Содержание
Трёхфазный двигатель и 220 вольт
Трехфазный двигатель и 220 В.
Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.
Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле
С = 66·Рном ,
где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.
То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.
Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:
Cобщ = C1 + C1 + … + Сn
Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.
В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.
Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.
Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.
Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»
Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).
Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»
Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.
Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типа ЭП или такого же типа, как и рабочие конденсаторы.
Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.
Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп
Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.
Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.
Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.
Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.
При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.
Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).
Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).
При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.
Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.
Рис. 4. Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки
Вперёд
Быстрое подключение асинхронного двигателя на 220 без конденсатора
Содержание
- 1 Варианты подключения обмоток двигателя
- 2 Запуск мотора
- 3 Теория В. Голика
- 4 Схемы, разработанные В. Бурлако
- 4.1 Способ 1 – старт мотора ключем симистора
- 4.2 Запуск мотора с высокими пусковыми моментами
- 5 Тиристорный преобразователь
- 5.1 Логическая интерпретация
- 5.2 Силовая часть
- 6 Общая характеристика
- 7 Вывод
В статье мы расскажем об асинхронных двигателях, а именно об их подключении к сети на 220 вольт без применения конденсатора. Вопрос довольно актуальный сегодня, ведь обеспечение энергоэффективности в современных системах выходит на первый план.
Схема управления асинхронным двигателем
Электродвигатель асинхронного типа представляет собой устройство, работающее от переменного тока, в котором напряжение находится в роторе. Основное назначение роторного тока – создание момента вращения посредством электромагнитной индукции, которая идет из магнитного поля статорной обмотки.
Устройства данного типа бывают двух видов: одно- и трехфазные. В первом случае силовой агрегат питается от источника электроэнергии с одной фазой. Приборы представляют собой маломощные агрегаты, используемые в домашних или офисных условиях, где подача однофазного электропитания осуществляется от электросети и ее полюсов.
Трехфазные же модификации работают, соответственно от источников питания, обладающих тремя фазами. Мотор работает в различных конфигурациях: дельта или звездообразной, исходя из требований приложения. Устройства отличаются высокой мощностью, свое применение находят в промышленной отрасли.
Варианты подключения обмоток двигателя
Доступны всего два варианта подключения обмоток асинхронных электрических моторов:
- по «звездной» схеме.
- по варианту «треугольник».
В последнем случае подсоединения используются устройства, которые характеризует большую мощность, отдаваемую приводом. Однако при запуске силового агрегата продуцируется высокий уровень пускового тока, что представляет опасность для любого бытового прибора. Если подключать по схеме «звезда», можно добиться наиболее плавного пуска двигателя, т. К. Ток небольшой. Вы не можете получить от привода большой мощности.
Подключение асинхронного двигателя теругольник и звезда
Схема соединения электродвигателя мощность в 380В к сети 220В, организованная «треугольником», обеспечивает максимальный показатель рабочей мощности. Когда же показатель питания – 380 вольт, тогда катушки подключаются типом «звезда». Это особенно важно, ведь при высоких напряжениях при старте, пусковой ток также увеличивается.
Это может повредить электропривод. При нехватке мощности можно запустить двигатель с подключенными катушками первым способом, а после перехода в рабочий режим произвести коммутацию и включить обмотки способом «треугольник».
Модели асинхронного типа имеют простую конструкцию, массово используются в разнотипных приложениях. Не стоит обходить стороной их невысокую стоимость, которая в некоторой степени и определяет распространение компонентов. Они присоединяются к обыкновенным сетям на 220 воль (однофазные), но, что делать, если есть необходимость в расширении мощностного потенциала? Выход простой – подпитать трехфазный силовой агрегат к однофазной сети. При этом нет необходимости использовать конденсаторные детали. Реализовано сразу несколько схем по созданию такого подключения, и каждая из них заслуживает внимания. Рассмотрим же детально каждую из них и определим сильные стороны и выгоды от реализации.
Подключение звезда
Запуск мотора
Как вы уже поняли, запуск двигателя будет осуществляться без применения конденсатора. Чтобы осуществить подключение по этому методу, достаточно иметь самый типичный асинхронный двигатель. Авторы научных книг, среди которых есть В. Голик, указывают на то, что номинальные обороты моторного ротора должны быть на уровне 1500 об./мин, а не 3000. Связывают это с особенностями статорных обмоток.
Мощность силовых агрегатов ограничивается электрическими параметрами диодов силового типа и тиристоров, которые составляют 10 ампер, при этом показатель обратного напряжения превышает 300 вольт. 3 обмотки статора нужно присоединять, применяя треугольное подсоединение. Выводы же группируются на колодке клемм, при помощи упорядоченных перемычек.
Напряжение в 220В подается через автоматический защитный выключатель автоматического действия. Подключение проводится параллельно одной из обмоток, определим ее как «А». Остальные две («В» и «С») последовательно соединяются друг с другом и параллельно с «А». К выходам одной части, например, «С», устанавливается электронный блок, определим его «К».
Рассмотрим ситуацию, при которой контакт блока всегда разомкнут и напряжение бесперебойно подается. При ней по вышеописанным цепям «А», «В» и «С» будут протекать токи типов Ia и Ib+c. Резистивно – индуктивные уровни сопротивления на всех статорных обмотках одинаковые. Эта особенность обусловливает превышение тока вдвое на цепочке «А», по сравнению с направлением Ib+c. По фазе будет наблюдаться совпадение цепей.
Каждый ток по отдельности создает возле себя намагниченные потоки, которые не приводят в движение роторный элемент. Для обеспечения работы мотора, нужно провести сдвиг по углу двух магнитных потоков или же между собой двух токов. Именно для этой задачи в схеме реализован электронный блок (ключ). Конструкция компонента позволяет ему кратковременно замыкаться и размыкаться, проводя шунтирование второй обмотки «В».
Пример маркировки электродвигателя
Для запуска ключа выбирается временной промежуток, при котором синусоида тока имеет наивысшее амплитудный показатель. Сила тока в третьей катушке «С» минимальная, что обусловливается наличием индуктивного сопротивления.
При проведении закорачивания сопротивления «В» в общей цепочке с «С», создается бросок тока, при помощи замкнутого контакта по виткам третьей обмотки. Сам контакт довольно быстро взрастает, после чего уменьшается под воздействием спада амплитуды напряжения, который плавно стремится к нулю.
Также в системе образуется так называемый временной сдвиг, который маркируется ϕ. Благодаря образованному углу сдвигания, генерируется единый сильный намагниченный поток, который и приводит ротор в движение.
Подача тока в третьей катушке «С» при функционировании ключа отличается от формы напряжения, реализованной в гармоничной синусоиде. Несмотря на это, она никак не влияет на генерирование момента вращений на вале мотора. Когда осуществляется переход полуволны от синусоиды в сферу «минусовых» показателей, ситуация повторяется, а сам силовой агрегат раскручивается дальше, чем до этого.
Теория В. Голика
В основе такой реализации лежит запуск мотора с использованием имеющейся элементной базы. В состав силовой части электрического ключа, с помощью которого осуществляется коммутация, входят такие мощные элементы:
- два диода: VD 1 и 2;
- тиристоры: VS 1 и 2.
Все эти детали подключены с применением схемы обыкновенного моста. Но, в данной схеме эти элементы реализуют другую функцию – проводят шунтирование обмотки подсоединенного мотора посредством своих «плеч» из одного диода и транзистора. Осуществляется это сразу после достижения агрегатом амплитудных параметров от синусоиды, представленной на схеме. Благодаря такому подключению создается электронный блок двунаправленного срабатывания, который в процессе работы реагирует на волны гармоник. Они бывают двух типов:
- положительные;
- отрицательные.
С помощью диодов VD 3 и 4 реализуется напряжение импульса с двумя полупериодами. Сигнал этот поступает напрямую на цепи управления. Ограничивается он и далее стабилизируется при помощи резисторного элемента R1 и стабилизатора VD5.
Сигналы, нацеленные на открывание тиристоров электрического ключа, исходят от транзисторов с 2 полюсами, на рисунке они маркируются как VT 1 и 2. Резистор переменного действия R7, рассчитанный на 10 кОм, выполняет важную функцию регулирования момента открывания тиристора.
В ситуациях, когда его регулятор находится в начальномм положении сопротивления, электрический блок активируется даже при самом малом напряжении амплитуды, которая имеет место в обмотке «В».
Наличие наивысшего ввода резисторного сопротивления R7 позволяет отключать ключ. Старт схемы проводится, когда положение ползунка вышеуказанного резистора соответствует показателю самого высокого сдвига токовых фаз между катушками.
Электронный ключ на симисторе
Старт системы реализуется достаточно просто – необходимо перевести ползунок R7 в положение, полностью соответствующее наибольшему фазовому сдвигу токов между катушками. Далее происходит сдвигание регулятора, тем самым определяя самый устойчивый рабочий режим, напрямую зависящий от уровня приложенной нагрузки и мощности электродвигателя. Силовые агрегаты с разными показателями номиналов взаимозаменяемые, широко представленные на отечественном рынке.
Силовые компоненты системы, реализованные с целью дальнейшей работы с моторами малых мощностей, могут конструироваться без охладительных радиаторов в конструкции. Когда же распределители функционируют на максимальных ресурсах, использование теплоотвода является обязательным.
Электрические блоки применяются под напряжением сети 220В . Отдельные компоненты необходимо тщательно заизолировать, тем самым защитив от случайных касаний. Соблюдение мер безопасности – еще один немаловажный аспект при реализации подключения, который обязательно необходимо соблюдать.
Схемы, разработанные В. Бурлако
Данная методология также является одной из активно применяемых, что обусловливается особенностями реализации. Несмотря на то, что общие принципы регулирования такие же, как те, которые предложил В. Голик, схемы все-таки являются разными.
Способ 1 – старт мотора ключем симистора
По своей сути, метод является усовершенствованной реализацией метода, представленного Голиком. Здесь мы имеем существенно упрощенную схему подключения трехфазного электрического двигателя.
Пример диаграммы работы тиристоров
К особенностям нового способа относят:
- использование единого симистора VS1 от TC-2-10, вместо привычных двух тиристорных компонентов и силового блока. Деталь также отвечает за шунтирование другой обмотки «В», в то момент, когда достигается требуемый показатель напряжения. При этом, ток цепочки должен быть на минимуме;
- создание сдвига фаз для токов во всех параллельных обмотках. Показатель общий с предыдущей схемой и находится в диапазоне 51 – 80 градусов, которых с лихвой хватает на обеспечение вращений ротора;
- применение ключа, который отвечает за работу симистора VS1. Он устанавливается на динистор симметричного типа с маркировкой VS2, для каждого отдельного периода гармоник напряжений. Ключ получает командные сигналы от цепочки сдвигания фаз, которая включает резистивно-емкостные компоненты;
- сдвиг фазы посредством конденсатора «С» усиливается общим сопротивлением компонентов R1 R2. Вспомогательный резистор R2 на 68 килоом выполняет функции компонента R7 из вышеописанной схемы, обеспечивая регулирование времени зарядки конденсатора, и, как следствие – момент запуска VS2, а уже с его помощь – VS1.
Автор также предоставляет свои рекомендации по сборке и настройке созданной схемы. Она разрабатывалась для использования с двигателями, ресурс которых позволяет раскручивать ротор до 1500 об/мин. Электрическая мощность при этом – 0,5 – 2,2 киловатта.
Если же электронные ключи применяются на машинах с высокими показателями рабочей мощности, нужно обязательно обеспечить теплоотвод. Реализуется он с применением VS1 симистора. При проведении настройки необходимо смотреть на оптимальное состояние подгонки угла сдвижения фаз для токов между компонентами обмотки. Это обеспечит двигателю тихую слаженную работу, без вибраций, шумов и др. С такой целью можно менять номиналы у компонентов цепи фазосдвигания.
Симисторы можно использовать самые разные, главное, чтобы они полностью отвечали характеристикам электромеханики. Например, импортный элемент DB3 взаимозаменяем с динистором отечественного производства КР1125.
Запуск мотора с высокими пусковыми моментами
Здесь, как и в других схемах не применяется конденсатор. Методика является отличным вариантом для регулирования работы электродвигателей, которые были собраны для обеспечения моментов вращений в 3000 за минуту. Это обусловливает в схеме одну особенность – изменения системы подключения катушек на звездообразную. Ранее применялась треугольная схема. В процессе генерируется крутящий момент на порядок выше, обеспечивающий быстрый запуск ротора.
В чем же отличия этой схемы от предыдущей? Первое, что стоит указать – это наличие вспомогательного электрического ключа (блока), который соединяется с обмоткой «А», тем самым создавая дополнительный фазовый сдвиг тока. Он играет важную роль при эксплуатации в сложных производственных условиях. При этом алгоритм настройки аналогичен предыдущему.
Тиристорный преобразователь
Данная разработка дает возможность с высокой эффективностью сохранять параметры мощности моторов, при подключении в электросеть с одной фазой. Разработка принадлежит В. Соломыкову.
Тиристорный преобразователь автор В Соломыкова
Решение лежит в основе всех современных ПЧ, хотя разработана с учетом более ранней, проверенной базы.
С помощью тиристорного преобразователя, получается конструировать такие формы напряжений, которые будут максимально приближенные к идеальным для каждой фазы. Будут иметь место также гармоники синусоид, которые отлично сочетаются с асинхронными электрическими двигателями.
Подача энергии от 1-фазной электросети на 220В осуществляется с помощью защиты – автоматического разъединителя SF1 и моста диодов, имеющего в основе Д233В. На выходе силовые цепи получаются, благодаря работе ключей тиристоров VS1-6.
Сдвиг токовых фаз для источника питания каждой катушки мотора собственным напряжением обусловливается функционированием 2 основных микросхем:
- DD1 – для К176ЛЕ54
- DD2 – для R176 ИР2.
Платы дают возможность формировать такты сдвигов напряжений от сигналов во всех регистрах, а их комбинации подаются на порты для регулирования работы тиристоров VS1 – 6, посредством самостоятельных транзисторов VT 1 – 6, по диаграмме, которая была ранее спланирована.
Логическая интерпретация
Схема типа К176ИР2 генерирует сразу 2 раздельных регистра сдвига на 4 разряда. Они в свою очередь обладают четырьмя выходами Q от каждого из триггеров. Каждый «пускатель» относится к типу D и является двухступенчатым.
Микросхема К176ИР2
Введение ведомостей в регистр осуществляется также через порт D. Реализован и вход для подачи команд, тактового типа С. Они идут через порты D от начального триггера, далее сдвигаются по ходу движения на 1 такт.
Сброс выходных данных из регистра Q осуществляется, когда на вход R поступает напряжения из логического уровня. Такое обнуление еще называют асинхронным сбросом.
Силовая часть
Схема также обладает и силовой частью, которая имеет свои принципы и особенности наладки и дальнейшего управления. Итак, когда напряжение подается на схему, то происходит обнуление регистра сдвига платы DD2. Это в свою очередь способствует завершению заряда емкостей С2 далее по цепи через элемент R5. Когда происходит заряд, мгновенно срабатывает DD1.1 – являющийся, по сути, логическим компонентом. Он и «разрешает» сдвиг импульса для дальнейшего регистра DD2.
Пример схемы К175ЛЕ5
Когда же осуществляется переход регистра в логическое положение 1, тогда проводится подача сигнала на основу его биполярного транзистора – VT 1 – 6. Он открывается и посылает сигнал на свой тиристор, а именно – на его электрод управления.
В результате мы получим трехфазное напряжение, которое возникнет между силовыми клеммами на выходе. Оно является достаточно близким к синусоидальной форме, при этом, сдвинутым векторно между собой на максимальный угол 120 градусов.
Силовой агрегат асинхронного типа, который регулируется согласно этой схеме, способен развивать самую высокую мощность, среди всех описанных вариантов. Частота, с которой осуществляется коммутация, подбирается экспериментальным способом, при проведении настройки за счет подбора емкостных номиналов: С 4, 5 или 6. Их уровни определяются мощностью самого двигателя.
Конденсаторная мощность рассчитывается по такой формуле:
С = 0,01Р (Вт) / n*1/30n (мкФ)
Когда имеет место номинальная частота оборотов ротора, тогда показатель n определяют как 1. R3 и R4, которые являются резисторами, после наладки убирают, а на место последнего монтируют конденсатор, емкость которого – 0,68 микрофарад. Далее, что делают – припаивают резистор регулировки, рассчитанный на 15 кОм. Устанавливают его к местам А и В. Здесь элемент выполняет основную функцию – максимально точно выставляет частоты оборотов роторных деталей двигателя.
Общая характеристика
В инверторе входящая однофазная сеть выпрямляется до постоянного тока, а затем «прерывается» до трехфазного переменного тока, который подается на трехфазный двигатель. Преимущество инвертора или частотно-регулируемого привода состоит в том, что оператор имеет возможность управлять скоростью работы двигателя. Ему в этом помогает огромное количество пользовательских настроек, которые позволяют выбирать выбранное изменение скорости, а также обнаружение и защиту от перегрузок силового агрегата. Также можно осуществлять регулирование компенсации скорости и момента вращения. Хотя, стоит отметить, что данный метод далеко не всегда является лучшим решением.
Пример безконденсаторного запуска 3фазного двигателя от й фазной сети
Частотный преобразователь помогает создавать дополнительные фазы при помощи конденсаторов, которые подключаются между фазой и «нейтралью» первой фазы к обмотке мотора. Если это реализуется с нагрузочным двигателем, тогда преобразователь статический. Для них требуется минимальная нагрузка для генерации разумного псевдотрехфазного тока, и часто необходимо иметь номинальную мощность, превышающую максимальную нагрузку, чтобы обеспечить хорошую производительность двигателя.
Но, в статье мы рассмотрели 4 ключевые схемы реализации подключения без использования конденсатора, которые получили более широкое распространение в деятельности.
Вывод
Схемы, представленные в сегодняшней статье, включают только необходимые компоненты, ничего лишнего. Их с легкостью можно собрать своими руками, обладая минимальными знаниями в области электрики.
Можно также начать реализовывать более сложные методики, например, по подключению трехфазного мотора к однофазным сетям питания, но с использованием современного электронного инструментария. Решение более сложное, поэтому требует профессиональных навыков и знаний в электромеханике.
Какую именно схему применять для своего оборудования – каждый пользователь решает самостоятельно. Произвести старт асинхронного трехфазного электродвигателя без мощностных потерь, можно, применяя преобразователь частоты промышленного назначения.
Китай 3-фазный электродвигатель 220 В 380 В, 3-фазный электродвигатель 220 В 380 В, производители, поставщики, цена
Дом
Электротехника и электроника
Двигатель переменного тока
220В 380В 3-фазный электродвигатель
2023 Список продуктов
220 В 380 В 3-фазный электродвигатель
81 666
продукты найдены из 3 402
Вид:
Просмотр списка
Просмотр галереи
Вопросы и ответы о 3-фазном электродвигателе 220 В 380 В
Q
Сколько стоит 3-фазный электродвигатель 220 В 380 В?
Характеристики продукта
Минимальный заказ
Поиск по
Применение
Номер статора
Сертификация
Защита корпуса
Особенности компании
Тип элемента
Бриллиантовый член
Золотой участник
Проверенный поставщик
Тип бизнеса
Возможности НИОКР
Город
- Тайчжоу
(12 421) - Цзинань
(10 890) - Вэньчжоу
(6841) - Шанхай
(5600) - Шэньчжэнь
(4958) - Сучжоу
(4318) - Ханчжоу
(3773) - Гуанчжоу
(2298) - Фошань
(2183) - Нинде
(2150) - Подробнее
Как адаптировать трехфазную машину 550 В для работы от сети 220 В в Канаде.
GummyMonster
Зарегистрировано
#1
Вечер,
Я читал и искал в сети и на этом форуме, но не нашел именно той информации, которая мне нужна. Прошу прощения, если я пропустил этот ответ, но у меня мало времени, чтобы принять решение. Если не это конкретное оборудование, то, вполне возможно, другое, имеющее такие же требования к мощности.
На продажу выставлено более старое оборудование, которое меня интересует, однако оно в основном работает от трехфазной сети 550 вольт. Я надеюсь, что кто-то не будет возражать, объяснив, что мне нужно, чтобы запустить это оборудование на 220 вольт.
Я считаю, что нужен частотно-регулируемый привод и/или трансформатор, но какие размеры и марки я должен указать в цене. Если есть лучший способ сделать это, я полностью открыт для других идей. Я хочу сделать это правильно, а не собирать систему вместе или использовать преобразование энергии, которое едва работает.
Заранее спасибо за любую помощь,
Кен
Последнее редактирование:
рвм
Роберт
#2
Вау. Правда двухфазное питание очень необычно. Предположительно, в Филадельфии еще есть. Мне любопытно увидеть ответы от экспертов-резидентов!
Да:
Martin W
Подставка H-M — золотой член
#3
Обязательно найди себе хорошего электрика. Он поможет и сэкономит вам время и деньги.
Вращающийся фазовращатель преобразует 240-вольтовую электроэнергию вашего дома в 240-вольтовую трехфазную. Затем вам понадобится трехфазный повышающий трансформатор для повышения напряжения до 600 вольт. Это может быть дорого, если вы не можете найти б/у. Многие трансформаторы трехфазные на 208 вольт. Вы можете позвонить в решения Hammond Power и узнать, что у них есть. Убедитесь, что вы сидите, когда они дают вам цитату.
Если вы можете найти машины с напряжением 208-240 вольт, вы можете сохранить повышающий трансформатор.
Мартин. (даже близко не разбираюсь в электрике. Просто пытаюсь помочь)
рвм
Роберт
#4
Является ли Канада такой же, как США, с расщепленной фазой 120/240 В?
TorontoBuilder
H-M Supporter — Золотой участник
#5
рвм сказал:
Является ли Канада такой же, как США, с расщепленной фазой 120/240 В?
Нажмите, чтобы развернуть…
да
TorontoBuilder
H-M Supporter — Золотой участник
#6
GummyMonster сказал:
Вечер,
Я читал и искал в сети и на этом форуме, но не нашел именно той информации, которая мне нужна. Прошу прощения, если я пропустил этот ответ, но у меня мало времени, чтобы принять решение. Если не это конкретное оборудование, то, вполне возможно, другое, имеющее такие же требования к мощности.
Продается старое оборудование, которое меня интересует, однако в основном оно работает от 2-фазной сети 550 вольт. Я надеюсь, что кто-то не будет возражать, объяснив, что мне нужно, чтобы запустить это оборудование на 220 вольт.
Я считаю, что частотно-регулируемый привод и/или трансформатор необходимы, но какие размеры и марки я должен указать в цене. Если есть лучший способ сделать это, я полностью открыт для других идей. Я хочу сделать это правильно, а не собирать систему вместе или использовать преобразование энергии, которое едва работает.
Заранее спасибо за любую помощь,
КенНажмите, чтобы развернуть…
Пожалуйста, сообщите, как вы узнали, что машина двухфазная.
Я подозреваю, что машина действительно трехфазная, 550 В, как и мой плоскошлифовальный станок. Большая часть коммерческого оборудования в Онтарио и Альберте имеет 3 фазы 575 В.
В нашей ситуации нам нужно было преобразовать однофазное бытовое питание 240 В в 3-фазное питание 240 В, а затем использовать 3-фазный трансформатор для повышения напряжения до 600 В, на котором может работать наша машина. Одно только это оборудование стоит более 2000 канадских долларов, что делает эту «дешевую» машину намного дороже.
Вот почему те, кто идет по этому пути, выбирают размер своих вращающихся преобразователей фазы и трансформаторов таким образом, чтобы можно было использовать более одной машины, чтобы сделать это экономически выгодным.
ВАРИАНТ 2
заменить двигатель (двигатели) оригинального оборудования на любой из однофазных двигателей 240 В, если это возможно; или заменить на 3-фазный двигатель 240 В, а затем добавить частотно-регулируемый привод. Но многие машины имеют несколько двигателей, например, наш плоскошлифовальный станок имеет 5 двигателей, и многие из них трудно найти.
Для получения более подробной помощи сообщите нам тип машины и детали.
TorontoBuilder
H-M Supporter — Золотой участник
#7
Мартин В сказал:
Обязательно найдите себе хорошего электрика. Он поможет и сэкономит вам время и деньги.
Вращающийся фазовращатель преобразует 240-вольтовую электроэнергию вашего дома в 240-вольтовую трехфазную. Затем вам понадобится трехфазный повышающий трансформатор для повышения напряжения до 600 вольт. Это может быть дорого, если вы не можете найти б/у. Многие трансформаторы трехфазные на 208 вольт. Вы можете позвонить в решения Hammond Power и узнать, что у них есть. Убедитесь, что вы сидите, когда они дают вам цитату.
Если вы можете найти машины с напряжением 208-240 вольт, вы можете сохранить повышающий трансформатор.Мартин. (даже близко не разбираюсь в электрике. Просто пытаюсь помочь)
Нажмите, чтобы развернуть…
извините, я пропустил ваш пост, когда я сделал свой собственный и закончил тем, что продублировал большую часть информации. Я добавлю, однако, что трансформаторы на 208 В не будут работать, согласно фазовому квесту, они должны быть вторичными на 240 В и первичными на 600 В, если у вас есть машины от 550 до 600 В.
Beckerkumm
H-M Supporter — Gold Member
#8
Предполагая, что вы действительно говорите о трех фазах, вам нужен изолирующий повышающий трансформатор 240-600 с 600 во вторичной обмотке. Они гораздо более распространены в Канаде, и их можно найти в употреблении. Вы должны быть осторожны при движении вниз в обратном направлении из-за проблем с заземлением. Дэйв
Bi11Hudson
Ремесленник00
#9
Когда вы говорите, что двигатель «двухфазный», это правда? Или однофазный с центральным отводом. Они совершенно разные, но с омметром читаются одинаково. Я не работал с 2 фазами с тех пор, как был в Тихом океане в 84-85 годах. Некоторые теории, что может помочь :
Двигатели: Однофазная обмотка высокого напряжения, две фазы расположены под углом 180 электрических градусов друг к другу. Например, две стороны 240-вольтовой линии разделены на две 120-вольтовые линии. У трехфазных двигателей три фазы находятся под углом 120 электрических градусов друг к другу. Большинство двух фаз, с которыми я сталкивался, имели температуру 90 электрических градусов. Это не значит, что все так, просто то, с чем я сталкивался.
Во-первых: трехфазный двигатель будет работать при пониженном напряжении практически без проблем, за исключением снижения мощности. Поскольку в Канаде обычное напряжение 550 вольт, я бы предположил, что двигатель на 550 вольт может работать при напряжении 480 вольт.0335 с уменьшенной мощностью.
Далее: 3-фазный трансформатор хорош, он снижает нагрузку на накладные расходы и вспомогательное оборудование для «новой» установки. Для любителя 3 однофазных трансформатора — это одно и то же, только не в одном корпусе. Они даже не обязательно должны быть одинакового размера, если наименьший из них способен выдержать нагрузку. т.е. Для нагрузки 1 кВА отлично работает один трансформатор на 1 кВА и два трансформатора на 1,5 кВА. Разумеется, они должны быть того же номинала напряжения, что и .
Третье: Вполне возможно запустить 3-х фазное преобразование с 2-мя трансформаторами. Это (было в мое время) называется «открытая дельта». Нагрузка уменьшил до 56%, так что есть ограничения. Вы должны были бы судить об этом, но это, безусловно, можно сделать. Максимальный ток здесь является ограничивающим фактором. Для нагрузки 1 кВА два трансформатора мощностью 2 кВА обеспечат достаточный ток.
В общем, если 3 фазы доступны, можно было бы запустить 2-фазный двигатель 550 вольт на 3 фазы 480 вольт. Для этого потребуется индуктор (подойдет одна сторона трансформатора) с номинальным током, таким же или выше, чем у двигателя, который будет подключен между 3-й фазой и общей точкой на двигателе. Вопрос в том, насколько стабильным будет двигатель. Электрически он будет очень несбалансированным, вплоть до того, что может развалиться на части.
Такое испытание допустимо в течение короткого периода времени на стенде, но использование двигателя в рабочем состоянии было бы как минимум сомнительно. И повредить мотор и наблюдатель в худшем случае. Я не буду рекомендовать, но электрически можно. Если у вас есть доступ к старому автомеханику или автомастерской, это будет вашим лучшим выбором. Точно ответить на вопрос не сможет даже мастер-электрик. Понадобится моторчик. . .
.
Beckerkumm
H-M Supporter — Gold Member
#10
Вы не сказали, что это за машины и являются ли двигатели фирменными или легко заменяемыми. Я был в крысиной норе 550-600 В и даже построил трансформатор, сначала с двумя однофазными блоками, подключенными по схеме «открытый треугольник», а затем добавив третий, потому что пусковой бросок на старом двигателе был очень высоким. Тестирование 600v показало мне, что я слишком неуклюж, чтобы держать его на своем токарном станке. 240 В страшны, но 600 В смертельно опасны и почти не допускают ошибок. Моя управляющая проводка также была на 600 В, и это нарушило правила в моем мире.
Если двигатель запатентован, а перемотка и изменение перегрузок стартера представляет собой большой проект, поговорите с настоящим электриком о подходящем трансформаторе. Лично я бы не запускал двигатель 550 В на 480, если бы не был уверен, что он не нагреется. Низкое напряжение без снижения частоты может быть тяжелым испытанием для этих старых двигателей, даже если они выносливы. Легко проверить, но если вы идете по маршруту трансформатора в Канаде, вы также можете выбрать правильный. Вы хотите, чтобы KVA был в 2-3 раза больше, чем требуется для самых больших двигателей.