Содержание

Замена двигателей постоянного тока на асинхронные двигатели переменного тока

Промышленные двигатели постоянного тока начали выпускаться в 1860—1870 гг., чему предшествовал 30-летний период их разработки после фундаментальных открытий М. Фарадея (закона электромагнитной индукции и превращения электрической энергии в механическую).

Двигатели постоянного тока широко применяются и в наше время благодаря использованию современных тиристорных преобразователей, которые позволяют осуществлять регулирование скорости данных двигателей путем изменения напряжения на якоре или в обмотках возбуждения. Для расширения диапазона регулирования скорости используются различные сигналы обратной связи (напряжение на якоре, тахогенераторы и т.д.). Однако эксплуатация двигателей постоянного тока влечет за собой ряд значительных неудобств, связанных с конструктивными особенностями машин данного типа, а именно:

1. Сложность конструкции и, как результат, высокая цена


2.  Наличие щеточно-коллекторного узла


3. Большая масса


4. Необходимость в периодическом обслуживании




Все эти недостатки требуют существенных затрат при покупке машин постоянного тока и их дальнейшей эксплуатации, а так же они  могут значительно снизить надежность и точность систем в целом. Необходимо планировать дополнительные планово-предупредительные работы и останавливать производство для обслуживания щеточно-коллекторных узлов и проводить периодическую продувку машин от пыли.

До недавнего времени внедрение асинхронных двигателей (АД) с короткозамкнутыми роторами в системы, где требуется широкий диапазон регулирования скорости, не представлялось возможным, а для изменения скорости движения приводимых механизмов использовались переключаемые редукторы или вариаторы. Дальнейшим развитием таких систем стало появление асинхронных двигателей с переключением числа полюсов (двух и трех скоростные двигатели), что позволяло ступенчато изменять скорость вращения.

С развитием полупроводниковой электроники (разработка IGBT транзисторов), появилась возможность производства недорогих микропроцессорных преобразователей частоты, с помощью которых стало возможным полноценно управлять скоростью асинхронных двигателей в широком диапазоне регулирования (1:1000). Теперь частота вращения АД не зависит от частоты питающей сети, двигатели можно разгонять выше их номинальной скорости. Так же появилась возможность управления моментом асинхронных двигателей. Системы управления движением с использованием асинхронных двигателей и преобразователей частоты, получаются дешевле и проще подобных систем с двигателями постоянного тока. В качестве датчиков обратной связи широко используются цифровые устройства (энкодеры), которые менее подвержены влиянию электромагнитных помех, чем тахогенераторы, классически используемые с машинами постоянного тока.

Асинхронный двигатель – простая, недорогая, не требующая обслуживания машина. Именно эти аргументы привели к тому, что на многих предприятиях машины постоянного тока с тиристорными преобразователями стали заменять на асинхронные двигатели с системами управления, построенными на преобразователях частоты.

При подборе асинхронного двигателя взамен машины постоянного тока необходимо учитывать разность характеристик этих машин. Подбор двигателя осуществляется по следующим параметрам:

1. По номинальной скорости вращения

Диапазон изменения частоты вращения вала асинхронного двигателя должен быть равен или больше чем у двигателя постоянного тока.

2. По моменту (номинальному, пусковому, максимальному)

Номинальный момент асинхронного двигателя должен быть равен или быть больше исходного при условии длительной работы в заданном диапазоне частот вращения без перегрева. Максимальный и пусковой моменты  должны быть равны или быть больше пускового момента определенного для данного механизма.

На рисунке 1 и 2 представлены механические характеристики асинхронного двигателя и двигателя постоянного тока соответственно. Как видно, на малых скоростях асинхронный двигатель имеет момент значительно меньше номинального в отличие от двигателя постоянного тока. Поэтому при замене двигателя постоянного тока необходимо однозначно определить диапазон скорости вращения вала и требуемый момент в этом диапазоне. Как правило, для удовлетворения механических характеристик приводного механизма, приходится ставить асинхронный двигатель большей мощности.

Рис.1 Механическая характеристика асинхронного двигателя

Рис.2 Механическая характеристика  двигателя постоянного тока

3. По режиму работы




Нагрев электрической машины зависит от режима ее работы, т.е. от соотношения длительности периодов работы и пауз между ними, или периодов работы с полной или частичной нагрузкой, от частоты включения машины и характера протекания переходных процессов.


 


Подразделяют следующие режимы работы:


             


Продолжительный режим (S1) — режим при котором время работы машины при практически неизменных нагрузке и температуре окружающей среды достаточно для нагрева всех ее частей до практически установившейся температуры. Режим характеризуется неизменными потерями в течение всего времени работы машины.

Кратковременный  режим (S2) — режим при котором периоды неизменной нагрузки чередуются с периодами отключения машины, причем за время работы температура частей машины не успевает достигнуть установившегося значения, а за время пауз машина охлаждается до холодного состояния.

Повторно-кратковременный  режим (S3-S8) — отличается от кратковременного регламентированными продолжительностью включения под неизменную нагрузку и продолжительностью периодов отключения, причем время работы машины всегда меньше времени, необходимого для нагрева ее частей до установившейся температуры, а время пауз меньше необходимого для остывания машины до практически холодного состояния. Отличие между режимами S3-S8 заключается частотой пусков и продолжительностью включения машины.

4. По условиям эксплуатации

Согласно ГОСТ 17498-87 асинхронный двигатель должен иметь соответствующую степень защиты IPXX, где первый символ X означает степень защиты оболочкой, от проникновения инородных твердых тел, второй символ X означает степень защиты оболочкой от вредных воздействий проникающей воды. Например, IP54 — “Машина не полностью защищена от проникновения внутрь оболочки пыли (однако, пыль не может проникать в количестве, достаточном для нарушения работы изделия) и воды, разбрызгиваемой на оболочку в любом направлении”.

По всем вопросам, касательно данного применения обращайтесь в ООО «Драйвика» по тел. 8 (812) 635 90 30 или Email: [email protected]

Двигатель постоянного тока асинхронный или синхронный. Типы электродвигателей и принципы работы


Электродвигатель переменного тока

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу)

Электрический двигатель
— это, электрическая машина , в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель постоянного тока
    постоянным током ;

    • Коллекторные двигатели постоянного тока. Разновидности:
      • С возбуждением постоянными магнитами;
      • С параллельным соединением обмоток возбуждения и якоря;
      • С последовательным соединением обмоток возбуждения и якоря;
      • Со смешанным соединением обмоток возбуждения и якоря;
    • Бесколлекторные двигатели постоянного тока (вентильные двигатели) с электронным переключателем тока;
  • Двигатель переменного тока
    — электрический двигатель, питание которого осуществляется переменным током , имеет две разновидности:

    • Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения;
    • Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением.
  • Однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь
  • Многофазные
  • Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.
  • Вентильные двигатели — Электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора (ДПР), системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора).
  • Универсальный коллекторный двигатель (УКД) — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation
.
2010
.

Смотреть что такое «Электродвигатель переменного тока» в других словарях:

    электродвигатель переменного тока
    — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor …

    Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

    Машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… …

    Электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… … Большая советская энциклопедия

    Машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… … Большой энциклопедический политехнический словарь

    электропривод переменного тока
    — электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb … Справочник технического переводчика

    электропривод постоянного (переменного) тока
    — 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор;

Явление электромагнитной индукции стало основой возникновения и развития всех электрических машин. Первооткрывателем этого явления в конце 19 века был Майкл Фарадей, английский учёный — экспериментатор. Он провёл опыты с первыми электрическими машинами. Сейчас без них невозможно представить нашу жизнь. Электродвигатели стали одними из самых распространённых электрических машин.

Для работы электромотора необходимо напряжение, свойства которого определяют его конструкцию. На переменном напряжении и токе работают такие электродвигатели:

на постоянном напряжении и токе работают:

  • коллекторные;
  • униполярные;
  • шаговые.

Синхронные и асинхронные электродвигатели

Синхронные и асинхронные электромоторы имеют общие условия для своей работы. Для этого необходимо магнитное поле, максимальная величина которого перемещается в пространстве. Такое поле может быть создано двумя или большим числом обмоток. Обычные конструкции синхронных и асинхронных электромоторов содержат две или три обмотки.

Они размещаются на массивных ферримагнитных сердечниках, усиливающих магнитное поле. Для трёх обмоток применяется трёхфазное напряжение, для двух обмоток – двухфазное или одна фаза с фазосдвигающим конденсатором. Но с таким конденсатором к однофазной сети можно подключить и трёхфазные двигатели.

Если ротор электромотора создаёт постоянное магнитное поле, либо от постоянных магнитов, либо от встроенного в ротор источника питания постоянного тока, либо от внешнего источника питания постоянного тока через кольца со щётками такой двигатель является синхронным. В нём частота оборотов и частота напряжения источника питания одинаковы. В асинхронных двигателях используется немагнитный ротор без явно выраженных полюсов, колец со щётками, встроенных выпрямителей и комбинированных деталей из различных материалов. Исключением является синхронный гистерезисный двигатель.

Ротор асинхронного двигателя работает как вторичная обмотка трансформатора, которая замкнута накоротко. Но ток в его роторе может возникнуть только при более медленном вращении в сравнении с магнитным полем статора. Такое различие скоростей называется скольжением. Простота конструкции и соответствующая надёжность делают асинхронный электромотор наиболее широко используемым.

Коллекторные машины

Однако у синхронных и асинхронных электромоторов есть один непреодолимый недостаток – частота питающего напряжения. Она определяет скорость вращения магнитного поля и вала в этих двигателях. Никакими конструктивными изменениями в них при заданной частоте питающего напряжения невозможно получить частоту вращения вала большую, чем частота питающего напряжения. При необходимости большего числа оборотов используются коллекторные электромоторы.

В этих двигателях происходит постоянное переключение обмоток ротора коллектором. Каждая обмотка по сути это рамка с током, которая, как известно из опытов Фарадея, поворачивается в магнитном поле. Но одна рамка повернётся и остановится. Поэтому рамок — обмоток сделано несколько и каждой из них соответствует пара пластин в коллекторе. Ток подаётся через щётки, скользящие по коллектору.

Конструкция такого электромотора позволяет работать от источника либо постоянного, либо переменного напряжения, который обеспечивает ток и в статоре и в роторе. При переменном напряжении направление тока в статоре и роторе изменяется одновременно и поэтому направление действия силы вращающей ротор сохраняется. Частота питающего напряжения никак не влияет на частоту вращения ротора. Она зависит только от величины напряжения, питающего электромотор. Скользящий контакт щётки с коллектором ограничивает возможности этих электродвигателей по сроку службы и месту применения, поскольку искрение в щётках довольно быстро разрушает скользящий контакт и недопустимо в условиях повышенной взрывоопасности.

Униполярные и шаговые варианты

Однако есть такие конструкции электромоторов постоянного тока, в которых коллектора нет. Это униполярные электромоторы.

В этих электродвигателях ротор выполнен в виде диска, расположенного между полюсами постоянных магнитов. Щётки расположенные диаметрально противоположно питают током диск – ротор. Под воздействием силы Лоренца диск вращается. Несмотря на привлекательную простоту конструкции, такой электромотор не имеет широкого практического использования, поскольку требует слишком больших значений тока и магнитного поля. Тем не менее, существуют уникальные лабораторные разработки униполярных электромоторов со щётками из жидкого металла, которые развивают обороты немыслимые для иных конструкций двигателей.

Шаговый двигатель это ещё одна конструкция, работающая на постоянном токе.

В целом этот двигатель подобен синхронному электромотору с ротором из постоянных магнитов. Отличие в том, что число обмоток здесь больше, и они управляются ключами, которые подают на каждую обмотку питающее напряжение. В результате ротор меняет своё положение, притягиваясь к подключенной обмотке. Число обмоток определяет минимальный угол поворота ротора, а коммутаторы – скорость вращения ротора. В шаговом двигателе ротор может вращаться почти как угодно, поскольку ключи связаны с электронной схемой управления.

Рассмотренные конструкции электромоторов являются базовыми. На их основе для решения определённых задач создано много специальных разновидностей электромоторов. Но это уже совсем другая история…


В быту, коммунальном хозяйстве, на любом производстве двигатели электрические являются неотъемлемой составляющей: насосы, кондиционеры, вентиляторы и пр. Поэтому важно знать типы наиболее часто встречающихся электродвигателей.

Электродвигатель является машиной, которая преобразует в механическую энергию электрическую. При этом выделяется тепло, являющееся побочным эффектом.

Видео: Классфикация электродвигателей

Все электродвигатели разделить можно на две большие группы:

  • Электродвигатели постоянного тока
  • Электродвигатели переменного тока.

Электродвигатели, питание которых осуществляется переменным током, называются двигателями переменного тока, которые имеют две разновидности:

  • Синхронные
    – это те, у которых ротор и магнитное поле питающего напряжения вращаются синхронно.
  • Асинхронные
    . У них отличается частота вращения ротора от частоты, создаваемого питающим напряжением магнитного поля. Бывают они многофазными, а также одно-, двух- и трехфазными.
  • Электродвигатели шаговые отличаются тем, что имеют конечное число положений ротора. Фиксирование заданного положения ротора происходит за счет подачи питания на определенную обмотку. Путем снятия напряжения с одной обмотки и передачи его на другую осуществляется переход в другое положение.

К электродвигателям постоянного тока относят те, которые питаются постоянным током. Они, в зависимости от того, имею или нет щёточно-коллекторный узел, подразделяются на:

Коллекторные также, в зависимости от типа возбуждения, бывают нескольких видов:

  • С возбуждением постоянными магнитами.
  • С параллельным соединением обмоток соединения и якоря.
  • С последовательным соединением якоря и обмоток.
  • Со смешанным их соединением.

Электродвигатель постоянного тока в разрезе. Коллектор со щетками – справа

Какие электродвигатели входят в группу «электродвигатели постоянного тока»

Как уже говорилось, электродвигатели постоянного тока составляют группу, в которую входят коллекторные электродвигатели и бесколлекторные, которые выполнены в виде замкнутой системы, включающей датчик положения ротора, систему управления и силовой полупроводниковый преобразователь. Принцип работы бесколлекторных электродвигателей аналогичен принципу работы двигателей асинхронных. Устанавливают их в бытовых прибора, например, вентиляторах.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность — наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.

Ротор

Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки бесколлекторных электродвигателей

В отличие от описанных, у этих электродвигателей подвижной частью является статор с постоянным магнитом (корпус), а ротор с трехфазной обмоткой – неподвижен.

К недостаткам этих двигателей постоянного тока отнести можно менее плавную регулировку скорости вращения вала, но зато они способны за доли секунды набрать максимальные обороты.

Бесколлекторный электродвигатель помещен в закрытый корпус, поэтому он более надежен при неблагоприятных условиях эксплуатации, т.е. ему не страшны пыль и влага. К тому же, его надежность возрастает благодаря отсутствию щеток, как и скорость, с которой вращается вал. При этом, по конструкции мотор более сложен, следовательно, не может быть дешевым. Стоимость его в сравнении с коллекторным, выше в два раза.

Таким образом, коллекторный электродвигатель, работающий на переменном и на постоянном токе, является универсальным, надежным, но более дорогим. Он и легче, и меньше по размерам двигателя переменного тока той же мощности.

Поскольку электродвигатели переменного тока, питающиеся от 50 Гц (питание промышленной сети) не позволяют получать высокие частоты (выше 3000 об/мин), при такой необходимости, используют коллекторный двигатель.

Между тем, его ресурс ниже, чем у асинхронных электродвигателей переменного тока, который зависит от состояния подшипников и изоляции обмоток.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают с частотой сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Строение синхронного электродвигателя

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и подобном оборудовании, рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания магнитного поля, разрывается связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при любых нагрузках на валу.

Однофазный электродвигатель: устройство и принцип работы

Использующий после пуска только одну обмотку статора (фазу) и не нуждающийся в частном преобразователе электродвигатель, работающий от электросети однофазного переменного тока, является асинхронным или однофазовым.

Однофазовый электродвигатель имеет вращающуюся часть – ротор и неподвижную – статор, который и создает магнитное поле, необходимое для вращения ротора.

Из двух, расположенных в сердечнике статора друг к другу под углом 90 градусов обмоток, рабочая занимает 2/3 пазов. Другая обмотка, на долю которой приходится 1/3 пазов, называется пусковой (вспомогательной).

Ротор – это тоже короткозамкнутая обмотка. Его стержни из алюминия или меди замкнуты с торцов кольцом, а пространство между ними залито алюминиевым сплавом. Может быть выполнен ротор в виде полого ферромагнитного или немагнитного цилиндра.

Однофазный электродвигатель, мощность которого может быть от десятков ватт до десятка киловатт, применяются в бытовых приборах, устанавливаются в деревообрабатывающих станках, на транспортерах, в компрессорах и насосах. Преимущество их – возможность использования в помещениях, где нет трехфазной сети. По конструкции они не сильно отличаются от электродвигателей асинхронных трехфазного тока.

Для того чтобы понять принцип работы электродвигателя переменного тока, поместим изогнутый проводник в равномерном магнитном поле, создаваемом полюсами магнита.

Разница между генераторами переменного и постоянного тока заключается в отсутствии коллектора.

Асинхронные трехфазные электродвигатели являются прямыми энергетическими потребителями трехфазного тока. Такие модели применяются во многих отраслях производства.

На рисунке 2 изображена схема электродвигателя переменного тока. Синхронный генератор имеет такой же статор рис. 1. Питание обмотки статора переменным током происходит от трехфазной сети.

Изменение тока в фазах будет происходить также в фазах генератора. На рис. 2 ротор представлен как цилиндр с пазами, который установлен на медные либо алюминиевые стержни, связанные между собой кольцами на поверхностях ротора с торца.

Ток проходит в замкнутых проводниках. Вращение ротора асинхронного устройства различно от частоты магнитного поля.

Рис. 1 Принцип работы генератора переменного тока.

При одинаковом вращении проводники роторной обмотки перестают пересекать магнитное поле, и тогда исчезает вращающий момент. Потому электродвигатель переменного тока
и получил название асинхронного (т.е. несинхронного). Круговое вращающее магнитное поле условно представляют полем полюсов постоянных магнитов, которые вращаются с частотой . Помещая в поле статора асинхронного трехфазного прибора ротор, у которого короткозамкнута обмотка (рис. 3), вращающееся поле статора проходит через проводники обмотки ротора и направляет них э.д.с . Направление э.д.с обусловливаться правилом правой руки. Когда обмотка ротора замкнута, то в ее проводниках появляются токи . Ток любого проводника ротора, взаимодействуя с полем статора, формирует электромагнитную силу , течение которой обусловливается правилом левой руки.

Группа электромагнитных сил формирует электромагнитный момент , который приводит ротор в обращение с частотой в направлении поля вращения. Электрическая энергия, которая поступает в обмотку статора из сети, реорганизуется в механическую энергию верчения ротора.

Рис. 2 Трехфазный асинхронный двигатель

Рис. 3 Схема однофазного электродвигателя

Частота верчения электродвигателя переменного тока всегда меньше частоты верчения поля статора , от чего и его название — асинхронный. Когда ротор АД вращается с частотой , тогда проводники обмотки ротора не пересекают поле статора. Следовательно, в них не наводятся э.д.с, не возникают токи, не создается вращающий момент.

Отличие между частотами вращения ротора и поля статора имеет название частота скольжения .
На практике чаще используется понятие скольжения — отношение частоты вращения поля статора к частоте скольжения:

Между частотой вращения ротора и скольжением также имеется связь:

Когда работает АД, частота вращения ротора изменяется от при пуске двигателя до на идеальном холостом ходу. Следовательно, двигательному режиму работы асинхронной машины отвечает широта изменений скольжения от 1 до 0. Частота верчения ротора, а следовательно и скольжение находятся в зависимости от нагрузки на валу (внешнего момента сопротивления ). При увеличении нагрузки уменьшается частота вращения ротора, а скольжение возрастает. В асинхронных приборах общего применения начальное скольжение составляет , т.е. при начальной нагрузке ротор АД крутится с частотой, которая близка к частоте вращения поля. Частота э.д.с и токов, наводимых в проводах ротора, определяется частотой скольжения. Учитывая, что определим .

Постоянное переключение батареи равносильно питанию оборудования переменным током. Разница лишь в том, что у такого переменного тока низкая частота, так как за секунду можно 3-5 раз перевернуть батарейку, а у переменного тока направление изменяется 100 раз в секунду.

Если от понижающего трансформатора присоединить два проводника к зажимам прибора с одинаковым с батареей напряжением, то устройство электродвигателя переменного тока будет работать. Однако якорь его будет крутиться несколько медленнее, чем, если бы было питание постоянным током. При переменном токе появляется индуктивное сопротивление обмоток электродвигателя. Прикоснувшись рукой спустя 10-15 мин к его корпусу, можно заметить, что он нагрелся.

А при работе от батареи этого не происходит. При питании переменным током в стенках корпуса и в полюсах появляются потери от перемагничивания переменным потоком и вихревых токов. Для снижения этих потерь, корпус и полюсы однофазной коллекторной модели переменного тока собираются из штампованных листов электротехнической стали, которые изолированы пленкой лака один от другого и скреплены заклепками (рис. 4).

Рис. 4 Статор коллекторного электродвигателя

1 — Катушка; 2 — наконечник полюса; 3 — заклепка.

Коллекторные электродвигатели переменного тока работают только с последовательным возбуждением, и благодаря катушке параллельного возбуждения имели бы огромное индуктивное сопротивление при переменном токе.

Механические качества однофазного устройства подобны качествам двигателя постоянного тока с последовательным возбуждением. Вследствие этого они применяются тогда, когда от прибора требуется большая пусковая и высокая перегрузочная способность.

Применение коллекторных электродвигателей рассчитано на любую частоту вращения, тогда как у асинхронных, питающихся переменным током частотой 50 Гц, имеется максимальная синхронная частота вращения 3000 об/мин. Этот признак делает незаменимыми коллекторные модели для бытовых приборов, в частности для пылесосов. Коллекторные устройства легче асинхронных однофазовых в 2-3 раза.

Такие электродвигатели изготавливаются для низкого напряжения и питаются они от понижающего трансформатора и для напряжения сети 127 или 220 В. Для снижения опасности поражения электрическим током эти приборы используют в движущихся игрушках (электрические железные дороги, подъемные краны).

Электрические двигатели, питаемые от сети переменного тока, используются в пылесосах, швейных машинках, электробритвах и других электробытовых приборах.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту.
Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

Электродвигатели постоянного тока

Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов.
Часто они применяются для оснащения всех видов электротранспорта.

Электродвигатели переменного тока

Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста.
Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.

Шаговые электродвигатели

Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.

Серводвигатели

Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.

Линейные электродвигатели

Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.

Синхронные двигатели

Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.

Асинхронные двигатели

Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Редукторы, мотор-редукторы: ООО «Приводные технологии»


+7 (495) 369- 04- 89
+7 (910) 726- 725- 4
+375 (17) 272- 04- 08
+375 (29) 61- 787- 61
[email protected]


Редукторы, мотор-редукторы, редукторные механизмы:

червячные редукторы, цилиндрические редукторы, конические редукторы,

планетарные редукторы. Бытовая и промышленная приводная техника:

мини редукторы, электродвигатели, двигатели постоянного тока, DC моторы,
шаговые двигатели, устройства плавного пуска, частотные преобразователи.

Вариаторы, мотор-барабаны, редукторы для смесителей, сервоприводы.

о компании

Приводные Технологии — развивающаяся компания малого бизнеса, основным видом деятельности которой является производство, маркетинг и промоушинг, бытовой и промышленной, доступной и надежной приводной техники. Интеграция новейших технологий современного редукторостроения к отечественным условиям производства, — особенность наших технических решений, предлагаемых рынку.

Современные запросы приводов стали более требовательны к механической передаточной части, к подводимому электрическому оборудованию, к последующим приводным муфтам и др. Наши предложения редукторных мини-моторов, редукторных узлов и силовых передаточных машин предназначены для эксплуатации в разных отраслях, для достижения различных целей, с любым набором требований и т.д. Помимо всего этого, имеется широкий выбор электрических устройств для оперативного контроля и регулирования режимов работы привода, — так называемая, область приводной электроники. подробнее

новости и статьи

Мотор-редукторы Bauer Gear Motor GmbH

09.04.2014

На сегодняшний день из-за санкционных режимов поставка данной продукции невозможна, следует продумать варианты по подбору соответствующего аналога. Совершенная и качественная приводная техника немецкого производителя Bauer Gear Motor GmbH. широко … подробнее

Мотор-редукторы Getriebebau NORD Drive Systems GmbH & Co. KG (Германия)

02.04.2013

На сегодняшний день из-за санкционных режимов поставка данной продукции возможна при запросе большой партии, при потребности в единичных экземплярах следует продумать варианты по подбору соответствующего аналога. Представляем продукцию одного из … подробнее

Предлагаем электродвигатели со встроенным электромагнитным тормозом в кратчайшие сроки

09.08.2021

В связи с возрастающей тенденцией и согласно многочисленных рекомендаций предусматривать в устройствах и механизмах дополнительные меры безопасности, предлагаем асинхронные электродвигатели переменного тока, со встроенным электромагнитным тормозом … подробнее

Электродвигатели и технические решения IP66 для наружного использования

05. 05.2020

Проекты по автоматизации процессов не всегда заключены в закрытых сухих помещениях, иногда приводной механизм должен непрерывно функционировать на улице, постоянно соприкасаясь с осадками , в жару и в холод. Наружное применение привода всегда … подробнее

ещё новости и статьи…

новое на сайте
DC мотор редуктор 2DC15W-GN / 2GN20 ~ 180 (15 Ватт)

10 об/мин … 90 об/мин

    DC мини мотор редуктор 2DC15W-GN / 2GN20 ~ 180 (15 Ватт) — компактный электромеханический привод постоянного тока, вращательное усилие на конце выходного вала: 1,7 Нм ~ 5.0 Нм. Степень защиты IP44. Температура эксплуатации: -10С — + 40С. Влажность …

Кубическо-шариковые винтовые домкраты DMD10

    Максимальные статические нагрузки – 10kN; Размер винта – TR20x5; Передаточное число — 5:1 и 20:1; Ход за 1 оборот – 1.0 мм и 025 мм соответственно; Материал корпуса – ковкий чугун; Вес домкрата (без штока) – 6кг; Вес 100мм штока с защитной трубой – . ..

Высокоэффективные винтовые домкраты DMT-1T

5:1, 10:1 и 20:1

    Максимальные статические нагрузки – 1т.; Размер винта – TR24x5; Передаточное число — 5:1, 10:1 и 20:1; Ход за 1 оборот – 1.0 мм, 0.5 мм и 025 мм соответственно; Условное обозначение Размер винта Передаточное число Ход винта за 1 оборот Входная …

Высокоэффективные винтовые домкраты DMT-0.5T

5:1, 10:1 и 20:1

    Максимальные статические нагрузки – 0.5т.; Размер винта – TR20x5; Передаточное число — 5:1 и 10:1; Ход за 1 оборот – 1.0 мм, 0.5 мм и 025 мм соответственно; Условное обозначение Размер винта Передаточное число Ход винта за 1 оборот Входная скорость …

* Копирование информации с сайта запрещено законом об авторском праве.

© 2022
Приводные технологии

Российская Федерация
+7 (495) 369-04-89
+7 (910) 726-725-4 (МТС) Смоленск

                                        

Республика Беларусь
+375 17 272-04-08 (т/ф) Минск
+375 29 61-787-61 (Velcom) Минск

                                        

tech-privod. com

Сайт работает на платформе Nestorclub.com

Подключение двигателя постоянного тока к сети 220

Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.

ДостоинстваНедостатки
частота вращения легко регулируетсявысокая стоимость
мягкий пуск и плавный разгонсложность конструкции
получение частоты вращения выше 3000 об/минсложность в эксплуатации

В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.

Конструкция и обслуживание двигателя постоянного тока

Основной обмоткой двигателя постоянного тока является якорь, подключающийся к источнику питания через щеточный аппарат. Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения). Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.

Схема двигателя постоянного тока

Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.

Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Схема параллельного возбужденияПоследовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбужденияСмешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Оцените качество статьи. Нам важно ваше мнение:

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Виды и типы электродвигателей – постоянного и переменного тока, синхронные и асинхронные

Электрические машины (электродвигатели), преобразовывающие электроэнергию в механическую имеют широкую сферу применения и повсеместно используются в быту и на производстве.

Несмотря на типовое конструктивное исполнение (наличие неподвижного статора или индуктора и вращающегося ротора или якоря) и принцип действия эти устройства разделяются на виды имеющими свои особенности:

  • тип и значение напряжения питания;
  • характер синхронизации рабочего поля с частотой вращения ротора.

С преимуществами и недостатками каждого вида стоит ознакомиться заранее.

КЛАССИФИКАЦИЯ И ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Одним из основных параметров классификации является тип напряжения питания:

  • постоянное;
  • переменное.

Двигатели постоянного тока, подключаются к аккумуляторам, солнечным батареям или блокам питания. Данная группа представлена двигателями с возможностью самосинхронизации, повышенной перегрузочной способностью и равномерностью вращения.

Из-за потребности в источнике постоянного напряжения их применение ограничено, но именно этот вид двигателей используется при необходимости точной и быстрой регулировки электроприводов с высокой мощностью.

Двигатели переменного тока являются более универсальными и имеют широкую сферу применения. Этот тип электродвигателей имеет простую конструкцию со статором из ферромагнитных пластин и устанавливается практически везде – от бытовых приборов до приводов тяжелого оборудования.

Похожее исполнение и принцип действия с электродвигателями постоянного тока имеют двигатели пульсирующего тока и универсальные устройства, работающие на обоих видах питания.

Первые устанавливаются на электровозах и подключаются через соответствующие выпрямители. Вторые применяются при необходимости получения частоты вращения свыше стандартных 3000 об/мин и чаще всего устанавливаются в бытовой технике, работающей и от аккумуляторов, и от обычной сети.

В зависимости от конструкции электродвигатели постоянного тока разделяются на коллекторные, оснащенные щеточно-коллекторным узлом, и бесколлекторные (они же – вентильные). Первые в свою очередь разделяются на виды с самовозбуждением (параллельным, последовательным или смешанным) или с независимым возбуждением обмотки.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

В зависимости от принципа действия и характера взаимодействия с электромагнитным полем полем двигатели переменного тока разделяются на:

  • синхронные;
  • асинхронные.

У первых угловая скорость магнитного поля статора всегда совпадает или движется дискретно частоте вращения ротора.

Устройство таких двигателей таких типов бывает разным: мощные виды синхронных двигателей практически всегда имеют на якоре обмотку возбуждения, устройства с малой и средней мощностью оснащаются постоянным магнитами.

Также в группу синхронных входят модели с питанием обмотки от полупроводниковых элементов (вентильные реактивные электродвигатели) и устройства с шаговым угловым перемещением ротора.

Асинхронные электрические машины имеют самую широкую сферу применения и наиболее распространены в быту и производстве.

Данная группа представлена электродвигателями с разным числом фаз на обмотке (одно-, двух-, трех- и многофазные) и исполнением ротора (фазным и короткозамкнутым). Конструкция статора при этом практически едина, разница проявляется только в вариантах исполнения обмотки.

Помимо основных параметров (типа напряжения питания, синхронизации э/м поля с частотой вращения и исполнением статора и ротора) все электродвигатели условно разделяются на:

1. Модели с разной категорией и климатическим исполнением. Основным ориентиром при выборе конкретного типа служит советский, но все еще действующий ГОСТ 15150-69.

2. Виды с разной степенью пыле- и влагозащиты корпуса – от IP21 до IP68.

3. Двигатели для повторно-кратковременного запуска или продолжительного применения в рабочем режиме. Примером первых служат системы электропривода кранов, лебедок или шиберов, вторых – э/д насосов, вентиляторов или другого непрерывно работающего оборудования.

4. Устройства с малой, средней и большой мощностью.

ДОСТОИНСТВА И НЕДОСТАТКИ РАЗЛИЧНЫХ ТИПОВ ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ

Постоянного тока.

Рабочие характеристики электродвигателей этого вида во многом зависят от типа подключения обмотки возбуждения.

При последовательном возбуждении достигается максимально высокий момент на валу, но увеличиваются риски ухода системы «в разнос», при параллельном – при меньшем моменте более стабильны обороты, при смешанном – возникает возможность регулировки обеих параметров.

Лучшие показатели в плане точности регулировки пускового момента и скорости имеют двигатели с независимым возбуждением, имеющие возможности регулировки параметров вне зависимости от нагрузки на валу.

Свою роль играет и конструктивное исполнение. Виды с коллекторно-щеточным узлом имеют доступную стоимость и простую регулировку, но склонны к относительно быстрому износу и перегреву. Вентильные бесконтактные электродвигатели характеризуются повышенным КПД и долгим сроком службы, но стоят дороже.

К общим преимуществам постоянников относят:

  • возможность и несложную реализацию регулировки частоты вращения;
  • сравнительную простоту исполнения;
  • отличные пусковые свойства;
  • возможность эксплуатации в режиме электродвигателя и генератора;
  • компактные габариты.

Минусы проявляются в ограничении применения по типу питания, высокой себестоимости, сложности в эксплуатации и повышенном износе у коллекторных разновидностей. Щетки в узле при необходимости меняются, но это требует дополнительных средств и времени.

Несмотря на недостатки, применение этого типа электродвигателей признано оптимальным при оснащении подъемного, бурового и ряда производственного оборудования. Именно ими оснащают привода эскалаторов, электротранспорта, типографских станков и работающего от батарей ручного электро инструмента.

Синхронные электродвигатели переменного тока.

Преимущества этого вида проявляются в стабильности частоты в пределах заданной нагрузки, сопротивляемости перегрузкам, эргономичности и минимальной чувствительности к перепадам напряжения. При необходимости они могут использоваться в качестве генераторов.

Минусы определяются усложненной конструкцией двигателя, более трудным пуском и проблемами при регулировке скорости. Последний параметр остается стабильным и меняется лишь при изменении частоты тока питания. Применение этих видов считается оправданным при мощности потребления свыше 100 Вт, в остальных случаях они замещаются асинхронными видами.

Максимальный эффект достигается при их вводе в системы привода компрессоров, насосных станций, крупногабаритных вентиляторов и аналогичного промышленного оборудования.

Асинхронные двигатели.

Показатели машин этого типа напрямую зависят от числа фаз обмотки и ее исполнения. Наиболее востребованный вид – трехфазный асинхронный с короткозамкнутым ротором используется практически везде, от бытовой техники до промышленных станков и машин. Тот же тип со встроенной многофазной обмоткой признан самым совершенным и надежным.

Востребованность асинхронных электродвигателей объясняется простотой производства (и как следствие – более низкой себестоимостью), надежностью и низкими расходами при применении.

Назвать их идеальными нельзя, этот тип имеет небольшой пусковой момент, ограниченный коэффициент мощности, зависимость от перепадов напряжения и слабую регулировки скорости.

Последние два недостатки устраняется вводом в схемы частотного преобразователя, в целом плюсы асинхронных устройств преобладают над минусами.

  *  *  *

© 2014-2022 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Электродвигатель постоянного тока для подъемно-транспортных механизмов и металлургических агрегатов Д-810, Д-812, Д-814, Д-816, Д-818

Каталог электродвигателей и электрооборудования

Электродвигатели

Оборудование

Дизельные двигатели

Запчасти, доп. оборудование

 

Весь каталог — электродвигатели крановые

Тихоходные электродвигатели серии Д предназначены для работы в электроприводах подъемно-транспортных машин металлургических агрегатов и рольгангов в продолжительном, кратковременном и повторно-кратковременном режимах в условиях запыленности, вибрации и повышенной влажности (сталеплавильные, прокатные, доменные цеха).

Электродвигатели серии Д характеризуются высокой устойчивостью от перегрузок, а так же широким диапазоном регулирования частоты вращения.
Степень защиты электродвигателей закрытого исполнения — IP44, в экспортных поставках — IP54.
Поставляются с естественным охлаждением в закрытом исполнении, а так же в защитном исполнении с независимой вентиляцией и подачей воздуха через тоннельные трубы из воздушной магистрали, либо от вентилятора-наездника.
Электродвигатели изготавливаются для номинальных напряжений 220 и 440 В с последовательным, смешанным, параллельным и параллельным способом возбуждения, со стабилизирующей обмоткой. В закрытом исполнении установлены режимы работы S2 — 60 мин, S3 — 15%, 25%, 40%, 60% и S1, в защищенном исполнении S1.
Для привода рольгангов двигатели выпускаются в специальном исполнение с пониженной частотой вращения.
Исполнение по способу монтажа IM1003, IM1004, IM4014 по ГОСТ 2479.
По требованию потребителей возможна поставка двигателей с установочно–присоединительными размерами в соответствии с публикацией МЭК 34-13, с прецизионными тахогенераторами и клеммными коробками.
Возможно осуществлять регулирование частоты вращения изменяя подводимое напряжение и степень возбуждения.

Электродвигатель соответствует ГОСТ 183-74, публикации МЭК 34-13 и выпускается по ТУ 16-87 ИРАК.524314.003ТУ. Двигатели серии Д имеют сертификаты соответствия по безопасности Госстандарта РФ. Гарантийный срок эксплуатации – 3 года , но не более 3,5 лет со дня получения его потребителем.

Габаритные и присоединительные размеры тихоходных двигателей серии Д







Тип
двигателя

l10

b10

d10

h41

h

l1

l31

l33

d1

b1

h2

Д810

660

520

32

648

315

130

178

1276

90

22

14

Д812

724

570

35

708

340

165

172

1398

100

25

14

Д814

813

636

42

772

375

165

200

1543

120

28

16

Д816

890

686

42

824

400

200

212

1714

130

28

16

Д818

990

760

48

919

450

200

201

1792

140

32

18

Основные технические характеристики двигателей постоянного тока серии Д















Тип двигателя

Мощность, кВт

Частота вращения, мин-1, при возбуждении:

Масса, кг

последовательно

смешанно

параллельном со стабилизир. обмоткой

Параллельном

Двигатели закрытого исполнения с естественным охлаждением
Режим работы S2-60 мин. Напряжение 220В.

Д810

55

500

550

540

550

1215

Д812

75

475

515

500

515

1570

Д814

115

760

500

490

500

2240

Д816

150

450

480

470

480

2860

Д818

186

410

435

440

450

3745

Напряжение 440В

Д810

55

510

560

550

560

1215

Д812

75

500

520

510

520

1570

Д814

115

460

500

480

500

2240

Д816

160

460

490

480

490

2860

Д818

186

410

435

440

450

3745













Двигатели защищенного исполнения с независимой вентиляцией
Режим работы S1 Напряжение 220В

Д810

55

500

550

540

550

1215

Д812

85

475

515

500

515

1570

Д814

125

460

500

490

500

2240

Д816

170

450

480

470

480

2860

Д818

200

410

435

440

450

3745

Напряжение 440В

Д810

55

510

560

550

560

1215

Д812

80

500

520

510

520

1570

Д814

125

460

500

480

500

2240

Д816

170

460

490

480

490

2860

Д818

200

410

435

440

450

3745

Основные параметры двигателей серии Д с пониженной частотой вращения
















Тип двигателя

Мощность, кВт

Напряжение, В

Частота вращения, мин-1

Масса, кг

Двигатели закрытого исполнения с естественным охлаждением в режиме S2-60мин и защищенные с независимой вентиляцией в режиме S1

Д810

17,5

220

165

1215,0

Д812

17,0

220

115

1570,0

Д816

70,0

220

240

2860,0

Двигатели закрытого исполнения с естественным охлаждением в режиме S3-40%

Д810

14,0

220

158

1215,0

Д812

13,5

220

130

1570,0

Д816

35,0

220

260

2860,0

Двигатели закрытого исполнения с естественным охлаждением в режиме S2-60мин и защищенные с независимой вентиляцией

Д810

35,0

440

370

1215,0

Д812

35,0

440

270

1570,0

Двигатели закрытого исполнения с естественным охлаждением в режиме S3-40%

Д810

28,0

440

390

1215,0

Д812

28,0

440

290

1570,0

 


Каталог — электродвигатели крановые

Электродвигатель асинхронный крановый 4МТМ-225, МТН-511, МТН-512
Электродвигатель асинхронный крановый 4МТМ-280, МТН-611, МТН-612, МТН-613
Электродвигатель крановый асинхронный 4МТН-400
Электродвигатель асинхронный крановый 4МТМ специальный, для портальных кранов
Электродвигатель крановый серии МТН, МТКН
Электродвигатели крановые асинхронные АМТ, ДМТ

Электродвигатели рольганговые АРМ

В чем разница между двигателем переменного тока и двигателем постоянного тока? – Magnetic Innovations

В чем разница между двигателем переменного тока и двигателем постоянного тока?

Существует широкий выбор электродвигателей, подходящих для многих промышленных применений и оборудования. Инженеры и конструкторы имеют большой выбор при выборе двигателя для своего применения. В таблице ниже представлен обзор наиболее распространенных типов электродвигателей. Глобальная классификация электродвигателей делится в основном на две разные ветви: двигатели переменного тока и двигатели постоянного тока. В этой статье основное внимание будет уделено четырем различным подгруппам: асинхронные двигатели переменного тока, синхронные коллекторные двигатели постоянного тока (с коммутатором), Бесщеточные двигатели постоянного тока и синхронные двигатели переменного тока с постоянными магнитами (PMSM).

Параметры сравнения Dc Motor Induction Motor
Power Direct Current Alternating Current
Phase Single Phase Single/ Three phase
Ремонт Дешевый Дорогой
Дорогой Короткий Длинный
Частота (Индия) 0 50 Гц

Должность 60° 120° 180° 240° 300° 360°
12 Н С С Н Н
2 Н Н С С Н
4 Н Н С С
6 С Н Н С С
8 С С Н Н С
10 С С Н Н