Неявнополюсные синхронные генераторы | Общие сведения об электрических машинах

Подробности
Категория: Электрические машины
  • электродвигатель

Содержание материала

  • Общие сведения об электрических машинах
  • Нагрев вращающихся машин переменного тока
  • Номинальные режимы работы
  • Конструктивные исполнения электрических машин
  • Регулирование скорости вращения трехфазных асинхронных двигателей
  • Изменение скорости вращения путем изменения первичного напряжения и другие
  • Работа трехфазного асинхронного двигателя в неноминальных условиях
  • Синхронные машины
  • Неявнополюсные синхронные генераторы
  • Системы возбуждения синхронных генераторов
  • Машины постоянного тока
  • Коллекторные машины постоянного тока
  • Устройство и конструкция коллекторной машины постоянного тока
  • Обмотки барабанных якорей
  • Петлевые обмотки барабанных якорей
  • Волновые обмотки барабанных якорей
  • Комбинированная обмотка машин постоянного тока и выбор
  • Характеристики генераторов постоянного тока
  • Генератор смешанного возбуждения
  • Сельсины
  • Работа однофазных сельсинов в индикаторном режиме
  • Поворотные трансформаторы
  • Синхронные реактивные двигатели
  • Однофазные реактивные двигатели
  • Синхронный гистерезисный двигатель

Страница 9 из 25

В быстроходных агрегатах центробежные силы, пропорциональные квадрату угловой скорости, достигают такого значения, что выполнить ротор явнополюсным по условиям механической прочности, закрепить его полюса и обмотку возбуждения оказывается невозможно. Кроме того, в быстроходных машинах при выступающих полюсах значительно возрастают потери на трение ротора о частицы охлаждающей среды. Для быстроходных синхронных машин рациональным типом ротора является цилиндрический с пазами по внешней окружности цилиндра, в которые укладывается обмотка возбуждения (рис. 195, а). При обтекании обмотки возбуждения постоянным током ротор становится электромагнитом и называется неявнополюсным.

К неявнополюсным машинам относятся турбогенераторы; так называются синхронные генераторы, приводимые во вращение паровыми турбинами. Паровые турбины представляют собой высокоскоростные машины, технико-экономические показатели которых повышаются при возрастании их скорости вращения. Поэтому при непосредственном соединении с паровыми турбинами синхронные генераторы, как правило, выполняют двухполюсными, чтобы турбогенератор работал при скорости вращения 3000 об/мин — наибольшей возможной при 50-периодной частоте тока.
Развиваемые при такой скорости вращения центробежные силы таковы, что роторы турбогенераторов приходится выполнять массивными из цельных поковок высококачественной стали, например хромоникелевой или хромоникельмолибденовой.

В роторе фрезеруют пазы; примерно третья часть полюсного деления остается свободной от пазов, образуя так называемый большой зуб, через который проходит главная часть магнитного потока полюсов и наличие которого благоприятно влияет на пространственное распределение индукции поля полюсов в воздушном зазоре, приближая его к синусоидальному.

Рис. 195. Неявнополюсная синхронная машина (а) и неявнополюсный ротор (б).

Обмотку возбуждения, уложенную в виде концентрических катушек в пазы ротора, крепят при помощи клиньев, воспринимающих большие центробежные силы, действующие на обмотку возбуждения. Клинья выполняют из немагнитной стали или немагнитных сплавов для ослабления магнитного потока рассеяния паза. Лобовые части обмотки возбуждения закрывают бандажными кольцами (колпаками), выполненными также из прочной немагнитной стали. Бандажные кольца должны не только выдерживать действие центробежных сил, но и давление обмотки возбуждения, также подверженной действию центробежных сил. Внешний вид неявнополюсного ротора турбогенератора показан на рисунке 195, б.
Мощность (квт) синхронного генератора может быть выражена формулой
(240)

приходящийся па 1 см его окружности.

При определенных сложившихся в практике проектирования значениях А2 и В на первом этапе развития турбогенераторостроения увеличение единичной мощности достигалось главным образом путем увеличения объема активной части (бочки) ротора. Увеличение диаметра позволяет увеличить линейную нагрузку приблизительно пропорционально диаметру. Таким образом, мощность турбогенератора, согласно формуле (240), растет пропорционально кубу диаметра ротора. Нагрев ротора дошел до 100° С, причем следует иметь в виду, что нагрев по толщине ротора неравномерен, и, следовательно, ротор подвержен тепловым деформациям.
К настоящему времени диаметр поковок ротора достиг — 1,1 — 1,2 м, и пока нельзя рассчитывать на такое улучшение механических свойств стальных поковок, чтобы оказалось возможным значительно увеличить их диаметр. Увеличение длины активной части ротора также ограничено статическим прогибом и частотными характеристиками роторной системы турбоагрегата. Необходимо, чтобы частоты свободных колебаний ротора отличались от частот вблизи номинальной скорости вращения. Отсюда следует, что при увеличении диаметра D2 надо уменьшать отношение. Таким образом, длина ротора также достигла предельной.
Увеличение единичной мощности генераторов остается основным направлением развития современной техники генерирования электрической энергии; при этом обеспечивается высокий к. п. д., упрощаются конструкции электрических станций, достигается общая экономия капиталовложений, сокращаются затраты труда и удельные расходы стали, меди, изоляции.

Для повышения мощности, как видно из уравнения (240), следует увеличивать электромагнитные нагрузки А2 и В. Но повышение значения индукции В в зазоре выше 0,85 тл ограничено качественными характеристиками стали и прежде всего ее магнитной проницаемостью. Повышение линейной нагрузки А2 связано с увеличением плотности тока, что влечет пропорциональное квадрату плотности тока возрастание потерь и требует более интенсивного охлаждения.
К 1937 г. серия двухполюсных турбогенераторов была развита до мощности 100000 квт при воздушном охлаждении. Внедрение водорода в качестве охлаждающей среды благодаря его лучшим, чем у воздуха, физическим и термодинамическим свойствам (легче, выше теплопроводность) позволило повысить номинальную мощность генератора на 25—30% при той же затрате активных материалов. В 1946 г. в СССР был выпущен первый турбогенератор с водородным охлаждением мощностью 100 000 квт. При водородном охлаждении снизились потери на трение бочки ротора при его вращении. Отсутствие процесса окисления (нет озона) удлинило срок службы изоляции.

Рис. 196. Схема замкнутой системы вентиляции турбогенератора при воздушном охлаждении (поверхностном):

I — охладитель; 2 — фильтр; 3 — камера нагретого воздуха; 4 — камера холодного воздуха; А — область разрежения; Б — область давления; В — подвод воздуха на уплотнения.

Поскольку смесь водорода с воздухом взрывоопасна, конструкция генератора усложнилась; она должна была быть герметичной, исключающей возможность утечки водорода в окружающее пространство; первоначально поверхностное водородное охлаждение было осуществлено при избыточном давлении до 0,05 атм. Позднее давление водорода было повышено до 2—3 атм, поскольку повышение плотности газа увеличивает его теплоемкость и теплопередачу от поверхности к газу, и это открывает возможность дальнейшего повышения номинальной мощности (на—25%). Необходимость более тщательного изготовления корпуса статора и более совершенных уплотнений вала к этому времени технических затруднений не представляла. Некоторое увеличение потерь вентиляционных и на трение о бочку ротора мало влияло на к.           п. д. и также препятствием не являлось.

Поскольку доля температурного перепада от меди к охлаждающей среде, не зависящая от давления водорода, составляет для роторных катушек ~ 50%, для статорных — 75%, дальнейшее повышение давления водорода при поверхностном охлаждении уже не дает сколь-либо заметного выигрыша в мощности.
Дальнейший рост единичной мощности турбогенератора требует применения непосредственного охлаждения обмоток. Охлаждающая среда — водород под давлением в несколько атмосфер или жидкость (вода или масло) —пропускается сквозь внутреннюю полость стержней. Непосредственное соприкосновение охлаждающей среды с материалом обмоток устраняет температурный перепад в изоляции обмоток.

Применение непосредственного газового охлаждения меди позволяет поднять мощность машин на 100% и более. Завод «Электросила» выпустил турбогенератор типа ТВФ-200-2 мощностью 200 000 квт в размерах машины 100 000 квт с поверхностной системой охлаждения. Обмотка ротора выполнена с непосредственным охлаждением меди с забором водорода из зазора генератора.
Весьма эффективным является непосредственное жидкостное охлаждение (водой или маслом). Сечение охлаждающих каналов в обмотке может быть меньше, чем при продувании газа. Применение такого охлаждения для ротора конструктивно сложнее, чем для статора. Специфическими вопросами здесь являются подвод воды из внешней системы во вращающиеся части при соблюдении минимальных утечек, влияние центробежных сил на гидродинамическое состояние и теплоотдачу воды, создание теплостойких и механически прочных шлангов. Совершенствование системы полного водяного охлаждения в турбогенераторах (статора и ротора) открывает возможность изготовления машин мощностью до 1 000 000 квт.

В СССР турбогенераторы выпускаются серийно, начиная с мощности 750 квт; созданы турбогенераторы мощностью 300 000 (к концу 1967 г. их число доходило до 27) и 500 000 квт; проведено эскизное проектирование турбогенератора мощностью 750000—1 000000 квт, диаметр ротора 1,25 м. На рисунке 196 дана схема замкнутой системы вентиляции турбогенератора при воздушном охлаждении (поверхностном).

  • Назад
  • Вперёд
  • Назад
  • Вперёд
  • Вы здесь:  
  • Главная
  • Оборудование
  • org/ListItem»> Эл. машины
  • Электродвигатели АТД, АТД2 и АТД4

Еще по теме:

  • Испытания по определению электрических величин электрических машин
  • Основные повреждения электродвигателей
  • Двигатели типа ДАБ
  • Методы сушки электрических машин
  • Автоматизация испытаний электрических машин

Синхронные машины. Принцип работы. Явнополюсные и неявнополюсные машины

  • admin
  • 08.03.2023
  • 0 comments

Синхронные машины это такие машины переменного тока, в которых частота движения ротора равно частоте тока в статоре. А, следовательно, определяется частотой питающей сети. Для производства электричество чаще всего используют синхронные генераторы. А синхронные двигатели отличаются тем, что у них скорость вращения постоянна и не зависит от нагрузки.

Все синхронные машины в принципе имеют одинаковую конструкцию. Они состоят из неподвижной части, которую называют статором. Он представляет собой корпус внутри, которого закреплён сердечник. Сердечник имеет цилиндрическую форму и набирается из тонких пластин для уменьшения потерь на вихревые токи и гистерезис. В сердечнике с внутренней стороны имеются пазы, в которые уложена обмотка статора. Сердечник вместе с обмоткой называется якорем.

Рисунок 1 — неподвижный якорь синхронной машины

 

Внутри статора находится ротор, представляющий собой цилиндрической формы сердечник из сплошной стали который находится на валу. На сердечнике ротора намотана обмотка возбуждения, которая запитывается постоянным током потому нет необходимости делать сердечник ротора из шихтованной стали. Так как магнитный поток ротора постоянный.

Рисунок 2 — ротор синхронной машины

Ток к ротору подводится через скользящие контакты в виде колец находящихся на валу, к которым прижаты графитовые щетки. Кольца изолированы друг от друга и от вала. А к ним подключены концы обмотки возбуждения. Сердечник ротора с обмоткой возбуждения называются индуктором.

Обмотка возбуждения размещается на роторе, так как ток возбуждения имеет малую величину по сравнению с током якоря. Иногда синхронные машины выполняют и наоборот. Это когда индуктор находится на статоре, а якорь на роторе. Ток возбуждения подводится к статору, а якорный ток, например для двигателя подводится к ротору.

Все синхронные машины можно разделить на два вида. Первый из них это синхронные машины, у которых ротор выполнен с неявно выряженными полюсами. Неявно выраженные полюса это когда обмотка ротора равномерно уложена в пазы  сердечника. Не имея при этом явно выраженных полюсов. Это, как правило, высоко оборотистые машины. Так как на высокой скорости вращения ротор с явно выраженными полюсами будет испытывать высокие динамические нагрузки.

Рисунок 3 — Ротор неявнополюсной машины

Синхронные машины с явно выряженными полюсами применяют на низких частотах вращения. Это, как правило, гидрогенераторы. Поскольку ротор вращается под напором столба воды, а создать на реке большой перепад воды достаточно сложно.

На роторе явно полюсной машины отчетливо выделяются магнитные полюса, на которые укладывается обмотка возбуждения.

 

Рисунок 4 — Ротор явнополюсной машины

Рассмотрим принцип действия синхронной машины на примере генератора переменного тока. К индуктору генератора подводится постоянный ток от внешнего источника тока. Этот ток создает основной магнитный поток, который пронизывает обмотки якоря. Обмотки якоря имеют одинаковое число витков и уложены друг относительно друга со смещением в 120 градусов.

При вращении ротора в обмотках статора наводится эдс вследствие электромагнитной индукции. Чтобы ток в обмотках якоря изменялся по синусоидальному закону, в явно полюсных машинах применяют полюсные наконечники особой формы. То есть воздушный зазор между полюсным наконечником и якорем не однородный, а изменяется с движением от середины к краю. Таким образом, магнитное поле в зазоре будет изменяться по закону близкому к синусоидальному.

Рисунок 5 — распределение поля в полюсном наконечнике явно полюсной машины

 

В неявнополюсных машинах для получения формы тока близкой к синусоидальной используют неоднородное распределение обмотки возбуждения в пазах индуктора.

Рисунок 6 — распределение поля в неявнополюсном индукторе

Когда синхронная машина работает в режиме электродвигателя, трех фазное напряжение подается на якорь. При этом обмотка индуктора замыкается накоротко, что обеспечивает асинхронный режим пуска синхронной машины. После разгона на индуктор подается постоянный ток, и машина входит в синхронизм.

Анализ базовой структуры бесщеточного синхронного генератора

Развитие общества и повседневная жизнь людей не могут быть отделены от электрической энергии. Бесщеточный синхронный генератор представляет собой источник переменного тока, который преобразует механическую энергию в электрическую за счет вращения первичного двигателя. В этой статье Starlight Power представит анализ базовой структуры бесщеточного синхронного генератора.

Бесщеточные синхронные генераторы малого и среднего размера в основном бывают двух типов:

(1) Тип вращающегося якоря

Магнитный полюс неподвижен (неподвижная часть называется статором), обмотка якоря (индукционный проводник) вращается на роторе, а вращающийся выпрямитель используется для отвода переменного тока от ротор. Возбудитель переменного тока является таким двигателем.

(2) Тип вращающегося магнитного поля

Магнитный полюс установлен на роторе для вращения, а якорь намотан и собран на статоре, чтобы оставаться неподвижным. Переменный ток может выводиться напрямую по кабелю. Корпус бесщеточного генератора представляет собой двигатель такого типа. Такие моторы также можно разделить на:

Генератор с явно выраженными полюсами: он имеет явный магнитный полюс, а сердечник магнитного полюса покрыт обмоткой с сосредоточенным магнитным полюсом. Генератор неявных полюсов: явного магнитного полюса нет, а обмотки магнитного полюса разбросаны и встроены в паз железного сердечника ротора (магнитного полюса).

Малые и средние генераторы в основном относятся к промежуточному типу. Независимо от явнополюсного или неявнополюсного генератора, его конструкция может быть разделена на две части, а именно: статическая часть, включая статор (основание, сердечник статора, обмотка статора), торцевая крышка, крышка подшипника (гильза), статор возбудителя переменного тока и т. д.; Вращающаяся часть также называется ротором, включая вал, сердечник ротора (сердечник магнитного полюса), обмотку магнитного полюса, подшипник, вентилятор, якорь возбудителя, вращающийся выпрямитель и т. д.

Вышеприведенный контент представляет собой базовый анализ структуры бесщеточного синхронного генератора, и мы надеемся, что у большинства пользователей будет определенное понимание. Бесщеточный синхронный генератор широко используется в стране и за рубежом из-за его малых радиопомех, отсутствия щеток, меньшей нагрузки на техническое обслуживание, надежной работы, превосходной производительности и простоты реализации без присмотра.

Jiangsu Starlight Power Generation Equipment Co., Ltd. была основана в 1974 году и является одним из первых производителей генераторов и дизель-генераторных установок в Китае. Уставной капитал компании составляет 218,88 млн юаней. Компания занимает площадь 86 000 квадратных метров и площадь застройки 55 000 квадратных метров. Есть более чем 660 сотрудников, в том числе 456 профессиональных техников и 106 старших техников. Он имеет 46 точек продаж и обслуживания по всей стране. Основными продуктами являются дизельные двигатели, генераторные установки и дизель-генераторы, предоставляющие пользователям комплексные услуги по проектированию, поставке, отладке и техническому обслуживанию в любое время. Starlight всегда настаивала на использовании первоклассных талантов, создании первоклассных предприятий, производстве первоклассных продуктов, создании первоклассных услуг и приложении всех усилий для создания первоклассного отечественного предприятия. Если у вас возникнут вопросы, посетите наш веб-сайт https://www. dieselgeneratortech.com/ или отправьте электронное письмо по адресу [email protected].

Синхронный генератор в качестве ветрового генератора

Синхронный генератор в качестве ветрового генератора

Как и генератор постоянного тока в предыдущем уроке, работа синхронного генератора также основана на законе электромагнитной индукции Фарадея, работающем в аналогичен генератору переменного тока автомобильного типа.

Отличие на этот раз в том, что синхронный генератор генерирует трехфазное выходное напряжение переменного тока из своих обмоток статора, в отличие от генератора постоянного тока, который вырабатывает один выходной сигнал постоянного или постоянного тока. Однофазные синхронные генераторы также доступны для систем синхронных генераторов маломощных бытовых ветряных турбин.

По сути, синхронный генератор представляет собой синхронную электромеханическую машину, используемую в качестве генератора, и состоит из магнитного поля на вращающемся роторе и неподвижного статора, содержащего несколько обмоток, которые обеспечивают генерируемую мощность. Система магнитного поля ротора (возбуждение) создается либо с помощью постоянных магнитов, установленных непосредственно на роторе, либо за счет электромагнитного возбуждения от внешнего постоянного тока, протекающего в обмотках возбуждения ротора.

Этот постоянный ток возбуждения передается на ротор синхронной машины через контактные кольца и угольные или графитовые щетки. В отличие от предыдущей конструкции генератора постоянного тока, синхронные генераторы не требуют сложной коммутации, что обеспечивает более простую конструкцию. Затем синхронный генератор работает аналогично автомобильному генератору переменного тока и состоит из двух следующих общих частей:

Основные компоненты синхронного генератора

  • Статор: — Статор несет три отдельных (3-фазных) якоря. обмотки физически и электрически смещены друг от друга на 120 градусов, создавая выходное напряжение переменного тока.
  • Ротор: — Ротор несет магнитное поле либо в виде постоянных магнитов, либо в виде витых катушек, подключенных к внешнему источнику питания постоянного тока через токосъемные кольца и угольные щетки.

Говоря о «синхронном генераторе», терминология, используемая для описания частей машины, является обратной терминологии для описания генератора постоянного тока. Обмотки возбуждения — это обмотки, создающие основное магнитное поле, которые являются обмотками ротора для синхронной машины, а обмотки якоря — это обмотки, в которых индуцируется основное напряжение, обычно называемые обмотками статора. Другими словами, для синхронной машины обмотки ротора являются обмотками возбуждения, а обмотки статора — обмотками якоря, как показано.

Конструкция синхронного генератора

В приведенном выше примере показана базовая конструкция синхронного генератора с явно выраженным двухполюсным ротором. Эта обмотка ротора подключена к напряжению питания постоянного тока, создающему ток возбуждения I f . Внешнее напряжение возбуждения постоянного тока, которое может достигать 250 вольт постоянного тока, создает электромагнитное поле вокруг катушки со статическими северным и южным полюсами.

Когда вал ротора генератора вращается лопастями турбины (первичный двигатель), полюса ротора также будут двигаться, создавая вращающееся магнитное поле, поскольку северный и южный полюса вращаются с той же угловой скоростью, что и лопасти турбины (при условии прямого водить машину). Когда ротор вращается, его магнитный поток пересекает отдельные катушки статора одну за другой, и по закону Фарадея в каждой катушке статора индуцируется ЭДС и, следовательно, ток.

Величина напряжения, индуцированного в обмотке статора, как показано выше, является функцией напряженности магнитного поля, которая определяется током возбуждения, скоростью вращения ротора и числом витков в обмотке статора. Поскольку синхронная машина имеет три обмотки статора, в обмотках статора генерируется трехфазное напряжение питания, соответствующее обмоткам А, В и С, которые электрически разнесены на 120 o друг от друга, как показано выше.

Эта трехфазная обмотка статора подключается непосредственно к нагрузке, и, поскольку эти катушки являются стационарными, им не нужно проходить через большие ненадежные контактные кольца, коллектор или угольные щетки. Кроме того, поскольку катушки, генерирующие основной ток, являются стационарными, упрощается намотка и изоляция обмоток, поскольку они не подвергаются вращательным и центробежным силам, что позволяет генерировать более высокие напряжения.

Синхронный генератор с постоянными магнитами

Как мы видели, синхронные машины с возбуждением возбуждения требуют возбуждения постоянным током в обмотке ротора. Это возбуждение осуществляется за счет использования щеток и контактных колец на валу генератора. Однако есть несколько недостатков, таких как необходимость регулярного обслуживания, очистки от угольной пыли и т. д. Альтернативным подходом является использование бесщеточного возбуждения, в котором вместо электромагнитов используются постоянные магниты.

Как следует из названия, в Синхронный генератор с постоянными магнитами (ГПМГ), поле возбуждения создается с помощью постоянных магнитов в роторе. Постоянные магниты могут быть установлены на поверхности ротора, встроены в поверхность или установлены внутри ротора. Воздушный зазор между статором и ротором уменьшен для обеспечения максимальной эффективности и сведения к минимуму количества необходимого редкоземельного магнитного материала. Постоянные магниты обычно используются в маломощных и недорогих синхронных генераторах.

Для низкоскоростных ветряных генераторов с прямым приводом генератор с постоянными магнитами является более конкурентоспособным, поскольку он может иметь большее число полюсов, составляющее 60 или более полюсов, по сравнению с обычным синхронным генератором с фазным ротором. Кроме того, реализация возбуждения с постоянными магнитами проще, надежнее, но не позволяет контролировать возбуждение или реактивную мощность. Одним из основных недостатков синхронных генераторов ветряных турбин с постоянными магнитами является то, что без контроля потока ротора они достигают максимальной эффективности только при одной заранее определенной скорости ветра.

Синхронная скорость генераторов

Частота выходного напряжения зависит от скорости вращения ротора, другими словами, от его «угловой скорости», а также от количества отдельных магнитных полюсов на роторе. В нашем простом примере выше синхронная машина имеет два полюса, один северный полюс и один южный полюс. Другими словами, машина имеет два отдельных полюса или одну пару полюсов (север-юг), также известную как пары полюсов.

Когда ротор делает один полный оборот, 360 o , генерируется один цикл ЭДС индукции, поэтому частота будет равна одному циклу на каждый полный оборот или 360 o . Если удвоить количество магнитных полюсов до четырех, (две пары полюсов), то на каждый оборот ротора будет генерироваться два цикла ЭДС индукции и так далее.

Поскольку один цикл ЭДС индукции создается одной парой полюсов, количество циклов ЭДС, возникающих за один оборот ротора, будет, следовательно, равно количеству пар полюсов P. Таким образом, если количество циклов на число оборотов задается как: P/2 относительно числа полюсов, а количество оборотов ротора N в секунду задается как: N/60, тогда частота ( ƒ ) ЭДС индукции будет определяться как:

В синхронном двигателе его угловая скорость определяется частотой напряжения питания, поэтому N обычно называют синхронной скоростью. Тогда для синхронного генератора с полюсом «P» скорость вращения первичного двигателя (лопастей турбины) для получения необходимой выходной частоты ЭДС индукции 50 Гц или 60 Гц будет:

При 50 Гц

Количество
отдельных полюсов
2 4 8 12 24 36 48
Скорость вращения
(об/мин)
3000 1500 900 96

750 500 250 167 125

При 60 Гц

90 111

Количество
отдельных полюсов
2 4 8 12 24 36 48
Скорость вращения
(об/мин)
3600 1800 900 600 300 200 150

Итак для данного синхронного генератора, спроектированного с фиксированным числом полюсов, генератор должен приводиться в движение с фиксированной синхронной скоростью, чтобы поддерживать частоту постоянной ЭДС индукции при требуемом значении, либо 50Гц, либо 60Гц для питания сетевых приборов. Другими словами, частота создаваемой ЭДС синхронизирована с механическим вращением ротора.

Тогда сверху видно, что для генерации 60 Гц с помощью 2-полюсной машины ротор должен вращаться со скоростью 3600 об/мин, или для генерации 50 Гц с помощью 4-полюсной машины ротор должен вращаться со скоростью 1500 об/мин. . Для синхронного генератора, который приводится в действие электродвигателем или парогенератором, эта синхронная скорость может быть легко достигнута, однако при использовании в качестве синхронного генератора ветровой турбины это может быть невозможно, поскольку скорость и мощность ветра постоянно меняется.

Синхронные генераторы (Электрические генераторы…

Из нашего предыдущего учебника по проектированию ветряных турбин мы знаем, что все ветряные турбины выигрывают от ротора, работающего с оптимальным передаточным числом скоростей . Но чтобы получить TSR от 6 до 8, угловая скорость лопастей, как правило, очень низкая и составляет от 100 до 500 об/мин, поэтому, глядя на наши таблицы выше, нам потребуется синхронный генератор с большим числом магнитных полюсов, например, 12 или выше.

Кроме того, потребуется какая-либо форма механического ограничителя скорости, такая как бесступенчатая трансмиссия или бесступенчатая трансмиссия, чтобы поддерживать вращение лопастей ротора с постоянной максимальной скоростью для ветряной турбины с прямым приводом. Однако для синхронной машины чем больше у нее полюсов, тем крупнее, тяжелее и дороже становится машина, которая может быть приемлемой или неприемлемой.

Одним из решений является использование синхронной машины с небольшим числом полюсов, которая может вращаться с более высокой скоростью от 1500 до 3600 об/мин, приводимой в движение через редуктор. Низкая скорость вращения лопастей ротора ветряных турбин увеличивается с помощью редуктора, который позволяет скорости генератора оставаться более постоянной при изменении скорости вращения лопастей турбины, поскольку изменение на 10% при 1500 об/мин менее проблематично, чем изменение на 10% при 100 об/мин. Этот редуктор может согласовать скорость генератора с переменной скоростью вращения лопастей, что позволяет работать с переменной скоростью в более широком диапазоне.

Однако использование редуктора или системы шкивов требует регулярного технического обслуживания, увеличивает вес ветряной турбины, создает шум, увеличивает потери мощности и снижает эффективность системы, поскольку требуется дополнительная энергия для привода шестерен редуктора и внутренних компонентов.

Существует много преимуществ использования системы прямого привода без механической коробки передач, но отсутствие коробки передач означает более крупную синхронную машину с увеличением как размера, так и стоимости генератора, который должен работать на низких скоростях. Итак, как мы можем управлять синхронным генератором в системе низкоскоростных ветряных турбин, скорость вращения лопастей ротора которых определяется только мощностью ветра. Путем выпрямления сгенерированного 3-фазного питания в источник постоянного или постоянного тока.

Синхронные генераторные выпрямители

Диодные выпрямители представляют собой электронные устройства, используемые для преобразования переменного тока (переменного тока) в постоянный (постоянный ток). Преобразовывая выходную мощность синхронного генератора в источник постоянного тока, генератор ветровой турбины может работать на других скоростях и частотах, отличных от его фиксированной синхронной скорости.

Это позволяет преобразовывать переменную частоту и переменное выходное напряжение генератора в постоянное напряжение переменного уровня. Преобразовывая выход переменного тока в постоянный, генератор теперь можно использовать как часть ветряной системы для зарядки аккумуляторов или как часть ветроэнергетической системы с переменной скоростью. Затем синхронный генератор переменного тока преобразуется в генератор постоянного тока.

Схема простейшего выпрямителя использует схему диодного моста для преобразования переменного тока, генерируемого генератором, в флуктуирующий источник постоянного тока, амплитуда которого определяется скоростью вращения генератора. В этой схеме выпрямителя синхронного генератора, показанной ниже, 3-фазный выход генератора выпрямляется до постоянного тока с помощью 3-фазного выпрямителя.

Цепь генераторного выпрямителя

Принципиальная схема мостового трехфазного выпрямителя переменного тока в постоянный показана выше. В этой конфигурации ветряная турбина может управлять генератором на частоте, не зависящей от синхронной частоты, поскольку изменение скорости генератора изменяет частоту генератора. Следовательно, можно изменять скорость генератора в более широком диапазоне и работать с оптимальной скоростью для получения максимальной мощности в зависимости от фактической скорости ветра.

Обратите внимание, что выходное напряжение трехфазного мостового выпрямителя не является чистым постоянным током. Выходное напряжение имеет уровень постоянного тока вместе с большими колебаниями переменного тока. Эта форма сигнала обычно известна как «пульсирующий постоянный ток», который можно использовать для зарядки аккумуляторов, но нельзя использовать в качестве удовлетворительного источника постоянного тока. Чтобы удалить эти пульсации переменного тока, используется фильтр или схема сглаживания. Эти схемы сглаживания или схемы фильтра пульсаций используют комбинации катушек индуктивности и конденсаторов для получения плавного постоянного напряжения и тока.

При использовании в качестве части системы, подключенной к сети, синхронные машины могут быть подключены к сети только тогда, когда их частота, фазовый угол и выходное напряжение такие же, как у сети, другими словами, они вращаются синхронно. скорость, как мы видели выше. Но, преобразовывая их переменное выходное напряжение и частоту в постоянный источник постоянного тока, мы теперь можем преобразовать это постоянное напряжение в источник переменного тока с правильной частотой и амплитудой, соответствующей сети электросети, используя либо однофазную, либо трехфазную сеть. фазоинвертор.

Инвертор — это устройство, которое преобразует электричество постоянного тока (DC) в электричество переменного тока (AC), которое может подаваться непосредственно в электрическую сеть, поскольку подключенные к сети инверторы работают синхронно с коммунальной сетью и производят идентичную электроэнергию. к мощности коммунальной сети. Подключенные к сети синусоидальные инверторы для ветровых установок выбираются с диапазоном входного напряжения, соответствующим выпрямленному выходному напряжению турбины.

Преимущество непрямого подключения к сети заключается в том, что ветряная турбина может работать с переменной скоростью. Еще одним преимуществом выпрямления выходного сигнала генератора является то, что ветряные турбины с синхронными генераторами, которые используют электромагниты в своей конструкции ротора, могут использовать этот постоянный ток для питания обмоток катушек вокруг электромагнитов в роторе. Однако недостатком непрямого подключения к сети является стоимость, поскольку системе требуется инвертор и два выпрямителя, один для управления током статора, а другой для генерирования выходного тока, как показано ниже.

Схема синхронного генератора

Краткое содержание учебного пособия

Синхронный генератор с фазным ротором уже используется в качестве генератора ветровой турбины, но одним из основных недостатков синхронного генератора может быть его сложность и стоимость. Безредукторные генераторы с прямым приводом представляют собой очень медленно вращающиеся синхронные генераторы с большим количеством полюсов для достижения их синхронной скорости. Генераторы с меньшим количеством полюсов имеют более высокие скорости вращения, поэтому требуют коробки передач или трансмиссии, что увеличивает стоимость.

Синхронные генераторы производят электричество, основная выходная частота которого синхронизирована со скоростью вращения ротора. Сетевым генераторам требуется постоянная фиксированная скорость для синхронизации с частотой сети общего пользования, и необходимо возбуждать обмотку ротора от внешнего источника постоянного тока с помощью токосъемных колец и щеток.

Основным недостатком одной операции с фиксированной скоростью является то, что она почти никогда не улавливает энергию ветра с максимальной эффективностью. Энергия ветра теряется, когда скорость ветра выше или ниже определенного значения, выбранного в качестве синхронной скорости.

Ветряные турбины с регулируемой скоростью используют выпрямители и инверторы для преобразования переменного напряжения, выходной переменной частоты синхронного генератора в фиксированное напряжение, фиксированную выходную частоту 50 Гц или 60 Гц, требуемую коммунальной сетью. Это позволяет использовать синхронные генераторы с постоянными магнитами, снижая стоимость. Для низкоскоростных генераторов ветряных турбин с прямым приводом генератор с постоянными магнитами более конкурентоспособен, поскольку он может иметь большее число полюсов, составляющее 60 или более полюсов, по сравнению с обычным синхронным генератором с фазным ротором.

В следующем уроке о ветроэнергетике и генераторах ветряных турбин мы рассмотрим работу и конструкцию другого типа электрической машины, называемой индукционным генератором, также известной как «асинхронный генератор». Асинхронные генераторы также могут использоваться для выработки трехфазной электроэнергии переменного тока, подключенной к сети.

Чтобы узнать больше о «Синхронных генераторах» или получить дополнительную информацию об энергии ветра о различных доступных системах генерации ветряных турбин, или изучить преимущества и недостатки использования синхронных генераторов как части системы ветряных турбин, подключенной к сети, щелкните здесь, чтобы Получите копию одной из лучших книг о синхронных генераторах и двигателях прямо сегодня на Amazon.