Содержание

Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики

Содержание

  1. Краткая история создания
  2. Принцип действия электродвигателя постоянного тока
  3. Устройство электродвигателя постоянного тока
  4. Особенности и характеристики электродвигателя постоянного тока

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.

Двигатель постоянного тока | Устройство и принцип работы электродвигателя постоянного тока

Электрические машины востребованы для работы оборудования разного назначения. Агрегаты встречаются в бытовых и промышленных устройствах. Для получения большой механической мощности с возможностью управления частотой вращения спросом пользуется двигатель постоянного тока (ДПТ или DC двигатели).

Устройство и принцип действия

Внешне двигатель постоянного тока представлен компактным моноблочным устройством с клеммами для подключения. На выходе вал, через который передается крутящий момент рабочему механизму.

Электрическая машина состоит из двух основных компонентов:

  1. Статор. Неподвижный элемент двигателя с обмоткой для возбуждения электродвижущей силы (ЭДС). У статора противоположно расположено два постоянных магнита с разными полюсами.
  2. Ротор. Вращающийся элемент ДПТ, который преобразует электромагнитную силу в механическую энергию.

На роторе присутствует токопроводящая обмотка с концами на щетках. Они являются контактами, на которые подается электроэнергия. Поток заряженных частиц через обмотку проходит по касательной постоянный магнит статора, возбуждая электродвижущую силу. Она приводит в действие ротор, который вращается с постоянной скоростью.

Направление потока электрических зарядов векторное и прямое, поэтому ротор двигателя немного прокрутится и остановится. Для непрерывного вращения на его конце установлена токопроводящая пластина (ламель).

Но одной ламели недостаточно, т.к. после проворачивания ротора на 180 °C на пути будет магнит с обратной полярностью. И чтобы якорь не вращался «туда-сюда», ламели расположены по всей окружности конца ротора в виде неподвижного щеточного коллектора на подшипниках скольжения. Независимо от текущего положения ротора, в любой момент вращения возле магнита всегда будет ламель, принимающая постоянный ток.

За свою конструкцию такие машины называются коллекторными электродвигателями. Они первыми были разработаны и до сих пор в спросе. Агрегаты долговечны, поддерживают регулировочную скорость вращения ротора. Все электрические машины постоянного тока — синхронные двигатели. Называются они так по причине одинаковой скорости вращения магнитного поля и ротора.

С развитием электроники появились DC двигатели без щеточного коллектора. Постоянный ток подается на статор, а закрепленные на роторе постоянные магниты начинают вращать якорь. С конструктивной стороны такие машины более сложные и имеют узкое назначение. Используются в условиях, в которых применение коллекторных электродвигателей не оправдано.

Способы возбуждения ЭДС ДПТ

Благодаря низкой себестоимости коллекторные электромоторы распространены в недорогих бытовых устройствах. Но их мощности недостаточно для крупногабаритного оборудования. Поэтому в промышленности применяются машины с обмоткой на статоре (вместо постоянного магнита). По классификации агрегаты отличаются способом возбуждения ЭДС.

Последовательное возбуждение

Обмотка возбуждения на статоре и на якоре питаются от одного источника постоянного тока. Сначала он проходит по статору, а когда он поступит на ротор, уже будет действовать ЭДС. Это самая удачная схема запуска двигателя — можно обеспечить плавный пуск машины и доступна регулировочная скорость вращения.

Но есть и существенный недостаток — возбуждаемое магнитное поле растет лишь с повышением постоянного тока. Поэтому для получения высокой скорости подается больше мощности. В результате часто происходят искрения и перегорания ламелей. При использовании двигателей с последовательным возбуждением приходится выбирать между производительностью и долговечностью.

Параллельное возбуждение

Поток частиц идет от одного источника одновременно на обмотки статора и ротора ДПТ. Напряжение будет одинаковым, а вот сила распределяться между проводниками. Машины с такой конфигурации самые простые в производстве и компактны. Концы проводников статора и ротора подсоединены напрямую к щеткам. Нет дополнительных соединений обмоток между собой (которое есть при последовательном возбуждении).

Но с увеличением силы заряда на обмотке возбуждения, на якоре будет спад, и наоборот. Поэтому электродвигатели постоянного тока с параллельным возбуждением могут работать лишь с одной скоростью. Они часто используются в насосах магистральных трубопроводов, которые работают под конкретным напором.

Независимое возбуждение

На якорь и статор подается напряжение от разных источников питания. Такая схема позволяет обеспечить плавный пуск, т.к. при увеличении скорости вращения возбужденное поле не меняется. И это значительно продлевает ресурс машины.

У электродвигателей постоянного тока с независимым возбуждением только один недостаток — частый выход из строя якоря. Это связано с тем, что при перегрузках ЭДС не меняется (т.к. она возбуждается иным источником, не задействованным при регулировании оборотов ротора). Оператор может заметить дефекты в работе только когда уже становится поздно (сильный шум, запах перегоревшей изоляции).

Смешанное (комбинированное) возбуждение

У таких машин несколько катушек возбуждения с разным соединением. Электродвигатели сложны и функциональны. Они применяются в условиях, когда требуется бесперебойная работа, а сохранность агрегата вторична.

Например, при штатной работе задействуется обмотка возбуждения, которая параллельно соединена с проводником якоря, и ротор вращается с одной скоростью. А в момент перебоев на генераторе или подстанции подача тока переключается на другую катушку, у которой независимое от якоря возбуждение. Электродвигатели постоянного тока со смешанным возбуждением не встречаются в бытовых устройствах. В зависимости от режима работы по факты такие агрегаты могут иметь классификацию.

Способы эксплуатации

Электрически е DC машины постоянного тока могут работать в прямом и обратном порядке. В результате их можно использовать в качестве генераторов путем преобразования механической силы в электрическую энергию.

Режим электродвигателя

Подаваемый постоянный ток преобразовывается в механическую силу вращения ротора, которую можно использовать в разных целях:

  • перекачка газообразных и жидких сред;
  • транспортировка и подъем грузов;
  • обработка материалов разной прочности.

Электрическая машина постоянного тока находит широкое применение только от одного вращения, но и это не предел ее возможностей. У преобразования линейная зависимость — обороты зависят от напряжения (чем оно выше, тем их больше на единицу времени). Такая зависимость позволяет использовать две опции:

  1. Регулирование скорости вращения. С помощью частотного преобразователя меняется напряжение, а за ним прямо пропорционально растут или падают обороты. Это позволяет использовать оборудование более эффективно (менять напор перекачки, ускорять подъем более легких грузов и т. д.).
  2. Плавный запуск. Пусковой ток подается не сразу базовым напряжением, а с постепенным его увеличением до требуемого значения. Также можно обеспечить плавный переход при переключении скорости вращения. Эта функция значительно сокращает износ машины от резких вращений.

С развитием электроники стало возможным регулировать вращение ротора двигателей постоянного тока под управлением других устройств, делая его работу автономной:

  1. Термостат у котла задает скорость вращения насоса, при которой в трубах будет достигнута нужная температура.
  2. Аварийная система обесточивает агрегат при его перегреве.
  3. Реле давления останавливает перекачку в магистральных трубопроводах при полном резервуаре, и с его опустением снова запустит машину.

Режим генератора

Принцип заключается в реверсивной работе DC электродвигателя. Под действием механической силы ротор начинает вращаться и генерировать электрический заряд на полюсах. Токосъем происходит подключением сетей к щеткам.

Подавляющее большинство двигателей с работой в режиме генератора действуют в электростанциях. Для движения ротора задействуется течение реки или пар. Крупные перерабатывающие заводы могут обеспечивать себя электроэнергией с нулевой себестоимостью. В качестве механической силы для движения ротора используется побочный продукт в виде струи газа.

Также распространено применение компактных мини-электростанций. Они представлены установкой с двигателем внутреннего сгорания и генератора. Ротор приводится в движение сжиганием бензина или ДТ. Мини-электростанции распространены на строительных промышленных объектах в условиях отсутствия электросетей.

На практике в целях продления срока службы генератора ротор ДПТ всегда работает с минимальной нагрузкой. Ток необходимых характеристик получается подключением выпрямителей, резисторов и инверторов.

Универсальный электродвигатель

Если у машины магнитное поле возбуждения и ротор вращаются с одинаковой скоростью (синхронная машина), он устроен так, что возможно питание от постоянного и переменного тока. Дополнительная обмотка возбуждения проходит не по всему статору, а секционно (по образу с ламелями щеточного коллектора). При включении двигателя в цепь с источником постоянного тока питание подается на основную обмотку статора, а когда от переменного — на дополнительную.

Такой подход позволяет коллекторному двигателю постоянного тока работать от общей сети. Он используется в бытовых приборах с высокой производительностью. Вся причина в том, что переменный ток электросети напряжением 230 В и частотой 50 Гц можно преобразовать во вращение ротора с крутящим моментом не более 3000 об. /мин. В обычном режиме оборудование работает от переменного источника питания. Но когда требуется очень высокая скорость вращения механизма, происходит предварительное выпрямление. Ток становится постоянным и после передается на щетки машины.

Достоинства

У электродвигателей постоянного тока много преимуществ, среди которых можно отметить следующее:

  1. Линейная зависимость преобразования энергии. По характеристикам источника можно заранее рассчитать обороты, с которыми движется ротор (и наоборот для генератора). Это обеспечивает плавным пуском и регулировочной скорость вращения электромотора.
  2. Универсальная конструкция. Для любых задач подходит коллекторный двигатель, и наладить производство одного вида машин проще.
  3. Компактность. Синхронные двигатели состоят только из статора и якоря, остальные компоненты незначительны и не почти не влияют на размер агрегата.

Двигатели постоянного тока отлично подходят для предприятий на производстве. Но в быту по ряду качеств они проигрывают основному конкуренту — асинхронным двигателям:

  1. Меньший рабочий ресурс и требовательность к частому обслуживанию с заменой изношенных частей.
  2. Сложная конструкция якорей, не позволяющая отремонтировать или заменить их самому.
  3. Для подключения к общей сети требуется выпрямитель.

По этим причинам в домашних устройствах и бытовых инструментах присутствуют асинхронные двигатели. Их принципиальное отличие в поле возбуждения, которое всегда вращается быстрее ротора. Такие машины устроены так, что работают только от переменного тока.

Типы неисправностей

Двигатели постоянного тока используются для приведения в движение крупногабаритных агрегатов с большой нагрузкой, и где требуется часто менять скорость вращения. Преимущественно это область энергетики и производства с тяжелыми условиями работы, ускоряющими износ мотора. Но даже при бережной эксплуатации возможен выход из строя.

Для двигателей постоянного тока характерны многие поломки, которые можно объединить в 4 типа неисправностей:

  1. Разрушение изоляции и обмотки. При перегреве или коротком замыкании электромотор получает сильный урон. Изоляция разрушается, а уязвимая часть обмотки деформируется под действием внешнего тепла или роста сопротивления материала проводника. Поломке предшествует перегрев и шумная работа. Принципиальное отличие замыкания от перегрева в том, что неполадка на стороне и ее придется устранить после ремонта агрегата.
  2. Отсутствие питания. При наличии постоянного тока полный отказ в работе двигателя указывает на обрыв одной или нескольких обмоток. Зачастую такая ситуация происходит в результате повреждения витков из-за неаккуратного обслуживания. В половине случаев обмотку двигателя можно восстановить без замены.
  3. Постукивания и вибрации. Разбалансировка вала или разрушение подшипников скольжения нарушает синхронную передачу крутящего момента рабочему механизму. В результате происходят многократные толчки между валами, которые еще сильнее вредят электромотору. Возможно механическое разрушение отдельных частей (уцелевших подшипники, ламели коллектора).
  4. Рабочие характеристики не соответствуют настройкам.  Отвечающий за подачу постоянного тока на двигатель механизм неисправен. При повреждении катушки частотного преобразователя изменение скорости вращения ротора не будет соответствовать настройкам. При дефектной работе в режиме генератора токосъем не соответствует требуемым параметрам.

При наблюдении любых признаков неисправности необходимо отключить двигатель и передать его в сервис для ремонта. Дальнейшая эксплуатация мотора постоянного тока под нагрузкой причинит ему еще больше урона или нарушит работу оборудования. Восстановление машины необходимо доверить только специалистам. Только профессионалы способны на определение всех неисправностей и смогут устранить их за короткий срок.

Технический центр «Хельд» ремонтирует электрические моторы постоянного тока и устраняет неисправность любой сложности. Мастера восстанавливают обмотку статора и якоря, меняют подшипники скольжения, делают балансировку ротора. Также мы ремонтируем бытовые и промышленные агрегаты с работой от электродвигателя постоянного тока до 1000 кВт: генераторы, станки, компрессоры, насосы.

Если вам требуется срочное и профессиональное восстановление мотора, обратитесь в нашу компанию. Специалисты быстро изучат состояние машины, найдут все неисправности и сообщат условия ремонта.

Двигатель постоянного тока

, как он работает? – Magnetic Innovations

Двигатель постоянного тока (DC) – это двигатель, который преобразует энергию постоянного тока в механическую энергию. Первый двигатель постоянного тока был разработан примерно в 1830–1840-х годах. Они не имели коммерческого успеха, потому что эти двигатели питались от батарей, а батареи все еще были очень дорогими, а качество было низким. Когда в конце 1800-х годов была создана электрическая сеть и изобретены перезаряжаемые батареи, все изменилось. На рынок вышли первые коммерчески жизнеспособные двигатели постоянного тока. Двигатели постоянного тока постоянно совершенствуются, но в то же время были разработаны и другие типы двигателей, такие как двигатель BLDC. В результате использование щеточных двигателей постоянного тока в ряде приложений сегодня ограничено.

Принцип работы двигателя постоянного тока

Ротор обычно располагается внутри двигателя, а статор — снаружи. Ротор содержит обмотки катушек, которые питаются от постоянного тока, а статор содержит либо постоянные магниты, либо электромагнитные обмотки. Когда двигатель питается от постоянного тока, внутри статора создается магнитное поле, притягивающее и отталкивающее магниты на роторе. Это приводит к тому, что ротор начинает вращаться. Для поддержания вращения ротора двигатель имеет коммутатор. Когда ротор выровняется с магнитным полем, он перестанет вращаться, но в этом случае коммутатор изменит направление тока через статор и, таким образом, изменит направление магнитного поля. Таким образом, ротор может продолжать вращаться. См. изображение справа для схематического отображения того, как работает двигатель постоянного тока.

 

Применение двигателей постоянного тока

Некоторые примеры приложений, в которых двигатели постоянного тока все еще используются:

  • Воздушные компрессоры
  • Игрушки
  • Пускатели двигателей в автомобилях
  • Четыре типа двигателей постоянного тока (DC)

    Существует четыре типа двигателей постоянного тока. Все четыре типа работают примерно одинаково, так как двигатель постоянного тока всегда состоит из двух основных частей: ротора и статора.

    1. Двигатель постоянного тока с постоянными магнитами
    2. Серийный двигатель
    3. Шунтовой двигатель
    4. Комбинированный двигатель

    Преимущества и недостатки двигателя постоянного тока

    Когда дело доходит до пуска и регулирования, коллекторные двигатели постоянного тока имеют хорошие характеристики. Плотность крутящего момента для этих двигателей относительно высока. Двигатель постоянного тока работает плавно, а диапазон регулирования скорости широк. Способность к перегрузке сильна, а электромагнитные помехи малы. Недостатком двигателя постоянного тока является конструкция. Между коллектором и щеткой имеется скользящий контакт. Это вызывает искрение и механический износ. Из-за этого двигатели постоянного тока имеют относительно короткий срок службы, а их техническое обслуживание требует больших затрат. Это также вызывает опасения по поводу надежности.

    Узнайте больше о различных двигателях

    Существует широкий выбор двигателей, подходящих для многих промышленных применений и оборудования. У инженеров и конструкторов есть большой выбор при выборе двигателя для их применения. Подробнее о других двигателях вы можете прочитать на нашем сайте:

    Свяжитесь с нами для получения дополнительной информации

    Электродвигатели с прямым приводом компании Magnetic Innovations

    Магнитное воздействие токов и силы на провод в двигателях постоянного тока

    Электричество и магнетизм считались двумя разными темами до 19 го века. Сегодня электромагнетизм — бурно развивающаяся область физики, изучающая электромагнитные силы, возникающие между электрически заряженными частицами.

    Электромагниты состоят из катушек проволоки, по которым проходит электричество. Мы используем электромагниты во многих наших электрических устройствах, таких как генераторы, динамики и аппараты МРТ. Когда электричество течет по проволочным катушкам, оно создает магнетизм. Следовательно, они чрезвычайно полезны, поскольку мы можем контролировать поток электричества, чтобы включать и выключать магнит, замыкая или прерывая цепь. Здесь вы сможете больше узнать о теме электромагнетизма. Давайте начнем!

    Магнитный эффект тока

    Магнитный эффект электрического тока также известен как электромагнитный эффект. Проводник с током, например провод, создает вокруг себя магнитное поле. Силовые линии магнитного поля расположены по концентрическим окружностям.

    Направление магнитного поля можно определить с помощью правила правой руки .

    Когда большой палец указывает на направление тока, остальные пальцы сгибаются в направлении поля.

    Сила, действующая на проводник с током

    Когда вы поместите тот же проводник с током в другое магнитное поле, на провод будет действовать магнитная сила. Эта сила вызвана взаимодействием между двумя магнитными полями.

    Направление этой силы можно найти с помощью правила левой руки Флеминга .

    Вытяните большой, указательный и средний пальцы левой руки так, чтобы все 3 пальца были перпендикулярны друг другу. Указательный палец указывает вдоль силовых линий магнитного поля с севера на юг. Средний палец будет указывать направление тока, от положительного к отрицательному. Наконец, большой палец покажет вам направление силы.

    Силу силы можно увеличить, увеличив силу тока или используя более сильный магнит. Точно так же направление силы можно контролировать, меняя направление тока или магнитного поля.

    Картина магнитного поля соленоида

    Соленоид представляет собой длинный провод, свернутый в спираль. Когда через него протекает электрический ток, магнитное поле, создаваемое соленоидом, напоминает поле стержневого магнита. Поле внутри соленоида сильное и однородное из-за тока, протекающего внутри каждой катушки. Здесь можно применить правило правой руки для определения полюсов.

    Электродвигатель постоянного тока

    Электродвигатели постоянного тока можно найти в объектах, питающих вашу повседневную жизнь. От электрических зубных щеток до устройств индивидуальной мобильности и лифтов двигатели постоянного тока — это мускулы машины. Далее давайте исследуем магнитные эффекты токов и применим их при рассмотрении силы, действующей на проводник с током, который приводит в движение двигатели постоянного тока.

    Простой двигатель постоянного тока состоит из соленоида в однородном магнитном поле. Когда в катушке есть ток, магнит будет оказывать вращательное действие на катушку, заставляя ее вращаться. Двигатель постоянного тока использует эффект вращения проводника с током (катушки) для преобразования электрической энергии в механическую. Эта механическая энергия высвобождается в виде вращения для перемещения вашего груза.

    Эффект вращения катушки можно увеличить, увеличив силу электрического тока или используя более сильные или большие магниты.