Содержание
асинхронный, синхронный или на постоянных магнитах?
Можно ли буксировать электромобили? Зависит от типа двигателя. Да, бывают разные. Если вы только собираетесь покупать электрокар, то знайте: до полной разрядки его лучше не доводить. И вот почему
Автомобили с двигателями внутреннего сгорания допускают буксировку. Если у вас механическая коробка передач, то это самое простое дело: ставите нейтраль в коробке передач или выжимаете сцепление – и ваш мотор оказывается физически отключен от колес, а машина превращается в обычную телегу: тяни не хочу.
С автоматами чуть сложнее, в них полного разрыва связи между колесами и мотором не предусмотрено. Но и они в режиме N позволяют буксировать машину на короткие расстояния и с невысокой скоростью.
Однако в инструкциях к электромобилям вы прочтете, что буксировка или не допускается вовсе, или, как в случае с современными моделями Tesla, допускается со скоростью не более 5 км/ч на расстояние не более 10 метров: иными словами, вы в праве только оттолкать сломанную машину на обочину.
А может ли быть иначе? Да, старые модели Tesla такое позволяли. Как и GM EV1 – легенда электрокаров 90-х годов прошлого века. Так в чем же дело? В типе электрических двигателей. Или, если уж говорить совсем правильно, электрических машин, так как в электромобилях эти устройства служат не только двигателями, но и генераторами. И на современных типах электрокаров встречается три типа таких устройств. Но для начала немного истории.
В 1821 году британский ученый Майкл Фарадей в своей статье впервые описал основные принципы преобразования электроэнергии в движение. Фарадей уже знал, что электрический ток, проходя через проволоку, создает магнитное поле. Закрученный в катушку, такой провод становится электромагнитом.
Он также знал, что противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются. В электромагнитах же полярность зависит от направления движения тока, то есть ее можно быстро менять. И вот что придумал Фарадей. Берем магнит, который движется к другому. В последний момент полярность меняется, но рядом расположен третий магнит, к которому можно тянуться. Затем четвертый, пятый. Эти разнополярные магниты выстроены в линию. И если ее закольцевать, движение будет идти по кругу до тех пор, пока сквозь электромагниты идет ток и пока его направление не перестает меняться.
Чтобы понять, как это действует, представьте, что у вас в руках два школьных магнита в форме подковы или буквы U – помните, были такие. Если их повернуть друг к другу взаимоотталкивающимися полюсами, то они будут стремиться сделать полуоборот, чтобы снова друг к другу притянуться. А теперь представьте, что их полюса постоянно меняются местами: тогда они станут вертеться друг относительно друга. Это и есть электродвигатель.
Так впервые был описан принцип действия всех электромоторов в целом и самого древнего в частности: того, который работает от постоянного тока и использует с одной стороны постоянные магниты из намагниченного сплава, а с другой – переменные электромагниты. Это наш первый герой: мотор-генератор постоянного тока на перманентных магнитах.
Изобретения Фарадея были развиты его полседователями, в частности изобретателем электрической лампочки Томасом Эдисоном. Эдисон усовершенствовал генераторы постоянного тока и стал пионером в электрификации Нью-Йорка. В 1884 году на пороге его кабинета появился молодой сербский инженер. Звали иммигранта Никола Тесла.
Тесла предложил улучшить конструкцию Эдисона и попросил за работу 50 тысяч долларов – баснословная в те времена сумма. По легенде Эдисон согласился, но когда Тесла действительно существенно улучшил существующую модель, любимец Америки просто кинул безвестного сербского эмигранта.
Тесла рассердился и отправился к главному конкуренту, адепту переменного тока Джорджу Вестингаузу. Так началась «Война токов», окончательно проигранная постоянным током только в 2007 году, когда Нью-Йорк последним из городов перешел на ток переменный.
Генераторы Эдисона вырабатывали электричество с напряжением, близким к потребительскому: 100-200 вольт. Это удобно для домов, но его сложно передавать на большие расстояния из-за сопротивления проводов. Тут было два решения: увеличивать диаметр кабелей или повышать напряжение. Первый вариант позволял делать линии длинной 1,5 километра. Да, совсем немного. Второй вариант был невозможен из-за отсутствия в те годы эффективных способов повышения напряжения постоянного тока.
Однако еще в 1876 году русский ученый Павел Яблочков изобрел трансформатор, меняющий напряжение переменного тока. Подача энергии на большие расстояния перестала быть проблемой.
Но была другая проблема. Лампочкам Эдисона все равно от какого тока питаться: постоянного или переменного. А вот с электродвигателями сложнее: они в те годы требовали только постоянного. В 1888 году Тесла запатентовал в США асинхронный электрический двигатель переменного тока. Он же изобрел и синхронный генератор, впоследствии использованный и как двигатель. Это второй и третий герои нашей статьи.
Так поговорим же о них поподробнее
Если в детстве вам доводилось разбирать игрушечные электрические машинки, то вы должны помнить устройство их простейших двигателей. Для остальных напомним. Все применяемые в электромобилях моторы состоят из двух частей: неподвижного статора и вращающегося ротора.
В игрушечных машинах на статоре стоят постоянные магниты, а на роторе – электрические переменные. При вращении на них через специальные щетки подается постоянный ток от батареек, и их последовательное включение и обеспечивает движение.
Похожая конструкция встречается практически у всех электромобилей. С одним отличием: на роторе там стоят постоянные магниты, а на статоре, напротив, электрические и переменные. Так в том числе можно избавиться от щеток: одного из немногих элементов электродвигателя, который подвержен износу.
Преимущество моторов на постоянных машинах в том, что они легкие, компактные, мощные, эффективные, работают от вырабатываемого аккумуляторами постоянного тока… так, стоп! А какие недостатки?
Недостаток прост. Таким моторам не хватает тяги. Так перейдем же к асинхронным инверсионным моторам переменного тока.
Бородатый анекдот про умирающего мастера заваривать чай, который делился своим секретом словами «не жалейте заварки» – это прям притча про компанию Tesla. Вопреки расхожему мнению, ее основал не Илон Маск (он позже стал главным инвестором и владельцем), а Мартин Эберхард и его партнер Марк Тарпенинг.
Эти двое придумали немыслимое. Создать не тихоходный, эффективный и относительно дешевый электрокар, а дорогой, быстрый и клевый. Маск же первым идею оценил и быстро прибрал ее к рукам.
Имя компании Tesla не случайно. Одной из ее технических революций стало использование асинхронного двигателя без постоянных магнитов, работающего на переменном токе – того самого, который изобрел Никола Тесла. Эта конструкция дороже как сама по себе, так и благодаря необходимости в установке преобразователя постоянного тока от батареи в переменный для электродвигателя. Успешное решение данной задачи и стало первым из множества теперь уже легендарных прорывов «Теслы».
Благодаря мощному асинхронному мотору электрокары Tesla с самого начала были очень динамичным, что стало ключевой причиной роста их популярности. В таком моторе переменный ток в обмотке статора создает вращающееся магнитное поле. Оно вызывает индукцию в роторе, заставляя его вращаться чуть медленнее, чем вращение самого поля – поэтому двигатель и называется асинхронным. Если скорости вращения синхронизируются, поле перестает создавать в роторе индукцию, и он начинает замедляться, рассинхронизируясь обратно. Важно заметить, что собственно на ротор никакого электричества напрямую не подается.
Итак, есть еще третий тип электрического двигателя, который встречается в современных электромобилях: синхронный на электромагнитах. Он похож по устройству на двигатели с постоянными магнитами на роторе, только эти магниты – электрические. На них подается постоянный ток, так что полярность магнитов ротора остается неизменной. А вот полярность магнитов статора, напротив, меняется, что и обеспечивает вращение.
Такие синхронные моторы на электромагнитах славятся своей способностью обеспечивать стабильность оборотов и ставятся, обычно, на всякие установки вроде насосов. А еще… на электрокар Renault Zoe. Зачем? Честно сказать, найти быстрый ответ на этот вопрос не получилось. Можем лишь предположить, что это связано с лучшей способностью такого двигателя служить генератором, рекуперируя энергию торможения. Мотор на Zoe не самый мощный, а мощным генератором он быть обязан.
Так что же лучше? Большинство автоконцернов выбирает моторы на постоянных магнитах: они эффективнее. Tesla в первые годы настаивала на асинхронных моторах. Но потом… сделала ставку на двух моторную полнопривродную схему, в которой асинхронный мотор обеспечивает динамику, а двигатель на постоянных магнитах гарантирует низкий расход энергии при небольших нагрузках. И только Renault… ну вы поняли.
А теперь о том, что ждет нас дальше. При буксировке даже обесточенный двигатель на постоянных магнитах тут же начинает работать как генератор, что чревато перегревом и возгоранием энергосистемы электромобиля. В синхронных моторах Renault оставшейся магнетизм в роторе также способен вызвать индукцию в катушках статора, ну и пошло поехало – генерация тока, перегрев, пожар.
И только асинхронные двигатели, когда их статоры не под напряжением, не являются генераторами: их можно буксировать.
Так вот, современная тенденция такова. Моторы на постоянных магнитах становятся все мощнее и тяговитее, оставаясь самыми эффективными. Производители постепенно переходят на них. Но придумать, как машины с ними безопасно буксировать инженерам еще предстоит. Пока они декларируют принцип «Наши электромобили не ломаются и в буксировке не нуждаются». Но звучит не больно убедительно.
В настоящее время широкой популярностью пользуются двигатели, работающие от электроэнергии
Содержание
- 1 Об электродвигателе
- 1.1 Принцип работы
- 1.2 Виды двигателей
- 2 Выбор двигателя
Об электродвигателе
Двигатели для электромобилей подразделяются на:
- синхронные;
- асинхронные.
Практически сила авто – несложная установка, которая в процессе функционирования оправдывает себя. При работе на нейтрале аккумулятор заряжается. КПД составляет почти 90%. Это значит, что объем выделяемой энергии полностью направлен на создание движения. Получается преобразование электрической энергии в механическую с излучением тепла.
Принцип работы
Имеется несколько особенностей двигателя:
- Перед непосредственным запуском крутящий момент максимальный. На основании этого показателя не следует производить зацепление за стартер либо за сцепление.
- Работа происходит в большом спектре оборотов. Поэтому установка коробки для переключения передач необязательна. Чтобы изменить направление вращения, следует переставить местами полярности, вследствие этого на задней передаче можно получить выигрыш.
О достоинствах конструкции:
- удобство и безопасность;
- гарантийные обязательства прочностных характеристик;
- компактность;
- простота в управлении;
- современность конструкции;
- доступность.
Для работы разных типов электродвигателей в основе лежит магнитная индукция. Как правило, такие конструкции состоят из ротора и статора. Элементарные познания электротехники указывают, что ротор – это крутящийся элемент, а статор – неподвижный. На катушки, размещенные на статоре, периодически поступает постоянный ток, а такое явление обеспечивает создание магнитного поля. В конструкции двигателя стоит элемент, необходимый для управления. Он производит отключение тока с одной катушки на другую. На основании этого процесса происходит вращение ротора. Его скоростной режим определяется частотой переключения создаваемых оборотов напряжения с первой катушки на вторую. Роторы для двигателя подразделяются на следующие виды:
- накоротко замкнутый;
- фазный, используемый при вращении для снижения скорости тока при запуске и для контроля крутящих скоростей. Подобные двигатели применяются в крановых системах, а забор энергии происходит от природы.
Для маломощных конструкций используется магнитный индуктор. Якорь – это элемент, обеспечивающий вращение двигателя. Такой тип имеет активацию обмотки и индуктора. Различие определяется лишь по качеству обмотки. На постоянном токе отсутствует сопротивление.
Виды двигателей
Электродвигатели, зависящие от природной энергии, делятся на группы, согласно заданным критериям. По моменту вращения:
- Гистерезисные. При этом постоянное вращение достигается при изменениях магнитного поля ротора. Такая группа не применяется в производственных процессах.
- Магнитоэлектрические. Их применение довольно актуально в производстве и потребительской сфере. К такой группе относятся конструкции переменного и постоянного показателей токов.
Электродвигатель для электромобиля постоянного тока представляет собой мотор, работающий на постоянном токе, а двигатель, функционирующий на переменном токе, называется двигателем непостоянного тока. Лишь только в скорости включения гармоники можно найти их отличия. В первом случае такая скорость приравнивается к количеству частоты оборотов. Во втором – эти скоростные характеристики имеют отличительные черты.
Электродвигатель на электромобиль неизменного тока состоит:
- из якоря;
- на нем устанавливается сердечник для полюса;
- на полюсе производится обмотка;
- из статора;
- вентиляционной установки;
- установленных щеток;
- коллектора для накапливания электрических зарядов.
Двигатели постоянного тока подразделяются на:
- Электродвигатель на электромобиль синхронного типа.Он напоминает мотор, функционирующий на переменном токе. Обеспечивает движение в такт с напряжением магнита. Такой тип больше подходит на электромобили с характеристиками мощности 100 и выше кВт. Одним из видов этих движков являются шаговые моторы, характеризующиеся угловым движением ротора. Питание подается на специально предназначенную обмотку. Для того чтобы обеспечить изменение положения ротора из одного места в иное, достаточно произвести перенаправление между линиями напряжений установленных обмоток. Вентильный двигатель – это одна из разновидностей синхронных. Его питание осуществляется через полупроводники.
- Асинхронный двигатель на электромобиле.Это мотор непостоянного тока, и скорость вращения ротора отличается от показателя магнитной индукции, которая, в свою очередь, создается напряжением. Именно эти движки обладают повышенным спросом.
Согласно узлу коллектора, различают:
- бесколлекторные;
- коллекторные.
В зависимости от вида активации:
- моторы, работающие от электрических или постоянных магнитов;
- самовозбуждающиеся от природных условий подвижные механизмы.
Разновидность двигателей также различается, от какой фазы он работает. Как правило, они бывают одно-, двух-, трех- и многофазными.
Новые разработки подобных механизмов можно приобрести в розничной продаже, а можно сконструировать самим.
Выбор двигателя
Новейшая технология производства позволяет выбрать нужный механизм для задания движения транспорту.
Критерии выбора:
- длительность рабочего цикла;
- мощность;
- потребление энергии;
- режимы работы;
- стоимость.
При непосредственном выборе двигателя немаловажно обратить внимание на ресурс работы и обслуживание, в том числе профилактические мероприятия. Сегодня они имеются как отечественного, так и зарубежного производства. Для выбора наиболее подходящей модели стоит получить консультацию специалиста.
‘;
blockSettingArray[0][«setting_type»] = 6;
blockSettingArray[0][«elementPlace»] = 2;
blockSettingArray[1] = [];
blockSettingArray[1][«minSymbols»] = 0;
blockSettingArray[1][«minHeaders»] = 0;
blockSettingArray[1][«text»] = ‘
‘;
blockSettingArray[1][«setting_type»] = 6;
blockSettingArray[1][«elementPlace»] = 0;
blockSettingArray[3] = [];
blockSettingArray[3][«minSymbols»] = 1000;
blockSettingArray[3][«minHeaders»] = 0;
blockSettingArray[3][«text»] = ‘
Все, что нужно знать о двигателе электромобиля
Мощность электродвигателя: как это работает?
Как работает двигатель электромобиля? В электромобиле, когда водитель нажимает педаль акселератора, аккумулятор автомобиля подает электричество на статор, заставляя ротор вращаться, а затем обеспечивает механическую энергию для вращения шестерен автомобиля. Когда шестерни вращаются, колеса тоже вращаются. Все это происходит в мгновение ока и без сжигания ископаемого топлива!
Какой тип двигателя используется в электромобилях?
Какие бывают двигатели электромобилей и как они работают?
Электродвигатели автомобилей: переменного или постоянного тока?
Переменный ток (AC) и постоянный ток (DC) являются двумя различными типами электрического потока . Как следует из их названий, постоянный ток — это когда электрический заряд течет только в одном направлении, в то время как переменный ток периодически меняет направление.
Электродвигатели с питанием от постоянного тока можно найти в электромобилях, но только в виде небольших мини-двигателей, используемых, например, для стеклоочистителей и электростеклоподъемников, но не для привода самого автомобиля. Для тяги электромобиля используется двигатель переменного тока.
Типы электродвигателей: асинхронный и синхронный
Существует два типа электродвигателей переменного тока, используемых для создания тяги электромобиля: асинхронный (асинхронный) и синхронный.
В асинхронном, или асинхронном, двигателе ротор втягивается во вращение, постоянно пытаясь «догнать» вращающееся магнитное поле, создаваемое статором. Этот тип двигателя электромобиля известен своей высокой выходной мощностью и является распространенным двигателем в транспортных средствах.
С другой стороны, в синхронном двигателе ротор вращается с той же скоростью, что и магнитное поле. Это обеспечивает высокий крутящий момент на низкой скорости, что делает его идеальным для езды по городу. Еще одним преимуществом является его размер: синхронный электродвигатель автомобиля может быть компактным и легким.
Как питается электродвигатель?
Прежде чем ваш асинхронный или синхронный электродвигатель автомобиля сможет вращаться, необходимое ему электричество должно пройти несколько этапов, прежде чем оно достигнет конечного пункта назначения в виде тяги.
Где еще можно найти переменный и постоянный ток в электромобиле?
Не путайте автомобильный электродвигатель переменного тока с электродвигателем; который может использовать переменный или постоянный ток в зависимости от того, подключаетесь ли вы напрямую к сети или используете зарядную станцию определенного типа. В то время как двигатель вашего электромобиля использует переменный ток, батарея должна получать электричество от постоянного тока. Поэтому требуется преобразование альтернативного тока в постоянный либо на борту, либо вне транспортного средства.
Питание от сети всегда переменного тока. Затем он проходит через бортовое зарядное устройство вашего электромобиля (представьте, что это преобразователь переменного тока в постоянный), который затем подает питание на аккумулятор. Но станции быстрой зарядки, которые вы можете найти на шоссе, парковках и на городских улицах, сами выполняют процесс преобразования переменного тока в постоянный ток , а это означает, что энергия для аккумулятора поступает прямо в автомобиль в виде постоянного тока. Они быстрее, чем электрические розетки переменного тока, но занимают гораздо больше места.
Как автомобиль затем превращает постоянный ток в переменный для своего двигателя? Использование инвертора, устройство в трансмиссии…
Трансмиссия внутри электромобиля
В электромобиле электродвигатель является лишь частью более крупного узла, называемого трансмиссией. Здесь мы также находим Power Electronic Controller (PEC) , отвечающий за электронику, которая управляет питанием двигателя и зарядкой аккумулятора, а также редукторный двигатель, который регулирует крутящий момент (силу вращения) и скорость вращения.
Изготовление различных элементов двигателя электромобиля требует настоящих знаний. Руководитель Renault Татьяна Сьюер объясняет: «Например, чтобы построить статор, нам нужно было найти способ намотать 2 километра медной проволоки в маленькие вырезы в металлическом листе, не повредив покрывающую их изоляционную керамику».
Эффективность трансмиссии постоянно повышается, как мы видели в Renault с техническими инновациями в трансмиссии ZOE, что приводит к улучшению всесторонних характеристик автомобиля и внедрению большего количества функций.
Ожидаемый срок службы двигателя электромобиля
Ожидаемый срок службы двигателя электромобиля зависит от стольких переменных, что его трудно оценить. Было высказано предположение, что в идеальных условиях оптимальная продолжительность жизни составляет 15-20 лет. По сравнению с двигателем внутреннего сгорания, двигатель электромобиля имеет меньше деталей, что означает меньшее и более простое обслуживание.
Какова мощность электромобиля?
Когда речь идет об электромобиле, выходная мощность представляет собой разницу между подаваемым электричеством (входная мощность) и «полезной» механической энергией, которая приводит в движение двигатель (выходная мощность), коэффициент, известный как эффективность преобразования энергии. Тепло и трение могут привести к тому, что часть этой мощности будет потеряна по пути, а это означает, что двигатель не получает выгоду от всего электричества, поступающего от аккумулятора электромобиля.
Выходная мощность электромобиля зависит от объема его двигателя и мощности входящего тока. Например, ZOE развивает мощность 100 кВт при улучшенном крутящем моменте 245 Нм. Благодаря запасу хода по WLTP* в 395 километров благодаря аккумулятору емкостью 52 кВт·ч новый ZOE демонстрирует особенно высокие показатели энергоэффективности.
Какой тип двигателя используется в гибридных электромобилях?
Гибридный электромобиль использует как двигатель внутреннего сгорания, так и двигатель переменного тока, работающий от аккумулятора. Традиционно аккумуляторы гибридных автомобилей можно было заряжать только через 9 часов.0015 рекуперативное торможение или замедление, что означает, что большая часть работы выполнялась двигателем внутреннего сгорания.
Однако сегодня доступна гибридная модель нового поколения: Plug-in Hybrid Electric. Эти автомобили, такие как Renault Captur E-TECH Plug-in, оснащены специальной зарядной розеткой, двумя электродвигателями и двигателем внутреннего сгорания, объединяющими лучшее из обоих миров.
*WLTP: Согласованная во всем мире процедура испытаний легковых автомобилей. Стандартный цикл WLTP соответствует 57 % городских поездок, 25 % пригородных поездок и 18 % поездок по автомагистралям.
Copyrights : Jean-Christophe MOUNOURY, Pagecran
Read also
Electric mobility
Different methods for storing energy
10 June 2021
View More
Electric mobility
All there is to know about the plug гибридный автомобиль
10 июня 2021 г.
Подробнее
Электромобили
Все, что нужно знать о зарядке подключаемого гибридного автомобиля
09 июня 2021 г.
Просмотреть больше
Какие двигатели для электромобилей самые популярные?
Люди все больше интересуются электромобилями (EV). Им не нравится планировать расходы на бензин, и они обеспокоены, например, влиянием автомобилей, работающих на топливе. Некоторые люди также поддерживают идею быть первыми, кто внедряет новейшие инновации.
Электромобили импонируют тем, что позволяют быть на острие прогресса.
Широкие категории электродвигателей
Существует два основных типа электродвигателей, которые вы увидите в электромобилях. Давайте рассмотрим их здесь.
Асинхронные двигатели
Асинхронные двигатели или асинхронные двигатели имеют электрические компоненты, называемые статорами, которые создают вращающиеся магнитные поля. Статор представляет собой витой провод внутри двигателя. Он имеет магнит на валу. Когда магнит вращается, он генерирует переменный ток.
Возникающее магнитное поле притягивает сопутствующие роторы, заставляя их вращаться. Именно это действие создает энергию, которая вращает шестерни автомобиля и, в конечном счете, его колеса. Инженеры часто выбирают эти двигатели для электромобилей для транспортных средств, на которых люди будут ездить на высоких скоростях в течение длительного времени.
Синхронные двигатели
В синхронном двигателе ротор ведет себя как электромагнит и создает магнитное поле. В то время как поля статора асинхронного двигателя вращаются быстрее, чем ротор, ротор и статор вращаются с одинаковой скоростью в синхронном двигателе. Общая скорость зависит от частоты тока, питающего двигатель.
Электромобили, предназначенные для людей, заинтересованных в вождении в городских условиях, часто имеют синхронные двигатели. Это потому, что они хорошо подходят для частых остановок, а также для запуска на медленных скоростях, как это может делать кто-то во время интенсивного движения.
Насколько надежны электродвигатели?
Несмотря на то, что электромобили появились относительно недавно, люди используют электродвигатели в различных отраслях промышленности, требующих непрерывной работы машин.
Некоторые промышленные электродвигатели содержат десятки или сотни деталей, которые работают вместе для обеспечения функциональности. Такие аспекты, как температура, влажность и чрезмерная запыленность, могут сократить срок службы промышленного электродвигателя. Однако руководители компаний обычно подвергают компоненты периодическому тестированию в качестве превентивной меры.
Что касается электромобилей, то их основной движущейся частью является якорь, который представляет собой компонент, содержащий катушки. Большинство таких гарантий на транспортные средства сосредоточены на времени вождения. Например, вы можете увидеть гарантии на 80 000–100 000 километров или миль, в зависимости от показателя, используемого на вашем рынке.
Особые типы электродвигателей
Помимо упомянутых выше категорий электродвигателей, в электромобилях чаще всего используются три типа: бесщеточные асинхронные асинхронные двигатели, щеточные синхронные двигатели с внешним возбуждением и бесщеточные синхронные двигатели с постоянными магнитами.
Бесщеточные синхронные двигатели с постоянными магнитами
Бесщеточные синхронные двигатели с постоянными магнитами похожи на упомянутые ранее асинхронные двигатели тем, что имеют статор и ротор. Кроме того, ротор содержит редкоземельные металлы, такие как неодим и диспрозий. Это ферромагнитные материалы, которые допускают постоянную намагниченность.
Контроллер последовательно активирует электромагниты статора, создавая магнитное поле, которое вращается вокруг ротора. Затем магнитные поля ротора пытаются не отставать от вращающегося поля с той же скоростью, с которой он движется — отсюда и «синхронная» часть названия. Эти действия заставляют ротор вращаться.
Этот тип является наиболее распространенным типом двигателя электромобиля, который можно увидеть в таких автомобилях, как Nissan Leaf, и в автомобилях с некоторыми автономными функциями, таких как Tesla Model 3. Многие люди надеются, что беспилотные автомобили изменят наше общество, улучшив транспортные возможности. сокращение владения автомобилями.
Бесщеточные асинхронные асинхронные двигатели
Этот тип двигателя имеет статоры и роторы, состоящие из электромагнитных катушек. Когда магнитные поля статора вращаются, они создают электрический ток и магнитное поле в обмотках ротора. Это происходит, когда поля статора вращаются немного быстрее, чем ротор.
Tesla Model S — один из примеров электромобиля с двигателем такого типа. Вы также увидите этот тип асинхронного двигателя в высокопроизводительных автомобилях, поскольку они могут производить больше энергии, чем двигатели с магнитами.
Однако преимущество синхронных двигателей магнитного типа, рассмотренных ранее, заключается в том, что они более эффективны, чем двигатели, использующие асинхронные двигатели. Это потому, что нет необходимости использовать электричество для создания магнитного поля. Магниты всегда активированы. Дизайнеры обычно выбирают двигатели магнитного типа для небольших и легких автомобилей.
Коллекторные синхронные двигатели с внешним возбуждением
Эти двигатели также имеют статоры и роторы, но основное различие между этой категорией и асинхронными двигателями заключается в том, что роторы подключаются к источнику питания постоянного тока через вращающийся электрический контакт, называемый контактным кольцом. Такой подход генерирует магнитное поле, заставляя эти двигатели работать как типы с постоянными магнитами.
Renault Zoe является одним из примеров автомобилей, использующих этот тип. Китай является основным источником редкоземельных металлов, и производители сталкиваются с растущими трудностями при поиске их для двигателей с постоянными магнитами. Продолжается стремление создавать двигатели, которые функционируют как эти варианты, но не требуют специальных металлов.
Эти типы с внешним возбуждением являются одним из решений. По мере того, как они становятся все более распространенными, вы должны чаще видеть их в автомобилях, которые раньше имели двигатели с постоянными магнитами.
Электродвигатели — часть общей картины
Когда люди покупают электромобили, они думают не только о электродвигателях в моделях, включенных в их список выбора. Они также заботятся о сроке службы батареи, времени зарядки, функциях безопасности и возможностях помощи водителю.
Однако этот обзор показывает, что электродвигатели являются важнейшей частью современных электромобилей. Каждый тип работает по-своему и обеспечивает производительность, наиболее подходящую для определенного использования. Таким образом, если вы думаете о покупке электромобиля в ближайшее время или можете работать над проектами, касающимися их, понимание того, как работают двигатели, необходимо для получения положительных результатов.
Хотите продолжить чтение статей из DesignSpark?
Станьте участником, чтобы бесплатно получить неограниченный доступ ко всему контенту DesignSpark!
Зарегистрируйтесь, чтобы стать участником
Уже являетесь участником DesignSpark? Логин
Поделиться этой записью
thumb_upLike
star_borderСледите за статьей
Эмили Ньютон — главный редактор журнала Revolutionized Magazine.