Изготовление генератора с автономным питанием | Проекты самодельных схем
Генератор с автономным питанием — это постоянно работающее электрическое устройство, предназначенное для бесконечной работы и непрерывного производства электроэнергии, которая обычно больше по величине, чем входной источник питания, через который он работает.
Кто бы не хотел, чтобы мотор-генератор с автономным питанием работал дома и безостановочно питал нужные бытовые приборы, абсолютно бесплатно. Мы обсудим детали нескольких таких схем в этой статье.
Энтузиаст свободной энергии из Южной Африки, который не хочет раскрывать свое имя, щедро поделился подробностями своего твердотельного автономного генератора со всеми заинтересованными исследователями свободной энергии.
Когда система используется с инверторной схемой, выходная мощность генератора составляет около 40 Вт.
Система может быть реализована в нескольких различных конфигурациях.
Первая версия, обсуждаемая здесь, способна одновременно заряжать три батареи 12, а также поддерживать генератор для постоянной непрерывной работы (пока, конечно, батареи не потеряют свою способность зарядки/разрядки)
Предлагаемый генератор с автономным питанием предназначен для работы днем и ночью, обеспечивая непрерывную подачу электроэнергии, как и наши солнечные батареи.
Первоначальный блок был сконструирован с использованием 4 катушек в качестве статора и центрального ротора с 5 магнитами, встроенными по окружности, как показано ниже:
Показанная красная стрелка указывает на регулируемый зазор между ротором и катушками, который может изменяется путем ослабления гайки, а затем перемещения узла катушки ближе или дальше от магнитов статора для получения желаемых оптимизированных выходных сигналов. Зазор может быть от 1 мм до 10 мм.
Узел ротора и механизм должны быть чрезвычайно точными с точки зрения их выравнивания и легкости вращения, и поэтому должны быть изготовлены с использованием прецизионных станков, таких как токарный станок.
Материал, используемый для этого, может быть прозрачным акрилом, и сборка должна включать 5 наборов по 9 магнитов, закрепленных внутри цилиндрической трубы, подобной полостям, как показано на рисунке.
Верхнее отверстие этих 5 цилиндрических барабанов защищено пластиковыми кольцами, извлеченными из тех же цилиндрических труб, чтобы гарантировать, что магниты будут плотно зафиксированы в соответствующих положениях внутри цилиндрических полостей.
Очень скоро 4 катушки были увеличены до 5, в которых новая добавленная катушка имела три независимых обмотки. Конструкции будут пониматься постепенно, когда мы пройдемся по различным принципиальным схемам и объясним, как работает генератор. Первую принципиальную схему можно увидеть ниже.
Батарея, обозначенная буквой «А», питает цепь. Ротор «С», состоящий из 5 магнитов, вручную перемещается так, что один из магнитов приближается к катушкам.
Набор катушек «B» включает в себя 3 независимые обмотки на одном центральном сердечнике, и магнит, проходящий мимо этих трех катушек, генерирует внутри них небольшой ток.
Ток в катушке номер «1» проходит через резистор «R» в базу транзистора, заставляя его включиться. Энергия, проходящая через катушку транзистора «2», позволяет ей превратиться в магнит, который толкает диск ротора «С» на своем пути, вызывая вращательное движение ротора.
Это вращение одновременно индуцирует обмотку тока «3», которая выпрямляется через синие диоды и передается обратно для зарядки батареи «А», восполняя почти весь ток, потребляемый этой батареей.
Как только магнит внутри ротора «С» удаляется от катушек, транзистор выключается, восстанавливая за короткое время напряжение на коллекторе вблизи линии питания +12 Вольт.
Истощает ток катушки «2». Из-за расположения катушек напряжение на коллекторе увеличивается примерно до 200 вольт и выше.
Однако этого не происходит, потому что выход подключен к пяти последовательным батареям, которые снижают нарастающее напряжение в соответствии с их общим номиналом.
Аккумуляторы имеют последовательное напряжение приблизительно 60 вольт (что объясняет, почему был встроен мощный быстродействующий высоковольтный транзистор MJE13009). диод начинает включаться, высвобождая электричество, накопленное в катушке, в аккумуляторную батарею. Этот импульс тока проходит через все 5 батарей, заряжая каждую из них. Проще говоря, это представляет собой схему генератора с автономным питанием.0003
В прототипе в качестве нагрузки для длительных неустанных испытаний использовался 12-вольтовый 150-ваттный инвертор, освещающий 40-ваттную сетевую лампу: приемные катушки:
Катушки «B», «D» и «E» активируются одновременно тремя отдельными магнитами. Электроэнергия, генерируемая всеми тремя катушками, передается на 4 синих диода для производства постоянного тока, который применяется для зарядки батареи «А», питающей цепь.
Дополнительный вход в приводную батарею в результате добавления 2 дополнительных приводных катушек к статору позволяет машине стабильно работать в виде машины с автономным питанием, бесконечно поддерживая напряжение батареи «А».
Единственной движущейся частью этой системы является ротор диаметром 110 мм, представляющий собой акриловый диск толщиной 25 мм, установленный на шарикоподшипниковом механизме, извлеченном из выброшенного жесткого диска вашего компьютера. Комплектация выглядит следующим образом:
На изображениях диск кажется полым, однако на самом деле это твердый, кристально чистый пластик. Отверстия просверлены на диске в пяти местах, равномерно распределенных по всей окружности, то есть с шагом 72 градуса.
5 первичных отверстий, просверленных на диске, предназначены для удержания магнитов, которые находятся в группах по девять круглых ферритовых магнитов. Каждый из них имеет диаметр 20 мм и высоту 3 мм, образуя стопки магнитов общей высотой 27 мм в длину и диаметром 20 мм. Эти стопки магнитов размещены таким образом, что их северные полюса выступают наружу.
После того, как магниты установлены, ротор помещается внутрь полоски пластиковой трубы, чтобы плотно зафиксировать магниты на месте во время быстрого вращения диска. Пластиковая труба зажимается ротором с помощью пяти крепежных болтов с потайными головками.
Катушки катушки имеют длину 80 мм и диаметр конца 72 мм. Средний шпиндель каждого змеевика изготовлен из пластиковой трубы длиной 20 мм с внешним и внутренним диаметром 16 мм. с толщиной стенок 2 мм.
После завершения намотки катушки этот внутренний диаметр заполняется рядом сварочных стержней со снятым сварочным покрытием. Впоследствии они обволакиваются полиэфирной смолой, но отличной альтернативой может стать и цельный брусок из мягкого железа:
Три жилы проволоки, составляющие катушки «1», «2» и «3», имеют диаметр 0,7 мм и наматываются друг на друга перед намоткой на катушку «В». Этот метод бифилярной намотки создает намного более тяжелый композитный жгут проводов, который можно эффективно просто намотать на катушку. Намотчик, показанный выше, работает с патроном, чтобы удерживать сердечник катушки для обеспечения намотки, тем не менее, можно использовать любой тип основного намотчика.
Конструктор выполнил скручивание проволоки, натянув 3 пряди проволоки, каждая из которых берет свое начало от независимой катушки 500-граммового пучка.
Три жилы плотно закреплены на каждом конце, провода прижаты друг к другу на каждом конце с трехметровым расстоянием между зажимами. После этого провода закрепляют в центре и приписывают 80 витков к миделю. Это позволяет сделать 80 витков для каждого из двух 1,5-метровых пролетов, расположенных между зажимами.
Набор скрученных или намотанных проводов наматывается на временную катушку, чтобы сохранить его в чистоте, поскольку это скручивание необходимо повторить еще 46 раз, поскольку все содержимое катушек с проволокой потребуется для одной составной катушки:
Следующие 3 метра трех проводов затем зажимаются и 80 витков наматываются в среднее положение, но в этом случае витки располагаются в противоположном направлении. Даже сейчас реализованы точно такие же 80 витков, но если предыдущая обмотка была «по часовой стрелке», то эта обмотка переворачивается «против часовой стрелки».
Это особое изменение направления витков обеспечивает полный ассортимент витых проводов, в которых направление витка становится противоположным через каждые 1,5 метра по всей длине. Так устроен серийно выпускаемый литцендрат.
Этот особенный набор скрученных проводов с великолепным внешним видом теперь используется для намотки катушек. В одном фланце катушки, точно возле средней трубки и сердечника, просверливается отверстие, и через него вставляется начало проволоки. Затем проволоку с силой сгибают под углом 90 градусов и наматывают на вал катушки, чтобы начать намотку катушки.
Намотка пучка проводов выполняется с большой осторожностью рядом друг с другом по всему валу катушки, и вы увидите 51 номер намотки вокруг каждого слоя, а следующий слой наматывается прямо поверх этого самого первого слоя, идя снова вернуться к началу. Убедитесь, что витки этого второго слоя располагаются точно над верхней частью обмотки под ними.
Это может быть несложно, поскольку пакет проводов достаточно толстый, чтобы его можно было легко разместить. Если хотите, вы можете попробовать обернуть первый слой толстой белой бумагой, чтобы второй слой был отчетливым при переворачивании. Вам потребуется 18 таких слоев, чтобы закончить катушку, которая в конечном итоге будет весить 1,5 кг, а готовая сборка может выглядеть примерно так, как показано ниже: up предназначен для создания фантастической магнитной индукции на двух других катушках всякий раз, когда на одну из катушек подается напряжение питания.
Эта обмотка в настоящее время включает катушки 1,2 и 3 принципиальной схемы. Вам не нужно постоянно беспокоиться о маркировке концов каждой жилы провода, поскольку вы можете легко идентифицировать их с помощью обычного омметра, проверив непрерывность на концах определенных проводов.
Катушка 1 может использоваться как пусковая катушка, которая будет включать транзистор в нужные периоды времени. Катушка 2 может быть управляющей катушкой, на которую подается питание от транзистора, а катушка 3 может быть одной из первых выходных катушек:
Катушки 4 и 5 представляют собой прямые пружинные катушки, которые подключены параллельно катушке привода 2. Они помогают усилить привод и поэтому важны. Катушка 4 имеет сопротивление постоянному току 19 Ом, а сопротивление катушки 5 может составлять около 13 Ом.
Тем не менее, в настоящее время ведутся исследования, чтобы определить наиболее эффективное расположение катушек для этого генератора, и, возможно, дополнительные катушки могут быть идентичны первой катушке, катушке «B», и все три катушки прикреплены таким же образом, и Управляющая обмотка на каждой катушке управляется одним высокоэффективным быстродействующим переключающим транзистором. Нынешняя установка выглядит так:
Вы можете игнорировать показанные порталы, так как они были включены только для изучения различных способов активации транзистора.
В настоящее время катушки 6 и 7 (каждая по 22 Ом) работают как дополнительные выходные катушки, подключенные параллельно выходной катушке 3, каждая из которых состоит из 3 витков и имеет сопротивление 4,2 Ом. Они могут быть с воздушным сердечником или с твердым железным сердечником.
При тестировании выяснилось, что вариант с воздушным сердечником работает чуть лучше, чем с железным сердечником. Каждая из этих двух катушек состоит из 4000 витков, намотанных на катушки диаметром 22 мм с использованием 0,7 мм (AWG # 21 или swg 22) суперэмалированного медного провода. Все катушки имеют одинаковые характеристики провода.
Используя эту установку катушки, прототип мог работать без остановок около 21 дня, поддерживая постоянное напряжение приводной батареи на уровне 12,7 вольт. Через 21 день система была остановлена для некоторых модификаций и снова испытана с использованием совершенно новой компоновки.
В конструкции, продемонстрированной выше, ток, проходящий от аккумуляторной батареи в цепь, фактически составляет 70 миллиампер, что при 12,7 вольт дает входную мощность 0,89 Вт. Выходная мощность составляет примерно около 40 Вт, что подтверждает КПД 45.
За исключением трех дополнительных аккумуляторов на 12 В, которые дополнительно заряжаются одновременно. Результаты действительно кажутся чрезвычайно впечатляющими для предложенной схемы.
Метод привода использовался Джоном Бедини так много раз, что создатель решил поэкспериментировать с подходом Джона к оптимизации для достижения максимальной эффективности. Тем не менее, он обнаружил, что в конечном итоге полупроводник с эффектом Холла, специально выровненный с магнитом, дает наиболее эффективные результаты.
Дальнейшие исследования продолжаются, и на данный момент выходная мощность достигла 60 Вт. Это выглядит поистине потрясающе для такой крошечной системы, особенно когда вы видите, что она не включает реалистичный ввод. Для этого следующего шага мы уменьшаем батарею до одной. Настройка показана ниже:
В этой настройке на катушку «B» также подаются импульсы от транзистора, а выходной сигнал катушек вокруг ротора теперь направляется на выходной инвертор.
Здесь приводная батарея удалена и заменена маломощным 30-вольтовым трансформатором и диодом. Это, в свою очередь, управляется с выхода инвертора. Небольшое вращательное усилие ротора создает достаточный заряд на конденсаторе, чтобы система могла запускаться без какой-либо батареи. Выходная мощность для этой текущей установки может достигать 60 Вт, что является потрясающим улучшением на 50%.
3 12-вольтовые батареи также сняты, и схема может легко работать, используя только одну батарею. Непрерывная выходная мощность от одиночной батареи, которая никоим образом не требует внешней подзарядки, кажется большим достижением.
Следующим усовершенствованием является схема, включающая датчик Холла и полевой транзистор. Датчик Холла расположен точно на одной линии с магнитами. Это означает, что датчик помещается между одной из катушек и магнитом ротора. У нас есть зазор 1 мм между датчиком и ротором. На следующем изображении показано, как именно это нужно сделать:
Еще один вид сверху, когда катушка находится в правильном положении:
Эта схема демонстрировала невероятную непрерывную мощность в 150 Вт при использовании трех 12-вольтовых батарей. Первая батарея помогает питать схему, а вторая заряжается через три диода, подключенных параллельно, чтобы увеличить передачу тока для заряжаемой батареи.
Переключатель DPDT «RL1» меняет местами соединения батареи каждые пару минут с помощью показанной ниже схемы. Эта операция позволяет обеим батареям постоянно оставаться полностью заряженными.
Ток перезарядки также проходит через второй набор из трех параллельных диодов, заряжающих третью 12-вольтовую батарею. Эта 3-я батарея управляет инвертором, через который проходит предполагаемая нагрузка. Тестовая нагрузка, используемая для этой установки, представляла собой 100-ваттную лампочку и 50-ваттный вентилятор.
Датчик Холла переключает NPN-транзистор, однако практически любой быстродействующий транзистор, например BC109 или 2N2222 BJT, будет работать очень хорошо. Вы поймете, что все катушки в этот момент управляются полевым транзистором IRF840. Реле, используемое для переключения, относится к типу с фиксацией, как указано в этой конструкции:
И он питается от таймера IC555N с малым током, как показано ниже:
Синие конденсаторы выбраны для переключения конкретного фактического реле, которое используется в цепи. Они кратковременно позволяют реле включаться и выключаться каждые пять минут или около того. Резисторы номиналом 18 кОм над конденсаторами расположены так, чтобы разрядить конденсатор в течение пяти минут, когда таймер находится в выключенном состоянии.
Однако, если вы не хотите иметь это переключение между батареями, вы можете просто настроить его следующим образом:
При таком расположении батарея, питающая инвертор, подключенный к нагрузке, имеет более высокую емкость. Хотя создатель использовал пару батарей по 7 Ач, можно использовать любую обычную 12-вольтовую батарею для скутеров на 12 ампер-часов.
В основном одна из катушек используется для подачи тока на выходную батарею и одна оставшаяся катушка, которая может быть частью основной трехжильной катушки. Это принято подавать напряжение питания непосредственно на приводной аккумулятор.
Диод 1N5408 рассчитан на 100 В, 3 А. Диоды без значения могут быть любыми диодами, такими как диод 1N4148. Концы катушек, соединенные с полевым транзистором IRF840, физически установлены по окружности ротора.
Таких катушек можно найти 5 штук. Те, которые имеют серый цвет, показывают, что крайние правые три катушки состоят из отдельных жил основной 3-проводной составной катушки, уже рассмотренной в наших предыдущих схемах.
Несмотря на то, что мы видели использование трехжильной витой проволоки для переключения в стиле Бедини, встроенного как для привода, так и для вывода, в конечном итоге было сочтено ненужным включать этот тип катушки.
Следовательно, обычная спиральная катушка, состоящая из 1500 граммов эмалированной медной проволоки диаметром 0,71 мм, оказалась столь же эффективной. Дальнейшие эксперименты и исследования помогли разработать следующую схему, которая работала даже лучше, чем предыдущие версии:
В этой усовершенствованной конструкции используется 12-вольтовое реле без фиксации. Реле рассчитано на потребление около 100 миллиампер при 12 вольтах.
Включение резистора на 75 Ом или 100 Ом последовательно с катушкой реле помогает снизить потребление до 60 миллиампер.
Он потребляется только половину времени в периоды работы, потому что он остается нерабочим, пока его контакты находятся в Н/З положении. Как и в предыдущих версиях, эта система работает неограниченное время без каких-либо проблем.
Автор: Патрик Дж. Келли
Обратная связь от одного из преданных читателей этого блога, г-на Тамала Индики
Уважаемый сэр Swagatam,
Большое спасибо за ваш ответ, и я благодарен вам за то, что подбодрил меня. Когда вы обратились ко мне с такой просьбой, я уже установил еще 4 катушки для моего маленького двигателя Бедини, чтобы сделать его все более и более эффективным. Но я не мог создать схемы Бедини с транзисторами для этих 4 катушек, так как не мог купить оборудование.
Но мой двигатель Бедини по-прежнему работает с предыдущими 4 катушками, даже если есть небольшое сопротивление ферритовых сердечников недавно присоединенных других четырех катушек, поскольку эти катушки ничего не делают, а просто сидят вокруг моего маленького магнитного ротора. Но мой мотор все еще может заряжать аккумулятор 12 В 7 А, когда я езжу на нем с батареями 3,7.
По вашей просьбе прилагаю видео ролик моего мотора бедини и советую посмотреть его до конца т.к. в начале вольтметр показывает Заряд аккумулятора 13,6В а после запуска мотора оно поднимается до 13,7В и через каких-то 3-4 минуты поднимается до 13,8В.
Я использовал небольшие батареи на 3,7 В для питания моего маленького двигателя Бедини, и это хорошо доказывает эффективность двигателя Бедини. В моем двигателе 1 катушка является бифилярной катушкой, а другие 3 катушки запускаются тем же триггером этой бифилярной катушки, и эти три катушки увеличивают энергию двигателя, выдавая еще несколько импульсов катушки при ускорении ротора магнита. . В этом секрет моего Маленького Мотора Бедини, поскольку я соединил катушки в параллельном режиме.
Я уверен, что когда я использую другие 4 катушки с цепями бедини, мой двигатель будет работать более эффективно, а магнитный ротор будет вращаться с огромной скоростью.
Я пришлю вам еще один видеоклип, когда закончу создание цепей Бедини.
С уважением!
Thamal Indika
Результаты практических испытаний
Может ли электродвигатель работать как генератор?
ДА, но это может быть сделано только в долгосрочной перспективе с электродвигателем, который также предназначен для работы в качестве генератора, и если генератор будет работать параллельно с другим поколением, двигатель должен быть синхронным.
Я служил в ВМС США на подводной лодке по специальности электрик-ядерщик. Моя электрическая установка включает в себя 2 мотор-генератора мощностью 500 кВт. Когда конец переменного тока работал как двигатель переменного тока, конец постоянного тока был генератором постоянного тока, который снабжал энергией аккумулятор субмарины, обратный ток, а конец постоянного тока становился двигателем постоянного тока, а двигатель переменного тока реверсировал направление тока и работал как генератор переменного тока. Скорость и направление вращения двигателя-генератора постоянного и переменного тока с общим валом не менялись независимо от того, какой конец действовал как двигатель, а какой — как генератор.
Я лично эксплуатировал, ремонтировал и обслуживал эти мотор-генераторы в течение 3 лет своей жизни, поверьте мне, я знаю, о чем говорю. Единственное, что менялось, это направление тока за счет увеличения или уменьшения сопротивления с помощью реостатов.
Если вы не выполняете подключение, вы должны помнить о положительной и отрицательной клемме машины постоянного тока относительно напряжения на клеммах аккумулятора. Если положительный вывод машины постоянного тока составляет, например, 100 В постоянного тока, но напряжение положительного вывода аккумулятора составляет 100,1 В постоянного тока, ток будет протекать из вывода батареи через двигатель постоянного тока в противоположный полюс батареи и через кислоты для замыкания цепи. Если увеличить шунтирующий ток в двигателе постоянного тока, клеммы машины постоянного тока относительно батареи будут выше, и ток изменит направление и зарядит батарею.
Имейте в виду, что в каждом работающем электродвигателе присутствует генераторное действие, и каждый генератор имеет двигательное действие (противоЭДС). Двигатели переменного тока не требуют пускового сопротивления из-за импеданса обмоток и частоты переменного тока, что ограничивает пусковой ток при запуске. Однако для двигателей постоянного тока требуются пусковые резисторы, потому что частота постоянного тока равна нулю, и поэтому без пускового сопротивления пусковой импульс огромен; однако, когда двигатель постоянного тока вращается, пусковые резисторы отключаются от цепи, поскольку действие генератора (противоЭДС) в электродвигателе ограничивает рабочий ток. Используя эту встречную ЭДС через шунтирующий ток, вы можете управлять напряжением на клеммах машины постоянного тока.
Еще одна вещь, которую вы должны иметь в виду, это то, что машина постоянного тока имеет коммутаторы, которые позволяют двигателю постоянного тока работать, иначе он повернется на 90 градусов и остановится, но коммутатор постоянно замыкает и тормозит соединения, когда двигатель вращается, поэтому ротор полярность поля относительно полюсов статора остается правильной и электродвигатель продолжает вращаться. Серийный двигатель постоянного тока будет работать на переменном токе, блендеры, дрели и т. д. — это двигатели постоянного тока (универсальные двигатели). Несмотря на то, что полярность клемм при переменном токе будет переключаться туда и обратно, из-за коммутатора и того факта, что в поле и статоре течет один и тот же ток, ток не меняется на противоположный при подаче переменного тока, двигатель постоянного тока вращается только в одном направлении.
С генератором переменного тока параллельно с другими генераторами переменного тока, если я попытаюсь поднять частоту, я подниму киловатт, а если я попытаюсь поднять напряжение, я подниму квар. Если я уменьшу частоту и напряжение достаточно, генератор разгрузится до такой степени, что ток реверсирует направление и двигатели генератора переменного тока. С шунтирующим двигателем постоянного тока путем управления током, проходящим через шунтирующее охлаждение, клеммы машины постоянного тока будут выше или ниже напряжения батареи / системы постоянного тока.