа асинхронных двигателей . Типы асинхронных двигателей зависят от входного питания. Существуют однофазные асинхронные двигатели и трехфазные асинхронные двигатели. Однофазные асинхронные двигатели не являются самозапускающимися двигателями, а трехфазные асинхронные двигатели являются самозапускающимися двигателями.

Принцип работы асинхронного двигателя

Нам нужно подать двойное возбуждение, чтобы заставить двигатель постоянного тока вращаться. В двигателе постоянного тока мы подаем одно питание к статору, а другое к ротору через щеточное устройство. Но в асинхронном двигателе мы даем только одно питание, поэтому интересно узнать, как работает асинхронный двигатель.

Все просто, из самого названия понятно, что здесь задействован процесс индукции. Когда мы подаем питание на обмотку статора, в статоре создается магнитный поток из-за протекания тока в катушке. Обмотка ротора устроена так, что каждая катушка становится короткозамкнутой.

Поток от статора разрезает короткозамкнутую катушку в роторе. Поскольку катушки ротора закорочены, согласно закону электромагнитной индукции Фарадея, ток начнет течь через катушку ротора. Когда ток через катушки ротора течет, в роторе создается другой поток.

Теперь есть два потока: поток статора и поток ротора. Поток ротора будет отставать от потока статора. Из-за этого ротор будет ощущать крутящий момент, который заставит ротор вращаться в направлении вращающегося магнитного поля. Это принцип работы как однофазных, так и трехфазных асинхронных двигателей.

Типы асинхронных двигателей

Типы асинхронных двигателей можно классифицировать в зависимости от того, являются ли они однофазными или трехфазными асинхронными двигателями.

Однофазный асинхронный двигатель

Типы однофазных асинхронных двигателей включают:

  1. Асинхронный двигатель с расщепленной фазой
  2. Асинхронный двигатель с конденсаторным пуском
  3. Асинхронный двигатель с пусковым конденсатором и рабочим конденсатором
  4. Трехфазный асинхронный двигатель с экранированным полюсом Асинхронный двигатель

    Типы трехфазных асинхронных двигателей включают:

    1. Асинхронный двигатель с короткозамкнутым ротором
    2. Асинхронный двигатель с контактным кольцом

    Мы уже упоминали выше, что однофазный асинхронный двигатель не является самозапускающимся двигателем, и что трехфазный асинхронный двигатель с самозапуском. Так что такое самозапускающийся двигатель?

    Когда двигатель запускается автоматически без приложения к машине какой-либо внешней силы, такой двигатель называется «самозапускающимся». Например, мы видим, что когда мы включаем переключатель, вентилятор начинает вращаться автоматически, так что это самозапускающаяся машина.

    Следует отметить, что вентилятор, используемый в бытовой технике, представляет собой однофазный асинхронный двигатель, который по своей природе не запускается самостоятельно. Как? Возникает вопрос, как это работает? Мы обсудим это сейчас.

    Почему трехфазный асинхронный двигатель самостоятельно запускается?

    В трехфазной системе имеются три однофазные линии с разницей фаз 120°. Таким образом, вращающееся магнитное поле имеет ту же самую разность фаз, которая заставит ротор двигаться.

    Если рассматривать три фазы a, b и c, то при намагничивании фазы a ротор будет двигаться в сторону обмотки a фазы a, в следующий момент намагничится фаза b и притянет ротор, а затем фаза c . Таким образом, ротор будет продолжать вращаться.

    Принцип работы трехфазного асинхронного двигателя – Видео

    Почему однофазный асинхронный двигатель не запускается самостоятельно?

    У него всего одна фаза, но он заставляет вращаться ротор, так что это довольно интересно. Перед этим нам нужно знать, почему однофазный асинхронный двигатель не является самозапускающимся двигателем, и как решить эту проблему. Мы знаем, что переменный ток представляет собой синусоидальную волну и создает пульсирующее магнитное поле в равномерно распределенной обмотке статора.

    Поскольку мы можем предположить, что пульсирующее магнитное поле представляет собой два магнитных поля, вращающихся в противоположных направлениях, результирующий крутящий момент при пуске не возникает, и, следовательно, двигатель не работает. Если после подачи питания ротор будет вращаться в любом направлении под действием внешней силы, двигатель начнет работать. Мы можем решить эту проблему, сделав обмотку статора на две обмотки — одна основная обмотка, а другая вспомогательная обмотка.

    Один конденсатор подключаем последовательно со вспомогательной обмоткой. Конденсатор будет создавать разность фаз, когда ток протекает через обе катушки. При наличии разности фаз ротор создаст пусковой момент и начнет вращаться.

    Практически мы видим, что вентилятор не вращается при отключении конденсатора от двигателя, но если мы вращаем его рукой, он начнет вращаться. Вот почему мы используем конденсатор в однофазном асинхронном двигателе.

    Благодаря различным преимуществам асинхронного двигателя существует широкий спектр применения асинхронного двигателя. Одним из их самых больших преимуществ является высокая эффективность, которая может достигать 97%. Основным недостатком асинхронного двигателя является то, что скорость двигателя зависит от приложенной нагрузки.

    Направление вращения асинхронного двигателя можно легко изменить, изменив последовательность фаз трехфазного питания, т. е. если RYB находится в прямом направлении, RBY заставит двигатель вращаться в обратном направлении. Это относится к трехфазному двигателю, но в однофазном двигателе направление можно изменить, поменяв местами клеммы конденсатора в обмотке.

    Что такое двигатель с фазным ротором и как он работает?

    Электрические двигатели — машины, преобразующие электричество в механическую энергию — широко распространены в инженерном мире. Они являются краеугольным камнем инженерных достижений, таких как лифты, насосы и даже электромобили, благодаря способности использовать эффект электромагнитной индукции. Эти так называемые асинхронные двигатели используют переменный ток и электромагнетизм для создания вращательного движения и бывают разных конфигураций. Особое внимание в этой статье будет уделено асинхронному двигателю переменного тока особого типа, известному как двигатель с фазным ротором. Хотя эти двигатели используются только в особых сценариях, они имеют явное преимущество перед другими популярными вариантами (беличьей клеткой, синхронными двигателями и т. д.) благодаря своим уникальным характеристикам. Будут изучены устройство и работа этих двигателей, а также конкретные характеристики, которые делают их столь важными для приложений, где другие, более популярные асинхронные двигатели не могут быть реализованы.

    Что такое двигатели с фазным ротором?

    Двигатели с фазным ротором представляют собой особый тип двигателей переменного тока и работают почти так же, как и другие асинхронные двигатели. Они состоят из двух основных компонентов: внешнего статора и внутреннего ротора, разделенных небольшим воздушным зазором. Статор, как правило, одинаков для всех асинхронных двигателей и состоит из металлических пластин, которые удерживают на месте обмотки из медного или алюминиевого провода. В статоре есть три отдельные катушки, на которые подается трехфазный переменный ток, что просто означает, что каждая из них питается от отдельного переменного тока. Это не всегда так: некоторые двигатели являются однофазными, но двигатели с фазным ротором, как правило, всегда трехфазные. Тем не менее, эти три фазы генерируют магнитное поле, которое смещается вместе с переменными токами. Это создает вращающееся магнитное поле (RMF), которое действует на ротор. В двигателях с фазным ротором ротор «обмотан» проводом, как и статор, причем их концевые концы соединены с 3 контактными кольцами на выходном валу. Эти контактные кольца прикреплены к щеткам и блокам резисторов переменной мощности, где операторы могут изменять скорость двигателя, изменяя сопротивление катушек ротора. Эти контактные кольца позволяют регулировать скорость и крутящий момент и являются отличительной чертой двигателей с фазным ротором (именно поэтому эти двигатели часто называют двигателями с контактными кольцами).

    Как работают двигатели с фазным ротором?

    Мы рекомендуем прочитать нашу статью об асинхронных двигателях, чтобы понять основные законы, общие для всех асинхронных машин, но в этой статье мы кратко объясним науку, лежащую в основе работы двигателя с фазным ротором.

    Эти двигатели классифицируются как асинхронные двигатели, в которых существует несоответствие (известное как «скольжение») между скоростью RMF статора (синхронная скорость) и выходной скоростью (номинальная скорость). При создании необходимого тока, напряжения и магнитной силы в обмотках ротора двигатель всегда будет испытывать проскальзывание между вращающимся полем и ротором. Не стесняйтесь посетить нашу статью о типах двигателей переменного тока, чтобы узнать больше.

    Двигатели с фазным ротором отличаются тем, как их ротор взаимодействует со статором. Обмотки ротора подключены к вторичной цепи, содержащей токосъемные кольца, щетки и внешние резисторы, и питаются от отдельного трехфазного переменного тока. При пуске внешнее сопротивление этой вторичной цепи приводит к тому, что ток ротора снижает силу RMF статора (он протекает более «в фазе» с RMF статора). Это означает, что скорость вращения можно контролировать, изменяя сопротивление, когда двигатель достигает 100% скорости, что позволяет операторам выбирать пусковой момент и рабочие характеристики. Это приводит к плавному пуску, высокому начальному крутящему моменту, низкому начальному току и возможности регулировать скорость вращения, чего нельзя достичь в более простых конструкциях, таких как двигатели с короткозамкнутым ротором (более подробную информацию об этой конструкции можно найти в нашей статье). на двигателях с короткозамкнутым ротором).

    Технические характеристики двигателя с фазным ротором

    Спецификации для двигателя с фазным ротором включают в себя понимание спецификаций для всех асинхронных двигателей, которые можно просмотреть в нашей статье, посвященной асинхронным двигателям. В этой статье будут освещены важные концепции для двигателей с фазным ротором, которые необходимо понять перед покупкой одного из них, но знайте, что это не все включено.

    Пусковой ток

    RMF статора вращается на полной скорости при запуске трехфазного асинхронного двигателя, в то время как ротор изначально находится в состоянии покоя. Ротор испытывает наведенный ток, когда через него проходит среднеквадратичное магнитное поле статора, и единственным ограничивающим фактором для этого тока является сопротивление обмоток ротора (ток = напряжение/сопротивление). Это приводит к большему току в роторе, что увеличивает потребность в токе в статоре и, следовательно, вызывает «бросок» пускового тока в двигатель. Этот ток может в два-семь раз превышать номинальный ток, указанный на паспортной табличке, и может вызвать серьезные проблемы в сценариях с высоким напряжением. Когда двигатель достигает номинальной скорости, ротор создает «противоЭДС» в статоре, которая снижает ток статора до номинального уровня. Пусковой ток — это то, что минимизируется в двигателях с фазным ротором за счет увеличения сопротивления в обмотках ротора (I=V/R, где R увеличивается), и поэтому они имеют такие плавные пусковые характеристики.

    Момент двигателя и кривая момент-скорость

    Наиболее важной характеристикой двигателей с фазным ротором является то, как они работают после подачи питания, и это визуализируется с помощью графиков крутящий момент-скорость. Асинхронные двигатели могут значительно превышать номинальный крутящий момент и ток, когда скорость не равна 100%; кривые крутящего момента и скорости отображают это переходное поведение, а на рисунке 1 показана общая кривая крутящего момента для асинхронных двигателей с обозначенными важными точками.

    Рис. 1: Кривая крутящий момент-скорость для асинхронных двигателей.

     

    Пусковой крутящий момент — это крутящий момент, создаваемый начальным пусковым током, который всегда выше номинального крутящего момента. Момент отрыва — это максимальный крутящий момент, достигаемый перед установившимся режимом, а номинальный крутящий момент — это то, что обеспечивается, когда двигатель достигает скорости 100 %. Эта связанная скорость не совсем равна синхронной скорости RMF, и это проскальзывание показано на рисунке 1.

    Двигатели

    , использующие популярные конструкции с короткозамкнутым ротором, имеют ограниченный контроль над своими кривыми крутящий момент-скорость (узнайте больше в нашей статье о двигателях с короткозамкнутым ротором). Стержни ротора с короткозамкнутым ротором закорочены; это приводит к невозможности изменить сопротивление ротора, а это означает, что единственный способ повлиять на скорость вращения — это изменить напряжение (I=V/R, где R постоянно). Это может вызвать проблемы в больших двигателях, где необходимый входной ток может стать опасно высоким. Двигатели с фазным ротором решают эту проблему, изменяя сопротивление ротора с помощью вторичной цепи, присоединенной к блоку сопротивления переменной мощности и токосъемным кольцам. Увеличивая сопротивление в роторе через контактные кольца, крутящий момент может быть достигнут на гораздо более низких скоростях, что обеспечивает более высокий начальный крутящий момент и более низкий пусковой ток. При достижении синхронной скорости сопротивление ротора также может быть закорочено, в результате чего двигатель с фазным ротором будет вести себя так, как если бы это был двигатель с короткозамкнутым ротором. На рис. 2 показано влияние увеличения сопротивления ротора на выходной крутящий момент.

     

    Рис. 2. Влияние изменения сопротивления ротора на пусковой момент и пусковой момент.

    На этом графике видно, что двигатель с фазным ротором гораздо лучше справляется с управлением током, крутящим моментом и скоростью, чем другие конструкции. Изменяя сопротивление, этим двигателям потребуется меньший начальный пусковой ток для компенсации, они будут иметь более высокий пусковой момент и могут максимизировать свой пусковой момент, также сделав его пусковым моментом (пример кривой R2 на рис. 2). Результатом такого подхода является регулируемый по скорости двигатель с высоким пусковым моментом и низким пусковым током, с возможностью изменения этих характеристик по желанию оператора.

    Применение и критерии выбора

    Двигатели с фазным ротором могут выполнять то, что другие асинхронные двигатели не могут, а именно управление скоростью, током и крутящим моментом. Возможность увеличения сопротивления ротора при пуске двигателя позволяет плавно разгонять большие нагрузки до номинальной скорости. Когда пусковой ток должен быть сведен к минимуму или ограничение пускового тока ниже, чем могут выдержать двигатели с короткозамкнутым ротором/синхронные двигатели, рассмотрите возможность использования двигателя с фазным ротором.

    У двигателей с фазным ротором есть недостатки, и они являются следствием их сложной конструкции. Вторичная цепь создает больше возможностей для ошибок, а щетки с контактными кольцами могут представлять угрозу безопасности, если их не проверять регулярно (изношенные щетки могут искрить и увеличивать риск возгорания). Эти двигатели также дороги в обслуживании, что увеличивает их и без того высокую цену. Их сложность также снижает общий КПД двигателя, и двигатель с короткозамкнутым ротором следует выбирать, если эффективность является основной задачей или конструктивным ограничением.

    Несмотря на то, что двигатель с фазным ротором дорог и менее эффективен, его регулируемые характеристики крутящего момента и скорости отлично подходят для привода больших шаровых мельниц, больших прессов, насосов с регулируемой скоростью, кранов, подъемников и других нагрузок с высокой инерцией. Они также отлично подходят для любого приложения, которое требует плавного запуска и возможности изменения скорости. Они охватывают основы, недоступные другим асинхронным двигателям, и бесценны для разработчиков, которым необходим абсолютный контроль над выходной скоростью и крутящим моментом.

    Резюме

    В этой статье представлено понимание того, что такое двигатели с фазным ротором, как они работают и каковы их основные характеристики, определяющие, когда их следует выбирать по сравнению со стандартными асинхронными двигателями. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.

    Источники:

    1. https://geosci.uchicago.edu
    2. http://hyperphysics.phy-astr.gsu.edu/hbase/magnet/indmot.html
    3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
    4. https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163595/T17123-130.pdf?sequence=1&isAllowed=y
    5. http://www. animations.physics.unsw.edu.au/jw/electricmotors.html
    6. https://scholar.cu.edu.eg

    Другие товары для двигателей

    • Все о бесщеточных двигателях постоянного тока — что это такое и как они работают
    • Все о двигателях с постоянными магнитами — что это такое и как они работают
    • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
    • Все о шунтирующих двигателях постоянного тока — что это такое и как они работают
    • Все о шаговых двигателях — что это такое и как они работают
    • Шаговые двигатели

    • и серводвигатели — в чем разница?
    • Все о контроллерах двигателей переменного тока — что это такое и как они работают
    • Синхронные двигатели

    • и асинхронные двигатели — в чем разница?
    • Бесщеточные двигатели

    • и щеточные двигатели — в чем разница?
    • Кто изобрел паровой двигатель? Урок промышленной истории
    • Все о двигателях с электронным управлением — что это такое и как они работают
    • Двигатели постоянного тока

    • и серводвигатели — в чем разница?
    • Шаговые двигатели

    • и двигатели постоянного тока — в чем разница?
    • Все о контроллерах серводвигателей — что это такое и как они работают
    • Что такое трехфазный двигатель и как он работает?
    • ECM Motors и PSC Motors — в чем разница?
    • Все о устройствах плавного пуска двигателей: что это такое и как они работают
    • Все о контроллерах двигателей постоянного тока — что это такое и как они работают
    • Основы тестирования двигателя (и ротора)
    • Что такое штамповка двигателя и как это работает?
    • Все о двигателях с дробной мощностью

    Другие товары от Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Что такое трехфазный двигатель и как он работает?

    Трехфазные двигатели (также обозначенные как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы. Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает с использованием принципов электромагнитной индукции. Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленности, но широко используются в быту, например, в пылесосах, компрессорах холодильников и кондиционерах, благодаря использованию однофазных асинхронных двигателей. фазное питание переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель и опишем, как он работает. Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, посвященным двигателям переменного тока, двигателям постоянного тока, асинхронным двигателям, или к более общей статье о типах двигателей. Полный список связанных статей по двигателям находится в разделе связанных статей.

    Что такое трехфазное питание?

    Чтобы разобраться в трехфазных двигателях, полезно сначала разобраться с трехфазным питанием.

    При производстве электроэнергии переменный ток (AC), создаваемый генератором, характеризуется тем, что его амплитуда и направление меняются со временем. Если графически показать амплитуду по оси y и время по оси x, зависимость между напряжением или током и временем будет напоминать синусоиду, как показано ниже:

    Рисунок 1 – Однофазный переменный ток

    Изображение предоставлено: Фуад А. Саад/Shutterstock.com

    Электроэнергия, подаваемая в дома, является однофазной, а это означает, что имеется один проводник с током, а также соединение с нейтралью и соединение с землей. В трехфазном питании, которое используется в промышленных и коммерческих условиях для запуска более крупного оборудования, требующего большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π/3. радианы друг от друга. Если посмотреть графически, каждая фаза будет отображаться как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

    Рисунок 2 – Трехфазная электроэнергия со сдвигом фаз 120

    o между каждой фазой

    Изображение предоставлено: teerawat chitprung/Shutterstock. com

    Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для производства механической энергии в виде вращающегося вала двигателя.

    Что такое трехфазный двигатель?

    Трехфазные двигатели представляют собой тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть либо асинхронными двигателями (также называемыми асинхронными двигателями), либо синхронными двигателями. Двигатели состоят из трех основных компонентов – статора, ротора и корпуса.

    Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образующая индукционные катушки, по одной катушке на каждую фазу источника электроэнергии. Обмотки статора питаются от трехфазного источника питания.

    Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и является компонентом двигателя, который вращается для создания выходной механической энергии двигателя.

    Корпус двигателя удерживает ротор вместе с валом двигателя на наборе подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, удерживающие опоры подшипников, и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя. Вращающийся вентилятор всасывает окружающий воздух снаружи корпуса и нагнетает его через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, выделяемого в различных катушках из-за сопротивления катушки. Корпус также обычно имеет приподнятые механические ребра снаружи, которые служат для дальнейшего отвода тепла к наружному воздуху. Торцевая крышка также обеспечивает место для размещения электрических соединений для трехфазного питания двигателя.

    Как работает трехфазный двигатель?

    Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году. Фарадей заметил, что когда проводник, такой как катушка или петля провода, помещается в изменяющееся магнитное поле, возникает индуцированная электродвижущая сила или ЭДС, которая генерируется в проводнике. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет меняться по мере того, как ток в проводе изменяется либо по величине, либо по направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения во времени магнитного потока:

    Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

    Рисунок 3 ниже иллюстрирует закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, что приводит к существованию изменяющегося магнитного поля.

    Рисунок 3 – Принцип электромагнитной индукции

    Изображение предоставлено: Фуад А. Саад/Shutterstock.com

    Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка создает магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток совершает колебания в течение полного цикла. Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120 или , магнитная полярность трех катушек не одинакова в один и тот же момент времени. Это условие приводит к тому, что статор создает то, что известно как RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к созданию ротором противоположного магнитного поля. Поле ротора стремится выровнять свою полярность с полем статора, в результате чего к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, стремясь привести свое поле в соответствие. Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

    У трехфазных асинхронных двигателей ротор стремится сохранить соосность с RMF статора, но никогда этого не достигает, поэтому асинхронные двигатели также называют асинхронными двигателями. Явление, из-за которого скорость ротора отстает от скорости RMF, известно как скольжение и выражается как:

    , где N r — скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

    Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставит ротор вращаться с точно такой же скоростью вращения (в синхронизация – поэтому скольжение равно 0). Для получения дополнительной информации о том, как это достигается, обратитесь к этим статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных двигателей, не должны питаться от сети переменного тока.

    Контроллеры двигателей для трехфазных двигателей

    Скорость, создаваемая трехфазным двигателем переменного тока, зависит от частоты сети переменного тока, поскольку она является источником RMF в обмотках статора. Таким образом, некоторые контроллеры двигателей переменного тока работают, используя входной ток переменного тока для генерации модулированного или регулируемого входного сигнала частоты для двигателя, тем самым контролируя скорость двигателя. Другой подход, который можно использовать для управления скоростью двигателя, заключается в изменении скольжения (описано ранее). Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

    Чтобы узнать больше о подходах к управлению двигателем, ознакомьтесь с нашей статьей о контроллерах двигателей переменного тока.

    Резюме

    В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

    Источники:
    1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
    2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
    3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
    4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
    5. https://www.elprocus.com/induction-motor-types-advantages/
    6. https://www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
    7. https://www.worldwideelectric.net/resource/construction-ac-motors/
    8. https://www.gainesvilleindustrial.com/blog/single-three-phase-motors-guide/

    Другие товары для двигателей

    • Типы катушек индуктивности и сердечников
    • Типы контроллеров двигателей и приводов
    • Типы двигателей постоянного тока
    • Двигатели переменного тока

    • и двигатели постоянного тока — в чем разница?
    • Все об асинхронных двигателях — что это такое и как они работают
    • Типы двигателей переменного тока
    • Все о синхронных двигателях — что это такое и как они работают
    • Понимание двигателей
    • Однофазные промышленные двигатели

    • — как они работают?
    • Что такое двигатель с короткозамкнутым ротором и как он работает?
    • Что такое двигатель с фазным ротором и как он работает?
    • Все о реактивных двигателях — что это такое и как они работают
    • Все о бесщеточных двигателях постоянного тока — что это такое и как они работают
    • Все о двигателях с постоянными магнитами — что это такое и как они работают
    • Все о двигателях постоянного тока с обмоткой серии — что это такое и как они работают
    • Все о шунтирующих двигателях постоянного тока — что это такое и как они работают
    • Все о шаговых двигателях — что это такое и как они работают
    • Шаговые двигатели

    • и серводвигатели — в чем разница?
    • Все о контроллерах двигателей переменного тока — что это такое и как они работают
    • Синхронные двигатели

    • и асинхронные двигатели — в чем разница?

    Больше из Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Машины, инструменты и расходные материалы

    Асинхронные двигатели с ротором

    | Двигатели переменного тока

    Асинхронный двигатель с фазным ротором имеет статор, аналогичный асинхронному двигателю с короткозамкнутым ротором, но ротор с изолированными обмотками, выведенными через контактные кольца и щетки.

    Однако на токосъемные кольца питание не подается. Единственная их цель состоит в том, чтобы обеспечить последовательное подключение сопротивления к обмоткам ротора при запуске (рисунок ниже). Это сопротивление закорочено, как только двигатель запускается, чтобы ротор выглядел электрически похожим на аналог с беличьей клеткой.

     

    Асинхронный двигатель с фазным ротором

     

    В: Зачем включать сопротивление последовательно с ротором?

    А: Асинхронные двигатели с короткозамкнутым ротором потребляют от 500% до более 1000% тока полной нагрузки (FLC) во время запуска. Хотя это не является серьезной проблемой для небольших двигателей, это проблема для больших (10 кВт) двигателей.

    Включение сопротивления последовательно с обмотками ротора не только снижает пусковой ток, ток блокировки ротора (LRC), но также увеличивает пусковой момент, момент блокировки ротора (LRT). На рисунке ниже показано, что при увеличении сопротивления ротора с R 0 до R 1 до R 2 пик пробивного момента смещается влево к нулевой скорости.

    Обратите внимание, что этот пик крутящего момента намного выше пускового крутящего момента, доступного при отсутствии сопротивления ротора (R 0 ). Проскальзывание пропорционально сопротивлению ротора, а тяговый момент пропорционален скольжению. Таким образом, при запуске создается высокий крутящий момент.

     

    Пик пробивного крутящего момента смещается к нулевой скорости за счет увеличения сопротивления ротора

     

    Сопротивление уменьшает крутящий момент, доступный на полной рабочей скорости. Но это сопротивление закорочено к моменту запуска ротора. Закороченный ротор работает как ротор с короткозамкнутым ротором. Тепло, выделяемое во время пуска, в основном рассеивается снаружи двигателя на пусковом сопротивлении.

    Сложность и техническое обслуживание, связанные со щетками и контактными кольцами, являются недостатком ротора с обмоткой по сравнению с простым ротором с короткозамкнутым ротором.

    Этот двигатель подходит для пуска высокоинерционных нагрузок. Высокое пусковое сопротивление обеспечивает высокий крутящий момент при нулевой скорости. Для сравнения, ротор с короткозамкнутым ротором демонстрирует тяговый (пиковый) крутящий момент только при 80% его синхронной скорости.

    Регулятор скорости

    Скорость двигателя можно изменять, возвращая переменное сопротивление обратно в цепь ротора. Это снижает ток и скорость ротора. Высокий пусковой крутящий момент, доступный на нулевой скорости, отключающий крутящий момент при пониженной передаче недоступен на высокой скорости.

    См. кривую R 2 при 90% Ns, рисунок ниже. Резисторы R 0 , R 1 , R 2 , R 3 увеличивают номинал с нуля.

    Более высокое сопротивление R 3 еще больше снижает скорость. Регулировка скорости неудовлетворительна по отношению к изменяющимся нагрузкам крутящего момента. Этот метод управления скоростью полезен только в диапазоне от 50% до 100% полной скорости.

    Управление скоростью хорошо работает с нагрузками с переменной скоростью, такими как лифты и печатные станки.

     

    Сопротивление ротора регулирует скорость асинхронного двигателя с фазным ротором

     

    Асинхронный генератор с двойным питанием

    Ранее мы описали асинхронный двигатель с короткозамкнутым ротором, который работает быстрее, чем синхронный двигатель, если он приводится в движение. (См. Генератор асинхронного двигателя.) Это асинхронный генератор с односторонним питанием , имеющий электрические соединения только с обмотками статора.

    Асинхронный двигатель с фазным ротором может также действовать как генератор, когда он приводится в движение со скоростью, превышающей синхронную. Поскольку есть соединения как со статором, так и с ротором, такая машина известна как асинхронный генератор с двойным питанием (DFIG).

     

    Сопротивление ротора допускает превышение скорости асинхронного генератора с двойным питанием. Поскольку скорость асинхронного двигателя с фазным ротором можно регулировать в диапазоне 50-100 %, вводя сопротивление в ротор, мы можем ожидать того же от асинхронного генератора с двойным питанием.

    Мы можем не только замедлить ротор на 50%, но и увеличить его скорость на 50%. То есть мы можем изменять скорость асинхронного генератора с двойным питанием на ± 50% от синхронной скорости. На практике более практичным является ±30%.

    Если генератор превысит скорость, сопротивление, помещенное в цепь ротора, будет поглощать избыточную энергию, в то время как статор подает постоянную частоту 60 Гц в линию электропередачи (рисунок выше). В случае недостаточной скорости отрицательное сопротивление, вставленное в цепь ротора, может компенсировать дефицит энергии, позволяя статору питать линию электропередачи с мощностью 60 Гц.

     

    Преобразователь рекуперирует энергию от ротора асинхронного генератора с двойным питанием

     

    линию вместо того, чтобы рассеивать ее. Это повышает КПД генератора.

     

    Преобразователь заимствует энергию из линии электропередачи для ротора асинхронного генератора с двойным питанием, что позволяет ему хорошо работать при синхронной скорости

     

    Преобразователь может «занимать» мощность из линии для низкоскоростного ротора, которая передает ее на статор. Заимствуемая мощность вместе с большей энергией вала передается на статор, который подключен к линии электропередач.

    Статор подает в линию 130% мощности. Имейте в виду, что ротор «заимствует» 30%, оставляя линию со 100% для теоретического DFIG без потерь.

    Характеристики асинхронного двигателя с фазным ротором
    • Отличный пусковой момент для нагрузок с высокой инерцией.
    • Низкий пусковой ток по сравнению с асинхронным двигателем с короткозамкнутым ротором.
    • Скорость — это переменная сопротивления в диапазоне от 50% до 100% полной скорости.
    • Повышенное техническое обслуживание щеток и токосъемных колец по сравнению с двигателем с короткозамкнутым ротором.
    • Генераторная версия машины с фазным ротором известна как асинхронный генератор с двойным питанием , машина с регулируемой скоростью.

     

    СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

    • Рабочий лист по теории двигателей переменного тока

    Двигатель переменного тока.

    Основные свойства, терминология и теория

    Двигатель переменного тока преобразует электрическую энергию в механическую. В двигателе переменного тока используется переменный ток, другими словами, направление тока периодически меняется. В случае обычного переменного тока, который используется на большей части территории Соединенных Штатов, ток меняет направление 120 раз в секунду. Этот ток называется «переменный ток 60 циклов» или «переменный ток 60 Гц» в честь г-на Герца, который первым придумал концепцию переменного тока. Другая характеристика текущего потока состоит в том, что он может изменяться по количеству. Например, поток может встречаться в 5 ампер, 10 ампер или 100 ампер.

    Было бы довольно трудно, если бы ток, скажем, 100 ампер в один момент протекал в положительном направлении, а затем протекал с такой же силой в отрицательном направлении. Вместо этого, по мере того, как ток готовится изменить направление, он сужается до тех пор, пока не достигнет нулевого потока, а затем постепенно нарастает в другом направлении. Максимальный ток (пики линии) в каждом направлении превышает указанное значение (в данном случае 100 ампер). Поэтому указанное значение дано как среднее. Важно помнить, что сила магнитного поля, создаваемого электромагнитной катушкой переменного тока, увеличивается и уменьшается с увеличением и уменьшением этого переменного тока.

    Магазин ПРИВОДЫ ПЕРЕМЕННОГО ТОКА

    Двигатель переменного тока состоит из двух основных электрических частей: «статора» и «ротора», как показано на рисунке 8. Статор является неподвижным электрическим компонентом. Он состоит из группы отдельных электромагнитов, расположенных таким образом, что они образуют полый цилиндр, причем один полюс каждого магнита обращен к центру группы. Термин «статор» происходит от слова «стационарный». Тогда статор является неподвижной частью двигателя. Ротор представляет собой вращающийся электрический компонент. Он также состоит из группы электромагнитов, расположенных вокруг цилиндра, полюса которых обращены к полюсам статора. Ротор расположен внутри статора и закреплен на валу двигателя. Термин «ротор» происходит от слова вращающийся. Таким образом, ротор является вращающейся частью двигателя. Задача этих компонентов двигателя — заставить вращаться ротор, который, в свою очередь, будет вращать вал двигателя. Это вращение произойдет из-за ранее обсуждавшегося магнитного явления, когда разные магнитные полюса притягиваются друг к другу, а одинаковые полюса отталкиваются. Если вы постепенно меняете полярность полюсов статора таким образом, что их объединенное магнитное поле вращается, то ротор будет следовать и вращаться вместе с магнитным полем статора.

    Как показано на рис. 9, статор имеет шесть магнитных полюсов, а ротор — два полюса. В момент времени 1 полюса статора A-1 и C-2 являются северными полюсами, а противоположные полюса, A-2 и C-1, являются южными полюсами. S-полюс ротора притягивается двумя N-полюсами статора, а два южных полюса статора притягиваются к N-полюсу ротора. Во время 2 полярность полюсов статора меняется так, что теперь полюса C-2, B-1 и N, а C-1 и B-2 являются полюсами S. Затем ротор вынужден повернуться на 60 градусов, чтобы выровняться с полюсами статора, как показано на рисунке. В момент 3 B-1 и A-2 равны N. В момент 4 A-2 и C-1 равны N. При каждом изменении противоположные полюса статора притягиваются к полюсам ротора. Таким образом, когда магнитное поле статора вращается, ротор вынужден вращаться вместе с ним.

    Одним из способов создания вращающегося магнитного поля в статоре двигателя переменного тока является использование трехфазного источника питания для катушек статора. Чтобы создать вращающееся магнитное поле в статоре трехфазного двигателя переменного тока, все, что нужно сделать, это правильно намотать катушки статора и правильно подключить провода питания. Соединение для 6-полюсного статора показано на рисунке 11. Каждая фаза трехфазного источника питания подключена к противоположным полюсам, а соответствующие катушки намотаны в одном направлении. Полярность полюсов электромагнита определяется направлением тока, протекающего через катушку. Следовательно, если два противоположных электромагнита статора намотаны в одном направлении, полярность противоположных полюсов должна быть противоположной. Когда полюс A1 — это N, полюс A2 — это S, а когда полюс B1 — это N, B2 — это S и так далее.

    На рис. 12 показано, как создается вращающееся магнитное поле. В момент времени 1 ток в полюсах фазы «A» положительный, а в полюсе A-1 — N. Ток в полюсах фазы «C» отрицательный, что делает C-2 полюсом N, а C-1 — S. В фазе «В» ток отсутствует, поэтому эти полюса не намагничены. В момент времени 2 фазы сместились на 60 градусов, в результате чего полюса C-2 и B-1 стали оба N, а C-1 и B-2 оба S. Таким образом, по мере того, как фазы сдвигают свой ток, результирующие полюса N и S перемещаются. по часовой стрелке вокруг статора, создавая вращающееся магнитное поле. Ротор действует как стержневой магнит, притягиваемый вращающимся магнитным полем.

    До сих пор мало что было сказано о роторе. В предыдущих примерах предполагалось, что полюса ротора были намотаны катушками, как и полюса статора, и питались постоянным током для создания полюсов с фиксированной полярностью. Кстати, именно так работает синхронный двигатель переменного тока. Однако большинство двигателей переменного тока, используемых сегодня, не являются синхронными двигателями. Вместо этого так называемые «асинхронные» двигатели являются рабочими лошадками промышленности. Так чем же отличается асинхронный двигатель? Большая разница заключается в том, как ток подается на ротор. Это не внешний источник питания. Как вы можете догадаться из названия двигателя, вместо него используется индукционная техника. Индукция — еще одна характеристика магнетизма. Это естественное явление, которое возникает, когда проводник (алюминиевые стержни в случае ротора, см. рис. 13) проходит через существующее магнитное поле или когда магнитное поле проходит мимо проводника. В любом случае их относительное движение вызывает протекание электрического тока в проводнике. Это называется «индуцированным» током. Другими словами, в асинхронном двигателе протекание тока в роторе вызвано не каким-либо прямым подключением проводников к источнику напряжения, а скорее влиянием проводников ротора, пересекающих линии потока, создаваемые магнитными полями статора. Индуцированный ток, создаваемый в роторе, приводит к возникновению магнитного поля вокруг проводников ротора, как показано на рисунке 14. Это магнитное поле вокруг каждого проводника ротора заставляет каждый проводник ротора действовать как постоянный магнит на рисунке 9.пример. Когда магнитное поле статора вращается, из-за воздействия трехфазного источника питания переменного тока наведенное магнитное поле ротора притягивается и будет следовать за вращением. Ротор соединен с валом двигателя, поэтому вал вращается и приводит в движение соединительную нагрузку.

    Электродвигатели переменного тока доступны в 3 типах; 3-фазный IEC, однофазный NEMA и трехфазный NEMA. Эти двигатели переменного тока имеют мощность от одной восьмой до 750 л. с. Диапазон напряжений от 115 до 575. Прежде чем сделать окончательный выбор, проконсультируйтесь со специалистом по применению двигателей. Правильный выбор двигателя может сэкономить энергию и со временем снизить затраты на эксплуатацию вашей системы.

    Как работают три 3-фазных асинхронных двигателя — бесплатное руководство

    Время чтения: 2 минуты, 43 секунды

    Машины

    Автор: IB-ADMIN

    0

    0

    Обзор трехфазного асинхронного двигателя

    Трехфазный асинхронный двигатель — это электродвигатель, работающий от переменного тока. Это самозапускающийся двигатель, состоящий из неподвижного статора и вращающегося ротора, оба из которых разделены воздушным зазором в диапазоне от 0,4 мм до 4 мм. Эти двигатели широко используются во множестве коммерческих и промышленных установок благодаря их способности к самозапуску.

    Как работает трехфазный асинхронный двигатель?

    Трехфазные двигатели с короткозамкнутым ротором работают в несколько четких шагов, которые обсуждаются ниже:-

    #1)Основные компоненты двигателя

    • Типичный трехфазный асинхронный двигатель с короткозамкнутым ротором состоит из статора и вращающегося ротора.
    • Статор — это неподвижный компонент двигателя, внутри которого находится ротор; он состоит из кучи пластин, образующих цилиндрическую полость, которая удерживается на месте прочной рамой из стали. По внутренней окружности цилиндрических пластин пробиты прорези, расположенные на одинаковом расстоянии друг от друга.
    • Ротор, вращающийся компонент трехфазного двигателя, изготовлен из пластин, уложенных друг на друга таким образом, что в роторе образуется несколько пазов. Эти пазы ротора, в свою очередь, освобождают место для обмотки ротора с короткозамкнутым ротором.

    #2) При прохождении трехфазного тока

    Трехфазный переменный ток проходит через многослойную обмотку статора двигателя. Прохождение этого тока через первичную обмотку приводит к созданию вращающегося магнитного поля, сокращенно RMF.

    #3) Создание вращающегося магнитного поля

    Вращающееся магнитное поле инициирует движение, которое является синхронным по своей природе. Это, в свою очередь, заставляет двигатель вращаться. Направление, в котором вращается двигатель, зависит не только от последовательности фаз входных линий, но и от последовательности, в которой линии связаны со статором.

    Это подтверждается тем фактом, что если поменять местами любую из двух первичных клемм, подключенных к источнику питания, двигатель изменит направление вращения. Синхронная скорость, скорость вращения поля, создаваемого первичными токами, прямо пропорциональна частоте питания и обратно пропорциональна количеству полюсов, присутствующих в обмотке статора.

    #4) Производство магнитного потока

    Чтобы роторы создавали крутящий момент и, таким образом, вращались, роторы должны пропускать через себя ток.