Устройство автомобиля — двигатель автомобиля, кузов и шасси. Трансмиссия, рулевое управление, несущая система, тормозная система автомобиля

Автомобилем называется колесное наземное безрельсовое транспортное средство, оборудованное двигателем, обеспечивающим его движение.

Устройство автомобиля представляет собой сложную систему, состоящую из деталей, узлов, механизмов, агрегатов и систем.

Деталь – изделие, изготовленное из однородно материала (по наименованию и марке) без применения сборочных операций. Деталь, с которой начинается сборка узла, механизма или агрегата, называется базовой.

Узел – ряд деталей, соединенных между собой с помощью резьбовых, заклепочных, сварных и других соединений. Механизм – подвижно связанные между собой детали или узлы, преобразующие движение и скорость.

Агрегат – несколько механизмов, соединенных в одно целое.




Система – совокупность взаимодействующих механизмов, приборов и других устройств, выполняющих при работе определенные функции.

Все механизмы, агрегаты и системы образуют три основные части, из которых устроен автомобиль: двигатель, кузов и шасси (см. рисунок 1 и рисунок 2).


Рисунок 1 – Устройство грузового автомобиля (основные части)

а – двигатель; б – кузов; в – шасси


Рисунок 2 – Устройство легкового автомобиля

1 – двигатель; 2 – рулевое управление; 3 – кузов; 4, 9 – задняя и передняя подвески; 5 – ведущий мост; 6 – карданная передача; 7 – коробка передач; 8 – сцепление


Двигатель является источником механической энергии, необходимой для движения автомобиля.


  • Кривошипно-шатунный механизм (КШМ)
  • Газораспределительный механизм (ГРМ)
  • Неисправности и техническое обслуживание КШМ и ГРМ
  • Гидравлический толкатель клапана
  • Система смазки двигателя
  • Вентиляция картера двигателя
  • Система охлаждения двигателя
  • Техническое обслуживание системы охлаждения
  • Стартер — назначение, устройство, работа
  • Электронное управление двигателем
  • Датчики контроля параметров работы двигателя

Кузов предназначен для размещения водителя, пассажиров, багажа и защиты их от внешних воздействий (ветер, дождь, грязь и др. ).


  • Формы кузовов из других областей техники
  • История развития форм кузовов
  • Метод оптимизации кузовных форм
  • Тенденции развития технических показателей автомобилей
  • Тенденции развития аэродинамических характеристик автомобиля
  • Затраты на разработку аэродинамических автомобилей



Шасси представляет собой совокупность механизмов, агрегатов и систем, обеспечивающих движение и управление автомобилем.

В шасси входят трансмиссия, несущая система, передняя и задняя подвески, колеса, мосты, рулевое управление и тормозные системы.

Трансмиссия при движении автомобиля передает мощность и крутящий момент от двигателя к ведущим колесам.

У автомобиля с задними ведущими колесами трансмиссия состоит из сцепления, коробки передач, карданной передачи, главной передачи, дифференциала и полуосей. Главная передача, дифференциал и полуоси устанавливаются в балке ведущего моста. У автомобиля с передними ведущими колесами карданная передача в трансмиссии между коробкой передач и главной передачей отсутствует. У автомобиля со всеми ведущими колесами в трансмиссию дополнительно входят раздаточная коробка, соединенная карданными передачами с ведущими мостами.


Сцепление

  • Сцепление автомобиля
  • Однодисковые сцепления с периферийными пружинами
  • Сцепление ВАЗ — однодисковое с диафрагменной пружиной
  • Сцепление с конической пружиной
  • Центробежное сцепление автомобилей
  • Двухдисковые сцепления — устройство и схема
  • Двухдисковые сцепления КамАЗ и МАЗ
  • Гидравлическое сцепление — схема и принцип работы
  • Электромагнитное сцепление
  • Неисправности и техническое обслуживание сцепления
Коробка передач

  • Коробка передач — назначение и типы
  • Двухвальные коробки передач ВАЗ и АЗЛК
  • Трехвальные коробки — применение и схема работы
  • Трехвальная коробка передач ВАЗ — конструкция
  • Коробка передач грузовых ГАЗ
  • Коробка передач легковых ГАЗ
  • Коробка передач грузовых автомобилей ЗИЛ
  • Коробка передач грузовых МАЗ
  • Многовальные коробки передач
  • Гидромеханические коробки передач
Раздаточная коробка

  • Раздаточная коробка – назначение и типы
  • Раздаточная коробка легкового автомобиля
  • Раздаточная коробка легковых автомобилей ВАЗ
  • Конструкция раздаточной коробки ГАЗ
  • Раздаточная коробка КамАЗ
  • Раздаточная коробка ЗИЛ
Карданная передача


  • Карданная передача — назначение и типы
  • Карданные шарниры
  • Примеры конструкций карданных передач



Несущая система предназначена для установки и крепления всех частей, систем и механизмов автомобиля.

У грузовых автомобилей, автобусов, выполненных на базе шасси грузовых автомобилей, легковых автомобилей большого и высшего классов, а также у ряда легковых автомобилей повышенной проходимости несущей системой является рама, и такие автомобили называются рамными.

Легковые автомобили особо малого, малого и среднего классов, а также автобусы рамы не имеют. Функции несущей системы у этих автомобилей выполняет кузов, который называется несущим. Сами же автомобили называются безрамными.

Подвеска обеспечивает упругую связь колес с несущей системой и плавность хода автомобиля при движении, т.е. защиту водителя, пассажиров и грузов от воздействия неровностей дороги в виде толчков и ударов, воспринимаемых колесами.

Большинство легковых автомобилей имеют переднюю независимую подвеску колес и заднюю зависимую. У грузовых автомобилей и автобусов передняя и задняя подвески колес зависимые.


  • Листовые рессоры
  • Применение листовых рессор на автомобилях
  • Винтовые пружины
  • Торсионы
  • Стабилизаторы поперечной устойчивости
  • Резиновые и пневматические упругие элементы подвески
  • Ограничители хода и дополнительные упругие элементы
  • Ограничители хода отбоя
  • Подвески ведомых задних колес
  • Подвески ведущих задних колес

Колеса связывают автомобиль с дорогой, обеспечивают его движение и поворот.

Колеса называются ведущими, если к ним от двигателя подводятся мощность и крутящий момент. Управляемыми называются колеса, обеспечивающие поворот автомобиля. К этим колесам мощность и крутящий момент не подводятся. Колеса называются комбинированными, когда они являются ведущими и управляемыми одновременно. У большинства автомобилей ведущие колеса задние, а управляемые – передние.



  • Широкие шины серий 65, 60, 55 и 50
  • Подшипники ведущих колес с независимой подвеской



Мосты поддерживают несущую систему автомобиля.

На автомобилях применяются ведущие, управляемые и комбинированные мосты, на которых установлены соответственно ведущие, управляемые и комбинированные колеса. Ведущими у автомобилей являются задние мосты, а управляемыми и комбинированными – передние.


  • Мосты — назначение и типы
  • Главная передача
  • Дифференциал
  • Полуоси
  • Ведущий мост автомобиля
  • Конструкция ведущего моста ВАЗ
  • Конструкции ведущего моста автомобилей ГАЗ
  • Конструкция ведущего моста грузовых автомобилей ЗИЛ
  • Конструкции ведущих мостов КамАЗ и МАЗ
  • Комбинированные мосты
  • Передний мост легковых автомобилей ВАЗ повышенной проходимости
  • Передний мост легковых автомобилей ВАЗ
  • Комбинированный передний мост АЗЛК
  • Передний ведущий мост автомобилей ГАЗ и ЗИЛ

Рулевое управление обеспечивает изменение направления движения и поворот автомобиля.

На автомобилях применяются рулевые управления без усилителей и с усилителями: гидравлическими и, реже, пневматическими. Усилители рулевого управления облегчают работу водителя и повышают безопасность движения, обеспечивая движение автомобиля с наименьшей вероятностью дорожно-транспортных происшествий и аварий.

На автомобилях рулевое управление может быть левым или правым в зависимости от принятого в той или иной стране направления движения транспорта. При этом расположение рулевого колеса, установленного с левой или с правой стороны в кузове или кабине автомобиля, обеспечивает лучшую видимость при разъезде с транспортом, движущимся навстречу, что также повышает безопасность движения.




Тормозные системы уменьшают скорость движения автомобиля, останавливают и удерживают его на месте, обеспечивая безопасность при движении и на остановках.

Автомобили оборудуются несколькими тормозными системами, совокупность которых называется тормозным управлением автомобиля.

Рабочая тормозная система используется для служебного и экстренного (аварийного) торможения, действует на все колеса автомобиля и приводится в действие от тормозной педали ногой водителя.

Стояночная тормозная система удерживает на месте неподвижный автомобиль, действует только на задние колеса или на вал трансмиссии и приводится в действие от рычага рукой водителя.

Запасная тормозная система (резервная) останавливает автомобиль при выходе из строя рабочей тормозной системы. При отсутствии на автомобиле отдельной запасной тормозной системы ее функции может выполнять исправная часть рабочей тормозной системы (первичный или вторичный контур) или стояночная тормозная система.

Вспомогательная тормозная система (тормоз-замедлитель) действует на вал трансмиссии и выполняется независимой от других тормозных систем.

Рабочей, стояночной и запасной тормозными системами оборудуются все автомобили, а вспомогательной – только грузовые автомобили большой грузоподъемности полной массой более 12 тонн и автобусы полной массой более 5 тонн.

Прицепы, работающие в составе автопоездов, оборудуются прицепной тормозной системой, снижающей скорость движения, останавливающей и удерживающей их на месте, а также автоматически останавливающей прицепы при их отрыве от автомобиля-тягача.



Кузов автомобиля — название деталей, схема, устройство и материалы

Автомобиль — это технически сложное устройство, которое состоит из целого ряда всевозможных узлов и механизмов. Разбираться, какие детали кузова автомобиля отвечают за различные функции, должен каждый автовладелец. Причем это нужно не столько, чтобы своими силами устранять любые поломки в дороге, а больше ради понимания рабочего принципа собственного ТС. В этом материале собрана именно такая полезная информация.

Содержание

  1. Из чего сделан кузов автомобиля
  2. Назначение и требования
  3. Устройство
  4. Компоновка кузовов
  5. Жесткость
  6. Общее устройство кузова
  7. Моторная зона
  8. Пассажирская часть
  9. Багажный отсек
  10. Днище
  11. Крыша

Из чего сделан кузов автомобиля

Несущая система транспортного средства бывает различной, однако кузов считается самым востребованным и распространенным. Детали кузова легкового автомобиля обеспечивают достаточно удобное крепление всех компонентов машины, размещение разнообразных грузов и любого количества пассажиров, а во время транспортировки берут на себя нагрузки.

Назначение и требования

Сердце машины — это ее мотор. Кузов – ее тело.

Эта составляющая ТС — самая дорогостоящая. Главная ее задача заключается в размещении мест посадки и других компонентов, а также в хорошей защите всех механизмов и пассажиров от негативных факторов извне.

Из чего делают кузов

В сегодняшних авто кузов принято делать из очень качественной и прочной стали. При этом его обязательно обрабатывают необходимым образом для защиты от коррозии. Малая толщина металла авто позволяет существенно снизить вес автомобиля. А это очень хорошо отражается на его общей динамике. Кузов, вопреки малой толщине металла, рассчитан так, что он и надежный, и легкий.

Детали конструкции на подавляющем большинстве ТС скрепляют сваркой точечного типа. Это обеспечивает надежность фиксации всех компонентов и сокращение числа острых углов. В будущем производители автомобилей для сварки механизмов планируют использовать сверхточный лазер. Это сведет присутствие всевозможных выпуклостей и углублений на швах к минимуму. В результате конструкция станет намного более простой и прочной.

Детали кузова скрепляют сваркой точечного типа1

Ученые не устают искать любые методы уменьшения массы без ущерба надежности и жесткости. Перспективным материалом, к примеру, считается алюминий. В транспортных средствах Европы масса деталей из него пятнадцать лет назад составила всего 130 кг.

Корпус — это одна из самых важных частей. Толщина и качество материалов влияет на устойчивость к ржавчине и долговечность.

Все чаще современные компании по производству авто переходят на алюминий и углепластик. Это помогает существенно уменьшить массу продукции. Главное здесь, чтобы конструкция могла обеспечить наибольшую безопасность для самого водителя и всех пассажиров при возможном столкновении.

Вдобавок, рынок начинает завоевывать пеноалюминий. Это прочный и легкий материал, отлично поглощающий удар во время аварии. Благодаря пенистой структуре, у него высокий уровень звукоизоляции и термостойкости. Однако здесь есть и недостаток. Пока что пеноалюминий очень дорогой. Почти на 20% дороже обычных материалов. Сплавы алюминия широко используют сегодня известные автомобильные компании Мерседес и Ауди.

Так, за счет специфических сплавов алюминия вес модели Ауди А8 удалось снизить до невероятных 810 кг.

Помимо упомянутого алюминия сегодня начинают активно использовать материалы из прочного пластика. К примеру, специфический сплав под названием Fibropur. По своей жесткости он фактически не уступает настоящей стали.

Корпус любой легковой машины должен соответствовать следующим нормам:

  • Стойкость к появлению ржавчины.
  • Не самая большая масса.
  • Соответствие передовым дизайнерским тенденциям.
  • Большая жесткость.
  • Подходящая форма для выполнения ремонта и постоянного обслуживания, а также погрузки груза.
  • Высокий уровень удобства для водителя и всех пассажиров.
  • Высокая безопасность при аварии.

Устройство

Вопреки невероятному числу всевозможных компоновок, устройство автомобильного кузова вполне стандартизовано. Туда входят:

  • Тыльные и фронтальные лонжероны.
  • Передний щит.
  • Надколесная ниша.
  • Передние, средние и хвостовые стойки.
  • Центральный тоннель.
  • Днище.
  • Крыша.
  • Заднее крыло.
  • Багажная панель.
  • Пороги.

Схема кузова легкового автомобиля также может отличаться от выше описанной. Это полностью зависит от корпуса. Такие элементы автомобильного корпуса, как стойки и лонжероны, обладают повышенным вниманием со стороны водителей.

Компоновка кузовов

Несущая часть состоит из кузова и специальной рамы, самого кузова либо быть комбинированной. Конструкция, выполняющая задачи несущей части, называют несущей. Современные машины выполнены именно в данной компоновке.

Такую конструкцию делают в трех разных объемах:

  • Трехобъемный. Имеет три отсека: пассажирский, багажный и зона мотора. В подобной компоновке производят седаны.
  • Двухобъемный. У такой конструкции есть уже две зоны. Отсек для двигателя и пассажиров с багажником. К данной компоновке можно с легкостью отнести универсал, а также хэтчбек и кроссовер.
  • Однообъемный. Имеет цельный корпус, объединяющий отделение для мотора, отсек для багажа и салон для пассажиров. Все это соответствует грузопассажирским и пассажирским машинам.

Жесткость

Жесткость – специфическое качество каждого ТС, посредством которого оно во время эксплуатации может противостоять статическим и динамическим нагрузкам. Жесткость непосредственно влияет на управляемость автомобилем. Чем она выше, тем лучше.

От чего зависит жесткость? Здесь важны такие параметры, как геометрия авто, типа его корпуса, число дверей, размер окон и самого транспортного средства. Кроме того, огромное значение имеет специальное крепление и положение хвостового и переднего стекол. С помощью их жесткость способна повышаться до 40%. Чтобы еще больше увеличить жесткость, на авто устанавливают надежные распорки-усилители.

Самые надежные модели авто — это седаны, а также хэтчбеки и купе. Это часто трехобъемная компоновка, у которой есть вспомогательные перегородки между мотором и отделением для багажа. Определенно низкие показатели жесткости у корпусов типа универсал, а также микроавтобус и пассажирский.

Важно. Для определения степени жесткости машины есть два важных параметра – на кручение и на изгиб. В первом случае выполняется проверка сопротивления при давлении в разных противоположных точках от продольной оси корпуса. У современных машин, в основном, используется несущий цельный корпус. Жесткость в нем обеспечивается благодаря ряду балок, а также лонжеронам.

Общее устройство кузова

Корпус машины может быть разным. Сейчас распространены следующие его разновидности и названия:

  • Седан. Это наиболее популярная вариация легковой машины. У нее есть отдельный багажник, закрытый корпус и четыре двери.
  • Внедорожник. Большое ТС с большим дорожным просветом и с особой подвеской. Такие модели используются там, где требуется хорошая проходимость. На качественных ровных дорогах в городе внедорожник менее эффективен.
  • Кроссовер. Это внедорожная разновидность хэтчбека. Передвигаться на таком ТС можно как в городе, так и за городом. Модель отличается от настоящего внедорожника меньшим дорожным просветом и более слабой проходимостью.
  • Фургон. Это модификация, которая прежде всего применяется для всевозможных коммерческих задач. У фургона есть большой отсек для багажа за перегородкой, а также один либо два ряда кресел.
  • Универсал. У модификации объединены в одно пространство багажник и салон. У них общая крыша, которая продлена прямо до хвостового края.
  • Родстер. Это весьма редкая спортивная разновидность на два места, с жесткой крышей либо без нее.
  • Лимузин. Его очертания похожи на удлиненный седан. Место водителя обязательно отделено от салона с пассажирами стеклом либо перегородкой из другого материала.
  • Купе. У такого ТС две двери, а также только один ряд кресел. Багажник от пассажирского салона авто отделен, однако сзади никакой дверцы нет.
  • Кабриолет. Специфическое купе с крышей, которая при потребности откидывается. Последнюю делают складной из жести либо мягкой из текстиля.
  • Пикап. Легковая машина с один либо двумя рядами сидений, а также открытым отсеком для багажа. В основном, такие машины применяют для поездок куда-нибудь за город и для всевозможных коммерческих задач.
  • Минивэн. От фургона такая модификация отличается общим числом кресел для пассажиров – четыре ряда. Кроме того, у минивэна больший салон и багажник.
  • Хэтчбек. В эту модель ставят как один, так и целых два ряда сидений. В тыльной стенке при этом всегда есть еще одна дверь. У данных ТС задний свес короче, нежели у универсала и седана.
  • Лифтбек. Редкая модификация, которая внешне похожа сразу и на седан, и на хэтчбек. Крышка отсека для багажа здесь выступает больше, нежели у хэтчбека, однако меньше, нежели у седана.

Моторная зона

Так называется перед легковой машины.

Моторная зона содержит в себе следующие компоненты корпуса:

  • Лонжероны. Это ключевые силовые составляющие моторной зоны. Полые и продольные, они фиксируются ближе к низу моторной зоны. Это наиболее прочные компоненты каркаса транспортного средства, так как сделаны из высокопрочной ста­ли. Чтобы эффективно гасить фронтальные удары во время аварий у лон­же­ро­нов есть зоны возможного смятия.
  • Верх­нее усиление брызговика. Находится спереди. Именно на него прикручивают на передние крылья.
  • Усилитель бампера. Он нужен для гашения удара в случае ДТП. Элемент прикручивают непосредственно к перед­у лон­же­ро­нов.
  • Чашки. Усиленные компоненты, удерживающие верх стоек подвески. Они сделаны как часть брызговиков.
  • Рам­ка радиатора. Она находится спереди конструкции и нужна, чтобы удерживать различные элементы авто, вроде радиатора системы охлаждения или замка капота. Радиаторная рамка крепится прямо к брызговикам и лон­же­ро­нам. Как поперечный эле­мент, она придает переду большей жесткости.
  • Передняя пере­го­род­ка. С помощью этой панели разделяется передняя секция и цен­траль­ная. Она надежно защищает пас­са­жи­ров и водителя при воз­ник­но­ве­нии в мотор­ном отсе­ке пожара. За перегородкой находится сило­вая кон­струк­ция. Это тоже элемент защиты пассажиров и водителя в случае ДТП.
  • Брыз­го­ви­ки перед­них кры­льев. Это внутренние панели вокруг коле­са, частич­но при­ва­ре­ны к лон­же­ро­нам, которые защи­ща­ют его от гря­зи. Они добав­ля­ют корпусу большей жест­ко­сти.
  • Перед­ние кры­лья. Эти компоненты находятся возле перед­ни­х дверей и дохо­дят непосредственно до перед­не­го бам­пе­ра. Передние крылья, прикрученные к корпусу болтами, закры­ва­ют перед­нюю под­вес­ку и брыз­го­ви­ки.

Пассажирская часть

Если говорить про пассажирскую часть, то в нее входят следующие компоненты:

  • Салон. Это цен­траль­ная часть конструкцию машины, которая для повышения уровня без­опас­но­сти пас­са­жи­ров и водителя окру­же­на уси­лен­ны­ми пане­ля­ми. В центральной боковой стойке есть уси­ле­ние, в дверях и за приборной пане­лью тоже. Кроме того, у кры­ши машины есть уси­лен­ная попе­ре­чи­на, которая оберегает салон в случае пере­во­ро­та.
  • Зад­няя пол­ка. Это панель, которая находится под хвостовым стек­лом, за зад­ни­ми сиденьями.
  • Зад­няя пере­го­род­ка. Она раз­де­ля­ет отде­ле­ние для багажа и салон для пассажиров.
  • Две­ри. Конструкция этого компонента — состав­ная. Это внеш­няя пане­ль, внут­рен­ний уси­ли­те­ль и элемент, на кото­ром кре­пят­ся различные составляющие дверей, вроде стек­ло­подъ­ем­ни­ков.
  • Стой­ки. Вер­ти­каль­ные компоненты для надежного удержания кры­ши и защиты салона при перевороте транспортного средства. Эти элементы состо­ят из внеш­них частей и внут­рен­не­го стального уси­ле­ния. В седанах есть целых три вида сто­ек. Так, перед­ние пере­хо­дят непосредственно в рам­ку лобо­во­го стек­ла. Средние удер­жи­ва­ют кры­шу меж­ду разными две­рь­ми, а также обеспечивают места фиксации шар­ни­ров для хвостовых две­рей. Кроме того, они рас­пре­де­ля­ют всю нагруз­ку с низа корпуса на верхнюю часть, а также защищают салон при боко­вых уда­рах. Хвостовые стой­ки необходимы, чтобы удер­жи­ва­ть зад­ кры­ши. Также они являются местом для зад­не­го стек­ла ТС.
  • Боко­вая панель. Это общая кон­струк­ци­ей, где проемы дверей выполнены без сва­ри­ва­ния, то есть одним элементом. Боковая панель такого устройства надежно защищена от коррозии.
  • Поро­ги. Уси­лен­ные компоненты внизу про­емов дверей удер­жи­ва­ют низ сред­них сто­ек и под­держ­ивают дни­ще по бокам. С фланцами днища их соединяют кон­такт­ной свар­кой. Внут­ри лице­вой части поро­гов есть надежное уси­ле­ние.

Багажный отсек

Как называется зад легковой машины? Это багажный отсек. Хвостовая часть легкового автомобиля состоит из следующих компонентов:

  • Зад­ние лон­же­ро­ны — это про­доль­ны­е силовые составляющие из высо­ко­проч­ной ста­ли. Они надежно удер­жи­ва­ют пол багаж­ни­ка, а также при­ни­ма­ют на себя нагруз­ку во время транспортировки бага­жа.
  • Зад­ние арки, которые фиксируются на хвостовых кры­льях.
  • Пол багаж­ни­ка — это штам­по­ван­ный металлический лист, вогну­той фор­мы, который обра­зу­ет свободное место для запасного колеса. Пол багажника при этом при­ва­рен к хвостовым лон­же­ро­нам, зад­ней пане­ли конструкции и зад­ним брыз­го­ви­кам.
  • Зад­ние кры­лья — это несъем­ные пане­ли, которые при­ва­рен­ы к корпусу и явля­ют­ся важным элементом хвостовой части.
  • Зад­ние чаш­ки, которые удер­жи­ва­ют верх­ хвостовых сто­ек.

Днище

На дно легковой машины приходится практически 60% суммарного веса транспортного средства. Эту составляющую автомобиля делают из металла и подвергают горячей оцинковке. Такую процедуру пропускают исключительно китайские производители машин. Если днище не будет надежно защищено от коррозии, то спустя всего два года начинает постепенно гнить. Если говорить про главные компоненты днища, то это:

  • Усилитель передней стойки.
  • Задний пол.
  • Порог кузова.
  • Задняя поперечина пола.

Крыша

Панель кры­ши находится на стой­ках и закры­ва­ет всю его цен­траль­ную часть. Панель кры­ши — одна из самых крупных и простых кон­струк­ций транспортного средства.

Крыше такую большую жесткость дает ее фор­ма. А также уси­ли­те­ли, которые приклеиваются к ней с обрат­ной сто­ро­ны. Кры­шу, которая переходит в зад­нее кры­ло при­ва­ри­ва­ют посредством крем­ни­стой брон­зы либо качественной латуни. Этот дает возможность делать ровный и длин­ный шов, а также про­ти­во­сто­ять вибрациям и нагруз­кам, которые воз­дей­ству­ю­т на это место. Подобное соеди­не­ние также гораздо мень­ше боится кор­ро­зию.

Знать из чего состоит автомобильный кузов, нужно знать каждому водителю. Без этого невозможно будет поддерживать транспортное средство всегда в нормальном и рабочем состоянии. Без таких знаний не выйдет объяснить специалисту по ремонту авто в чем проблема. Да и вообще, информация, которая представлена выше — очень полезная просто для понимания сути работы собственного автомобиля.

Как читать электрические схемы автомобилей

Примечание редактора: эта статья была первоначально опубликована 27 января 2017 г. Некоторая информация может быть уже неактуальной, поэтому используйте ее по своему усмотрению.

Электрические схемы и дорожные карты имеют много общего. Дорожные карты иллюстрируют, как добраться из пункта «А» в пункт «Б». Однако вместо того, чтобы соединять межштатные автомагистрали, автомагистрали и дороги, электрическая схема показывает основные электрические системы, подсистемы и отдельные цепи, все взаимосвязано.

Еще одна общая черта — это уровни детализации. Например, если вы посмотрите на карту дорог Калифорнии, вы не сможете найти адрес в Лос-Анджелесе. Вы можете найти город или поселок, но не найдете конкретный адрес. Чтобы найти точное местоположение конкретного дома или здания, вам понадобится подробная карта улиц или доступ в Интернет и использование Google Maps или функции GPS на смартфоне.

То же самое (в меньшей степени) относится к схемам подключения. Автомобили, выпущенные до 19Электрические схемы 70-х обычно содержались на одной или двух страницах в руководстве по обслуживанию. К 1980-м годам сложность автомобильной бортовой электроники изменилась, и в большинстве руководств по эксплуатации транспортных средств было несколько страниц схем электрических соединений, показывающих всю электрическую систему автомобиля. В 1990-х печатные руководства по обслуживанию начали исчезать, и теперь руководства и электрические схемы можно найти на цифровых носителях или в Интернете.

Есть один аспект электрических схем, который, к сожалению, остался неизменным. Им не хватает указаний относительно того, как на самом деле их читать. Подобно карте, электрические схемы будут иметь легенду, в которой прописаны символы и соглашения об именах, но не будет инструкций «как это сделать».

В то время как онлайн-руководства по обслуживанию автомобилей написаны для «профессиональных» техников, каждый техник должен был научиться читать и интерпретировать электрические схемы в какой-то момент своей карьеры. Дизайн и компоновка схем подключения не подходят для технических специалистов среднего или начального уровня, поскольку они начинают с простых для понимания схем, которые постепенно становятся все более трудными для чтения и понимания. В этой статье будет использован другой подход, и мы начнем с простых схем и схем подключения, а затем перейдем к более сложным схемам.

Этот пошаговый процесс не только делает обучение чтению электрических схем менее болезненным, но и способствует лучшему пониманию того, как работают электрические цепи. Чтобы стать более опытным в чем-либо, включая чтение электрических схем, требуется практика, и для этой цели также включены некоторые сложные вопросы.

3 предмета

Упрощенная схема подключения аккумулятора, лампочки и проводов проста для понимания. Однако, если бы эта же схема была более сложной и включала бы несколько реле, несколько источников питания и компьютер, управляющий всей схемой, получившуюся электрическую схему было бы гораздо сложнее читать. Краткий обзор основных электрических цепей облегчит понимание того, как они изображены на электрической схеме.

Каждая электрическая цепь в автомобиле должна иметь 3 элемента для работы:

  1. Источник питания
  2. Загрузочное устройство
  3. Возврат через землю

Система зарядки и аккумулятор функционируют как источники питания и проходят по всему автомобилю с помощью многочисленных проводов. Нагрузочные устройства — это просто все, что выполняет электрическую работу, и может включать в себя освещение, стартер, бортовые компьютеры, реле, электрические стеклоподъемники, вход без ключа и многие другие компоненты. Возврат заземления завершает электрический путь от положительной клеммы аккумулятора к нагрузочному устройству и обратно к отрицательной клемме аккумулятора. Если какая-либо из трех вещей отсутствует, схема не будет работать, а схемы соединений предоставляют «карту», ​​помогающую определить, какая из трех вещей отсутствует.

В дополнение к трем вещам необходимо контролировать нагрузочные устройства. Некоторые нагрузочные устройства включаются или выключаются путем управления их источником питания, в то время как другие управляются путем включения или выключения заземления. Наиболее распространенным сценарием является использование электронного блока управления автомобиля или ECU для заземления реле, которое, в свою очередь, управляет нагрузочными устройствами. Процесс выяснения того, как управляется нагрузочное устройство, а также его источники питания и заземления, можно определить с помощью схемы подключения. Чтобы изучить логический процесс чтения сложных электрических схем, мы начнем с простой схемы противотуманных фар.

На рис. 1 показана простая электрическая схема, показывающая цепь противотуманных фар. Цепь состоит из аккумулятора, предохранителя на 20 А (используется для защиты цепи), выключателя (расположенного на приборной панели) и двух противотуманных фар. Отражения от земли показаны символом земли в виде вертикальной линии с тремя горизонтальными линиями. Не на всех схемах показаны провода заземления, и предполагается, что символы заземления обозначают провода, подключенные к отрицательной клемме аккумуляторной батареи. Эта диаграмма необычна тем, что наличие 12 В показано на схеме как в состоянии «ВКЛ», так и «ВЫКЛ».

Красные линии указывают на наличие 12 В, а черные линии представляют собой заземление цепи, которая подключается к отрицательной клемме аккумулятора. В части схемы «ВЫКЛ» показано, что 12 В подается от аккумулятора, через предохранитель и к открытому выключателю приборной панели. Нижняя часть схемы показывает закрытый переключатель приборной панели, подключение аккумулятора к фарам и их включение. Это также иллюстрирует один из аспектов закона Киршоффа, согласно которому нагрузочное устройство (устройства) будет использовать всю мощность (12 В) в цепи, поскольку напряжение на отрицательной клемме аккумулятора и на стороне заземления противотуманных фар близко к 0,0 В. .

К сожалению, реальные электрические схемы не обеспечивают ни одного из этих преимуществ, а схемы автомобилей последних моделей могут не изолировать цепи в такой степени — более вероятно, что они будут частью общей системы освещения. Цвет, если он вообще используется на электрической схеме, предназначен для идентификации отдельных цветов проводов, а не для обозначения силовой и заземляющей сторон цепи. Кроме того, электрические схемы по умолчанию всегда показывают устройство нагрузки в состоянии «ВЫКЛЮЧЕНО», и техническим специалистам приходится представлять себе наличие питания по всей цепи при включенной и работающей нагрузке.

Существует неотъемлемая проблема конструкции цепи противотуманных фар, как показано на рис. 1. Для работы этих конкретных противотуманных фар требуется батарея большой силы тока (8 А каждая или всего 16 А), и эта высокая электрическая нагрузка должна проходить через все провода и приборная панель переключаются, чтобы добраться до огней. Провода, и особенно выключатель, должны быть прочными, чтобы выдерживать большой ток. Простым решением является добавление реле на 12 В, как показано на рис. 2 .

Реле заменяет силовой выключатель и обеспечивает высокоамперную связь между противотуманными фарами и аккумулятором. Выключатель приборной панели по-прежнему является частью общей цепи, но теперь он должен переключать только управляющую катушку реле с малой силой тока (0,3 А) вместо противотуманных фар с большой силой тока. Переключатель на приборной панели и провода, соединяющие его с цепью, могут быть меньше, поскольку реле подключает аккумулятор к фарам, а не к переключателю.

Катушка управления внутри реле представляет собой электромагнит, и, когда вывод 4 реле соединен с массой переключателем на приборной панели, катушка находится под напряжением и притягивает сильнодействующие контакты реле, соединяющие выводы 1 и 2. , На этой схеме показана цепь в положении «ВЫКЛ.», и она более типична для реальной схемы проводки, поскольку техник должен визуализировать, где в цепи присутствует питание, когда горит свет.

Хотя на рис. 2 показана базовая схема использования реле для управления высокоамперной цепью, она имеет отношение к современной электронике, используемой в современных автомобилях. Многие автомобильные схемы управляются PCM (модулем управления питанием) автомобиля, который не может напрямую управлять сильноточными нагрузками. Использование нескольких реле решает эту проблему, так как PCM должен только включать и выключать реле с низким током.

Схема подключения, изображенная на Рис. 3 , показывает, как добавление второго реле в цепь противотуманных фар улучшает ее функциональность. Реле №1 подает питание на реле №2, то же реле, что и на предыдущей схеме. Реле № 1 управляется выключателем зажигания и позволяет включать противотуманные фары только тогда, когда ключ зажигания находится в положении «аксессуар» или «работа». Если ключ зажигания находится в положении «заперто», «выключено» или полностью вынут из замка зажигания, на реле № 2 не подается питание. Это предотвращает непреднамеренное включение противотуманных фар, даже если переключатель на приборной панели остается включенным. Эта схема более типична для схем подключения, которые можно найти в руководстве по обслуживанию. Провода идентифицируются по их цвету, но нет цвета, указывающего, где присутствует питание; схема показана в выключенном состоянии, а клеммы реле обозначены номерами.

Самый эффективный способ научиться читать электрические схемы и пользоваться ими — это практиковаться. Имея это в виду, следующие три практических вопроса проверят ваши знания и способность читать и интерпретировать электрические схемы. Мы вместе рассмотрим первые два вопроса и предоставим вам ответ на третий.

Вопросы по электрической схеме

Вопрос 1:

Этот вопрос относится к рисунку 3. Когда ключ зажигания находится в положении «Acc» и приборная панель выключена, какие номера клемм на реле № 1 и № 2 будут иметь 12 В ? Рисунок 3 типичен для схем подключения, которые можно найти в руководстве по обслуживанию. Реле и переключатели показаны в их «разомкнутом» положении, и цвет не используется для обозначения того, где присутствует питание или заземление.

При чтении любой электрической схемы начните с того места, где находится известный источник питания (12 В), обычно с положительной клеммы аккумуляторной батареи. Реле №1, клемма 3, напрямую подключено к аккумулятору через предохранитель на 20А. Клемма 1 идет к замку зажигания, а в положении «Accy» тоже будет 12В (КРАСНЫЙ провод к замку зажигания и ОРН провод между замком и реле). Клемма 2 является постоянным заземлением управляющей катушки реле. Реле включено, а клеммы 3 соединены с 4 через сильноамперные контакты.

Клеммы реле № 2 с напряжением 12 В: 1 (КРАСНЫЙ/БЕЛЫЙ) и 3 (КОРИЧНЕВЫЙ), которые получают питание от клеммы 4 реле № 1. Клеммы 1 и 2 подключены через низкоамперную катушку реле, поэтому на клемму 2 подается питание, поскольку выключатель на приборной панели разомкнут. Если бы переключатель на приборной панели был замкнут, на клемме 2 было бы 0 В, поскольку она подключена к земле, а реле было бы «включено». На клемму 4 не подается питание, потому что реле выключено.

Вопрос 2:

Проследите путь, который обеспечивает питание и заземление для каждого охлаждающего вентилятора в высокоскоростном режиме. В вопросе 2 используется более сложная схема соединений, чем в первом вопросе. Рисунок 4 представляет собой типичную автомобильную электрическую схему, на которой показана цепь вентилятора охлаждения радиатора.

Два предохранителя (40 и 10 А) питают цепь и напрямую подключены к аккумулятору автомобиля (постоянно горячий). Есть три реле, которые подключают питание к охлаждающим вентиляторам и контролируют низкую и высокую скорость.

Реле управляются модулем управления питанием автомобиля или PCM. Схема также содержит примечания относительно маркировки компонентов, их физического расположения и информации о том, какие другие схемы соединений являются частью общей схемы. Катушки управления реле выглядят немного иначе, чем те, что показаны на рис. 3. Показан резистор (прерывистая линия), который используется для предотвращения попадания скачков напряжения на блок управления двигателем при работе реле. В остальном реле работают так же, как на рис. 3  9.0005

Примечание. Эта схема работает от 12 В. Однако при работающем двигателе рабочее напряжение составляет 14 В или зарядное напряжение, обеспечиваемое генератором.

Три реле вентилятора охлаждения определяют пути питания и заземления к вентиляторам охлаждения. Чтобы оба вентилятора системы охлаждения работали в режиме высокой скорости, блок PCM заземляет обе клеммы 42 и 33 (управление реле низкой и высокой скорости вентилятора системы охлаждения). При заземлении клеммы 33 блока управления двигателем провод DK BLU становится заземлением для управляющей катушки реле вентилятора охлаждения № 3 на клемме B4. Это включает реле, потому что на клемму C6 все время подается питание от предохранителя на 10 А.

КРАСНЫЙ провод на клемме C4 реле подключен к предохранителю вентилятора охлаждения на 40 А, а при включенном реле подключается к клемме B6 внутри реле. Провод WHT от реле (клемма B6) подключен к правому вентилятору охлаждения и обеспечивает питание. Правый вентилятор охлаждения имеет постоянную массу на ЧЕР проводе. При напряжении 14 В (двигатель работает) на проводе WHT и заземлении на проводе BLK правый вентилятор охлаждения работает на высокой скорости.

Левый вентилятор охлаждения получает питание от предохранителя 40А на КРАСНОМ проводе на реле №1 вентилятора охлаждения (клемма B3). Управление реле низкоскоростного вентилятора системы охлаждения (42) компьютера PCM заземляется с помощью блока PCM, обеспечивающего заземление провода клеммы B1 (DK GRN) на реле № 1 вентилятора системы охлаждения. На этом же реле клемма С3 получает питание от предохранителя 10А на проводе ОРН.

При наличии питания на C3 и заземления на B1 реле срабатывает и соединяет клеммы реле B3 с C1, обеспечивая питание левого вентилятора охлаждения на синем проводе. СЕРЫЙ провод от левого вентилятора охлаждения представляет собой массу, но только тогда, когда реле вентилятора охлаждения № 2 включается заземлением управления высокоскоростным реле PCM на клемме C10 реле на проводе DK BLU. Реле №2 соединяет СЕРЫЙ провод левого вентилятора охлаждения с ЧЕРНЫМ проводом (номер клеммы не указан). ЧЕРНЫЙ провод обеспечивает заземление левого вентилятора охлаждения и работает на высокой скорости.

Мы рассмотрели ответы и анализ вопросов 1 и 2. Ответ на вопрос 3 зависит от вас.

Вопрос 3:

Проследите путь, по которому подается питание на каждый вентилятор охлаждения в низкоскоростном режиме. Определите цвета проводов, реле и клеммы реле, на которые подается питание во время работы вентилятора. Проследите путь заземления для реле и охлаждающих вентиляторов — определите цвета проводов и клеммы реле, используемые на стороне заземления цепи.

Ответ на вопрос 3

Для понимания работы низкоскоростного вентилятора поможет краткий обзор теории электричества. В параллельной схеме (наиболее распространенный тип, используемый в автомобилях) все нагрузочные устройства работают от сетевого напряжения. Например, когда вентиляторы охлаждения работают в скоростном режиме, на каждый подается 14В от предохранителя 40А.

Последовательная схема работает иначе. При последовательном подключении двух нагрузочных устройств доступное напряжение распределяется между ними. В низкоскоростном режиме вентиляторы охлаждения соединены последовательно, и каждый вентилятор работает от 7 В — половины системного напряжения 14 В.

Во время работы вентилятора на низкой скорости управление реле низкой скорости PCM заземляется, включая реле №1 вентилятора охлаждения. С заземлением на клемме реле B1 (провод DK GRN) и питанием на C3 управляющая катушка реле соединяет высокоамперные контакты (клеммы B3 и C1). Это подключает питание (14 В) от предохранителя 40 А (КРАСНЫЙ провод) к ГОЛУБОМУ проводу, идущему к левому вентилятору охлаждения.

СЕРЫЙ провод от левого вентилятора охлаждения идет на клемму С8 реле №2. Реле вентилятора охлаждения № 2 не срабатывает от PCM в режиме низкой скорости, а от C8 до B9релейное соединение нормально замкнуто. Провод WHT на реле вентилятора охлаждения № 2 (B9) идет к правому вентилятору охлаждения, обеспечивая 7 В (половина 14 В) для питания вентилятора. Реле вентилятора охлаждения №3 не работает при работе вентилятора на низкой скорости.

ЧЕР провод от правого вентилятора обеспечивает заземление для обоих вентиляторов. Поскольку вентиляторы подключены последовательно, они делят системное напряжение (14 В) поровну между собой, и оба работают от 7 В, заставляя их работать на низкой скорости.

Как электромобили на топливных элементах работают на водороде?

Как и полностью электрические транспортные средства, электромобили на топливных элементах (FCEV) используют электричество для питания электродвигателя. В отличие от других электромобилей, FCEV производят электроэнергию, используя топливный элемент, работающий на водороде, а не только от батареи. В процессе проектирования транспортного средства производитель транспортного средства определяет мощность транспортного средства по размеру электродвигателя (двигателей), который получает электроэнергию от комбинации топливного элемента и аккумулятора соответствующего размера. Хотя автопроизводители могут разработать FCEV с подключаемыми модулями для зарядки аккумулятора, большинство FCEV сегодня используют аккумулятор для рекуперации энергии торможения, обеспечения дополнительной мощности во время коротких ускорений и сглаживания мощности, подаваемой от топливного элемента, с возможностью простаивайте или выключайте топливный элемент при малой потребности в мощности. Количество хранимой на борту энергии определяется размером водородного топливного бака. Это отличается от полностью электрического транспортного средства, где количество доступной мощности и энергии тесно связано с размером батареи. Узнайте больше об электромобилях на топливных элементах.

Изображение в высоком разрешении

Аккумулятор (вспомогательный): В автомобиле с электроприводом низковольтная вспомогательная аккумуляторная батарея обеспечивает электроэнергию для запуска автомобиля до включения тяговой батареи; он также питает автомобильные аксессуары.

Блок аккумуляторов: Этот высоковольтный аккумулятор накапливает энергию, вырабатываемую рекуперативным торможением, и обеспечивает дополнительную мощность тягового электродвигателя.

Преобразователь постоянного/постоянного тока: Это устройство преобразует постоянный ток высокого напряжения от блока тяговых аккумуляторов в постоянный ток низкого напряжения, необходимый для питания автомобильных аксессуаров и подзарядки вспомогательного аккумулятора.

Тяговый электродвигатель (FCEV): Используя энергию топливного элемента и тягового аккумулятора, этот электродвигатель приводит в движение колеса автомобиля. В некоторых транспортных средствах используются мотор-генераторы, которые выполняют как функции привода, так и функции регенерации.

Блок топливных элементов: Сборка отдельных мембранных электродов, которые используют водород и кислород для производства электроэнергии.

Горловина топливного бака: Форсунка от заправочной колонки крепится к приемнику на автомобиле для заполнения бака.