Содержание

Подключение трёхфазного двигателя на 220 В: пошаговая инструкция

Иногда наши читатели освещают довольно нестандартные подходы к той или иной работе. Сегодня вашему вниманию предлагается один из таких обзоров. Эту статью прислал наш постоянный читатель Перминов Андрей Алексеевич из города Бирск, который находится в республике Башкортостан.

Здравствуйте. Недавно озаботился вопросом установки в гараже заточного станка. Лишние деньги тратить не хотелось. Посему, начал разбирать то, что было в наличии. Двигатель был найден очень быстро, причём практически новый и не один. Дело в том, что гараж приобретался вместе с участком, и от прежнего владельца осталось много нужных вещей. Проблема заключалась только в том, что электродвигатель оказался трёхфазным. К участку же подведено лишь напряжение 220 В. Собрав в сети и различных учебниках по электротехнике необходимую информацию, я понял, что подключение возможно и принялся за дело.

По причине того, что изначально я не был уверен в положительном результате, поэтапные фото не делались. Позже я отдельно собрал подобную схему специально, чтобы объяснить суть.

Именно на примере этой работы я и расскажу, как всё происходило

Содержание статьи

  • 1 Что необходимо для подключения трёхфазного двигателя на 220 В
  • 2 Двигатель, особенности размещения перемычек катушек, первые шаги подключения
  • 3 Несколько слов о магнитном пускателе
  • 4 Подключение электродвигателя: с чего следует начать
    • 4.1 Меры предосторожности при работе с конденсаторами
  • 5 Дальнейшая коммутация: работаем с рабочим магнитным пускателем
  • 6 Приступаем к коммутации второго магнитного пускателя
  • 7 Этапы подключения пускателя для второго конденсатора
    • 7.1 Катушка второго магнитного пускателя
  • 8 Подключаем пусковой конденсатор: второй провод
  • 9 Продвигаемся к кнопочному посту
    • 9.1 Продолжаем подключение кнопочного поста
  • 10 Окончательные этапы сборки схемы подключения электродвигателя
  • 11 Почему всё так сложно
  • 12 Подведём итог проделанной работе

Что необходимо для подключения трёхфазного двигателя на 220 В

Интересно, что при наличии множества различных магнитных пускателей, найденных мною в гараже, обнаружилась неожиданная проблема. Она заключалась в отсутствии нормальных пусковых кнопок – под рукой оказались лишь довольно старые образцы. Но, обо всём по порядку.

Для работы потребуется:

  1. Непосредственно сам электромотор.
  2. Два конденсатора (пусковой и рабочий).
  3. Магнитный пускатель соответствующего номинала.
  4. Второй пускатель для подачи питания на один из конденсаторов (при наличии кнопочного поста более нового образца с двумя постоянно разомкнутыми контактами он был бы не нужен).
  5. Провода соответствующего сечения.
  6. Кнопочный пост на 2 точки управления.
  7. Плоскогубцы, отвёртки, ключи.

Подготовив всё необходимое, приступаем к работе.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация.

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Несколько слов о магнитном пускателе

Это устройство, выдерживающее высокие пусковые токи, позволяет подавать питание на электродвигатели и прочее оборудование. К примеру, обычный выключатель, хотя и способен работать в подобной цепи, однако не сможет выдержать именно момент включения. Внешне пускатели могут быть довольно разнообразны, иметь различный номинал рабочей мощности. В нашем случае были выбраны два совершенно разных по виду и по мощности устройства.

Электромагнитный пускатель ПМЕ-211 – выбран в качестве рабочегоЭлектромагнитный пускатель ПМЕ-111 – для подачи напряжения на пусковой конденсатор

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Дальнейшая коммутация: работаем с рабочим магнитным пускателем

Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

Подключение питающих проводов к магнитному пускателю

Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя. При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В. В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

Установка перемычки с клеммы подачи на катушку

Приступаем к коммутации второго магнитного пускателя

Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

Этапы подключения пускателя для второго конденсатора

Для начала были произвольно выбраны 2 контакта, которые были соединены между собой перемычкой. Здесь клеммы можно протягивать сразу – больше никаких дополнительных проводов к ним коммутироваться не будет.

Устанавливаем перемычку между контактами второго пускателя

Здесь дело вот в чём. Конечно, монтаж второго магнитного пускателя – это дополнительные проблемы, однако, в моём случае, была поставлена цель вообще ничего не приобретать в магазине. Как уже говорилось, кнопочные посты, оказавшиеся в наличии, были старого образца – на пусковой кнопке присутствовал лишь один постоянно разомкнутый контакт. Если же их два, то необходимость в монтаже второго пускателя сразу отпадает, что значительно облегчает работу. В описываемом мною варианте работы больше, зато она учитывает все возможные нюансы, которые могут возникнуть в процессе коммутации.

От перемкнутых контактов второго пускателя отводим провод – он нужен для подачи питания и присоединяется к клемме подачи фазы на первое устройство, а именно на «L1».

Подключение провода для подачи питания на второй пускатель

Катушка второго магнитного пускателя

Понятно, что второй магнитный пускатель не сможет обойтись без стабильной подачи напряжения на катушку. Для обеспечения стабильности, соединяем контакт «L2» первого устройства с её клеммой при помощи отдельного провода. В моём случае, для наглядности, выбрана тёмно-коричневая жила.

Подключение коричневого провода на контакт «L2» рабочего пускателяКоммутация другого конца жилы с одной из клемм катушки второго пускателя

У некоторых может возникнуть вопрос, почему вся коммутация производится на клеммах магнитного пускателя? Ведь, если большую её часть перенести на вводной автомат, обслуживание и ремонт впоследствии будет проводить значительно проще. Изначально и я так подумал, однако столкнулся с проблемой малого размера контактора – несколько проводов в него просто не помещались. Что же касается клеммы пускателя, то она значительно больше, что упрощает сам процесс коммутации. После её окончания, для удобства, можно объединить несколько жил, подходящих к одной клемме, при помощи небольшого хомутика или просто смотать их изолентой.

Подключаем пусковой конденсатор: второй провод

Здесь всё достаточно просто. Оставшийся свободным провод от конденсатора (50 мкФ) нужно подключить к любому из нижних контактов второго пускателя, который окажется под напряжением в момент включения. Из фото ниже легко понять, как это сделать.

Подключение свободного провода пускового конденсатора

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Окончательные этапы сборки схемы подключения электродвигателя

Теперь остаётся дело за малым. Стоит снова вернуться к рабочему электромагнитному пускателю. Сбоку, в его нижней части, есть блокировочные контакты. При помощи перемычки соединяем их между собой. Это делается для того, чтобы после того, как кнопка «ПУСК» отпущена и цепь разомкнулась, питание на катушку продолжало подаваться. В противном случае двигатель будет работать только при нажатой кнопке.

Перемычка блокировочного контакта позволяет цепи оставаться замкнутой после того, как отпущена кнопка «ПУСК»

Теперь остаётся лишь соединить отдельной перемычкой оставшийся свободным основной контакт дополнительного пускателя и блокировочный контакт рабочего. Выглядит это так.

Один конец перемычки подключается к основному контакту второстепенного пускателяВторой – к блокировочному контакту рабочего электромагнитного пускателя

Остаётся тщательно протянуть все клеммы, для удобства и аккуратности скомпоновать и объединить в жгуты провода, после чего можно подать питание и проверить работоспособность собранной схемы.

Почему всё так сложно

Этот вопрос и мне изначально не давал покоя, однако всё сложно лишь на первый взгляд. Если выполнять всю работу пошагово, в соответствии с инструкциями, он отпадёт сам собой. Как уже упоминалось, основные сложности были созданы, можно сказать, намеренно. Ведь стоило лишь приобрести в любом магазине электротехники более совершенный кнопочный пост, и большая часть работы просто потеряла свою актуальность. Но в том, что я пошёл столь проблематичным путём есть и свои плюсы – были рассмотрены все варианты при нулевых затратах. Всё, что мне было необходимо, нашлось в гараже. Зато сейчас я имею возможность пользоваться низкобюджетным заточным станком. Из затрат – лишь покупка наждачного заточного круга и оплата счетов за электроэнергию, которые нельзя назвать крупными.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

А сейчас хочу обратиться к читателям. Если вы в чём-то не согласны в моей работе, напишите об этом в комментариях. Быть может, я приму Ваше мнение на вооружение, а возможно и смогу доказать свою правоту. В любом случае, мне будет очень интересен Ваш отзыв. Спасибо за внимание.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Обсудить9

Предыдущая

ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius

Следующая

ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Трехфазный двигатель в однофазной сети: 3 схемы

Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.

Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.

Все они не раз опробованы на личном опыте.

  • Электрические характеристики статорных обмоток: как проверять схему сборки
  • Подключение трехфазного двигателя к однофазной сети по схеме звезды
  • Схема треугольник: преимущества и недостатки
  • Как подобрать конденсаторы: 3 важных критерия
  • Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось
  • Меры безопасности при подключении трехфазного двигателя: напоминание
  • Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:

    • используйте схему треугольник, предварительно проверив исправность двигателя;
    • выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
    • в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
    • не забывайте соблюдать меры безопасности с электрическим током и инструментом.

    Все остальное рекомендую новичкам внимательно прочитать и осмыслить в той последовательности, как я излагаю.

    На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.

    Трехфазный асинхронный двигатель: на что обратить внимание до его подключения

    За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.

    Даже в этом случае я рекомендую убедиться в его исправности лично.

    Механическое состояние статора и ротора: что может мешать работе двигателя

    Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.

    Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.

    Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.

    После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.

    В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.

    Электрические характеристики статорных обмоток: как проверять схему сборки

    Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.

    Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.

    Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.

    Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.

    Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.

    Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.

    На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.

    Электрические методики проверки схемы сборки обмоток

    Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.

    Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.

    В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.

    Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.

    Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.

    После перемонтажа схемы рекомендую дополнительно покрывать внешние слои обмоток лаком, а затем хорошо просушить их до окончательной сборки теплым воздухом.

    Что делать, если маркировка выводов отсутствует

    На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.

    Работу выполняем в два этапа:

    1. Проверяем принадлежность концов обмоткам.
    2. Определяем и маркируем каждый вывод.

    На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.

    С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.

    Как найти конец и начало обмотки: 2 способа

    Можно вести поиск с помощью вольтметра:

    1. и батарейки;
    2. или источника пониженного переменного напряжения.

    Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.

    Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.

    С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).

    После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.

    Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.

    Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.

    Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.

    Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.

    После окончания маркировки делают контрольный замер для проверки выполненной работы.

    Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.

    Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.

    Такая проверка опасна. Ею не стоит заниматься необученным людям: можно легко получить электрическую травму.

    Как оценить состояние изоляции обмоток

    Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.

    Однако до включения двигателя под напряжение я рекомендую:

    • взять мегаомметр с выходным напряжением на 1000 вольт;
    • проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
    • если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.

    Проверку изоляции электродвигателя мегаомметром необходимо обязательно проводить до его подключения под нагрузку. Однако она не способна выявить повреждения диэлектрического слоя, вызывающие межвитковые замыкания обмотки.

    При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.

    Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.

    Как проверяют магнитное поле статора на заводе

    При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.

    Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.

    Только правильное подключение обмоток обеспечивает вращение шарика или ротора.

    Мощность электродвигателя и диаметр провода обмотки

    Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.

    Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.

    Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:

    1. Диаметру провода обмотки.
    2. Габаритам сердечника магнитопровода.

    После вскрытия крышки статора проанализируйте их визуально.



    Продвигаемся к кнопочному посту

    На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

    Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контакт

    Второй конец идёт на клемму кнопки «СТОП»

    Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

    Перемычка между пусковой и стоповой кнопкой необходима

    Продолжаем подключение кнопочного поста

    Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

    Соединение на пусковой кнопке — работа с постом практически завершена

    Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

    Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

    Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

    Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»

    Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя



    Подключение трехфазного двигателя к однофазной сети по схеме звезды

    Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

    Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.

    Схема подключения звезды показана на картинке.

    Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

    Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

    Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

    При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

    Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

    Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

    Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

    Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

    Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

    Почему нужна подгонка

    Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?

    Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, соединенных параллельно и последовательно. Главное – после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.



    Схема треугольник: преимущества и недостатки

    Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.

    За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.

    Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.

    Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.

    При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.

    Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.

    Как подобрать конденсаторы: 3 важных критерия

    Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.

    В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.

    Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.

    От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.

    Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.

    Обращаю внимание на три важных параметра:

    1. емкость;
    2. допустимое рабочее напряжение;
    3. тип конструкции.

    Как подобрать конденсаторы по емкости и напряжению

    Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.

    Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.

    Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.

    Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.

    Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.

    Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.

    Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.

    Сейчас промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.

    Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.

    У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.

    Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.

    Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.

    При параллельном подключении общая емкость суммируется, а напряжение не меняется.

    Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.

    Какие типы конденсаторов можно использовать

    Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.

    Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.

    Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.

    Без его использования они быстро выходят из строя.

    Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.

    Подсчет итоговой ёмкости

    При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

    Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

    Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось

    Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.

    Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

    В его состав входят:

    • дроссель с индуктивным сопротивлением на 140 Ом;
    • конденсаторная батарея на 80 и 40 микрофарад;
    • регулируемый реостат на 140 Ом с мощностью 1000 ватт.

    Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.

    В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.

    Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

    Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

    Мне даже приходила мысль использовать водяной реостат.

    Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.

    Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.

    Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.

    Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.

    Как преобразовать 3 фазы в одну фазу 220 В

    Вы хотите преобразовать трехфазное питание в однофазное? Независимо от того, модернизируете ли вы старую фазу или просто хотите сэкономить энергию в своем доме, это руководство покажет вам, как преобразовать трехфазную сеть в однофазную, используя правильную формулу и правильный метод.

    Попутно вы также узнаете, что такое однофазное питание, а также трехфазное питание. Прочитав эту статью, вы сможете легко и эффективно преобразовать свой блок питания!

    Трехфазная сеть переменного тока используется во многих случаях, и большая часть оборудования переменного тока в промышленности использует трехфазную сеть переменного тока (трехфазный четырехпроводный источник питания). А в повседневной жизни большинство используют однофазное питание.

    Что такое однофазное питание?

    Однофазная электроэнергия относится к фазному проводу (обычно известному как противопожарный провод или провод под напряжением) и нейтральному проводу в форме передачи электроэнергии, при необходимости будет третий провод (заземление), используемый для предотвращения поражения электрическим током. шок.

    Если речь идет о бытовом электроснабжении, то лучше всего использовать однофазный тип. Он известен как однофазный, потому что использует один электрический ток во всем диапазоне — от напряжения до частоты. Это означает, что техника работает более эффективно и с меньшей вероятностью выйдет из строя.

    Чтобы преобразовать трехфазную систему в однофазную, выполните следующие действия: проконсультируйтесь с профессиональным электриком. Они смогут посоветовать вам лучший способ преобразования вашей системы и убедиться, что вы получаете максимальную отдачу от своей однофазной системы.

    Что такое трехфазное питание?

    Если вы похожи на большинство домовладельцев, вам, вероятно, в тот или иной момент было интересно узнать о трехфазном питании. Ну, не удивляйтесь больше! Трехфазная мощность — это тип электричества, в котором используются три переменных тока для создания вращающегося магнитного поля. Это создает электричество, которое можно использовать по-разному, в том числе для питания домов и предприятий.

    Трехфазное питание в основном используется в качестве источника питания для фазного двигателя, т. е. нагрузки, которую необходимо вращать, поскольку все три фазы трехфазного питания разнесены на 120 градусов и ротор не заклинит. Ротор двигателя состоит из трех наборов катушек, расположенных под углом 120 градусов друг к другу.

    Генератор вырабатывает энергию переменного тока, поэтому три набора катушек производят переменный ток с разностью фаз 120 градусов. Трехфазное питание означает, что эти три набора токов подключены к разным приборам как провод под напряжением, и они подключены к общему нулевому проводу.

    Формула преобразования трехфазной системы в однофазную 220 В

    Если вы хотите преобразовать трехфазную систему в однофазную, вам необходимо использовать формулу преобразования.

    Используется следующая формула: (3–1) x (240–110) = 260 В.

    Итак, если у вас есть трехфазная система, которая в настоящее время работает на 220 В, вам нужно преобразовать ее в однофазную, используя приведенную выше формулу.

    Имейте в виду, что напряжение будет ниже, чем было раньше, поэтому обязательно учитывайте это при принятии решения. Если вы не знаете, как выполнить фазовое преобразование, не беспокойтесь — существует множество онлайн-калькуляторов преобразования, которые могут вам помочь.

    Как преобразовать 3 фазы в одну фазу 220 В

    Когда дело доходит до преобразования 3 фаз в одну фазу 220 В, первый способ, который вы можете сделать, это использовать инвертор (фазовый преобразователь). Инверторы бывают двух типов – непрерывные и импульсные. С непрерывными инверторами питание будет оставаться включенным все время; при переключении инверторов питание отключается через определенные промежутки времени (обычно каждые полчаса).

    Убедитесь, что вы выбрали именно тот инвертор, который соответствует вашим потребностям. Импульсные инверторы часто дешевле и хороши для быстрой и простой установки, а инверторы непрерывного действия лучше подходят для длительного использования и более надежны.

    Чтобы преобразовать эту мощность в однофазную, вам понадобится блок выключателя и частотно-регулируемый инвертор. Инвертор преобразует трехфазный электрический ток в однофазный, что упрощает его использование в домах и коммерческих зданиях. Обязательно проконсультируйтесь с местными властями о правилах безопасности, прежде чем преобразовывать электроэнергию в вашем доме!

    Следующим является Метод подключения : 3-фазное питание состоит из двух фаз — трансформатор с фазной обмоткой будет иметь три провода — по одному на каждую фазу — подключенных к клеммам ввода питания на вашей электрической панели или распределительной коробке. Далее определяют количество фаз, присутствующих в электрической цепи. Это делается путем деления количества фаз на два — в результате получается количество проводов в каждой фазе.

    Затем найдите, какой провод куда идет на трансформаторе, и подсоедините его к входной клемме питания на электрической панели или блоке выключателя. Наконец, выключите все другие цепи в вашем доме, прежде чем подключать новый бытовой прибор (или свет) к только что преобразованной однофазной цепи!

    Второй метод заключается в использовании переключателя для преобразования, то есть в использовании каждой из трех фаз для получения однофазной проводки.

    Пример преобразования трехфазного источника питания в однофазный

    При преобразовании трехфазного источника питания в однофазный важно сначала определить количество проводных соединений на источнике питания. Это можно узнать, посчитав количество проводов в каждой розетке или вилке на блоке питания.

    Затем определите, какое соединение проводов соответствует каждой розетке или вилке в электрической цепи вашего дома. Наконец, используйте амперметр и вольтметр, чтобы проверить, какой провод подключен к какой клемме на блоке питания. Если у вас все еще есть проблемы, не стесняйтесь обращаться к электрику за помощью. Когда у вас есть вся необходимая информация, пора начинать!

    Часто задаваемые вопросы

    Каковы преимущества использования однофазного 220В вместо трехфазного 220В?

    Использование однофазной сети 220 В вместо трехфазной сети 220 В для дома или бизнеса дает много преимуществ. Вот некоторые из преимуществ: – Одно из самых больших преимуществ заключается в том, что одна фаза позволяет сэкономить на счетах за электроэнергию. Поскольку одна фаза потребляет меньше энергии, она может снизить общий счет за электроэнергию на 50%. – Еще одним преимуществом является то, что однофазный источник работает тише, чем трехфазный. Поскольку в однофазном распределении электроэнергии не используются трехфазные трансформаторы, вы, скорее всего, будете испытывать меньше шума дома или в офисе. – Наконец, преобразовав вашу текущую трехфазную систему в однофазную, вы также получите преимущества в плане безопасности, поскольку при таком типе распределения питания отсутствует опасность споткнуться.

    В чем разница между однофазным и трехфазным электричеством?

    В чем разница между однофазным и трехфазным электричеством? Однофазное электричество создается, когда ток течет по одному проводу за раз, а трехфазное электричество создается переменным током по трем проводам.

    Основное различие между однофазным и трехфазным электричеством заключается в том, что однофазное электричество имеет более высокое напряжение и меньшую длину, чем трехфазное. Кроме того, однофазный сигнал имеет меньший уровень шума, но может быть нестабильным, в то время как трехфазный обеспечивает большую стабильность при меньшем уровне шума.

    Как преобразовать 3-фазное питание в однофазное 220 В для моего электроинструмента?

    Чтобы преобразовать 3-фазное напряжение 220 В в однофазное для вашего электроинструмента, вам понадобится инвертор мощности. Мощность, необходимая для этого преобразования, рассчитывается по следующей формуле: W = (p*F) / (I*R).

    где W — мощность в ваттах, p — номинальное напряжение вашего инструмента, F — частота генератора (генераторов) вашего инструмента, а I и R — номинальные значения входного и выходного тока инвертора мощности соответственно.

    Как лучше всего преобразовать 3 фазы 220 В в одну фазу 220 В?

    На этот вопрос нет универсального ответа, так как лучший способ преобразовать 3-фазное напряжение 220 В в однофазное напряжение 220 В может варьироваться в зависимости от ваших конкретных потребностей и обстоятельств.

    Однако один из вариантов, который может вам подойти, — использование преобразователя переменного/постоянного тока. Чтобы убедиться, что ваш преобразователь имеет рейтинг эффективности не менее 85%, важно приобрести его из авторитетного и надежного источника. Кроме того, не забудьте приобрести шнур питания, вилки и инвертор, необходимые для вашей конкретной установки.

    Заключение

    Если вы хотите преобразовать трехфазное питание в однофазное, то этот блог для вас! В этом посте мы описали шаги, необходимые для преобразования трехфазной мощности в однофазную с использованием формулы преобразования.

    Мы также включили пример преобразования и объяснили, что такое однофазное питание. Наконец, мы ответили на вопрос, что такое трехфазное питание и как его преобразовать в однофазное. Итак, если вы хотите преобразовать свой трехфазный источник питания в однофазный, обязательно ознакомьтесь с этим блогом!

    Полезные темы:

    Как правильно использовать инвертор мощности в 2023 году?

    Насколько большая ветряная турбина вам нужна для питания дома?

    Сколько стоит ветряная турбина?

    Преимущества и недостатки энергии ветра

    Могу ли я использовать энергию ветра и солнца вместе?

    Могу ли я подключить солнечную панель ветряной турбины к тому же контроллеру заряда?

    Могу ли я подключить ветряную турбину к моему солнечному инвертору?

    Схема подключения контроллера заряда ветровой турбины

    Как выбрать контроллер заряда для ветряной турбины

    Как работает ветряная турбина?

    Контроллер заряда ветровой турбины против солнечного контроллера заряда

    Что такое зарядное устройство постоянного тока в постоянный?

    Лучший контроллер заряда ветряных турбин в 2023 году

    Как подключить контроллеры заряда ветряных турбин

    Руководство по поиску и устранению неисправностей ветряных турбин

    Как запустить трехфазную машину с однофазным питанием?

    • «Я хочу открыть небольшую мастерскую по обработке дерева в своем домашнем гараже; Мне нужно будет запустить рубанок и пылесборник от 3-фазной сети 220».
    • «Проверяю, будет ли что-нибудь работать на моей настольной пиле 220 3 л.
    • «У меня есть перевернутый фрезерный станок Onsurd 3025 для деревообработки с 3-фазным входом 5 л.с. 230 вольт. У меня только одна фаза к моему магазину».

    Знакомо? Ты не один! Проклятием многих клиентов является ограничение однофазного бытового электроснабжения.

    Не всем повезло, что в их гараже есть трехфазное электричество промышленного класса, но это не мешает нам хотеть использовать эту замечательную вертикальную мельницу, которую мы нашли на eBay, или нуждаться в том, чтобы каким-то образом орошать посевы.

    Итак, какие есть варианты? К сожалению, большинство частотно-регулируемых приводов, предназначенных для однофазного входа, обычно имеют максимальную мощность около 3 лошадиных сил. Низкая мощность делает однофазные частотно-регулируемые приводы далеко не идеальными во многих приложениях, а это означает, что решение находится в другом месте. Снижение номинальных характеристик вашего диска может быть вашим лучшим и единственным решением.

    Превышение размера вашего привода = снижение номинальных характеристик вашего привода

    Начнем с самых основных определений. Что означает снижение номинальных характеристик вашего привода? «Снижение номинальных характеристик» просто означает, что вы берете привод и работаете с мощностью ниже максимальной номинальной.

    Имейте в виду, что вам также необходимо учитывать такие характеристики, как размер диска, окружающая среда и требования к приложениям.

    Как правило, при подключении однофазного входа к трехфазному частотно-регулируемому приводу вы почти всегда подключаете выводы входной линии к L1 и L3 частотно-регулируемого привода. L2 останется открытым, и ничего не будет подключено. Проблема в том, что теперь мы концентрируем одинаковую силу тока на двух фазах вместо трех, что может привести к потенциальному выходу из строя входного диода и перегреву клемм. Чтобы решить эти проблемы, вы должны увеличить размер частотно-регулируемого привода, чтобы учесть большую мощность.

    Ниже приведено видео от Тима Уилборна, объясняющее «Как запустить трехфазную машину с однофазным питанием с приводом переменного тока, включая установку частотно-регулируемого привода». умножьте номинальный выходной ток частотно-регулируемого привода на 0,6 (это в основном включает коэффициент sq rt 3 плюс немного, чтобы учесть, что эффективность частотно-регулируемого привода не равна 100%).

    Однако, как указывает Fuji Electric:

    «Хотя обычно просто удваивают номинальную мощность привода, это может привести к неточному снижению номинальных характеристик. Чтобы убедиться, что инвертор может безопасно работать с током полной нагрузки, потребляемым трехфазным двигателем, просто прочтите диаграмму мощности для однофазной сети, где номинальный выходной ток привода равен или превышает ток полной нагрузки (FLA), указанный на заводской табличке. двигателя»
    (Белый лист по расчету однофазной потребляемой мощности Fuji Eco).

    Пример однофазного применения:

    «У вас есть трехфазный двигатель 230 В переменного тока мощностью 5 л.с. У вас есть только однофазный источник питания 230 В переменного тока, поэтому вы хотите использовать привод для преобразования энергии. Вам нужно будет снизить номинальные характеристики трехфазного привода, чтобы применить к нему однофазный источник питания. FLA на паспортной табличке двигателя показывает 15Amps. Для того чтобы привод мог справиться с этой токовой нагрузкой, инвертор должен быть рассчитан на выходной ток не менее 15 А при подаче однофазного входного питания.

    Чтобы найти подходящий привод, обратитесь к таблице на странице X Руководства по эксплуатации FRENIC-Eco (INR-SI47-1225c-E). Привод, рассчитанный на выходную нагрузку не менее 15 А при однофазном входном напряжении 230 В переменного тока, имеет мощность 10 л.с. Этот привод рассчитан на работу с двигателем с полной нагрузкой до 17 А. Соответствующий номер модели — FRN010F1S-2U , который правильно рассчитан на преобразование вашего однофазного источника питания в трехфазный выход для вашего двигателя»  (Примечания по применению однофазной потребляемой мощности Fuji Eco) .

    Итак, как нам найти и установить правильный диск, не повредив оборудование, которое мы собираемся запустить?

    Тут на помощь приходит Fuji! Следуя таблицам снижения номинальных характеристик Fuji, вы сможете использовать однофазный вход при работе частотно-регулируемого привода в соответствии со списком безопасной эксплуатации UL. Вы не хотите рисковать разжиганием огня!

    См. примечания по применению ниже, относящиеся к выбранной вами модели Fuji Electric.

    Надеюсь, это прольет свет на то, как использовать ваше трехфазное оборудование в сценарии с однофазным входом.

    Если вы хотите узнать больше о частотно-регулируемых приводах и их применении, посетите эти блоги

    В противном случае свяжитесь с нами сегодня, и мы будем рады помочь вам найти подходящий привод для вашего приложения!

    Большое спасибо Марку Буну, региональному менеджеру по продажам Fuji Electric в Америке, за помощь в создании этого блога.