КПД источника тока: формулы

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

Содержание

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.

В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа — Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

Для определения величины тока в электрической цепи, в соответствии с законом Ома, существует следующее уравнение: i = E/(R + r), в котором Е является электродвижущей силой источника тока, а r – его внутренним сопротивлением. Это постоянные величины, которые не зависят от переменного сопротивления R. С их помощью можно определить полезную мощность, потребляемую электрической цепью:

  • W1 = i x U = i2 x R. Здесь R является сопротивлением потребителя электроэнергии, i – ток в цепи, определяемый предыдущим уравнением.

Таким образом, значение мощности с использованием конечных переменных будет отображаться в следующем виде: W1 = (E2 x R)/(R + r).

Поскольку сила тока представляет собой промежуточную переменную, то в этом случае функция W1(R) может быть проанализирована на экстремум. С этой целью нужно определить значение R, при котором величина первой производной полезной мощности, связанная с переменным сопротивлением (R) будет равной нулю: dW1/dR = E2 x [(R + r)2 – 2 x R x (R + r)] = E2 x (Ri + r) x (R + r – 2 x R) = E2(r – R) = 0 (R + r)4 (R + r)4 (R + r)3

Из данной формулы можно сделать вывод, что значение производной может быть нулевым лишь при одном условии: сопротивление приемника электроэнергии (R) от источника тока должно достичь величины внутреннего сопротивления самого источника (R => r). В этих условиях значение коэффициента полезного действия η будет определяться как соотношение полезной и полной мощности источника тока – W1/W2. Поскольку в максимальной точке полезной мощности сопротивление потребителя энергии источника тока будет таким же, как и внутреннее сопротивление самого источника тока, в этом случае КПД составит 0,5 или 50%.

Задачи на мощность тока и КПД

Закон Ома для переменного тока

Как понять Закон Ома: простое объяснение для чайников с формулой и понятиями

Закон Ома для однородного участка цепи – формула

Закон Ома для полной и не полной электрической цепи, формула и правильное определение

Мультиметр: назначение, виды, обозначение, маркировка, что можно измерить мультиметром

Закон Ома для неоднородного участка цепи простым языком для чайников

КПД (коэффициент полезного действия) электродвигателей. Откуда цифры?

Сам электродвигатель и его рабочие параметры.

Для начала стоит понять, что же такое электродвигатель. В общем понимании — это устройство, служащее для преобразования одного вида энергии в другой. В данном случае электрической в механическую по средствам электромагнитной индукции. Кроме того, предусмотрена возможность работы и в обратном режиме, превращая механическую энергию в электрическую.

Как и любая электрическое устройство, электродвигатель обладает рядом основных рабочих характеристик: момент вращения, мощность, частота вращения, заявленные величины тока и напряжения, ну и, конечно же, коэффициент полезного действия.

Вращающий момент – это, по сути, сила вращения вала двигателя. Именно моментом вращения определяется мощность двигателя. Расчёт производится по формуле:

Мощность – параметр, показывающий величину полезной работы, совершаемой двигателем. Формула для расчёта:

Частота вращения – параметр, который, как правило, указан в паспорте изделия и зависит напрямую от числа пар полюсов. Расчётная формула: .

Номинальный ток – та величина тока, при которой оборудование может работать неограниченное количество времени при нагреве токоведущих частей.

Номинальное напряжение – напряжение на которое спроектирована сеть, либо конкретное оборудование.

Коэффициент полезного действия – параметр, показывающий эффективность процесса преобразования одного вида энергии в другой. То есть, чем выше КПД, тем эффективнее работа электродвигателя.

Каким образом КПД определяется.

Формула расчёта КПД очень проста: это отношение полезной мощности к подведённой. Вид записи следующий:

Где – полезная мощность, — подведённая мощность.

Величина эта лежит в диапазоне от 0 до 1. Чем значение больше, тем эффективнее работа. Например, при КПД равно 0,6 40% мощности будет потеряны в процессе преобразования, такой электродвигатель эффективным считаться не может.

Важно: КПД не является статичным параметром и может изменяться в зависимости от нагрузки.

Причины снижения КПД.

К сожалению, привести КПД к единице, или же 100% просто физически невозможно. Обусловлено это рядом потерь, приводящих к снижению коэффициента:

Электрические – зависят от величины загрузки самого оборудования. Возникают из-за перегрева обмотки статора, что происходит при преодолении сопротивления материала силой тока;

Магнитные – в основном, возникают из-за образования вихревых токов, а так же при перемагничивании железа статора и ротора;

Механические – являются следствием работы подшипников, на которых вращается вал, потери возникают из-за трения. И в малой доли сопротивлением воздуха крыльчатке вентилятора.

Способы повышения КПД.

Для начала стоит понимать, что реальный КПД может отличаться от заявленного изготовителем на величину от 4 до 7%, что чаще всего является следствием неравномерности распределения фаз и напряжения питания. Поднять коэффициент полезного действия электродвигателя можно, но сделать это нелегко.

Если говорить открыто, то прямого способа именно повысить КПД не существует, есть лишь способы сократить потери.

Так электрические можно сократить, уменьшив температуру и скорость нагрева материалов, из которых выполнена обмотка, что достигается за счёт использования проводов с меньшим удельным сопротивлением. Однако, это приведёт к удорожанию.

Механические можно свести к минимуму благодаря использованию подшипников из более качественных материалов, а так же замене материала крыльчатки на более современный, что позволит свести сопротивление воздуху к минимальным значениям.

Для снижения магнитных потерь необходимо при наборе сердечника использовать электромагнитную сталь высшего класса с надёжной изоляцией.

Кроме того, можно «выиграть» пару процентов за счёт частотного преобразователя, однако вариант доступен только для асинхронной машины.

Мнение эксперта: зачастую поднять КПД на пару процентов помогает контроль уровня напряжения электрической сети.

Средний и максимальный КПД электродвигателя.

Немного выше указывалось, что КПД зависит не только от потерь, но и от заданной нагрузки. Рассмотрим простой пример: есть электродвигатель с заявленным КПД 92%, питающая сеть не идеальна, есть лёгкая асимметрия токов.

На холостом ходу КПД равен 0. При полной нагрузке максимальное КПД составит 87%. Нагрузив двигатель на 25%, КПД его станет 83%, нагрузив на 50% — получим КПД 87%, при нагрузке в 75% КПД составим 88%. Что из этого следует?

Не трудно проследить, что средний КПД электродвигателя в данном случае составляет 87%, он же отличается от заявленного на 5% ввиду асимметрии токов.

Максимальный же КПД составил 88% при нагрузке 0,7 – 0,8 от номинальной. Данный режим работы является наиболее эффективным и экономически выгодным – максимум пользы при минимуме затрат.

Может ли быть КПД выше 100%? Нет, даже в теории это невозможно. Хотя бы даже по той причине, что энергия не может возникнуть из ниоткуда, точно так же она не может попросту раствориться. Единственный вариант – нескончаемый источник энергии, при существовании которого КПД двигателя может составить 100%, а, возможно, вовсе превзойти его.

Заключение.

Подводя итоги, смело можно заявить – КПД двигателя важнейший параметр, определяющий эффективность работы и мощность. Тут принцип простой до глупости: больше – лучше. Конечно, достижение максимального результата в 100% на данный момент технически невозможно ввиду большого количества факторов, влияющих на работу. Но прогресс не стоит на месте и кто знает, может быть через 10, а то и через 5 лет, максимум уже будет достигнут.

Понимание тепловой мощности и эффективности угольных электростанций

Предлагаемые стандарты США по сокращению выбросов углерода от существующих угольных электростанций в значительной степени зависят от повышения эффективности производства. Топливо, операции и конструкция установки — все это влияет на общую эффективность установки, а также на выбросы углерода. Этот обзор основ эффективности угольных электростанций, частых проблем, снижающих эффективность, и некоторых решений по улучшению работы и снижению затрат на выработку электроэнергии должен быть полезен для электростанций, где бы они ни находились.

Сцена: Двадцать лет назад молодой инженер стоит перед группой плакеток и наград в вестибюле большой угольной электростанции. Она с интересом отмечает, что некоторые из них относятся к наградам «лучшая тепловая мощность», а также отмечает, что последней награде уже более трех лет. Седой машинист станции, похожий на Сэма Эллиотта, покрытого угольной пылью, присоединяется к ней перед дисплеем.

«Почему эта станция перестала получать награду за тепловую мощность?» она спрашивает.

«Ну, мэм, так как мы добавили скрубберы, в этом больше нет смысла. А другие электростанции перешли на уголь из бассейна Паудер-Ривер (PRB), так что они тоже пострадали от тепловыделения. Итак, кто-то просто посчитал, что, поскольку нам пришлось отказаться от теплоты, чтобы соответствовать ограничениям по выбросам, больше не было смысла получать награду».

Перенесёмся в 2014 год, и сцена будет совершенно другой. Усовершенствованный контроль выбросов угольных электростанций является нормой, и уголь PRB в некоторой степени используется на большинстве электростанций в США, а Агентство по охране окружающей среды (EPA) предложило стандарты для сокращения выбросов углерода от существующих электростанций в соответствии с разделом 111 (d). ) Закона о чистом воздухе. Включая множество возможных методов сокращения выбросов углерода, одним из основных элементов плана EPA является повышение полезного теплового коэффициента установки (NPHR) на 6% или более. Хотя для неспециалиста это может показаться небольшим числом, инженеры электростанций знают, что улучшение теплопроизводительности на 6% потребует серьезных усилий на многих различных уровнях в рамках их коммунальных услуг.

В этой статье изложены основы эффективности электростанции и теплопроизводительности, чтобы можно было быстро понять, где есть наилучшие возможности для улучшения для конкретного генерирующего актива. Затем рассматриваются способы достижения цели 6% NPHR.

Основы теплопроизводительности

Термин «теплопроизводительность» просто относится к эффективности преобразования энергии с точки зрения «сколько энергии необходимо затратить, чтобы получить единицу полезной работы». В электростанции внутреннего сгорания источником энергии является топливо, а полезной работой является электроэнергия, подаваемая в сеть, паровое тепло, поставляемое промышленному потребителю или используемое для отопления, или и то, и другое. Поскольку «полезная работа» обычно определяется как электроэнергия и пар, которые доставляются конечным потребителям, инженеры, как правило, работают с чистым тепловыделением станции (NPHR).

В США тепловая мощность обычно выражается с использованием смешанных английских единиц и единиц СИ БТЕ/кВтч. Хотя сначала это сбивает с толку, это просто указывает, сколько БТЕ/ч энергии требуется для производства 1 кВт полезной работы. В других странах обычно используются кДж/кВтч, ккал/кВтч или другие меры. В этой статье используется формат США.

Поскольку примерно 3412 БТЕ/час равняется 1 кВт, мы можем легко определить термодинамический КПД электростанции, разделив 3412 на теплопроизводительность. Например, угольная электростанция с теплопроизводительностью 10 000 БТЕ/кВтч имеет тепловой КПД 3 412/10 000, или 0,3412 (34,12%).

Метод ввода/вывода

Один из самых простых способов рассчитать NPHR – это разделить БТЕ/час подводимого топлива на чистую выработку (электроэнергии и пара для потребителей) в кВт. Однако определить тепловложение может быть довольно сложно.

По моему опыту, меньшинство электростанций внутреннего сгорания имеют хорошие показатели фактической скорости сжигания топлива на каждом блоке. Практическое отраслевое правило заключается в том, что точность объемных дозаторов в лучшем случае составляет +/– 5 %, а гравиметрических дозаторов — в лучшем случае +/– 2 %. На практике я обнаружил, что фактическая погрешность измерения скорости сгорания топлива может составлять от 5% до 10%.

На одной электростанции, на которой я работал, единственной возможностью оценить интенсивность сжигания угля было использование фотографий угольного склада, сделанных энергичной дамой с ее самолета Cessna, и сравнение предполагаемого размера склада с квитанциями поездов за месяц, чтобы определить, сколько угля было сожжено в целом. Потенциальная ошибка для этого метода может легко превышать 25%.

Другим важным фактором при измерении тепловложения является анализ качества топлива, особенно его теплотворной способности. (Более подробно см. «Введение в анализ качества топлива» в выпуске за январь 2015 года.) Вообще говоря, ошибка в расчете скорости сгорания топлива не может быть меньше, чем ошибка в анализе топлива, поэтому тщательный выбор методов и частоты отбора проб будет обеспечивают большую достоверность при расчете расхода топлива.

Короче говоря, метод ввода/вывода не является идеальным методом для отслеживания разницы в эффективности вашей угольной электростанции, если у вас нет точных питателей угля (рис. 1) плюс точное и регулярное определение теплотворной способности вашего топлива.

 
1. Важное значение имеют питатели угля. Часто игнорируемые до тех пор, пока что-нибудь не сломается, неточные устройства подачи угля могут затруднить определение тепловой мощности вашей установки. Предоставлено: Уна Ноулинг

Метод тепловых потерь и три поля эффективности

Серьезная проблема с использованием метода ввода/вывода для определения теплового потока заключается в том, что если ваш тепловой поток меняется от одной ситуации к другой, вы не имеете ни малейшего представления о том, что привело к изменению. Был ли котел менее эффективным при сжигании топлива? Снижается ли КПД турбины из-за высокого противодавления в конденсаторе? Увеличилась ли мощность службы станции? Поскольку метод ввода/вывода рассматривает электростанцию ​​как черный ящик, инженер должен полагаться на более точный метод определения теплопроизводительности.

Метод тепловых потерь для определения расхода тепла по существу разделяет электростанцию ​​на три подсистемы, в которых происходит процесс преобразования энергии:

■ Котел, в котором тепло топлива преобразуется в энергию пара.

■ Турбина, в которой тепло пара преобразуется в механическую энергию вращения.

■ Генератор, в котором энергия вращения преобразуется в полную и полезную электроэнергию.

Метод тепловых потерь для расчета тепловой мощности, по существу, рисует прямоугольник вокруг каждой из этих подсистем и определяет эффективность каждого процесса преобразования энергии. Произведение всех этих значений эффективности преобразования дает общую полезную теплопроизводительность электростанции:

NPHR, БТЕ/кВт x час = NTHR, БТЕ/кВт x час / ((КПД котла, % / 100) x (Полезная мощность, кВт / Полная мощность, кВт)) /21/15. ]

Как видно из этого уравнения, для снижения NPHR необходимо увеличить КПД котла, уменьшить полезную теплоотдачу турбины или увеличить полезную выработку по отношению к валовой выработке.

КПД котла

Определение КПД вашего котла – это эффективное определение всех различных неэффективностей, возникающих в процессе сжигания топлива для получения паровой энергии. Стандарты и испытательные организации, такие как Американское общество инженеров-механиков (ASME) и Немецкий институт нормирования (DIN), имеют схожие, но разные показатели для расчета потерь эффективности, но с общей точки зрения их можно сгруппировать в следующие категории.

Ощутимые потери тепла. Ощутимые тепловые потери можно рассматривать как тепло, которое можно почувствовать непосредственно с помощью термометра. Например, воздух для горения поступает на вашу электростанцию ​​при температуре окружающей среды, а дымовые газы выбрасываются из холодного конца воздухонагревателя котла при некоторой повышенной температуре. Чем ближе температура отработавших газов к температуре окружающей среды, тем меньше тепла теряется в окружающую среду.

Прочие потери явного тепла включают тепло, содержащееся в остатках и летучей золе, удаляемой из котла, а также в пиритах и ​​горных породах, которые выбрасываются из угольных мельниц. Количество избыточного воздуха, используемого для горения, оказывает значительное влияние на эти потери, поскольку каждый фунт избыточного воздуха, проходящего через котел, несет с собой потенциально полезную энергию.

Скрытые потери тепла. Скрытые тепловые потери трудно обнаружить с помощью термометра и представляют собой потери энергии, связанные с фазовым переходом воды. Когда топливо сжигается в котле, не только вся влага, содержащаяся в топливе, испаряется в пар, но и весь водород, содержащийся в топливе, сгорает с образованием воды, которая также испаряется в пар. Если температура выхлопных газов, выходящих из воздухонагревателя котла, не ниже точки кипения воды, содержащейся в газе, вся эта скрытая теплота парообразования выйдет из котла и будет потеряна в окружающей среде.

Поскольку потери скрытого тепла в основном связаны с топливом, их нельзя легко изменить без замены или сушки топлива. (См. «Повышение эффективности установки и сокращение выбросов CO 2 при сжигании высоковлажных углей» в выпуске за ноябрь 2014 г.)

Несгоревшие горючие потери. Несгоревшие потери с горением – это потери КПД от неполного сгорания топлива в котле. В первую очередь это измеряется в виде углеродного остатка в золе, но также включает образование монооксида углерода (CO). На эти потери обычно влияют как свойства топлива (летучесть топлива), так и методы эксплуатации (избыточный уровень воздуха, чистота топлива и т.п.). Важно отметить, что потери от несгоревших продуктов сгорания — это не то же самое, что потери при возгорании (LOI), поскольку потери от несгоревших продуктов сгорания представляют собой потери энергии, тогда как LOI рассчитывается на основе массы золы.

Радиационные и конвекционные потери. Коммунальные котлы представляют собой огромные системы оборудования с многочисленными отверстиями для труб и инструментов и очень большой площадью поверхности, подверженной воздействию окружающей среды. В результате, независимо от того, насколько хорошо спроектирована изоляция и насколько усердно работает персонал предприятия в устранении утечек воздуха, энергия все равно будет теряться на излучение и конвекцию.

Маржа и неизвестные убытки. Из-за большого размера и сложности котла часто бывает нецелесообразно измерять все возможные источники потерь энергии на электростанции. В результате для оценки этих потерь обычно используется значение «маржи» или «неизвестного убытка». Типичные значения варьируются от 0,5% до 2,0%.

Если принять во внимание все эти потери эффективности, типичный котел общего назначения может использовать энергию топлива с эффективностью от 83% до 91%.

Повышение эффективности котла. Ощутимые потери тепла можно уменьшить, установив улучшенные средства контроля горения, позволяющие точно регулировать уровень избыточного воздуха в операторах печи для снижения избыточного уровня кислорода в печи. Предварительный подогрев воздуха для горения отходящим теплом завода также повысит эффективность, и некоторые заводы рассматривают схемы использования солнечных тепловых коллекторов в качестве подогревателей воздуха в светлое время суток.

Поскольку потери скрытого тепла в значительной степени зависят от качества топлива, а современные конструкции котлов не позволяют использовать конденсационные нагреватели воздуха, за исключением перехода на более сухое топливо, практически мало что можно сделать для уменьшения потерь скрытого тепла.

Потери несгоревших продуктов сгорания можно уменьшить за счет улучшения настройки котлов и горелок, при этом некоторые установки могут повысить чистую эффективность более чем на 1% в результате незначительной настройки или капитальных вложений.

Эффективность турбины

Эффективность турбины — это, по сути, эффективность турбины по преобразованию пара из котла в полезную энергию вращения. Упрощенный способ просмотра полезной тепловой мощности турбины (NTHR) состоит в том, чтобы суммировать увеличение энтальпии питательной воды и холодного промежуточного пара на границе котла и разделить это значение на общую выработку электроэнергии.

Определение КПД турбины. Как и в случае всей установки, тепловая мощность турбинного цикла может быть выражена на «валовой» или «чистой» основе. Здесь терминология становится немного сложной, так как валовая и чистая эффективность используют в своих расчетах валовую мощность генератора. Однако, если электростанция имеет электрический питательный насос котла, то чистая тепловая мощность турбины также должна вычитать мощность, потребляемую питательным насосом; в противном случае это энергопотребление может исказить ваше значение NTHR, чтобы оно выглядело чрезмерно эффективным. В результате наше упрощенное уравнение NTHR для одного цикла повторного нагрева выглядит следующим образом:

 

 

Где:

NTHR = полезная тепловая мощность турбины, БТЕ/кВтч

H MSOUT = энтальпия основного пара на выходе из котла 9 FWIN = энтальпия питательной воды, поступающей в кожух котла, БТЕ/ч

H HRH = энтальпия горячего промежуточного пара, выходящего из кожуха котла, БТЕ/ч БТЕ/час

Мощность BFP = потребляемая мощность питательного насоса котла, кВт

Повышение эффективности турбинного цикла. В идеальных условиях система ультрасверхкритического турбинного цикла может преобразовывать пар в энергию вращения с КПД 54 % или выше, сверхкритические циклы турбины могут достигать КПД 50 %, а докритические циклы турбины могут достигать КПД 46 %. Однако система турбинного цикла вашей электростанции, по крайней мере, так же сложна, как и ваша котельная система, и существует множество мест, где эффективность может быть потеряна.

Негерметичность наконечника ковша и уплотнения может составлять 40% общей потери эффективности турбины. Шероховатость, эрозия и ремонт сопла могут составлять 35% потери эффективности, отложения на турбине — 15%, а эрозия и шероховатость ковша — 10%. Проблемы в этих областях могут привести к значительному снижению эффективности: известно, что отложения в турбине вызывают потерю эффективности почти на 5%, а утечки из корпуса турбины снижают эффективность на 3%.

Очень важно знать, что турбина является частью гораздо более крупной пароводяной системы, включающей конденсаторы, градирни, нагреватели питательной воды, деаэраторы, насосы и трубопроводы, каждая из которых имеет свои собственные потери эффективности. Например, увеличение противодавления конденсатора из-за грязных трубок размером 0,4 дюйма ртутного столба может снизить КПД цикла турбины на 0,5%. Одна разделительная перегородка в подогревателе питательной воды может снизить эффективность цикла турбины на 0,4%. Утечки в линиях отвода и заклинившие дренажные клапаны могут снизить эффективность нагревателя питательной воды, что приведет к чистому циклу потерь более 0,5%.

Улучшения турбинных лопаток доступны для большинства паровых турбин, при этом возможно улучшение до 2% при полной замене турбины низкого давления. Даже возобновляемая энергия может помочь в повышении теплоотдачи, поскольку некоторые производители изучили перспективу нагрева питательной воды с помощью солнечной энергии для повышения эффективности своего турбинного цикла, а некоторые конструкции могут достичь повышения пиковой эффективности более чем на 5%. Конечно, со всеми обновлениями вы должны изучить экономику (см. врезку).

Имеет ли это экономический смысл?

Очень хорошо предлагать многочисленные капитальные и эксплуатационные улучшения на вашей электростанции. Но какие усовершенствования имеют наибольший экономический смысл для владельца электростанции? Некоторые усовершенствования завода могут быть метафорически простым делом, в то время как другие усовершенствования могут потребовать внешнего рыночного фактора, такого как налог на выбросы углерода, чтобы стать экономически эффективными. В Таблице 1 представлен очень общий рейтинг усовершенствований, которые могут быть реализованы в электростанциях, работающих на пылеугольном топливе, диапазон потенциальных улучшений теплопроизводительности и их относительные экономические периоды окупаемости. Обратите внимание, что в этот список не включены многие конкретные элементы обслуживания, которые можно найти на некоторых электростанциях и которые могут значительно повысить эффективность при ремонте или модернизации.

Таблица 1. Много вариантов на выбор.  У каждой электростанции есть уникальные возможности и проблемы для повышения теплопроизводительности. Значения, показанные в этой таблице, являются только общими и основаны на исследованиях энергоэффективности. Источник: Уна Ноулинг

Электрическая эффективность

Для системы генератора мы не так озабочены эффективностью преобразования энергии вращения в электрическую энергию, поскольку современные генераторы имеют тенденцию преобразовывать два типа энергии с 9КПД 8% и выше. Однако значительная часть неэффективности, наблюдаемой в этом блоке, связана с обслуживанием станции или потреблением вспомогательной энергии самой электростанцией.

Поскольку на электростанции требуется большинство крупных энергоемких систем, мало что можно получить, устраняя или отключая основные системы оборудования. Даже отказ от дополнительного потребления электроэнергии может иметь непредвиденные последствия. Однажды в паляще жаркий июнь я работал на электростанции в ее инженерном бюро, когда молодому человеку из корпоративного офиса пришла в голову умная идея выключить свет в офисе, включить кондиционер до 85F и отключить кофеварки, воду. фонтаны и автоматы с газировкой. Причина заключалась в том, что цены на электроэнергию превышали 1000 долларов за МВтч, поэтому он хотел иметь возможность продавать каждый возможный ватт. Чего джентльмен не учел, так это потенциальных последствий размещения группы инженеров в темном жарком офисе без холодных напитков и кофе. Это было некрасивое зрелище.

Поскольку более 80 % электроэнергии на электростанции потребляется электродвигателями, именно они должны быть в центре внимания при повышении эффективности использования электроэнергии. Только основные вентиляторы электростанции (приточный воздух, принудительная тяга и вытяжная тяга) могут потреблять от 2% до 3% валовой мощности станции. Одним из вариантов снижения энергопотребления вентилятора является использование частотно-регулируемых приводов переменного тока, особенно если установка работает при более низких нагрузках в течение продолжительных периодов времени. Переключение всех основных вентиляторов предприятия с обычных на частотно-регулируемые приводы может улучшить показатель NPHR более чем на 0,5 %.

Утечки воздуха и газа могут составлять до 25 % потребляемой вентиляторами мощности, поэтому уменьшение утечек в воздухонагревателях и воздуховодах может привести к значительной экономии энергии вентиляторов. Уменьшение избыточного воздуха в вашем котле также уменьшит потребность вентилятора. Программы оптимизации электростатических фильтров могут как повысить электрическую эффективность, так и улучшить улавливание твердых частиц.

Креативное улучшение теплоотдачи

Другие возможности, которые могут не влиять на теплоотдачу, на самом деле могут привести к значительному повышению эффективности.

Например, на одной из электростанций мне рассказали об улучшенной конструкции бункера регенерата на угольном складе, который сократил время заполнения угольных бункеров на 2 часа в день. Приблизительный анализ затрат и выгод показал, что новая конструкция бункера для предотвращения налипания влажного угля позволила сэкономить 1700 долларов США в год за пятилетний период из-за сокращения времени работы системы транспортировки угля. Хотя это звучит как мелкая картошка, метафорически говоря, это также значительно уменьшило усилия оператора угольного склада в процессе регенерации, что привело к улучшению человеческого фактора.

Сотрудники другой электростанции определили с помощью анализа влияния качества топлива, что единственным препятствием, мешающим им перейти на уголь с более высокой теплотворностью и меньшей влажностью, была модернизация сажеобдува. Чистая стоимость модернизации составила 1,3 миллиона долларов США, модернизация привела к чистому повышению теплотворной способности более чем на 2% за счет возможности использования более эффективных, но более шлакообразующих углей, а также одновременного преимущества в виде предотвращения катастрофических выпадений шлака из-за недостаточного покрытие обдува. Срок окупаемости этих инвестиций был определен в пределах от 18 до 24 месяцев (Рисунок 2).

2. Мы делали это раньше — мы можем сделать это снова. Генераторам, столкнувшимся с необходимостью соблюдения норм выбросов углерода, следует подходить к проблеме со всех сторон уравнения теплопроизводительности и работать со своим опытным персоналом, чтобы найти новые и инновационные способы получения максимальной отдачи от угля, который они сжигают. Источник: Библиотека Конгресса США (1919 г.)

Заключительные мысли

Я никогда не был на электростанции, где нельзя было бы добиться значительных улучшений энергоэффективности. По моему многолетнему опыту, инженеры и операторы электростанций — это умные, целеустремленные люди, которые гордятся своей работой и своим предприятием и понимают, что необходимо сделать для повышения эффективности предприятия. Столетие относительно дешевого угля и сосредоточение внимания на контроле за выбросами на предприятиях, к сожалению, отвлекло внимание от поддержания и повышения теплопроизводительности предприятия.

Хотя некоторые представители отрасли считают предложенные EPA стандарты выбросов углерода невыполнимой задачей, многие инженеры и операторы предприятий, с которыми я разговаривал, были оптимистичны в отношении того, что им может быть предоставлено финансирование и инструменты, чтобы начать выигрывать эти награды в области теплопроизводительности.