ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Номинальный ток, А. Номинальный ток асинхронного двигателя


Номинальный ток электродвигателя трехфазного тока таблица

Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/ ( √3 U н х η х с osφ).

где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

Номинальный ток электродвигателя трехфазного тока таблица

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Номинальный ток электродвигателя трехфазного тока таблица

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Номинальный ток электродвигателя трехфазного тока таблица

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Статьи и схемы

Полезное для электрика

Подключение и пусковые токи асинхронного двигателя

Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.

Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.

Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).

Номинальный ток электродвигателя трехфазного тока таблица

Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.

Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой. Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети. Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).

Подключение асинхронного двигателя

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Подключение звездой

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение треугольником

При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Конденсаторный пуск асинхронного двигателя

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

Для расчета рабочего конденсатора существует следующая формула:

Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Пусковые токи асинхронного двигателя

Теперь приведу таблицу допустимых значений токов холостого хода трехфазных моторов:

Мощность электромотора, кВт

Прежде, чем производить замеры тока на двигателях, их необходимо обкатать (опробовать на холостом ходу 30-60 минут — движки мощностью меньше 100 кВт и от 2 часов движки, чья мощность выше 100 кВт). Данная таблица носит справочный характер, следовательно, реальные данные могут расходиться с этими процентов на 10-20.

Токи пуска двигателя можно вычислить, применив следующую пару формул:

где Рн — номинал мощности мотора, Uн — номинал его напряжения, nн — номинал его КПД.

где Iн — номинал тока, а Кп — кратность постоянного тока к номиналу (обычно указана в паспорте мотора).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта. буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Номинальный ток электродвигателя трехфазного тока таблица 0 Как собрать и разобрать мотор-редуктор? Здравствуйте, мои дорогие читатели! Перед вами моя очередная статья, в которой я […]

Номинальный ток электродвигателя трехфазного тока таблица

0 Ремонт генератора автомобиля своими руками Что ломается Автомобильный генератор служит долго. Обычно проблемы с ним возникают у […]

Номинальный ток электродвигателя трехфазного тока таблица 0 Ремонт коллектора электродвигателя Во время работы, на коллекторе электродвигателя часто наблюдается искрение, при котором […]

Номинальный ток электродвигателя трехфазного тока таблица

Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза. ноль и земля в электропроводке квартиры.

Александр, чем конкретно данную статью дополнить? Постараюсь учесть Ваше пожелание!

Автор: admin Рубрика: Электродвигателя 4 комментария

Расчет тока электродвигателя

Номинальный ток электродвигателя трехфазного тока таблицаПривет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей. и когда писал какие бывают номиналы электродвигателей .

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн ),

Где Pн – это мощность электродвигателя; измеряется в кВт

Uн – это напряжение, при котором работает электродвигатель; В

ηн – это коэффициент полезного действия, обычно это значение 0.9

ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

Номинальный ток электродвигателя трехфазного тока таблица

Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

Как определить ток электродвигателя на практике.

Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.

А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

На этом у меня всё. Пока.

С уважением Александр!

Читайте также статьи:

Номинальный ток электродвигателя трехфазного тока таблица Хочешь получать статьи этого блога на почту?

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. […]

Источники: http://electricalschool.info/main/osnovy/1441-kakojj-tok-potrebljaet-dvigatel-iz-seti.html, http://podvi.ru/elektrodvigatel/podklyuchenie-i-toki-asinxronnyx-elektrodvigatelej.html, http://fazanet.ru/raschet-toka-elektrodvigatelya.html

electricremont.ru

Номинальный ток, А

Номинальный ток на который расчитаны главные контакты пускатели при категории нагрузки АС3Таблица выбора контакторов в зависимости мощности двигателя, напряжения в сети при категории нагрузки АС3.

  Номинальный ток главных контактов Мощность двигателям при АС3 режиме работы, при напряжении сети
230В 400В 660В
6 1,1 кВт 2,2 кВт 3 кВт
9 2,2кВт 4 кВт 5,5 кВт
12 3 кВт 5,5 кВт 7,5 кВт
18 4 кВт 7,5 кВт 10 кВт
25 5,5 кВт 11 кВт 15 кВт
32 7,5 кВт 15 кВт 18,5 кВт
38 9 кВт 18,5 кВт 18,5 кВт
40 11 кВт 18,5 кВт 22-30 кВт
50 15 кВт 22 кВт 30 кВт
65 15 кВт 22 кВт 22-30 кВт
80 22 кВт 37 кВт 45 кВт
95 25 кВт 45кВт 45 кВт
120 37 кВт 55кВт 75 кВт
160 45 кВт 90 кВт 90 кВт
200 55 кВт 110 кВт 110 кВт
250 75 кВт 132 кВт 132 кВт
300 90 кВт 160 кВт 160 кВт

Категория нагрузки

www.elektro-portal.com

Асинхронные двигатели - Установленные мощности нагрузки

 Потребляемый ток Ток полной нагрузки la, потребляемый двигателем, вычисляется по следующей формуле: - 3-фазный двигатель: Ia=Pn×1,000( 3×U×η×cosϕ) - 1 –фазный двигатель: Ia=Pn×1,000(U×η×cosϕ), где Ia: потребляемый ток (в амперах) Pn: номинальная мощность (в кВт активной мощности) U: напряжение между фазами для 3-фазных двигателей и напряжение между клеммами для однофазных двигателей (в вольтах). Однофазный двигатель может быть подсоединен фаза-нейтраль или фаза-фаза. η: КПД устройства, то есть выход кВт / вход кВт cos ϕ: коэффициент мощности, то есть вход кВт / вход кВA

Сверхпереходный ток и установка защиты - Пиковое значение сверхпереходного тока может быть очень высоким, обычное значение превышает в 12–15 раз среднеквадратичное значение номинального тока Inm. Иногда это значение может превышать номинальный ток Inm в 25 раз. - Автоматические выключатели Merlin Gerin, контакторы Telemecanique и тепловые реле разработаны таким образом, чтобы выдерживать запуск двигателя с очень высоким значением сверхпереходного тока (пиковое значение сверхпереходного тока может до 19 раз превышать номинальный ток Inm). - Если во время запуска неожиданно произойдет аварийное отключение, вызванное защитой по току, это означает, что пусковой ток превышает нормальные пределы. В результате этого, могут быть достигнуты пределы стойкости коммутационного оборудования, уменьшается время службы, и даже могут быть выведены из строя некоторые устройства. Чтобы избежать такой ситуации, рекомендуется рассмотреть увеличение параметров коммутационного оборудования. - Распредустройства фирмы Merlin Gerin и Telemecanique спроектированы так, чтобы обеспечить защиту контактора пуска двигателя при коротких замыканиях. В соответствии с имеющимися рисками, таблицы показывают комбинации автоматического выключателя, контактора и термо-реле, позволяющие достичь координацию 1-го или 2-го типа

Пусковой ток двигателя Хотя на рынке можно встретить двигатели с высоким КПД, на практике их пусковые токи приблизительно равны пусковым токам стандартных двигателей. Использование соединения типа звезда-треугольник, статического устройства плавного пуска или конвертера скорости привода позволяет снизить значение пускового тока (Например: 4 Ia вместо 7,5 Ia).

Компенсация реактивной мощности потребляемой асинхронными двигателями В общем случае, снижение тока, подаваемого на асинхронные двигатели, дает очевидные преимущества, связанные с техническими и финансовыми причинами. Это может быть достигнуто путем использования конденсаторов, без изменения мощности двигателя. Применение этого принципа к работе асинхронных двигателей обычно называется «улучшением коэффициента мощности» или «коррекцией коэффициента мощности». Как описано в главе K, потребность в полной мощности (кВА), подаваемой на асинхронный двигатель, может быть значительно снижена использованием шунтирующих конденсаторов. Снижение входной мощности означает соответствующее снижение входного тока (так как напряжение остается постоянным).

Компенсацию реактивной мощности особенно рекомендуется проводить для двигателей, работающих в течение длительного времени при сниженной мощности.

Как было показано выше, cosϕ = вход кВт/вход кВА , поэтому снижения значения входной мощности кВA увеличит (то есть, улучшит) значение cos ϕ.

Ток, подаваемый на двигатель, после коррекции коэффициента мощности, вычисляется по формуле: I=Ia cos ϕ/cos ϕ

где cos ϕ - коэффициент мощности до компенсации, а cos ϕ' - коэффициент мощности после компенсации, Ia - первоначальный ток.

В таблице даны, в зависимости от номинальной мощности двигателя, стандартные значения тока двигателя для различных величин номинального напряжения.

    230 В 380-415В 400 В 440-480В 500 В 690 В
kW hp A A A A A A
0.18 - 1.0 - 0.6 - 0.48 0.35
0.25 - 1.5 - 0.85 - 0.68 0.49
0.37 - 1.9 - 1.1 - 0.88 0.64
- 1/2 - 1.3 - 1.1 - -
0.55 - 2.6 - 1.5 - 1.2 0.87
- 3/4 - 1.8 - 1.6 - -
- 1 - 2.3 - 2.1 - -
0.75 - 3.3 - 1.9 - 1.5 1.1
1.1 - 4.7 - 2.7 - 2.2 1.6
- 1-1/2 - 3.3 - 3.0 - -
- 2 - 4.3 - 3.4 - -
1.5 - 6.3 - 3.6 - 2.9 2.1
2.2 - 8.5 - 4.9 - 3.9 2.8
- 3 - 6.1 - 4.8 - -
3.0 - 11.3 - 6.5 - 5.2 3.8
3.7 - - - - - - -
4 - 15 9.7 8.5 7.6 6.8 4.9
5.5 - 20 - 11.5 - 9.2 6.7
- 7-1/2 - 14.0 - 11.0 - -
- 10 - 18.0 - 14.0 - -
7.5 - 27 - 15.5 - 12.4 8.9
11 - 38.0 - 22.0 - 17.6 12.8
- 15 - 27.0 - 21.0 - -
- 20 - 34.0 - 27.0 - -
15 - 51 - 29 - 23 17
18.5 - 61 - 35 - 28 21
- 25 - 44 - 34 -  
22 - 72 - 41 - 33 24
- 30 - 51 - 40 - -
- 40 - 66 - 52 - -
30 - 96 - 55 - 44 32
37 - 115 - 66 - 53 39
- 50 - 83 - 65 - -
- 60 - 103 - 77 - -
45 - 140 - 80 - 64 47
55 - 169 - 97 - 78 57
- 75 - 128 - 96 - -
- 100 - 165 - 124 - -
75 - 230 - 132 - 106 77
90 - 278 - 160 - 128 93
- 125 - 208 - 156 - -
110 - 340 - 195 156 113
- 150 - 240 - 180 - -
132 - 400 - 230 - 184 134
- 200 - 320 - 240 - -
150 - - - - - - -
160 - 487 - 280 - 224 162
185 - - - - - - -
- 250 - 403 - 302 - -
200 - 609 - 350 - 280 203
220 - - - - - - -
- 300 - 482 - 361 - -
250 - 748 - 430 - 344 250
280 - - - - - - -
- 350 - 560 - 414 - -
- 400 - 636 - 474 - -
300 - - - - - - -
315 - 940 - 540 - 432 313
- 540 - - - 515 - -
335 - - - - - - -
355 - 1061 - 610 - 488 354
- 500 - 786 - 590 - -
375 - - - - - - -
400 - 1200 - 690 - 552 400
425 - - - - - - -
450 - - - - - - -
475 - - - - - - -
500 - 1478 - 850 - 680 493
530 - - - - - - -
560 - 1652 - 950 - 760 551
600 - - - - - - -
630 - 1844 - 1060 - 848 615
670 - - - - - - -
710 - 2070 - 1190 - 952 690
750 - - - - - - -
800 - 2340 - 1346 - 1076 780
850 - - - - - - -
900 - 2640 - 1518 - 1214 880
950 - - - - - - -
1000 - 2910 - 1673 - 1339 970

Номинальная мощность (Pn) двигателя в кВт указывает его номинальную эквивалентную механическую мощность. Полная мощность (S) двигателя в кВА, является функцией выработанной энергии, КПД двигателя и коэффициента мощности. 

S=Pn/ηcosϕ

www.interelectric.ru


Смотрите также