автореферат диссертации по электротехнике, 05.09.01, диссертация на тему:Торцевой асинхронный двигатель для мотор-колеса легкового электромобиля

Библиография Петренко, Юрий Васильевич, диссертация по теме Электромеханика и электрические аппараты

1. Анго Андре. Математика для электро- и радиоинженеров.— 2-е изд. — М.: Наука, 1967. — 779 с.

2. Аветисян Д.А., Бертинов А.И. Динамическое программирование расчета оптимальных электрических машин на ЦВМ. Электричество, 1966, * II, с.46 — 50.

3. Апсит В.В. Общие принципы и возможные практические пути исследования и расчета магнитных полей в электрических машинах. Рига, Зинатне, 1971, с.58.

4. Апсит В.В., Дикин Ю.И., Лапшин В.Н. Методика расчета плоского магнитного поля в поперечном сечении электрической машины. Рига, Зинатне, 1975, с.55.

5. А.СЛ56852 (СССР). Мотор-колесо. /Й.А.Погарский. -Опубл. в Б.И., 1963, № 16.

6. А.С.375214 (СССР). Мотор-колесо. /Н.А.Погарский, Т.В.Гойликовская. Опубл. в Б.И., 1973, № 16.

7. А.С.266913 (СССР). Электрическая машина торцевого исполнения. /В.М.Казанский, А.И.Инкин, В.Н.Зонов, В.М.Британчук, А.М.Шейнин. Опубл. в Б.И., 1970, № 12.

8. А.С.278836 (СССР). Беспазовый статор электрической машины. /В.М.Казанский. Опубл. в Б.И., 1970, J& 26.

9. А.С.607309 (СССР). Электрическая торцевая машина. /А.Г.Григоренко, А.А.Ставинский, Ю.В.Шапулов. Опубл. в Б.И., 1978, № 18.

10. А.С.425271 (СССР). Торцевая бесконтактная синхронная машина. /Л.М.Паластин. Опубл. в Б.И., 1974, № 15.

11. Баклин B.C., Хорьков К.А. Специальный курс электрических машин. Томск, 1980. 95 с.

12. Белькинд JI.Д., Веселовский О.Н., Конфедератов И.Я., Шнейберг Я.А. История энергетической техники. М.: ГЭИ, I960.- 304 с.

13. Бухгольц Г. Расчет электрических и магнитных полей.- Перевод с нем. М.: Иностранная литература, 1961. — 712 с.

14. Бухгольц Ю.Г., Инкин А.И., Приступ А.Г., Темлякова З.С. Расчет характеристик асинхронного двигателя с использованием нелинейных каскадных схем замещения. Электротехника, 1981, № 5, с.37-40.

15. Бухгольц Ю.Г. Исследование несимметричных асинхронных машин с беспазовым статором: Автореф.дис.канд.техн.наук.- Новосибирск, 1971. 30 с.

16. Вольдек А.И. Электрические машины. Л.: Энергия, 1978.- 832 с.

17. Великанов Д.Н., Ставров О.А. Перспективы применения аккумуляторных электромобилей. Изв.АН СССР — Энергетика и транспорт, 1966, № 3, с.143-149.

18. Гобелков В.Ф., Петренко D.B. и др. Торцевые асинхронные двигатели: Информ.листок /Новосибирск, ЦНТИ, № 86-82. 4 с.

19. Гусельников Э.М., Цукерман Б.С. Самотормозящиеся электродвигатели. М.: Энергия, 197I. — 95 с.

20. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. 5-е изд. -М.: Наука, 1971 — 1108 с.

21. Гущо -Малков Б.П. Электромобиль транспорт XXI века? США, Экономика, политика, идеология, № II, 1972, с.101-116.

22. Геллер Б., Гамата В. Дополнительные поля, моменты и потери мощности в асинхронных машинах. М. — Л.: Энергия, 1964, 264 с.

23. Грюнер А.И. Исследование короткозамкнутых роторов торцевых асинхронных двигателей. Автореферат дис.канд.техн.наук. — М., 1970. — с.32.

24. Зечихин Б.С. Магнитное поле в зазоре индукторной машины в режиме холостого хода. Изв.вузов. — Электромеханика, I960,1. I, с.73-82.

25. Зонов В.Н., Гобелков В.Ф. Торцевые асинхронные двигатели повышенной частоты. В кн.: Электрические беспазовые машины переменного тока. Новосибирск, НЭТИ, 1973, вып.4, с.20-24.

26. Зонов В.Н., Петренко Ю.В. Потери в стали распределенного активного слоя от потоков рассеяния. В кн.: Асинхронные электродвигатели с распределенным активным слоем статора. Новосибирск, НЭТИ, 1972, вып.2, с.34-40.

27. Зонов В.Н. Исследование электромагнитных процессов в распределенном активном слое индукционной машины: Автореф.дис. канд.техн.наук. Новосибирск, 1971. — 31 с.

28. Ефремов И.С., Пролыгин А.Л., Гущо »-Малков П.П. Состояние и перспективы развития пассажирского и грузового электромобильного транспорта. Электричество, 1975, № I, с.1-12.

29. Ермольев D.M. Методы решения нелинейных эксперименталь -ных задач. Кибернетика, 1966, № 4, с.1-17.

30. Инкин А.И. Схемная аппроксимация линейных сред, находящихся под воздействием электромагнитного поля. Электричество, 1975, № 4, с.64-67.

31. Инкин А.И., Литвинов Б.В. Электромагнитное поле в зазоре электрической машины переменного тока торцевого исполнения.- Электричество, 1973, № II, с.67-71.

32. Инкин А.И., Литвинов Б.В. Электромагнитное поле в активном объеме трехфазного торцевого асинхронного электродвигателя с короткозамкнутым ротором. Электричество, 1974, № 9, с.47-53.

33. Инкин А.И., Бухгольц Ю.Г. Принципы синтезирования нелинейных каскадных схем замещения. Электричество, 1979, № 6,с.33-37.

34. Инкин А.И. Синтез Е-Н звеньев и цепных схем замещения электрических машин. В кн.: Электрические беспазовые машины переменного тока. Новосибирск, НЭТИ, 1973, вып.4, с.107-113.

35. Инкин А.И. Аналитическое исследование магнитного поляв активном объеме электрической машины с постоянными магнитами. — Электричество, 1979, № 5, с.30-34.

36. Инкин А.И. Аналитическое решение уравнений магнитного поля в дискретных структурах явнополюсных электрических машин.- Электричество, 1979, №8, с.18-21.

37. Инкин А.И., Литвинов Б.В. Типовые Е-Н звенья электрических машин и цепная схема замещения трехфазной торцевой индукционной машины. В кн.: Электрические беспазовые машины переменного тока. Новосибирск, НЭТИ, 1973, вып.4, с.135-147.

38. Инкин А.И., Родыгин В.Н. Схема замещения синхронной индукционной машины с распределенными структурами статора и ротора в симметричном режиме. В кн.: Электрические беспазовые машины переменного тока. Новосибирск, НЭТИ, 1973, вып.4, с.148-152.

39. Иосифьян А.Г., Паластин Л.М. Торцевые электрические машины. Электротехника, 1966, № I, с.4-7.

40. Итоги выполнения Государственного плана экономического и социального развития СССР в 1980 г. /Народное хозяйство СССР в 1980 г. М.: Финансы и статистика, 1981, 583 с.

41. Иванов-Смоленский Н. В. Электромагнитные поля и процессы в электрических машинах и их физическое моделирование. М.: Энергия, 1969. — 304 с.

42. Иванов-Смоленский А.В., Мнацаканян М.С. Аналитический метод расчета магнитного поля в воздушном зазоре электрических машин с односторонней зубчатостью. Электричество, 1972, № 3, с.57-60.

43. Каган Б.М., Даниленко С.Е. Применение метода случайного поиска с обучением при оптимальном проектировании асинхронных электродвигателей. В кн.: Автоматика и вычислительная техника. Рига, Зинатне, 1966, с.169-172.

44. Каган Б.М., Бердичевский А.А., Даниленко С.Е., Розен-коп В.Д. Основные проблемы автоматизации серий электрических машин. В кн.: Применение вычислительной техники в электротехнической промышленности. М.: ВНИИЭМ,»1971, с.313-316.

45. Казанский В.М. О конструктивном развитии электрических машин с беспазовым статором. В кн.: Электрические беспазовые машины переменного тока. Новосибирск, НЭТИ, 1973, вып.4, с.4-11.

46. Казанский В.М. Беспазовые электродвигатели малой мощности: Автореферат дис. д-ра техн.наук. М., 197I, 67 с.

47. Кононенко Е.В., Сипайлов Г.А., Хорьков К.Н. Электрические машины (спецкурс). Москва, Высшая школа, 1975, 279 с.

48. Копылов И.П. Применение ЦВМ в инженерно-экономических расчетах. М.: Высшая школа, 1980. — 256 с.

49. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. Перевод с анг. — М.: Наука, 1978. — 831 с.

50. Казанский В.М., Зонов В.Н., Петренко Ю.В. Асинхронная торцевая машина как элемент электропривода роботов. В кн.: Электромеханическое обеспечение автоматических комплексов. Новосибирск, 1977, с.90-102 . (Межвузовский сборник научных трудов НЭТИ — НГУ).

51. Литвинов Б.В., Петренко Ю.В., Зонов В.Н. Электромагнитные процессы в трехфазной торцевой машине с обмоткой из ленточной фольги. В кн.: Электродвигатели с разомкнутым магнитопроводом.- Новосибирск, НЭТИ, 1973, вып.1, с.83-91.

52. Лукутин Б.В., Трубицын А.А., Цукублин А.Б. Исследование электромагнитных процессов в быстродействующем бесконтактном возбудителе. В кн.Исследование специальных электрических машин и машинно-вентильных систем. Томск, ТПИ, 1981 г.

53. Лопухина Е.М., Семенчуков Г.А. Проектирование асинхронных микродвигателей с применением ЭВМ .-М.’.Высшая школ а, 1980.-359 с.

54. Петренко Ю.В., Морозова Т.В. Коэффициент воздушного зазора торцевого асинхронного электродвигателя.-В кн.Автоматизация электроприводов и оптимизация режимов электропотребления:Тез.докл. краевой научно-технической конференции.-Красноярск,1982, с.46-47.

55. Петренко D.B. Торцевая индукционная машина с двухъярусной обмоткой статора.-В кн.:Электрические машины переменного тока с распределенным активным слоем статора.-Новосибирск, НЭТИ, 1975, вып.5, с.10-19.

56. Петренко Ю.В., Литвинов Б.В. Влияние конечной величины магнитной проницаемости магнитопровода трехфазной торцевой машины на ее интегральные характеристики.-В кн.:Сб.научных трудов НЭТИ. Новосибирск, 1973, с.63-68.

57. Погарский Н.А. Электрические машины с мотор-колесами.- М. , Машиностроение, 1965, с.136.

58. Погарский Н.А., Степанов А.Д. Универсальные трансмиссии пневмоколесных машин повыщенной мощности. М., Машиностроение, 1976, с.224.

59. Пролыгин А.П. Тяговый привод большегрузных карьерных самосвалов. Электротехника, 1977, № 7, с.1-4.

60. Перспективы развития электромобилестроения в США.- Электротехническая промышленность, сер. Тяговое и подъемно—транспортное электрооборудование, 1982 г., № 2(80), с.П-14.67. Патент Швеции № II54I5

61. Разработка и исследование торцевых асинхронных двигателей малой мощности с распределенным активным слоем: Отчет по НИР/ /НЭТИ; Научный руководитель работы В.М.Казанский. I ГР69037359; Инв.№ Б028158. — Новосибирск, 1969. — с.45.

62. Расчет геометрических размеров торцевых асинхронных электродвигателей на ЦВМ: Отчет по госбюджетной НИР /НЭТИ; Научный руководитель работы В.М.Казанский. № ГР 75022988.- Новосибирск, 1978, с.28.

63. Разработка беспазовых торцевых двигателей повышенной частоты. (3 и 4 этапы): Отчет по НИР /НЭТИ; Научный руководитель работы В.М.Казанский. ЛЭМ-6-72; № ГР 72061908; Новосибирск, 1973, 42 с.

64. Разработка мотор-колеса для электромобиля на базе торцевого асинхронного электродвигателя: Отчет по НИР /НЭТИ; Научный руководитель В.М.Казанский. ЛЭМ-П-74; № ГР 75050018; Инв.№ Б581555. — Новосибирск, 1976 , 58 с.

65. Разработка и исследование асинхронного двигателя для мотор-колесного привода электромобиля с предельными электромагнитными и тяговыми характеристиками (5 этап): Отчет по НИР /НЭТИ; Научный руководитель работы В.М.Казанский. ЛЭМ-3-77/А;

66. ГР 77040173, Новосибирск, 1978, — 155 с.

67. Разработка беспазовых торцевых двигателей повышенной частоты: Отчет по НИР; Научн. руководитель работы В.М.Казанский. ЛЭМ-6-72; № ГР 71034973; Инв.№Б300138 . — Новосибирск, 1972, 70 с.

68. Развитие электромобилей в странах Западной Европы и США. Экспресс информация. Автомобильный транспорт /ВИНИТИ. М., 1977 г., вып.44. — с.1-4.

69. Сипайлов Г.А., Лоос А.В., Лукутин А.В. Расчет переходных процессов синхронных импульсных генераторов на основе анализа магнитных полей. В кн.: Проблемы нелинейной электротехники. Наукова думка, 1976, т.1, с.15-19.

70. Сергеев П.С., Виноградов Н.В., Горяинов Ф.А. Проектирование электрических машин. М.: Энергия, 1970. 632 с.

71. Ставров О.А. Электромобили (зарубежные). -М.: ВИНИТИ, 1973, 262 с. — (Итоги науки и техники, сер.Автомобилестроение; T.I).

72. Ставров О.А. Электромобили (зарубежные). М.: ВИНИТИ, 1976, — 158 с. — (Итоги науки и техники, сер.Автомобилестроение, Т.2).

73. Ставров О.А. Перспективы применения аккумуляторных электромобилей в СССР. Автомобильная промышленность. — 1967, № 10, с.39-42.

74. Силовые установки для электромобилей. Автомобильная промышленность США. 1980 г., № 7, с.II.

75. Тозони О.В. 0 расчете трехмерных полей в кусочно-однородных средах. Электромеханика, 1968 г., № 12, с.1235 — 1302.

76. Тозони О.В. Расчет электромагнитных полей на вычислительных машинах. Техника, Киев, 1967, с.252.

77. Терзян А.А., Маникопян А.О. Проектирование серий электрических машин на ЦВМ. В кн.: Третья научно-техническая конференция (доклада) — М.: ВНИИЭМ, 1968, с.319-326.

78. Труда научно-исследовательского института электротехнической промышленности. М.: ЦСНТИЗ, 1959, Т.Ш. с.112.

79. Уайт Д., Вудсон Г. Электромеханическое преобразование энергии. Перевод с англ. — М.: Энергия, 1964. — с.528.

80. Улучшенные аккумуляторные батареи. Автомобильная промышленность США. — 1980 г., № 5, с.II.

81. Химмельблау Д. Прикладное нелинейное программирование.- Перевод с англ. М.: Мир, 1975. — 534 с.

82. Шейнин A.M., Демешко Ю.Ф. Практическая реализация повышения технического уровня асинхронных машин при применении беспазового статора. В кн.: Электрические беспазовые машины переменного тока. Новосибирск, НЭТИ, 1973, вып.4, с.148-152.

83. Шейнин A.M. Исследование трехфазных асинхронных машин с беспазовым статором: Автореф.дис.канд.техн.наук. 23,2033.

94. Ю5. Soki sUeattur £xtc.£n$., /919,59 ,№,5.

95. Л P.P. Piimti patin so а г dt turopa. » VtlocLdad’, /921,2.1, M/02l} 82.107. btooman hie. №. CUffozd 1 flatteiuts; piosptcts jot tltctiic V~thides.-Jutomot tno

96. Ю8. ETV-jrtto$tin.qunstiQes andschnelits Slertroccuto. ‘UiUrCiLtUtsvtrmrtung \ /919,5ч,л//г,ш

Двигатели для электромобилей: производители, устройство

Исчерпание углеводородного топлива, ухудшение экологической обстановки и ряд других причин рано или поздно заставят производителей разработать модели электромобилей, которые станут доступны для широких слоев населения. А пока остается только ждать или собственноручно разрабатывать варианты экологически чистой техники.Если же вы все-таки предпочитаете самостоятельно искать решения, а не дожидаться их со стороны, то вам понадобятся знания о том, какие двигатели для электромобиля уже изобрели, чем они отличаются и какой из них наиболее перспективный.

Тяговый двигатель

Если вы решите поставить обыкновенный электромотор под капот своего автомобиля, то, скорее всего, из этого ничего не выйдет. А все потому, что вам необходим тяговый электрический двигатель (ТЭД). От обычных электромоторов он отличается большей мощностью, способностью выдавать больший крутящий момент, небольшими габаритами и малой массой.

Для питания тягового электродвигателя используются батареи. Они могут подзаряжаться от внешних источников («от розетки»), от солнечных батарей, от генератора, установленного в авто, или в режиме рекуперации (самостоятельное восполнение заряда).

Двигатели для электромобилей чаще всего работают от литий-ионных батарей. ТЭД обычно функционирует в двух режимах – двигательном и генераторном. В последнем случае он восполняет потраченный запас электроэнергии при переходе на нейтральную скорость.

Принцип работы

Стандартный электродвигатель состоит из двух элементов – статора и ротора. Первый компонент является неподвижным, имеет несколько катушек, а второй совершает вращательные движения и передает усилие на вал. На катушки статора с определенной периодичностью подается переменный электрический ток, что вызывает появление магнитного поля, которое начинает вращать ротор. Чем чаще катушки «включаются-выключаются», тем быстрее вращается вал. В двигатели для электромобилей могут устанавливать два вида ротора:

  • короткозамкнутый, на котором возникает магнитное поле, противоположное полю статора, за счет чего и происходит вращение;
  • фазный – используется для уменьшения тока запуска и контроля скорости вращения вала, является наиболее распространенным.

Кроме того, в зависимости от скорости вращения магнитного поля и ротора двигатели могут быть асинхронными и синхронными. Тот или иной тип необходимо выбирать из имеющихся средств и поставленных задач.

Синхронный двигатель

Синхронный двигатель – это ТЭД, у которого скорость вращения ротора совпадает со скоростью вращения магнитного поля. Такие двигатели для электромобилей целесообразно использовать только в тех случаях, когда имеется источник повышенной мощности – от 100 кВт.Одной из разновидностей синхронных электромоторов является шаговый двигатель. Обмотка статора такой установки разбита на несколько секций. В определенный момент ток подается на определенную секцию, возникает магнитное поле, которое вращает ротор на определенный угол. Затем ток подается на следующую секцию, и процесс повторяется, вал начинает вращаться.

Асинхронный электромотор

В асинхронном двигателе скорость вращения магнитного поля не совпадает со скоростью вращения ротора. Плюсом таких устройств является ремонтопригодность – запчасти для электромобилей, оснащенных этими установками, найти очень просто. К другим преимуществам относятся:

  1. Простая конструкция.
  2. Простота обслуживания и эксплуатации.
  3. Низкая стоимость.
  4. Высокая надежность.

В зависимости от наличия щеточно-коллекторного узла двигатели могут быть коллекторными и безколлекторными. Коллектор – устройство, служащее для преобразования переменного тока в постоянный. Щетки служат для передачи электроэнергии на ротор.Безколлекторные двигатели для электромобилей отличаются меньшей массой, компактными габаритами и более высоким КПД. Они реже перегреваются и потребляют меньше электричества. Единственный минус такого двигателя – высокая цена на электронный блок, который выполняет функции коллектора. Кроме того, найти запчасти для электромобилей, оснащенных безколлекторным двигателем, сложнее.

Производители электродвигателей

Большинство самодельных электромобилей сконструировано с применением коллекторного двигателя. Это объясняется доступностью, низкой ценой и простым обслуживанием.

Видным производителем линейки данных моторов является немецкая компания Perm-Motor. Ее продукция способна к рекуперативному торможению в генераторном режиме. Она активно используется для оснащения скутеров, моторных лодок, легковых автомобилей, электроподъёмных устройств. Если двигатели Perm-Motor устанавливали в каждый электромобиль, цена их была бы значительно ниже. Сейчас они стоят в пределах 5-7 тыс. евро.Популярным производителем является компания Etek, которая занимается производством безщеточных и щеточных коллекторных двигателей. Как правило, это трехфазные моторы, работающие на постоянных магнитах. Основные преимущества установок:

  • точность управления;
  • легкость организации рекуперации;
  • высокая надежность за счет простой конструкции.

Завершает список производителей завод из США Advanced DC Motors, выпускающий коллекторные электромоторы. Некоторые модели обладают исключительной особенностью – они имеют второй шпиндель, что можно использовать для подключения на автомобиль-электромобиль дополнительного электрооборудования.

Какой двигатель выбрать

Чтобы покупка вас не разочаровала, надо сравнить характеристики приобретаемой модели с предъявляемыми требованиями к автомобилю. При выборе электродвигателя в первую очередь ориентируются на его тип:

  • Синхронные установки имеют сложное устройство и дорогостоящи, но обладают перегрузочной способностью, ими легче управлять, им не страшны перепады напряжения, используются при высоких нагрузках. Они устанавливаются на электромобиль Mercedes.
  • Асинхронные модели отличаются низкой стоимостью, простым устройством. Они просты в обслуживании и эксплуатации, однако выделяемая ими мощность намного меньше, чем тот же показатель синхронной установки.

На электромобиль цена будет значительно ниже, если электромотор будет работать в паре с двигателем внутреннего сгорания. На рынке такие комбинированные установки обладают большей популярностью, так как их стоимость составляет около 4-4,5 тыс. евро.

EV Motors: объяснение

Из апрельского выпуска журнала Car and Driver за 2022 год.

Любители автомобилей так долго знали язык двигателей внутреннего сгорания, что неумолимый переход на электрификацию требует настройки нашей базы знаний. Многие из нас знакомы с ритмом всасывания-сжимания-выдоха четырехтактного двигателя, который приводит в действие большинство сегодняшних водителей, в то время как среди нас есть любители снегоходов и подвесных моторов, которые, вероятно, могут объяснить внутреннюю работу двухтактного двигателя. Некоторые ботаники могут даже иметь представление о эпитрохоидальных махинациях роторного двигателя Ванкеля, но опыт обычного редуктора с электродвигателями может начаться и закончиться с последним отказом стартера.

Все типы двигателей электромобилей состоят из двух основных частей. Статор — это стационарная внешняя оболочка двигателя, корпус которой крепится к шасси наподобие блока цилиндров. Ротор представляет собой единственный вращающийся элемент и аналогичен коленчатому валу в том, что он передает крутящий момент через трансмиссию на дифференциал.

В большинстве электромобилей используется блок с прямым приводом (с одним передаточным числом), который снижает скорость вращения между двигателем и колесами. Как и двигатели внутреннего сгорания, электродвигатели наиболее эффективны при низких оборотах и ​​более высоких нагрузках. В то время как электромобиль может иметь приемлемый запас хода на одной передаче, более тяжелые пикапы и внедорожники, предназначенные для буксировки прицепов, увеличат запас хода благодаря многоступенчатой ​​трансмиссии на скорости шоссе. Сегодня только Audi e-tron GT и Porsche Taycan используют двухступенчатую коробку передач. Многоступенчатые потери и затраты на разработку являются причинами редкости электромобилей с более чем одной передачей, но мы прогнозируем, что это изменится.

Унификация электродвигателей EV

Все три основных типа электродвигателей используют трехфазный переменный ток для создания вращающегося магнитного поля (RMF), частота и мощность которого контролируются силовой электроникой, реагирующей на нажатие педали акселератора. Статоры содержат многочисленные параллельные пазы, заполненные соединенными между собой петлями медных обмоток. Это могут быть громоздкие пучки круглой медной проволоки или аккуратные шпилькообразные медные вставки квадратного сечения, увеличивающие как плотность заполнения, так и прямой контакт между проводами внутри канавок. Более плотные витки улучшают способность к крутящему моменту, а более аккуратное переплетение на концах приводит к меньшему объему и меньшему общему корпусу.

Аккумуляторы — это устройства постоянного тока, поэтому силовая электроника электромобиля включает инвертор постоянного тока в переменный, который обеспечивает статор переменным током, необходимым для создания важнейшей переменной RMF. Но стоит отметить, что эти электродвигатели также являются генераторами, а это означает, что колеса будут вращать ротор в статоре в обратном направлении, чтобы индуцировать RMF в другом направлении, которое возвращает мощность обратно через преобразователь переменного тока в постоянный, чтобы отправить мощность в батарея. Этот процесс, известный как рекуперативное торможение, создает сопротивление, замедляющее автомобиль. Регенерация не только играет центральную роль в расширении запаса хода электромобиля, это в значительной степени целый шарик воска, когда речь идет о высокоэффективных гибридах, потому что большое количество регенерации улучшает показатели экономии топлива EPA. Но в реальном мире рекуперация менее эффективна, чем выбег, что позволяет избежать потерь каждый раз, когда энергия проходит через двигатель и преобразователь при сборе кинетической энергии.

Три типа электродвигателей

Типы двигателей можно разделить по фундаментальным различиям роторов, которые представляют собой совершенно разные способы преобразования RMF статора в фактическое вращательное движение. Эти различия на самом деле достаточно разительны, чтобы отдать должное нашей первоначальной аналогии с четырьмя циклами, двумя циклами и Ванкеля. В асинхронной категории у нас есть асинхронные двигатели, в то время как синхронная группа включает двигатели с постоянными магнитами и двигатели с токовым возбуждением.

Асинхронные двигатели существуют с 19 века. Здесь ротор содержит продольные пластины или стержни из проводящего материала, чаще всего из меди, но иногда из алюминия. RMF статора индуцирует ток в этих пластинах, который, в свою очередь, создает электромагнитное поле (ЭДС), которое начинает вращаться внутри RMF статора. Асинхронные двигатели известны как асинхронные двигатели, потому что ЭДС индукции и связанный с ней вращающий момент могут существовать только тогда, когда скорость ротора отстает от RMF. Такие двигатели распространены, потому что им не нужны редкоземельные магниты и они относительно дешевы в производстве, но их сложнее охлаждать при длительных высоких нагрузках и они по своей природе менее эффективны на низких скоростях.

Как следует из названия, роторы двигателей с постоянными магнитами обладают собственным магнетизмом. Для создания магнитного поля ротора не требуется энергии, что делает их гораздо более эффективными на низкой скорости. Такие роторы также вращаются синхронно с RMF статора, что делает их синхронными. А вот с простой обмоткой ротора магнитами поверхностного монтажа возникают проблемы. Например, для этого требуются более крупные магниты, а удерживать ротор на высокой скорости становится все труднее по мере того, как все становится тяжелее. Но более серьезной проблемой является так называемая «обратная ЭДС» на высоких скоростях, при которой обратное электромагнитное магнитное поле добавляет сопротивление, которое ограничивает максимальную мощность и создает избыточное тепло, которое может повредить магниты.

Чтобы избежать этого, большинство электродвигателей с постоянными магнитами оснащены внутренними постоянными магнитами (IPM), которые попарно вставляются в продольные V-образные пазы, расположенные в виде нескольких лепестков прямо под поверхностью железного сердечника ротора. Прорези обеспечивают безопасность IPM на высокой скорости, но преднамеренно сформированные области между магнитами создают противодействующий крутящий момент. Магниты либо притягиваются, либо отталкиваются от других магнитов, но обычное сопротивление, сила, которая прикрепляет магнит к ящику с инструментами, притягивает лепестки железного ротора к RMF. IPM выполняют работу на более низких скоростях, а реактивный крутящий момент берет верх на высоких скоростях. Чтобы вы не думали, что это новинка, Prius использует их.

Окончательный тип двигателя не существовал в электромобилях до недавнего времени, потому что общепринятое мнение гласило, что бесколлекторные двигатели, которые описаны выше, были единственным жизнеспособным вариантом для электромобиля. BMW недавно изменила эту тенденцию, установив щеточные синхронные двигатели переменного тока с токовым возбуждением на новые модели i4 и iX. Ротор этого типа взаимодействует с RMF статора точно так же, как ротор с постоянными магнитами, но в роторе отсутствуют постоянные магниты. Вместо этого он имеет шесть широких медных лепестков, питающихся от батареи постоянного тока для создания необходимой ЭДС. Для этого требуются контактные кольца и подпружиненные щетки на валу ротора, что заставило других отказаться от этого подхода из-за опасений по поводу износа щеток и связанной с ним пыли. Не будет ли здесь проблемой износ щеток? Это еще предстоит выяснить, но мы в этом сомневаемся. Массив щеток изолирован в изолированном отсеке со съемной крышкой, обеспечивающей легкий доступ. Отсутствие постоянных магнитов позволяет избежать проблем, связанных с ростом стоимости редкоземельных металлов и воздействием добычи полезных ископаемых на окружающую среду. Эта схема также позволяет варьировать силу магнитного поля ротора, что обеспечивает дальнейшую оптимизацию. Тем не менее, для питания этого ротора требуется мощность, что делает эти двигатели менее эффективными, особенно на низких скоростях, когда энергия, необходимая для создания поля, составляет больший процент от общего потребления.

Появление синхронного двигателя переменного тока с возбуждением током произошло настолько недавно в короткой истории электромобилей, что это показывает, насколько рано мы находимся на кривой развития. Есть много места для свежих идей, и уже были сделаны важные повороты, не в последнюю очередь включая отход Теслы от концепции асинхронного двигателя, которая является основой для его собственного бренда и логотипа, к синхронным двигателям с постоянными магнитами. И нам едва исполнилось десятилетие в современной эре электромобилей — мы только начинаем.

Автомобиль и водитель

Этот контент импортирован из OpenWeb. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Этот 17-летний парень разработал двигатель, который потенциально может изменить индустрию электромобилей | Инновация

Роберт Сансоне со своим новым синхронным реактивным двигателем.
Общество науки

Роберт Сансоне — прирожденный инженер. От аниматронных рук до скоростных беговых ботинок и картинга, который может развивать скорость более 70 миль в час, изобретатель из Форт-Пирса, Флорида, считает, что в свободное время он выполнил не менее 60 инженерных проектов. А ему всего 17 лет.

Пару лет назад Sansone наткнулся на видео о преимуществах и недостатках электромобилей. В видео объясняется, что для большинства двигателей электромобилей требуются магниты, изготовленные из редкоземельных элементов, извлечение которых может быть дорогостоящим как с финансовой, так и с экологической точки зрения. Необходимые редкоземельные материалы могут стоить сотни долларов за килограмм. Для сравнения, медь стоит 7,83 доллара за килограмм.

«У меня есть естественный интерес к электродвигателям, — говорит Сансоне, который использовал их в различных проектах по робототехнике. «С этой проблемой устойчивости я хотел решить ее и попытаться разработать другой двигатель».

Старшеклассник слышал о типе электродвигателя — синхронном реактивном двигателе, — в котором не используются эти редкоземельные материалы. Этот тип двигателя в настоящее время используется для насосов и вентиляторов, но сам по себе он недостаточно мощный, чтобы его можно было использовать в электромобиле. Итак, Сансоне начал мозговой штурм, чтобы улучшить его производительность.

В течение года компания Sansone создала прототип нового синхронного реактивного двигателя, который обладал большей силой вращения (или крутящим моментом) и эффективностью, чем существующие. Прототип был изготовлен из напечатанного на 3D-принтере пластика, медных проводов и стального ротора и протестирован с использованием различных измерителей для измерения мощности и лазерного тахометра для определения скорости вращения двигателя. Его работа принесла ему первый приз и выигрыш в размере 75 000 долларов на Международной научно-технической ярмарке Regeneron (ISEF) в этом году, крупнейшем международном конкурсе STEM для старших классов.

В менее экологичных двигателях с постоянными магнитами используются такие материалы, как неодим, самарий и диспрозий, которые пользуются большим спросом, поскольку используются во многих различных продуктах, включая наушники и наушники-вкладыши, объясняет Хит Хофманн, профессор электротехники и компьютерной инженерии в Университет Мичигана. Хофманн много работал над электромобилями, в том числе консультировал Tesla по разработке алгоритмов управления их силовым приводом.

«Кажется, что число приложений, использующих магниты, становится все больше и больше, — говорит он. «Многие материалы добываются в Китае, поэтому цена часто может зависеть от нашего торгового статуса с Китаем». Хофманн добавляет, что Tesla недавно начала использовать постоянные магниты в своих двигателях.

Электродвигатели используют вращающиеся электромагнитные поля для вращения ротора. Катушки проволоки в неподвижной внешней части двигателя, называемой статором, создают эти электромагнитные поля. В двигателях с постоянными магнитами магниты, прикрепленные к краю вращающегося ротора, создают магнитное поле, которое притягивается к противоположным полюсам вращающегося поля. Это притяжение раскручивает ротор.

Синхронные реактивные двигатели не используют магниты. Вместо этого стальной ротор с прорезанными в нем воздушными зазорами выравнивается с вращающимся магнитным полем. Нежелание, или магнетизм материала, является ключом к этому процессу. Когда ротор вращается вместе с вращающимся магнитным полем, создается крутящий момент. Больший крутящий момент создается, когда коэффициент заметности или разница в магнетизме между материалами (в данном случае стальным и немагнитным воздушным зазором) больше.

Вместо того, чтобы использовать воздушные зазоры, Сансоне подумал, что может включить в двигатель другое магнитное поле. Это увеличило бы этот коэффициент заметности и, в свою очередь, произвело бы больший крутящий момент. В его конструкции есть и другие компоненты, но он не может раскрыть больше деталей, так как надеется запатентовать технологию в будущем.

Новый двигатель Sansone превзошел традиционный синхронный реактивный двигатель аналогичной конструкции в тестах на крутящий момент и эффективность.

Роберт Сансоне

«После того, как у меня появилась эта первоначальная идея, мне пришлось сделать несколько прототипов, чтобы проверить, будет ли эта конструкция действительно работать», — говорит Сансоне. «У меня нет тонны ресурсов для создания очень продвинутых двигателей, поэтому мне пришлось сделать уменьшенную версию — масштабную модель — с помощью 3D-принтера».

Потребовалось несколько прототипов, прежде чем он смог протестировать свой дизайн.

«На самом деле у меня не было наставника, который мог бы мне помочь, поэтому каждый раз, когда двигатель выходил из строя, мне приходилось проводить массу исследований и пытаться устранять неполадки, — говорит он. «Но в итоге на 15-м моторе я смог получить работающий прототип».

Сансон проверил свой двигатель на крутящий момент и КПД, а затем для сравнения перенастроил его для работы в качестве более традиционного синхронного реактивного двигателя. Он обнаружил, что его новая конструкция обеспечивает на 39 процентов больший крутящий момент и на 31 процент большую эффективность при 300 оборотах в минуту (об/мин). При 750 об/мин эффективность увеличилась на 37 процентов. Он не мог испытать свой прототип при более высоких оборотах в минуту, потому что пластиковые детали перегревались — урок, который он усвоил на собственном горьком опыте, когда один из прототипов расплавился на его столе, — рассказывает он 9.0003 Top of the Class , подкаст, созданный Crimson Education.

Для сравнения, двигатель Tesla Model S может развивать скорость до 18 000 об/мин, объяснил главный конструктор двигателей компании Константинос Ласкарис в интервью 2016 года Кристиану Руоффу для журнала об электромобилях Charged.

Сансоне подтвердил свои результаты во втором эксперименте, в котором он «изолировал теоретический принцип, согласно которому новый дизайн создает магнитную заметность», согласно презентации своего проекта. По сути, этот эксперимент исключил все другие переменные и подтвердил, что улучшения крутящего момента и эффективности коррелируют с большим коэффициентом значимости его конструкции.

«Он определенно правильно смотрит на вещи, — говорит Хофманн о Сансоне. «Есть потенциал, что это может стать следующей большой вещью». Однако он добавляет, что многие профессора работают над исследованиями всю свою жизнь, и «довольно редко они в конечном итоге захватывают мир».

Хофманн говорит, что материалы для синхронных реактивных двигателей дешевы, но машины сложны и, как известно, трудны в производстве. Таким образом, высокие производственные затраты являются препятствием для их широкого использования и основным ограничивающим фактором для изобретения Sansone.

Сансоне соглашается, но говорит, что «с новыми технологиями, такими как аддитивное производство [например, 3D-печать], построить его в будущем будет проще».

Сейчас Сансоне работает над расчетами и трехмерным моделированием 16-й версии своего мотора, которую он планирует построить из более прочных материалов, чтобы протестировать ее на более высоких оборотах в минуту. Если его двигатель продолжит работать с высокой скоростью и эффективностью, он говорит, что продолжит процесс патентования.

Вся экспериментальная установка Sansone.

Роберт Сансоне

Будучи старшеклассником Центральной средней школы Форт-Пирса, Сансоне мечтает поступить в Массачусетский технологический институт. Его выигрыш от ISEF пойдет на оплату обучения в колледже.

Сансон говорит, что изначально не планировал участвовать в конкурсе. Но когда он узнал, что один из его занятий позволил ему завершить годовой исследовательский проект и написать статью по выбранной им теме, он решил воспользоваться возможностью и продолжить работу над своим двигателем.

«Я подумал, что если я смогу вложить в это столько энергии, то смогу сделать это проектом научной выставки и конкурировать с ним», — объясняет он.