Антифриз или вода? Что лучше использовать для отопления?

При проектировании системы отопления, часто возникает вопрос, что лучше использовать в качестве теплоносителя, воду или антифриз? Давайте попытаемся разобраться с этим вопросом.

В чём же суть проблемы использования антифризов?

Большинство изготовителей теплотехники не рекомендуют, или даже можно сказать запрещают использование антифризов, в качестве теплоносителя. Почему они это делают?

По своим физико-химическим свойствам, вода лучше всего подходит для теплоносителя систем отопления. Но у неё есть один минус – замерзание при низких температурах! И по этому антифризы могли бы прийти на «выручку» воде, но существует одно но…

Ниже, я постараюсь перечислить все препядствия для использования антифризов:

* Во-первых. Ни один производитель не даст вам гарантии на его оборудование ( так как, используя антифриз в качестве теплоносителя вы нарушаете гарантийные условия ), а это очень существенно, ведь вся теплотехника довольно дорого стоит.

* Во-вторых. Антифриз имеет иные физические свойства, чем вода.У антифризов теплоёмкость на 15 — 20% меньше чем у воды, а вязкость, этой незамерзающей жидкости, наоборот больше чем у воды в два, три раза. Отличается и коэфициент расширения, он больше на 40 — 60%, чем у воды. Существуют также и другие важные отличия антифризов от воды, как температура кипения ( вопрос о том, какое она имеет значение, мы затронем чуть ниже ), теплопроводность и многое другое. Что это нам даёт? А то, что все расчёты системы отопления под воду, не годятся для работы на антифризе. Необходимо будет увеличивать проектную мощность котла и колличество секций радиаторов соответственно на 40 — 60%; увеличить объём расширительного бака на 5- 60%; учесть производительность и напор насоса и другие параметры!

* Третий момент. По поводу температуры кипения воды и антифриза.Что произойдёт, если антифриз нагреть больше, чем допускает производитель антифриза? А произойдёт следущее: разложение этиленгликоля и входящих в состав антифризов присадок. При этом образуются кислота и выпадает твёрдый осадок. Как вам такая перспектива? О последствиях от этого можно даже не сомневаться. Всё это приводит к различным нежелательным химическим реакциям, которые разъедают уплотнения, паронитовые прокладки и др. и к появлению течей в системе отопления!

* Четвёртый момент. У антифризов более выше свойство текучести, тоесть, чем больше различных соединений , тем больше шансов на утечки в системе отопления. Все стыки и соединения должны быть доступны для визуального контроля ( о скрытых в стенах или в полу трубах не может быть и речи! ). А так как антифриз на основе этиленгликоля токсичен (одноразовая смертельная доза составляет всего 100-300 мл), то его нельзя использовать для систем горячего водоснабжения. При утечках в системе отопления пары антифризов могут произвести к отравлениям.

ВЫВОД: Стоит ли то, что система отопления не разморозится при минусовой температуре, таких рисков и возможных последствий ? Ответить на этот вопрос нужно вам самим !

Полезная информация о смазочных материалах

В системах охлаждения тепловых двигателей и устройств преобразования или передачи крутящего момента, в противопожарных трубопроводах неотапливаемых помещений, в заводских холодильных линиях, в качестве рабочих жидкостей используются водные растворы спиртов – этилового, метилового, изопропилового, этиленгликолевого, полипропиленгликолевого, глицерина, а также водные растворы неорганических солей (хлористого кальция и натрия), также используют в качестве антифризов узкую керосиновую фракцию (205 ¸ 260 ° С) с полностью удаленными ароматическими углеводородами и серой. Наилучшими из антифризов являются этиленгликолевые охлаждающие жидкости, в связи с этим подавляющее большинство отечественных и импортных низкозамерзающих жидкостей для автомобильных двигателей изготавливается на основе этиленгликоля. Водно-гликолевая смесь успешно решает следующие задачи:
  • полностью исключает замораживание системы охлаждения автомобиля при длительной стоянке на холоде,
  • обеспечивает устойчивый теплоперенос от нагретых узлов двигателя к радиатору,
  • поддержание высокой температуры кипения и низкой испаряемости в процессе эксплуатации, а также предотвращает образование паровых пробок,
  • защищает от коррозии, грязевых пробок и отложений, ухудшающих теплоотвод от внутренних полостей, трубопроводы и агрегаты охлаждающей системы,
  • осуществляет смазку подшипников водяного насоса, предотвращает преждевременный износ,
Главным недостатком водно-гликолевой смеси является высокая коррозионная активность по отношению к металлам.
Другой значительный недостаток водно-гликолевых смесей в том, что они имеют меньшую теплоемкость и теплопроводность, чем просто дисциллированная вода. Например, теплоемкость воды при 20°С — 4,18, а чистого этиленгликоля — 2,42 кДж/(кг*°С) . А коэфицент теплопроводности: воды — 2,18, чистого этиленгликоля — 0,96 кДж/(ч*м*°С).  Это приводит к тому, что чем больше массовая доля этиленгликоля, тем хуже осуществляется теплоперенос. Зато использование этиленгликолевых растворов позволяет существенно понизить температуру замерзания, в чем, собственно и заключается основной смысл использования антифризов
Для решения этих и других проблем в водно-гликолевую смесь вводят дополнительные присадки, такие как:
  • антиокислительные, ингибиторы коррозии,
  • противоизносные,
  • смазывающие,
  • вещества, препятствующие проглатыванию (битрекс),
  • красители, в том числе флюоресцирующие.
В СССР выпускались и выпускаются до сегодняшнего дня антифризы двух марок — 40 и 65, в соответствии с ГОСТ 159-52 г.

Показатель по ТУ 6-57-95-96

Тосол-А 40М

Плотность при 20°С, г/см3

1,078¸1,085

Температура начала кристаллизации, °С

не выше -40

Температура кипения при давлении 760 мм рт. ст., °С.

Не ниже 108

Показатель рН, при 20°С.

7,5 — 8,5

Щелочность, см3

не менее 10

Объем пены через 5 мин. , см3.

Не более 30

Время исчезновения пены, с

Не более 3

Набухание резины при 100°С в течение 2 ч, % от объема, марки 7-57-5006,

Марки 57-7011

не более 5

Коррозионное воздействие на медь М 1

не более 8

Коррозионное воздействие на припой ПОС-35

не более 12

Коррозионное воздействие на латунь Л63

не более 8

Коррозионное воздействие на чугун СЧ20

не более 9

Коррозионное воздействие на алюминий АК-6М2

не более 19

Коррозионное воздействие на алюминий АЛ 9

не более 9*

Сталь 20

не более 2*

* — не оговорено в Технических условиях на Тосол.

Торговые марки антифризов Тосол-АМ (концентрат), Тосол-А40М, Тосол-А65М были разработаны гораздо позже — в начале 70-х годов, с ориентацией на использование в системах охлаждения автомобилей производства ВАЗ и имеют в своей основе этиленгликоль. Первоначально слово ТОСОЛ — означало торговую марку, образованную как абревиатура от словосочетания «Технология Органического Синтеза» и химического термина «ОЛ» (окончание «ОЛ» химики добавляют к названию вещества, чтобы обозначить спирт. Как, например, метанОЛ, этанОЛ, т.к этиленгликоль как химическое вещество относиться к классу двухатомных спиртов). С течением времени, слово ТОСОЛ из торговой марки было превращено автолюбителями Советского Союза в обозначение всех охлаждающих жидкостей для автомобилей (также, как когда-то давно торговая марка «Керосин» превратилась в слово, обозначающее определенный вид топлива). Сейчас с открытием и развитием рынков быстро идет процесс дифференциации охлаждающих жидкостей.
Раствор этиленгликоля — является сильнодействующим пищевым ядом. По характеру воздействия на человека, вызывает симптомы, схожие с алкогольным отравлением. Но при этом 90 грамм концентрата являются смертельной дозой для среднего мужчины.
Ни одна из охлаждающих жидкостей марки Тосол не рассчитана на работу в системах охлаждения, имеющих алюминиевый радиатор. Владельцам таких машин имеет смысл использовать исключительно те виды антифризов, которые указаны в их сервисных книжках. Или применять антифризы, имеющиее допуск производителя двигателя. Традиционные антифризы имеют зеленый, красный или оранжевый (желтый) окрас, тогда как тосолы — ярко-голубой.
В среднем срок службы антифризов в системе охлаждения — 2 года. Отечественные и импортные антифризы, выполненные на основе этиленгликоля, в принципе, смешиваются между собой в любых пропорциях. Проблемы могут вызвать несовместимые пакеты присадок. Антикоррозионные присадки, использующиеся в антифризах могут реагировать друг с другом или  с отложениями накипи, образующихся на внутренних стенках охлаждающей системы, что резко сокращает срок службы свежезалитого антифриза. В связи с этим, при переходе с воды на антифриз или с менее качественного антифриза на более качественный, целесообразно промыть систему специальной промывочной жидкостью (антинакипином). Антифризы на гликолевой основе обладают высокой текучестью, что накладывает повышенные требования на герметичность соединений и патрубков в системе охлаждения, а также имеют большой коэффициент объемного теплового расширения, в связи с этим не следует систему охлаждения заполнять под пробку, а предпочтительно поддерживать уровень охлаждающей жидкости в соответствии с рекомендациями завода-изготовителя.

Общие типы охлаждающих жидкостей и их использование в системах жидкостного охлаждения

Введение

Использование жидкостей для теплопередачи является важным методом охлаждения во многих отраслях промышленности. При выборе наилучшего теплоносителя для системы охлаждения необходимо учитывать факторы производительности, совместимости и технического обслуживания. Вода обладает отличными свойствами теплопередачи, что делает ее своего рода стандартом по сравнению с другими охлаждающими жидкостями. Среди теплоносителей вода обладает превосходными свойствами во многих отношениях, с высокой удельной теплоемкостью около 4200 Дж/кгK, низкой вязкостью и отсутствием температуры вспышки. С другой стороны, он имеет относительно узкий диапазон работы, так как температура жидкости делает простую воду восприимчивой к замерзанию или кипению.

Чистота воды

Качество уличной (водопроводной) воды зависит от ее хранения, доставки и конечного источника (подземные или поверхностные воды). Он может содержать коррозионно-активные примеси, такие как хлориды, соли щелочных карбонатов или взвешенные твердые частицы. Для систем охлаждения с рециркуляционным потоком воды систему можно заправлять уже отфильтрованной или очищенной водой. В то время как некоторых примесей следует избегать из-за потенциального коррозионного воздействия, совершенно чистая вода требует ионов и считается агрессивным растворителем. Грязная вода также является электролитическим мостиком, вызывающим гальваническую коррозию, если в системе присутствуют разнородные металлы.

Вода в качестве хладагента в рециркуляционной системе также подвержена биологическому загрязнению. Водоросли, бактерии или грибки могут образовываться в зависимости от воздействия на систему света и тепла и наличия питательных веществ во влажных компонентах. Образовавшаяся слизь или биопленка могут препятствовать теплопередаче между жидкостью и смачиваемыми поверхностями. Следует учитывать достаточную концентрацию присадки. Например, гликоль в качестве добавки обычно используется для контроля биологического роста, но при концентрациях менее 20% эффективность ограничена; фактически, ниже 1% пропиленгликоль и этиленгликоль действуют как бактериальное питательное вещество.
 
Существует несколько сложных и взаимосвязанных факторов при выборе различных типов воды и воды/смесей, а также некоторые конструктивные требования, обуславливающие потребность в других теплоносителях. Рассмотрим сравнение пропиленгликоля (PG) с этиленгликолем (EG). Пропиленгликоль гораздо менее токсичен, чем этиленгликоль, поэтому с ним легче обращаться и утилизировать, чем с этиленгликолем. Он также имеет более высокую удельную теплоемкость, чем этиленгликоль. Однако его теплопроводность ниже, а вязкость выше, чем у этиленгликоля, что приводит к лучшим общим характеристикам ЭГ по сравнению с ПГ. В большинстве случаев используется смесь гликоля и воды с более низкой концентрацией гликоля из-за превосходных характеристик воды по сравнению с любым типом гликоля. EG требует более низких концентраций, чем PG, для эквивалентного снижения точки замерзания, повышения точки кипения и снижения температуры взрыва.

Совместимость при рабочих температурах

Пригодность жидкости для работы в диапазоне рабочих температур имеет первостепенное значение. Это должно включать рассмотрение фазовых переходов жидкости (кипение и замерзание), химическое разрушение химического состава жидкости и снижение смазывающих и теплопередающих свойств жидкости. Замерзание жидкости уменьшит теплопередачу на поверхности, а кипение опасно для систем, не предназначенных для выдерживания избыточного давления в защитной оболочке жидкости. Взрыв расширяющихся паров кипящей жидкости (BLEVE) является потенциально опасным явлением, которое может произойти при внезапном разрыве защитной оболочки, даже если расчетные условия эксплуатации по температуре и давлению должны удерживать жидкость в жидком состоянии. Следует также отметить точки воспламенения летучих жидкостей.

Большинство жидкостей можно оценить на температурную совместимость с помощью готовых печатных спецификаций, а также с другими материалами, необходимыми для определения ситуаций, связанных с различным давлением или необычными условиями эксплуатации. В тех случаях, когда конкретная комбинация жидкостей разрабатывается пользователем для использования, например, комбинации вода/гликоль, пользователю обычно требуется небольшая непосредственная работа по тестированию, учитывая доступность данных от производителей.

Совместимость материалов

Нержавеющая сталь и, в частности, нержавеющая сталь серии 300 (аустенитная нержавеющая сталь) инертна почти ко всем жидкостям-теплоносителям из-за природы пассивирующего слоя оксида хрома (III), покрывающего поверхности таких сталей. При использовании деионизированной воды нержавеющая сталь и никель считаются подходящими для смачиваемых поверхностей. Хотя нержавеющая сталь в большинстве случаев отлично подходит для защиты от коррозии, ее использование имеет недостаток в виде довольно низкой теплопроводности по сравнению с другими металлами, такими как алюминий или медь.

Алюминий и его сплавы имеют хорошую теплопроводность в диапазоне 160-210 Вт/мК. Однако алюминий склонен к коррозии или точечной коррозии из-за примесей в неочищенной воде. Даже с раствором гликоля в дистиллированной воде как EG, так и PG при окислении образуют кислые соединения. Это может вызвать коррозию смачиваемых поверхностей и образование побочных продуктов органических кислот. Методы предотвращения включают добавление в жидкость ингибиторов коррозии или обработку смачиваемых поверхностей, например, анодирование алюминия.

Медь и медно-никелевые сплавы обладают хорошей коррозионной стойкостью и естественной устойчивостью к биологическому росту. Как и в случае с алюминием, следует использовать ингибиторы коррозии, чтобы избежать кислотной коррозии.

Смачиваемые поверхности насоса, включая уплотнения, должны быть совместимы как с жидкостью, так и с ожидаемыми условиями эксплуатации. Гальваническая коррозия в системах, использующих различные смачиваемые металлы, может создать дополнительные проблемы.

Диэлектрические свойства

Охлаждение мощных трансформаторов предъявляет особые требования к электропроводности охлаждающих жидкостей, которые не могут способствовать возникновению дуги от высокого напряжения на землю или другие поверхности. Аналогичные требования к низкой электропроводности жидкости обусловлены напряжениями в десятки киловольт в таких приложениях, как охлаждение рентгеновских трубок. Прямое иммерсионное охлаждение электроники для повышения производительности или строгого контроля температуры в целях тестирования, очевидно, требует низкой электропроводности. Для этих целей используются диэлектрические жидкости, такие как XG Galden или Fluorinert, с диэлектрической прочностью в десятки киловольт на 1/10 дюйма. Можно использовать воду высокой степени очистки, хотя начальное удельное сопротивление воды может меняться со временем без постоянного обслуживания. Минеральные масла или углеводороды, такие как гексан или гептан, могут использоваться, но могут возникнуть проблемы с воспламеняемостью.

Эти органические жидкости часто имеют более высокую вязкость, чем вода, поэтому полезно получить данные от поставщика о характеристиках расхода и давления насоса-кандидата при работе с требуемой вязкостью жидкости.

Жидкость с низкой электропроводностью может накапливать статический заряд в результате электризации потока. Удельное сопротивление 2×1011 Ом·см или более (50 пСм/м или менее) считается восприимчивым к этому эффекту. Для сравнения, деионизированная вода имеет более низкое удельное сопротивление. Чтобы избежать накопления статического электричества, необходим заземленный шланг или металлический трубопровод. В антистатическом шланге могут использоваться проводящие добавки к полимерному материалу, или он может иметь провод, намотанный через трубу, с заземляющими соединениями через соответствующие интервалы.

Деионизированная вода

Деионизированная вода имеет очень низкий уровень минеральных ионов, которые способствуют повышению электропроводности воды. Производство деионизированной воды высшей степени чистоты предполагает использование смешанного слоя ионообменных смол для удаления из воды минеральных катионов и анионов и замены их ионами водорода и гидроксида.

Даже если принять меры предосторожности для обеспечения пассивации смачиваемых поверхностей через контур охлаждающей жидкости, со временем в воде будут образовываться ионные примеси. Природа воды состоит в том, чтобы поглощать ионы из минералов, с которыми она контактирует, а деионизированная вода с недостаточным содержанием ионов жаждет их и агрессивно усваивает их с контактных поверхностей.

Чтобы сохранить первоначальные диэлектрические свойства воды, ее необходимо постоянно пропускать через слои смолы. Эти грядки будут постепенно терять свою эффективность, и придется проводить регенерацию грядки, если ее не нужно периодически заменять. Для регенерации смешанных слоев требуются сложные системы, а также различные регенерирующие агенты для анионных и катионных смол. Масла, ил или металлические частицы (либо в результате механической обработки, либо в результате химического воздействия, такого как загрязнение железом) также уменьшают срок службы слоя смолы.

Производительность

Существует ряд различных теплофизических свойств, которые можно использовать для оценки тепловых характеристик жидкости, включая теплопроводность, удельную теплоемкость, плотность и вязкость. Конечной целью максимизации этих свойств является улучшение теплопередачи между жидкостью и теплообменными поверхностями, с которыми она контактирует. Непосредственная оценка коэффициента теплоотдачи в этих случаях требует использования соотношений, разработанных для расчета коэффициента для различных конкретных геометрических условий.

В этих соотношениях два безразмерных параметра имеют зависимость от свойств жидкости. Число Рэлея связано с потоком, управляемым плавучестью, также известным как свободная конвекция или естественная конвекция. Число Прандтля представляет собой отношение коэффициента диффузии импульса к коэффициенту температуропроводности. Они определяются следующими уравнениями:

Число Рэлея (например, для конвекции с вертикальными стенками)

Число Прандтля

Корреляции теплопередачи, как правило, следуют некоторой форме:

Значение C представляет собой эмпирически определенную корреляцию, при которой число Рэлея занимает положение в положительном числителе корреляции, а число Прандтля имеет тенденцию занимать обратную позицию в знаменателе; таким образом, оба имеют положительный вклад в теплопередачу. Однако теплопроводность занимает в числителе позицию с прямой положительной зависимостью первого порядка от коэффициента теплопередачи. Определение положительного или отрицательного воздействия использования конкретной жидкости в приложении может быть громоздким, поскольку речь идет о нескольких типах и ориентациях конвекционных поверхностей теплопередачи.

За исключением полного термического анализа, менее строгий подход, включающий показатель качества, такой как число Муромцева, может дать более простую основу для сравнения жидкостей, принимая во внимание некоторые или все ранее упомянутые физические свойства.

Число Муромцева состоит из:

Значения a, b, d и e представляют собой положительные значения, характерные для типа приложения.

В общем, из числа Муромстеффа, а также из полного анализа различных корреляций для коэффициентов конвективной теплопередачи между жидкостью и твердыми поверхностями видно, что теплопроводность, плотность и удельная теплоемкость положительно влияют на производительность. теплоносителя, а вязкость вносит отрицательный вклад.

К отрицательному влиянию большей вязкости на теплопередачу добавляется влияние на производительность насоса жидкостей с различной вязкостью, поскольку скорость жидкости оказывает значительное положительное влияние на коэффициент теплопередачи. Насосы также снабжены диаграммами зависимости расхода от давления, чтобы показать ожидаемую производительность с различными типами жидкостей и смесями, которые могут вызвать отклонение от предоставленных кривых. Работа при различных температурах также повлияет на вязкость жидкости, что окажет дополнительное влияние на скорость потока. Скорость жидкости или скорость потока важны для понимания ожидаемой производительности системы. Теплообменники и охлаждающие пластины часто рассчитаны на определенный расход жидкости определенного типа. Отклонение от жидкости, используемой для построения графиков прогнозируемых результатов, приведет к изменению цифр.

Конечно, объемный расход жидкости должен быть достаточным для удовлетворения требований по отводу тепла, как ожидается, исходя из удельной теплоемкости жидкости и допустимого повышения температуры:

Согласно часто используемому уравнению Дарси-Вейсбаха,

с корреляции для коэффициента трения fD, доступные для различных условий потока и поверхностей труб и шлангов. Коэффициент трения обычно принимает форму, зависящую от числа Рейнольдса, так что вязкость жидкости имеет положительную связь с коэффициентом трения. Если предполагается, что система будет работать с насосом, пропускная способность которого чувствительна к противодавлению в системе, вязкость предполагаемой жидкости может иметь важное значение.

Вопросы стоимости

Водопроводная вода, очевидно, является самым дешевым вариантом, а очищенная охлаждающая вода будет стоить дороже в зависимости от типа чистоты и требуемого уровня.

Затраты на техническое обслуживание, связанное с охлаждающей жидкостью определенного типа, следует учитывать. Это может включать фильтрацию, ионизационные слои, катодную защиту и доливку испарившейся или вытекшей жидкости. Утилизация является еще одним фактором: водопроводную или очищенную воду обычно можно утилизировать в обычный дренаж, но вода, смешанная со спиртами или другими органическими веществами, и вообще любые органические жидкости обычно требуют других методов. Расходы на утилизацию растворов охлаждающей жидкости, которые требуют периодической промывки и дозаправки в течение срока службы, а также растворов, с которыми необходимо обращаться в конце срока службы системы, могут превышать первоначальную стоимость охлаждающей жидкости.

Со временем в несовершенно закрытой системе (протечки в швах или уплотнениях) можно ожидать снижения уровня жидкости. Добавление смеси воды/хладагента для доведения уровня жидкости до уровня должно включать специально контролируемые концентрации охлаждающей жидкости, соответствующие существующей жидкости системы. Однако со временем гликоли могут распадаться на органические кислоты — измерение pH жидкости в системе и проверка на наличие твердых и биологических загрязнений могут указывать на то, что требуется замена раствора охлаждающей жидкости.

Жидкость Теплопроводность (Вт/мК)

Удельная теплоемкость
(Дж/кгK)

Вязкость
(сП)

Плотность
(кг/м 3 )

Стоимость Температура кипения
(°С)
Температура замерзания
(°C)
Вода 0,58 4181 1,00 1000 $ 100 0
50-50 вода/этиленгликоль 0,402 3283 2,51 1082 $$ 107 -37
50-50 Вода/пропиленгликоль 0,357 3559 5,20 1041 $$ 106 -45
Динален HC-30 0,519 3100 3,70 1275 $$$ 112 -40
Галден HT200 0,065 963 4,30 1790 $$$ 200 -85*
Флуоринерт FC-72 0,057 1100 0,64 1680 $$$ 56 -90*

Заключение

Существует множество типов охлаждающих жидкостей, соответствующих требованиям применения. Выбор подходящей охлаждающей жидкости для конкретного применения требует понимания характеристик и теплофизических свойств жидкости, включая эксплуатационные характеристики, совместимость и факторы технического обслуживания. В идеале охлаждающая жидкость представляет собой недорогую и нетоксичную жидкость с исключительными теплофизическими свойствами и длительным сроком службы. Каждый вариант охлаждающей жидкости обладает различными свойствами, такими как теплопроводность, удельная теплоемкость и термическая стабильность, но их использование в конечном итоге будет зависеть от их надежности и экономичности.

Теплопроводность Антифриз Этиленгликоль

Связанные ресурсы: теплопередача

Теплопроводность Антифриз Этиленгликоль

Теплопроводность
Термодинамика

Теплопроводность антифриза этиленгликоля 09

Концентрации в объемных процентах этиленгликоля ( антифриз)

Температура, °F

30%

40%

50%

-20

0,193

-10

0,212

0,197

0,216

0,200

10

0,238

0,220

0,204

20

0,243

0,224

0,207

30

0,247

0,227

0,210

40

0,251

0,231

0,212

50

0,255

0,234

0,215

60

0,259

0,237

0,218

70

0,263

0,240

0,220

80

0,266

0,243

0,223

90

0,269

0,246

0,225

100

0,272

0,248

0,227

110

0,275

0,251

0,229

120

0,277

0,253

0,230

130

0,280

0,255

0,232

140

0,282

0,256

0,233

150

0,284

0,258

0,235

160

0,285

0,259

0,236

170

0,287

0,261

0,237

180

0,288

0,262

0,238

190

0,289

0,263

0,239

200

0,290

0,263

0,240

Теплопроводность в БТЕ-фут / час-фут 2 -°F

Родственные

  • Водно-гликолевая гидравлическая жидкость
  • Теплопроводность жидкостей
  • Антифриз Температура кипения
  • Теплопроводность огнеупорных материалов
  • Калькулятор преобразования теплопроводности
  • Теплопроводность обычных металлов и сплавов
  • Таблица теплопроводности изоляционного материала

  • Тепловые свойства металлов, проводимость, тепловое расширение, удельная теплоемкость
  • Теплопроводность, теплопередача
  • Уравнения теплопроводности стенки и калькулятор

Источник

  • Источник: Перепечатано с разрешения от 2013 г.