Техническая информация о стартере и генераторе. О ремонте стартера и ремонте генератора.

Генератор предназначен для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядки аккумулятора при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумулятора. Кроме того, напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне частот вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи, и ее ускоренному выходу из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализация, акустическое оборудование.

Генератор – достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у всех автомобильных генераторов, независимо от того, где они выпускаются.

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т.е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генератора, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение (обычно через контрольную лампу  состояния генераторной установки). Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т.к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы — обычно 2… 3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т.е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения  ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т.к. он оказывается включенным параллельно диоду силового выпрямителя генератора.

Обмотка статора генераторов зарубежных и отечественных фирм – трехфазная. Она состоит из трех 3 частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 120 электрических градусов. Фазы могут соединяться в «звезду» или «треугольник». При этом различают фазные и линейные напряжения и токи. Фазные напряжения  действуют между концами обмоток фаз, а токи  протекают в этих обмотках, линейные же напряжения  действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи . Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в «треугольник» фазные токи меньше линейных, в то время как у «звезды» линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в «треугольник», значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у «звезды» больше фазного, в то время как у «треугольника» они равны и для получения такого же выходного напряжения, при тех же частотах вращения «треугольник» требует соответствующего увеличения числа витков его фаз по сравнению со «звездой».

Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в «звезду», т.е. получается «двойная звезда». Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом «+» генератора, а другие три с выводом «—» («массой»). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».

У многих  генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.   Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и т.д. Иногда это просто полупроводниковый кремниевый переход, герметизированный на теплоотводе

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т.е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генератор элементов ее защиты от скачков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении, он не пропускает ток лишь до определенной величины этого напряжения (напряжением стабилизации).

Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+» генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя» используется и в регуляторах напряжения.

Принцип действия регулятора напряжения (реле регулятора)

В настоящее время все генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки – тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения.

Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить – увеличивается.

Конструктивное исполнение генераторов

По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой «компактной» конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому, по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой (Mitsubishi, Hitachi), и генераторы, где контактные кольца и щетки расположены вне внутренней полости (Bosch, Valeo). В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками –передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части –  над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку (Denso). Существуют конструкции, у которых средние листы пакета статора выступают над остальными, и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное — только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы — полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума. После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление, особенно при работе во влажной среде. Диаметр колец при расположении щеточно-контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т.к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты.

В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя, и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы, либо в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластин-теплоотводов, соединенных с «массой» и выводом «+» генератора, случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи, что может привести к возгоранию. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами (Delco Remy, Motorcraft). Посадка шариковых подшипников на вал со стороны контактных колец обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колеи — скользящая, со стороны привода — плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства — резиновые кольца, пластмассовые проставки, гофрированные стальные пружины и т.п. Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (воздух засасывается центробежным вентилятором в крышку со стороны контактных колец.

У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов и крепление их на двигателе

Привод генераторов всех типов автомобилей осуществляется от коленчатого вала ременной или зубчатой передачей. При этом возможны два варианта — клиновым или поликлиновым ремнем. Приводной шкив генератора выполняется с одним или двумя ручьями для клинового ремня и с профилированной рабочей дорожкой для поликлинового. Вентилятор, выполненный, как правило, штамповкой из листовой стали, в традиционной конструкции генератора крепится на валу рядом со шкивом. Шкив может выполняться сборным из двух штампованных дисков, литым из чугуна или стали, а также полученным методом штамповки или точеным из стали.

Качество обеспечения питанием потребителей электроэнергии, в том числе зарядка аккумуляторной батареи, зависит от передаточного числа ременной передачи, равного отношению диаметров ручьев приводного шкива генератора к шкиву коленчатого вала. Для повышения качества питания электропотребителей это число должно быть как можно больше, т.к. при этом частота вращения генератора повышается, и он способен отдать потребителям больший ток. Однако при слишком больших передаточных числах происходит ускоренный износ приводного ремня, поэтому передаточные числа передачи двигатель-генератор для клиновых ремней лежат в пределах 1,8. ..2,5, для поликлиновых до 3. Более высокое передаточное число возможно потому, что поликлиновые ремни допускают применение на генераторах приводных шкивов малых диаметров и меньший угол охвата шкива ремнем. Наилучшей конструкцией для генератора является индивидуальный привод. При таком приводе подшипники генератора оказываются менее нагруженными, чем в «коллективном» приводе, при котором обычно генератор приводится во вращение одним ремнем с другими агрегатами, чаще всего водяным насосом, и где шкив генератора служит натяжным роликом. Поликлиновым ремнем обычно приводится во вращение сразу несколько агрегатов. Например, на автомобилях Mercedes один поликлиновой ремень приводит во вращение одновременно генератор, водяной насос, насос гидроусилителя руля, гидромуфту вентилятора и компрессор кондиционера. В этом случае натяжение ремня осуществляется и регулируется одним или несколькими натяжными роликами при фиксированном положении генератора. Крепление генераторов на двигателе выполнено на одной или двух крепежных лапах, сочленяемых с кронштейном двигателя. Натяжение ремня производится поворотом генератора на кронштейне, при этом натяжная планка, соединяющая двигатель с натяжным ухом, может быть выполнена в виде винта, по которому перемещается резьбовая муфта, сочленяемая с ухом.

Встречаются конструкции, у которых прорезь в натяжной планке имеет зубчатую нарезку, по которой перемещается натяжное устройство, соединенное с натяжным ухом. Такие конструкции позволяют обеспечивать натяжение ремня очень точно и надежно.

К сожалению, на данный момент не существует международных нормативных документов, определяющих габаритные и присоединительные размеры генераторов легковых автомобилей, поэтому генераторы различных фирм существенно отличаются друг от друга, разумеется, кроме изделий, специально предназначенных в качестве запчастей для замены генераторов других фирм.

Бесщеточные генераторы

Бесщеточные генераторы применяются там, где возникают требования повышенной надежности и долговечности, главным образом на магистральных тягачах, междугородных автобусах и т. п. Повышенная надежность этих генераторов обеспечивается тем, что у них отсутствует щеточно-контактный узел, подверженный износу и загрязнению, а обмотка возбуждения неподвижна. Недостатком генераторов этого типа являются увеличенные габариты и масса. Бесщеточные генераторы выполняются с максимальным использованием конструктивной преемственности со щеточными. На выпуске генераторов такого типа специализируется американская фирма Delco-Remy, являющаяся отделением General Motors. Отличие этой конструкции состоит в том, что одна клювообразная полюсная половина посажена на вал, как у обычного щеточного генератора, а другая в урезанном виде приваривается к ней по клювам немагнитным материалом.

Что представляет собой синхронный генератор

Задача генератора – преобразование механической вырабатываемой энергии в электрическую. Работа его двигателя основана на следующем принципе: топливо впрыскивается в цилиндр двигателя и, сгорая, трансформируется в газообразную смесь, которая расширяется и выталкивает поршень. Тот, в свою очередь, заставляет двигаться коленчатый вал, а он уже вращает ведущий. Чем больше поршней, тем быстрее скорость вращения вала. На этой стадии и происходит выработка механической энергии, преобразовываемой в электричество по закону Фарадея.

Устройство генератора

В основу любого генератора заложены два элемента:

  • статор – неподвижная деталь, состоящая из медных обмоток, уложенных в пазы вокруг сердечника, представляющего собой комплект пластин из мягкой стали. В однофазном генераторе – одна обмотка, в трехфазном − три;
  • ротор – вращающаяся часть, включает механизм образования магнитного поля. В бытовых генераторах обычно применяется двухполюсный ротор. Обмотка соединяется с питающим ее блоком управления (AVR) посредством двух щеточных узлов. Ротор в совокупности с обмоткой составляют индуктор.

В синхронном агрегате частота вращения, которую создает статор магнитного поля, совпадает с частотой роторного вращения.

Принцип работы

Синхронный генератор функционирует следующим образом: магнитное поле при вращении ротора пересекает статорные обмотки, чем возбуждает в них переменное напряжение. Когда подключается нагрузка в виде потребителей, в цепи появляется переменный ток. От скорости, с которой вращается ротор, непосредственно зависит напряжение, частота тока.

Электронагрузка на синхронный агрегат прямо пропорциональна нагрузке на вал двигателя, что способно повлечь изменение частоты вращения ротора, показателя напряжения. Избежать колебаний помогает блок управления, который в автоматическом режиме регулирует ток в обмотке ротора путем влияния на магнитное поле. В асинхронном генераторе электрическая связь с ротором отсутствует, поэтому параметры напряжения и тока искусственно не регулируются.

Преимущества синхронного генератора

Основным преимуществом является стабильность выходного напряжения. У асинхронных аппаратов данный показатель может существенно колебаться.

Синхронный генератор не боится повышенной нагрузки, создаваемой при подключении его во время работы энергоемкого потребителя (нагрузка переходного режима), поскольку сам является источником реактивной мощности. Асинхронные генераторы для этого снабжаются пусковыми конденсаторами.

Синхронный генератор не слишком восприимчив к перегрузкам в процессе работы благодаря системе авторегулирования.

Щеточные и бесщеточные

Щетки представляют собой скользящие контакты − токосъемы, которые прижаты к коллектору. От их качества напрямую зависит вырабатываемое напряжение. Длительная работа при больших перегрузках приводит к «выгоранию» щеток. После замены необходим небольшой период «обкатки», прежде чем подавать полную нагрузку на генератор. Наиболее долговечны и устойчивы к перегрузкам медно-графитовые щетки.

Синхронный генератор может быть бесщеточным при условии, что ток в роторе создается магнитным полем, исходящим от основной, а также от дополнительной статорной обмотки (либо только от дополнительной). То есть схема альтернатора более сложная, чем у щеточных. Преимуществом является отсутствие необходимости замены угольных компонентов (в некоторых моделях – каждые 100 часов работы), а также нет пыли от их износа, которая часто является причиной электрических пробоев.

Выбор в пользу синхронного генератора следует делать, если потребители требовательны к качеству выходного тока. Например, такой тип подойдет для обеспечения резервной электроэнергией загородного дома, где установлены различные типы чувствительных приборов.

Части генератора и принцип их работы

Части генератора и принцип их работы

Генератор — резервный источник питания, используемый при отключении электроэнергии, вызванном аварийными ситуациями, ненастной погодой, регламентными работами и другими факторами, влияющими на первичные источники энергии. Подобно бытовым генераторам и их способности снабжать дома электроэнергией во время отключения электроэнергии, коммерческие генераторы имеют ту же функциональность в большем масштабе.

Генераторы чрезвычайно важны для промышленных и коммерческих объектов, поскольку эти здания в значительной степени зависят от оборудования, требующего высокой мощности. Из-за высоких требований к мощности коммерческих предприятий, коммерческие генераторы больше и имеют более прочные компоненты, большие двигатели и более высокую выходную мощность.

Перед установкой нового генератора важно знать, как он работает и что делает каждая из его частей, чтобы обеспечить его эффективность и безопасность тех, кто работает рядом с ним.

Как работает генератор?

Каждый компонент генератора играет ключевую роль в том, как генератор вырабатывает энергию. Понимание базовой механики генератора поможет вам укрепить его простоту в эксплуатации и функциональность.

Одна из самых важных вещей, которые нужно понять о любом генераторе, это то, что они не создают энергию. Вместо этого они преобразуют энергию в полезную мощность с использованием постоянного или переменного тока.

Генераторы постоянного тока (DC) требуют аккумуляторной батареи или электромагнитной индукции с однонаправленным потоком для производства токов. Переменные токи (AC) текут от нуля к положительному максимуму, обратно к нулю, затем вниз к отрицательному максимуму и обратно к нулю.

Наиболее часто используемыми коммерческими генераторами являются дизельные и газовые генераторы. Как правило, дизельные генераторы имеют бак, прикрепленный или соединенный с большим баком, который пользователи заполняют топливом, который выступает в качестве их основного источника топлива. Затем двигатель использует это топливо, преобразуя его в механическую энергию, заставляя его включаться в цепь для создания электрического тока.

Например, дизельный генератор запускается и автоматически вырабатывает электроэнергию при отключении электроэнергии. Он делает это путем преобразования энергии от сжигания топлива, используя тепло, выделяемое при сжатии воздуха.

Генераторы природного газа обычно подключаются к трубопроводу природного газа, если в месте установки имеется вспомогательное оборудование для обеспечения стабильной подачи топлива. В некоторых случаях можно переоборудовать генератор природного газа для работы на пропане (СНГ), а затем подключить его к более крупным резервуарам с пропаном на месте для работы в режиме ожидания.

Из каких частей состоит коммерческий генератор?

Генераторы незаменимы в аварийных ситуациях и при отключении электроэнергии и состоят из многих частей, которые способствуют их функционированию. Каждая часть генератора имеет уникальное назначение, которое позволяет машине правильно работать и подавать энергию туда, где она вам нужна.

Поскольку предприятия и компании так сильно зависят от электричества, чтобы обеспечить безопасность своих сотрудников и функциональность или пригодность продуктов, важно понимать, как работает ваш генератор и что делает каждая его часть. Вот ключевые компоненты генератора, которые вы должны знать, чтобы понять, откуда берется резервное питание и как эти машины поставляют его на вашу рабочую площадку:

1. Топливная система

Одной из жизненно важных частей коммерческого генератора является топливная система. Прежде чем генератор сможет вырабатывать механическую энергию, вы должны снабдить его источником топлива, чтобы он мог преобразовывать этот источник — природный газ или дизельное топливо — в химическую энергию, которая преобразуется в механическую энергию и, в конечном итоге, в электрическую мощность.

Оценивая топливную систему промышленного генератора, начнем с топливного бака дизель-генераторов. Топливные баки дизель-генератора могут быть либо вспомогательными, либо баком, установленным на генераторе, известным как базовый бак дизельного двигателя. Количество топлива, которое может вместить бак, определяет его возможности по выработке энергии с точки зрения продолжительности. Проще говоря, чем больше бак дизельного топлива, тем дольше он может работать для питания генератора и обеспечения резервного питания в случае отключения электроэнергии. Часто эти емкости дизельного топливного бака рассчитываются в зависимости от размера и мощности дизельного генератора в кВт, включая предполагаемое потребление топлива и нагрузку. Базовые баки для дизельного топлива часто дополняют дизельный генератор и приблизительно определяют, сколько времени генератор будет работать в зависимости от мощности. Например, дизельный генератор мощностью 300 кВт с базовым дизельным баком на 555 галлонов будет считаться базовым дизельным баком на 24 часа.

К баку подсоединены трубы или топливопроводы, ведущие к двигателю генератора. Эти топливоперекачивающие трубы могут быть над или под землей и транспортировать топливо от хранилища к двигателю. Топливная система также включает в себя насосы, которые используют давление электродвигателей для забора топлива из внешнего бака и впрыскивания его в цилиндр двигателя.

Когда речь идет о генераторах природного газа, эти типы генераторов, как правило, должны быть подключены к магистральному газоснабжению. Это позволяет генератору природного газа иметь стабильную подачу топлива, исключая какие-либо коммунальные работы, модернизацию или отключение газоснабжения из-за природных или техногенных катастроф. Это означает, что нет необходимости беспокоиться о емкости хранилища топлива, пока основное коммунальное предприятие продолжает работать.
Важным примечанием к системам впрыска топлива является то, что генераторы, работающие на природном газе и дизельном топливе, используют разные системы впрыска и не являются взаимозаменяемыми. Эти различные источники топлива требуют времени впрыска и других подобных параметров, характерных для типа топлива.

Любое избыточное топливо, не впрыснутое в цилиндр, возвращается в бак. В конечном счете, возврат топлива в бак может снизить мощность двигателя, поскольку возвращенное топливо имеет более высокую температуру, чем хранящееся топливо. Это потому, что он поглощает тепло от форсунок. Если температура становится слишком высокой, система отключается. По этой причине многие генераторы включают охладители топлива, которые помогают регулировать температуру топлива.

Еще одно важное замечание о топливных системах генераторов заключается в том, что они имеют контрольное оборудование, так что вы можете контролировать насосы, резервуары для хранения, запасы топлива и обнаружение утечек.

2. Двигатель

Двигатель является еще одним ключевым элементом в составе коммерческого генератора. Подобно двигателям, работающим на природном газе или дизельным двигателям в автомобилях, в генераторных двигателях химическая энергия или ваш источник топлива преобразуется в механическую энергию.

Различные генераторы имеют разные размеры двигателей, что важно учитывать при выборе или обслуживании двигателя вашей машины. Объем двигателя напрямую зависит от максимальной выходной мощности генератора в лошадиных силах (л.с.). Этот аспект означает, что более крупные двигатели могут генерировать большее количество выходной энергии, в то время как двигатели меньшего размера имеют меньшую выходную мощность.

С максимальной выработкой энергии связана лошадиная сила, единица измерения мощности двигателя. Максимальная вырабатываемая мощность соответствует мощности в лошадиных силах, а это означает, что более крупные двигатели с большей выходной мощностью имеют большую мощность, чем модели меньшего размера.

Horsepower также более подробно объясняет важность регулирования температуры топливного бака. Поскольку возвратное топливо теплее, чем хранящееся топливо, температура хранящегося топлива затем повышается. На каждые 10 градусов по Фаренгейту, когда температура хранимого топлива превышает 100 градусов, мощность двигателя падает на 1%. Большие баки менее подвержены влиянию температуры возвращаемого топлива, что в конечном итоге позволяет более крупным двигателям продолжать работать с более высокой мощностью.

Размер двигателя генератора вашей компании будет соответствовать тому, сколько электроэнергии генератор должен производить. Более крупным компаниям и отраслям, которые в большей степени зависят от электроэнергии, потребуются генераторы с более мощными двигателями.

Важно также отметить, что дизельные генераторы и генераторы, работающие на природном газе, отличаются тем, что двигатели генераторов, работающих на природном газе, имеют свечи зажигания и искровое зажигание, что необходимо учитывать при поиске резервного генератора. Это связано с тем, что генераторам природного газа потребуются более регулярные проверки и техническое обслуживание, чтобы гарантировать, что они могут продолжать работать с максимальной эффективностью, а также обеспечить соблюдение всех мер безопасности при эксплуатации генератора природного газа.

3. Генератор

Генератор, также называемый генератором, превращает механическую энергию в электричество. Этот процесс начинается, когда двигатель сжигает топливо и передает его генератору. Генератор содержит два основных компонента, которые позволяют генератору эффективно и экономично производить энергию: статор и ротор.

Статор представляет собой стационарный компонент, содержащий набор электрических проводников, представляющих собой катушки, намотанные вместе с железным сердечником.

Ротор (якорь) представляет собой движущийся компонент, создающий магнитную силу, заставляющую электроны двигаться и производящую электричество.

Статор — неподвижная часть генератора. Он содержит электрические проводящие катушки, намотанные вокруг железного сердечника. Ротор или якорь — это движущийся компонент, создающий магнитную силу. Магнитная сила заставляет электроны двигаться, что создает энергию.

В частности, ротор использует механическую энергию двигателя для движения вокруг статора и создания магнитного поля. Этот процесс создает различное напряжение или электрический потенциал между катушками статора, создавая переменный ток на выходе генератора.

4. Регуляторы напряжения

Автоматические регуляторы напряжения (АРН) — это автоматические устройства в генераторах, которые помогают поддерживать постоянный уровень напряжения. Являясь важным компонентом генераторов, они стабилизируют выходное напряжение, предотвращая колебания уровней напряжения и поддерживая переменный ток в нужном диапазоне уровней напряжения.

Эти регуляторы являются важной частью генератора, поскольку они помогают машине удовлетворять ваши коммерческие потребности в электроэнергии и требования к мощности вашего оборудования. Если генератор не поддерживает допустимое напряжение с постоянной скоростью, это негативно влияет как на производительность генератора, так и на работу любого оборудования, питаемого от генератора.

Все электроприборы и механизмы имеют различные диапазоны предпочтительного напряжения, в которых они работают с максимальной производительностью. Любой уровень напряжения выше или ниже этого диапазона может вызвать проблемы с производительностью или выход из строя устройства. Нерегулируемых генераторов или генераторов без автоматизированной системы регулирования напряжения недостаточно. Когда вырабатываемое напряжение постоянно меняется, это сокращает срок службы вашего прибора и самого генератора.

При длительном использовании несоответствующего напряжения эффективность вашего оборудования может необратимо снизиться и даже выйти из строя. Регулятор напряжения генератора помогает исключить повреждение оборудования или проблемы с безопасностью, вызванные колебаниями напряжения, поскольку АРН обеспечивают защиту от скачков напряжения, скачков напряжения и перегрузок генератора.

5. Системы охлаждения и выпуска

Постоянное использование генератора приводит к нагреву рабочих частей. Система охлаждения является неотъемлемой частью любого генератора для регулирования его температуры и предотвращения перегрева. Большинство генераторов имеют систему воздушного или жидкостного охлаждения для регулирования внутреннего тепла.

Генераторные системы с воздушным охлаждением полагаются на циркуляцию воздуха для снижения температуры генератора за счет всасывания воздуха из атмосферы и подачи его внутрь генератора. Одним из преимуществ этого типа системы охлаждения является то, что для нее не требуется насос охлаждающей воды или какие-либо соединительные шланги. Он также требует меньше обслуживания из-за простоты воздушной системы. Однако генераторы с воздушным охлаждением могут перегреваться при длительном использовании, что может привести к их выходу из строя или непоправимому повреждению.

В системах жидкостного охлаждения используются охлаждающие жидкости или масло с радиатором и водяным насосом для регулирования внутренней температуры генератора. Насос использует сеть шлангов для подачи охлаждающей жидкости к двигателю, где жидкость поглощает тепло и направляется к радиатору для воздушного охлаждения. Эти системы охлаждения стоят дороже в эксплуатации и стоят дороже. Кроме того, они часто требуют большего внимания и обслуживания, поскольку представляют собой более сложные системы.

Кроме того, поскольку генераторы выделяют пары, содержащие опасные химические вещества, необходимо иметь установленную систему для удаления этих паров. Для выхлопных систем генератора требуется выхлопная труба, которая заканчивается снаружи и ведет от точек входа, дверных проемов и мест с интенсивным движением.

6. Система смазки

Подобно любой другой машине с движущимися частями, генераторы опираются на шестерни и рычаги, и эти движущиеся части часто создают трение. Чтобы эти детали могли легко двигаться, генераторам требуется смазка. Смазка — это жидкость или масло, предназначенное для разделения внутренних компонентов генератора.

Что касается генераторов и их двигателей, смазочные материалы служат четырем основным целям. Во-первых, он создает пленочное разделение между движущимися частями двигателя, чтобы предотвратить контакт металла с металлом. Он также создает масляную пленку, образующую газонепроницаемое уплотнение между поршневыми кольцами и цилиндром. Кроме того, смазка отводит тепло, выделяемое двигателем. Наконец, это помогает поддерживать чистоту внутренней поверхности двигателя.

Генераторы

полагаются на систему смазки, которая устраняет трение между поверхностями, соприкасающимися в обычных условиях эксплуатации. Производители используют тонкий слой смазки на трущихся поверхностях, чтобы уменьшить сопротивление трению.

Важно по возможности избегать сухого трения и сопротивления трению, так как трение может привести к механическому износу и снижению эффективности генератора. Правильно смазанная система позволяет генератору выполнять свою работу, а также улучшает и продлевает срок службы и надежность машины.

7. Аккумулятор

Аккумуляторы являются важной частью генератора, потому что они обеспечивают питание, необходимое для запуска машины во время отключения электроэнергии. Когда электричество отключено и вам нужен генератор, у машины нет другого источника энергии, кроме аккумулятора. В частности, аккумуляторы питают стартер двигателя и панели управления. Некоторые генераторы даже имеют дополнительную батарею на случай выхода из строя основной.

Поскольку выход из строя аккумуляторной батареи является одной из основных причин отказа генератора. Поэтому важно проводить плановые проверки аккумуляторов. Проверка требует, чтобы вы очистили и затянули любые ослабленные или грязные соединения и убедились, что сульфаты не накапливаются на аккумуляторе. Также важно знать срок годности батареи вашего генератора. Его емкость со временем будет уменьшаться и упадет ниже 80% от ее нормальной емкости. Общее эмпирическое правило, когда речь идет о батареях, заключается в том, что вы должны заменять их каждые 4 года, чтобы обеспечить эффективность и работоспособность.

8. Полозья

Основная рама или салазки — это основное основание, на котором монтируются генератор и его компоненты. В помещении с генератором полозья часто крепятся к полу, чтобы обеспечить их надежную фиксацию. Этот салазок выступает в качестве основного основания генераторной установки и обеспечивает большую гибкость, помимо удержания частей и компонентов генератора.

Генераторы на салазках

позволяют пользователям добавлять кожух поверх генераторной установки, который может обеспечить защиту от атмосферных воздействий или даже шумоизоляцию с преимуществами защиты от атмосферных воздействий для генераторов, установленных на открытом воздухе. Для генераторов природного газа салазки и кожух монтируются на бетонную подушку. Бетонная подушка измеряется и заливается, чтобы выдержать вес генератора, и обычно устанавливается с учетом стоек, креплений виброизолятора и вырезов для кабельных соединений.

Дизельные генераторы

также могут быть установлены сверху базового дизельного бака через салазки, что позволяет дизельному генератору иметь подачу топлива, прикрепленную непосредственно к агрегату. Для таких наружных установок дизельные генераторы также монтируются на бетонную подушку, которая не только поддерживает вес генератора, но и учитывает вес базового дизельного бака.

Портативные генераторы используют даже салазки. Большинство портативных генераторов являются дизельными генераторами. Это означает, что генераторная установка монтируется на салазках, звукопоглощающий кожух крепится к салазкам, а базовый бак крепится под салазками. Затем весь этот пакет монтируется на трейлер, который позволяет пользователям перемещать генератор с места на место по мере необходимости.

Чтобы генераторы соответствовали коду и функционировали должным образом, вам необходимо спланировать рамы перед установкой, так как у вас будет много соображений. В частности, вы хотите избежать установки вашего генератора в месте, где недостаточно места для установки и обслуживания. Вы также хотите предотвратить перегрузку площадки генератора и несоблюдение правовых или нормативных требований, которые могут привести к штрафам или остановке генератора.

9. Панель управления

Панель управления генератором представляет собой набор компонентов, отображающих детали и параметры, включая ток, напряжение и частоту. Представленные на встроенных дисплеях, манометрах или измерителях, панели управления обычно имеют переключатели или кнопки для обеспечения работы генератора.

Новые панели управления имеют программируемые модули, в то время как более старые полагаются на аналоговые методы и ручную настройку. На панелях управления есть микропроцессор, который использует входные данные от датчиков для предоставления обратной связи о генераторе на панели управления. Эта настройка позволяет генератору контролировать себя и управлять любыми процессами, которые могут быть нерегулярными.

Например, одной из наиболее распространенных настроек обратной связи является температура. Если двигатель перегревается, датчики оповещают панель управления и соответствующим образом корректируются, находя решение, например, отключая машину, чтобы предотвратить повреждение.

Эти панели управления позволяют операторам видеть системные функции, диагностику и текущий статус оператора генератора. Поскольку генераторы представляют собой тяжелые механизмы, они подвержены перегреву, износу в результате постоянного использования, колебаниям скорости и усталости двигателя. Важно следить за критически важными функциями вашего генератора, такими как температура масла и охлаждающей жидкости.

10. Корпус

Основным назначением корпусов генераторов является защита и снижение шума машины. Прежде чем выбрать корпус для вашего генератора, рассмотрите свои приоритеты. Вы можете выбрать один из двух типов кожухов для генераторов: атмосферостойкие и шумопоглощающие кожухи.

Всепогодные корпуса

обеспечивают защиту от влаги и экстремальных температур. Тем не менее, эти корпуса обычно обеспечивают самый минимум и не имеют каких-либо особенностей, которые отличают их друг от друга, за исключением, возможно, более эффективных методов защиты от непогоды.

Звукопоглощающие кожухи защищены от атмосферных воздействий и снижают уровень шума, создаваемого генератором. Генераторы могут сильно шуметь, и чем мощнее машина, тем больше шума она будет создавать. Это может беспокоить окружающих, нарушать правила и наносить вред работникам или тем, кто находится поблизости.

Найдите подходящий генератор от Woodstock Power

Компания Woodstock Power гордится тем, что предоставляет нашим клиентам качественные и доступные по цене электрические системы, начиная от генераторов и заканчивая системами бесперебойного питания и трансформаторами. Предлагая только проверенное, обслуживаемое и проверенное оборудование, мы гарантируем, что вы можете положиться на нашу продукцию.

У нас есть отраслевые эксперты с глубокими знаниями, которые помогут вам найти генераторы и продукты, которые наилучшим образом соответствуют вашим потребностям и бюджету. Наша приверженность поставке надежного, экономичного и высококачественного оборудования помогает нам удовлетворять потребности в электроэнергии компаний разного размера по всей территории Соединенных Штатов.

Чтобы узнать больше о Woodstock Power, заполните нашу контактную форму или позвоните нам по телефону 610-658-3242, если у вас возникнут вопросы или проблемы.

Поделиться с

ПОНИМАНИЕ РАЗЛИЧНЫХ ЧАСТЕЙ И ИХ УДОВОЛЬСТВИЯ
– Sumec Plaza

Электрические генераторы – это устройства первой необходимости, которые обеспечивают электроэнергией при отключении электроэнергии и предотвращают нарушение повседневной деятельности или деловых операций. В этом посте мы рассмотрим, как работает генератор, основные компоненты и части генератора, а также как генератор работает как вторичный источник электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в выходную электрическую мощность.

Важно понимать, что электрический генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию для принудительного перемещения электрических зарядов, присутствующих в его обмотках, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Мы можем понять механизм генератора, рассматривая генератор как аналог водяного насоса. Он приводит к потоку воды, но на самом деле не «создает» воду, протекающую через него.

Основные компоненты генератора

Описание девяти основных компонентов генератора приведено ниже.

Двигатель

Двигатель является источником входной механической энергии для генератора. Размер двигателя напрямую связан с максимальной выходной мощностью, которую может обеспечить генератор. Есть несколько аспектов, которые необходимо учитывать при оценке двигателя вашего генератора:

(a) Тип используемого топлива. Двигатели генератора могут работать на различных видах топлива, таких как дизельное топливо, бензин, пропан или природный газ. Генераторы с двигателями меньшего размера обычно работают на бензине, а двигатели большего размера обычно работают на дизельном топливе, сжиженном пропане, пропановом газе или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного топлива и газа в двухтопливном режиме работы.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV. Двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускной и выпускной клапаны двигателя расположены в верхней части цилиндра двигателя, а не на блоке цилиндров. . Двигатели с верхним расположением клапанов имеют ряд преимуществ перед другими двигателями, например:

  • Компактная конструкция
  • Более простой рабочий механизм
  • Долговечность
  • Удобен в эксплуатации
  • Низкий уровень шума при работе
  • Низкий уровень выбросов

Имейте в виду, что двигатели с верхним расположением клапанов также дороже других двигателей.

(c) Чугунная гильза (CIS) – CIS представляет собой накладку в цилиндре двигателя. Снижает износ двигателя и обеспечивает долговечность. Большинство двигателей с верхним расположением клапанов обычно оснащены CIS, но важно проверить эту функцию в двигателе генератора. CIS — недорогая функция, но она играет решающую роль в долговечности двигателя, особенно если вы используете генератор часто или в течение длительного времени.

 

Генератор

Генератор переменного тока также называют генератором. Это часть генератора, которая вырабатывает электрическую мощность из механического входа, который подает двигатель. Он состоит из сборки неподвижных и подвижных частей, заключенных в корпус. Части работают вместе, создавая относительное движение между магнитным и электрическим полями, генерируя электричество.

(a) Статор — это неподвижный компонент генератора переменного тока. Он содержит набор электрических проводников, намотанных в витках на железный сердечник.

(b) Ротор/якорь – это подвижный компонент генератора переменного тока, создающий вращающееся магнитное поле.

 

Топливная система

Объем топливного бака обычно достаточен для работы генератора в среднем от 6 до 8 часов. В небольших генераторных установках топливный бак может быть частью основания генератора или располагаться сверху рамы генератора. Для более крупных генераторов может потребоваться установка внешнего топливного бака. Некоторые типичные особенности топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю. Подающий трубопровод ведет топливо от бака к двигателю, а обратный трубопровод отводит топливо от двигателя обратно к баку.

(b) Вентиляционная трубка топливного бака. Топливный бак имеет вентиляционную трубку, которая предотвращает повышение давления или вакуума во время заправки и опорожнения бака.

(c) Топливный насос — перекачивает топливо из основного резервуара. Топливный насос обычно имеет электрический привод.

(d) Топливный водоотделитель/топливный фильтр — отделяет воду и другие загрязняющие вещества от топлива для защиты других частей генератора от коррозии и загрязнения.

(e) Топливная форсунка – расщепляет топливо и впрыскивает необходимое количество топлива в камеру сгорания двигателя.

 

Регулятор напряжения

Как следует из названия, эта часть генератора регулирует выходное напряжение. Регулятор напряжения преобразует выходное переменное напряжение генератора в постоянный ток. Затем регулятор напряжения посылает постоянный ток на набор вторичных обмоток статора, известных как обмотки возбуждения, которые преобразуют постоянный ток в переменный.

 

Система охлаждения и выпуска

(a) Система охлаждения

Постоянное использование генератора приводит к нагреву его различных частей. Необходимо иметь систему охлаждения для отвода произведенного тепла.

Сырая/пресная вода может использоваться в качестве охлаждающей жидкости для генераторов. Для всех других распространенных применений на генераторе установлены стандартный радиатор и вентилятор, который работает как первичная система охлаждения.

Очень важно ежедневно проверять уровень охлаждающей жидкости в генераторе. Генератор следует эксплуатировать на открытой и вентилируемой площадке с достаточным притоком свежего воздуха. Рекомендуется оставлять минимальное пространство в 3 фута со всех сторон генератора для обеспечения свободного потока воздуха.

(b) Выхлопная система

Выхлопные газы, выделяемые генератором, представляют собой высокотоксичные химические вещества, от которых необходимо надлежащим образом избавляться. Поэтому очень важно установить соответствующую выхлопную систему для удаления выхлопных газов.

 

Система смазки

Поскольку двигатель генератора состоит из нескольких движущихся частей, для обеспечения исключительно плавной работы в течение длительного периода времени требуется смазка. Двигатель генератора смазывается моторным маслом, хранящимся в насосе. Вы должны проверять уровень масла каждые 8 ​​часов использования. Вы также должны проверять наличие утечек масла и менять смазочное масло каждые 500 часов использования.

 

Зарядное устройство батареи

Зарядное устройство батареи обычно поддерживает заряд батареи генератора путем подачи определенного «плавающего» напряжения. Если плавающее напряжение слишком низкое, аккумулятор останется недозаряженным. Если плавающее напряжение слишком высокое, это сократит срок службы батареи.

 

Панель управления

Панель управления представляет собой пользовательский интерфейс генератора и имеет средства для электрических розеток и органов управления.