Виброускорение, виброскорость и виброперемещение. В чём измеряют вибрацию?

В чём измеряют вибрацию?

Для количественного описания вибрации вращающегося оборудования и в диагностических целях используют виброускорение, виброскорость и виброперемещение.

 

Виброускорение

Виброускорение – это значение вибрации, прямо связанное с силой, вызвавшей вибрацию. Виброускорение характеризует то силовое динамическое взаимодействие элементов внутри агрегата, которое вызвало данную вибрацию. Обычно отображается амплитудой (Пик, Peak) — максимальное по модулю значение ускорения в сигнале. Применение виброускорения теоретически идеально, т. к. пъезодатчик (акселерометр) измеряет именно ускорение и его не нужно специально преобразовывать. Недостатком является то, что для него нет практических разработок по нормам и пороговым уровням, нет общепринятого физического и спектрального толкования особенностей проявления виброускорения. Успешно применяется при диагностике дефектов, имеющих ударную природу — в подшипниках качения, редукторах. ((AdB-120)/20)

Например, 140 дБ = уровень 10 м/с2 = 1 G

 

Виброскорость

Виброскорость – это скорость перемещения контролируемой точки оборудования во время её прецессии вдоль оси измерения.

В практике измеряется обычно не максимальное значение виброскорости, а ее среднеквадратичное значение, СКЗ (RMS). Физическая суть параметра СКЗ виброскорости состоит в равенстве энергетического воздействия на опоры машины реального вибросигнала и фиктивного постоянного, численно равного по величине СКЗ. Использование значения СКЗ обусловлено ещё и тем, что раньше измерения вибрации велись стрелочными приборами, а они все по принципу действия являются интегрирующими, и показывают именно среднеквадратичное значение переменного сигнала.


Из двух широко применяемых на практике представлений вибросигналов (виброскорость и виброперемещение) предпочтительнее использование виброскорости, так как это параметр, сразу учитывающий и перемещение контролируемой точки и энергетическое воздействие на опоры от сил, вызвавших вибрацию. Информативность виброперемещения может сравниться с информативностью виброскорости только при условии, когда дополнительно, кроме размаха колебаний, будут учтены частоты, как всего колебания, так и его отдельных составляющих. На практике сделать это весьма проблематично.

Для измерения СКЗ виброскорости используются
самые простые приборы – виброметры. В более сложных приборах (виброанализаторах) также всегда присутствует режим виброметра.

Виброскорость измеряется в:

  • миллиметрах на секунду [мм/сек]
  • дюймов в секунду [in/s]: 1 in/s = 25,4 мм/сек
  • децибелах, должен быть указан уровень 0 дБ. Если не указан, то, согласно ГОСТ 25275-82, берётся значение 5 * 10-5 мм/сек (По международному стандарту ISO 1683:2015 и ГОСТ Р ИСО 13373-2-2009 за 0 dB берётся 10-6 мм/сек)

Как перевести виброскорость в дБ ?

Для стандартного уровня 0 дБ = 5 * 10-5 мм/сек:

VdB = 20 * lg10(V) + 86

VdB – виброскорость в децибелах

lg10 – десятичный логарифм (логарифм по основанию 10)

V – виброскорость в мм/с

86 дБ – уровень 1 мм/с

Ниже приведены значечения виброскорости в дБ для стандартного ряда норм вибрации. Видно, что разница между соседними значениями – 4 дБ. Это соответствует разнице в 1,58 раза.












мм/сдБ
45119
28115
18111
11,2107
7,1103
4,599
2,895
1,891
1,1287
0,7183

 

Виброперемещение

Виброперемещение (вибросмещение, смещение) показывает максимальные границы перемещения контролируемой точки в процессе вибрации. Обычно отображается размахом (двойной амплитудой, Пик-Пик, Peak to peak). Виброперемещение – это растояние между крайними точками перемещения элемента вращающегося оборудования вдоль оси измерения.

Виброперемещение измеряется в линейных единицах:

  • в микрометрах [мкм]
  • в миллиметрах [мм]: 1 мм = 1000 мкм
  • в милсах, миллидюймах [mils]: 1000 mils = 1 дюйм, 1 mil = 25,4 мкм, 1000 mils = 25,4 мм

 

Видео от Сергея Бойкина

 

Автор: Андрей Щекалев

Не хватает информации ?

Напишите мне свой вопрос, я отвечу Вам и дополню статью полезной информацией.



Как перевести виброскорость в виброускорение ?



Какие бывают приборы для измерения вибрации ?



Виброметр – простой прибор для измерения вибрации



Практическое использование виброметров «ДПК-Вибро» и «ViPen» для диагностики дефектов оборудования



ViPen – виброметр-ручка с оценкой состояния подшипников



Vibro Vision-2 – виброанализатор с режимом виброметра

Измерение параметров вибрации, параметры вибрации, измерение скз виброскорости, измерение виброперемещения, измерение виброскорости, измерение виброускорения

Автор admin в . Опубликовано Pages

Любую работающую машину в первом приближении можно рассматривать как сложную колебательную систему с сосредоточенными параметрами вибрации, которые имеют сложную форму и  спектральный состав. Как правило, вибросигнал содержит в себе гармонические, квазигармонические и случайные составляющие. Периодически повторяющиеся (гармонические и квазигармонические) составляющие вибрации можно представить в виде совокупности простейших гармонических колебаний разной частоты и амплитуды, и точно определять  для них результирующую амплитуду, размах и другие параметры вибрации. А вот для случайной вибрации возможно определение только интегральных (усредненных) значений, по выборке за большой промежуток времени.

  1. Простейшие гармонические колебания


Вибрация – это механические колебания твердых тел. Простейшим видом колебаний являются гармонические колебания, которые совершают простейшие колебательные системы – маятник или масса, закрепленная на пружине (рис. 1)

Рис.1 Примеры простейших колебательных систем


Рис.2 График зависимости виброперемещения от времени при гармонических колебаниях.


 

Гармонические колебания описываются по синусоидальному закону:

x=A*sin(ωt+φ0)

Где: x – текущая координата; A – амплитуда колебаний; ω– циклическая (угловая) частота; t– время;  φ–начальная фаза.

Тогда мгновенная скорость v

v=ẋ=Aωcos(ωt+φ0)

И мгновенное ускорение a
a=ẋ=-Aω2sin(ωt+φ0)

Как можно видеть, параметры вибрации являются величинами взаимозависимыми, и переход между ними может быть осуществлен операциями дифференцирования или интегрирования. Физический смысл взаимосвязи параметров вибрации можно трактовать следующим образом: виброперемещение характеризует величину деформации объекта, виброскорость отражает степень усталостной прочности, а по виброускорению можно судить о величине колебательных сил, действующих на объект.

В связи с тем, что операция дифференцирования сигнала сопровождается большим уровнем шума, а интегрирование лишено этого неприятного обстоятельства, в практике мониторинга и вибродиагностики динамических машин наиболее часто используются акселерометры (датчики ускорения) в паре с интегрирующими устройствами.

  1. Единицы измерения параметров вибрации


При изучении вибрации динамических машин контролируют виброперемещение, виброскорость и виброускорение, при этом  виброперемещение измеряют в микрометрах (мкм), виброскорость – в м/с и виброускорение – в м/с2 или в единицах «g» – ускорения свободного падения (g =9,81 м/с2).

Рис.3 Характеристики амплитуды вибрации


При этом контроль параметров вибрации возможен по следующим характеристикам амплитуды вибрации (рис.3):

  • Пику – максимальной амплитуде вибрации A;
  • Размаху (Пик-Пик) – сумме положительного и отрицательного пиков. Для синусоидального сигнала размах в точности равен удвоенной пиковой амплитуде, а в общем случае это не так из-за несимметрии временной реализации. К измерению размаха виброперемещения прибегают, когда критично смещение деталей друг относительно друга с точки зрения допустимых механических напряжений и зазоров;
  • Средне-квадратичному значению (СКЗ), равному квадратному корню из среднего квадрата амплитуды вибрации:



Величина СКЗ характеризует энергию колебаний и используется в тех случаях, когда необходимо оценить разрушительное влияние вибрации. В случае синусоидального сигнала СКЗ=A/√2=0,707А.

  • Среднему значению амплитуды, которое достаточно редко сегодня используется. Здесь же просто отметим, что среднее значение для гармонического сигнала равняется 0,637 A и соответственно меньше величины СКЗ.


В связи с тем, что диапазон изменения любого параметра вибрации может быть очень значительным (от долей до нескольких тысяч единиц измерения), значительно более удобно анализировать результаты измерений не по абсолютной шкале, а в логарифмическом масштабе – в децибелах:

Lv=20lg(V/V0)

Здесь: L– уровень виброскорости в дБ,  – виброскорость в м/с,  V– опорное значение виброскорости, равное 5*10-8м/с (по российскому стандарту).

Аналогично определяются в децибелах и уровни виброускорения  и виброперемещения . Все параметры вибрации в децибелах связаны между собой соотношениями:

Lv=La-20lg(f)+10

Lv=Ld+20lg(f)-60

Lv=La-20lg(f2)+70

где – частота вибрации.

Таблица 1 Уровень в дБ и соотношение амплитуд

 



 

Как можно видеть из таблицы 1, удвоению амплитуды измеряемого параметра, независимо от его начального значения, соответствует изменение уровня в 6 дБ, и в шкале от нуля до 100 дБ можно «уложить» пики, различающиеся между собой в 100 тысяч раз. Таким образом, использование логарифмической шкалы в дБ позволяет на едином графике наглядно исследовать как составляющие вибрации с большой амплитудой, так и не терять из виду составляющие с малой амплитудой, зачастую несущие полезную диагностическую информацию.

  1. Измерение виброускорения, измерение виброскорости или измерение виброперемещения – что предпочтительней?


ГОСТ ИСО 10816 и другие нормативные документы по виброконтролю технического состояния вращающихся машин рекомендуют проводить измерение СКЗ виброскорости в частотном диапазоне от 10 до 1000 Гц. Данное требование становится очевидным, если мы обратимся к частотным характеристикам параметров вибрации (рис. 4):

Рис.4 Частотные характеристики виброскорости, вибросмещения (виброперемещения) и виброускорения


 

Как можно видеть, именно в этом частотном диапазоне виброскорость имеет наиболее равномерный характер. Но даже для решения некоторых задач виброконтроля необходимо проводить измерения в расширенном диапазоне частот. И в данном случае в области низких частот (от 0 до 300 Гц) проводят измерение виброперемещения, а в области высоких частот (более 1000 Гц) – измерения виброускорения.

Что касается вибродиагностики машин, то большинство дефектов проявляют себя возбуждением случайной высокочастотной (ВЧ) вибрации в диапазоне до 20-30 кГц, поэтому в вибродиагностике в добавление к измерению виброскорости в стандартном диапазоне частот (до 1000 Гц), проводят измерение виброускорения в расширенном частотном диапазоне (до 10-20 кГц).

  1. Датчики параметров вибрации (дать ссылкой на стр. со статьей «Датчики вибрации»)


В виброконтроле и вибродиагностике вращающихся машин из всех известных видов датчиков вибрации используются пьезоэлектрические и вихретоковые датчики вибрации. Напрямую измеряемой величиной пьезоэлектрического датчика является виброускорение, которое с помощью интеграторов может быть преобразовано в виброскорость и виброперемещение. Таким образом, говоря «датчик виброускорения», «датчик виброскорости» и «датчик виброперемещения», в первую очередь, понимают пьезоэлектрический акселерометр с платой интегрирования или без нее.

Пьезоэлектрические датчики вибрации относятся к датчикам контактного типа и не применимы в случаях, когда требуется бесконтактное измерение параметров вибрации. И в этом случае на помощь приходят бесконтактные вихретоковые датчики, с помощью которых в основном измеряют виброперемещение (например, при контроле осевого сдвига валов).

  1. Точки измерения параметров вибрации


Для получения достоверной информации о виброактивности узлов и машины в целом, а также для обнаружения, идентификации и локализации дефектов, необходим правильный выбор точек измерения параметров вибрации. Рекомендации по выбору точек измерений приводятся в ГОСТ ИСО 10816 и  нормативных отраслевых документах.

Для получения более подробных теоретических и практических навыков по измерению параметров вибрации мы рекомендуем всем специалистам пройти обучение на наших лицензированных учебных курсах «Основы вибродиагностики. Правила измерения вибрации».

Измерение вибрации: полное руководство

СОДЕРЖАНИЕ

  1. Что такое вибрация?
  2. Откуда берется вибрация?
  3. Количественная оценка уровня вибрации
  4. Параметры вибрации: ускорение, скорость и перемещение

 

ПОЛУЧИТЬ ПОЛНОЕ РУКОВОДСТВО
ИЗМЕРЕНИЕ ВИБРАЦИИ
ОТ BRÜEL & KJÆR

СКАЧАТЬ СЕЙЧАС

Говорят, что тело вибрирует, когда оно описывает колебательное движение вокруг исходного положения. Количество раз, которое совершается полный цикл движения в течение секунды, называется частотой и измеряется в герцах (Гц).

Движение может состоять из одной составляющей, происходящей на одной частоте, как у камертона, или из нескольких составляющих, происходящих одновременно на разных частотах, например, при движении поршня двигателя внутреннего сгорания.

Вибрационные сигналы на практике обычно состоят из очень многих частот, возникающих одновременно, так что мы не можем сразу увидеть, просто взглянув на амплитудно-временную характеристику, сколько компонентов и на каких частотах они возникают. Эти компоненты могут быть выявлены путем построения графика зависимости амплитуды колебаний от частоты. Разбиение сигналов вибрации на отдельные частотные составляющие называется частотным анализом. Этот метод можно считать краеугольным камнем диагностических измерений вибрации.

График, показывающий уровень вибрации в зависимости от частоты, называется частотной спектрограммой.

При частотном анализе вибраций машины мы обычно обнаруживаем несколько заметных периодических частотных составляющих, которые непосредственно связаны с основными движениями различных частей машины. Таким образом, с помощью частотного анализа мы можем отследить источник нежелательной вибрации.

На практике избежать вибрации очень сложно. Обычно это происходит из-за динамических эффектов производственных допусков, зазоров, контакта качения и трения между частями машины, а также неуравновешенных сил во вращающихся и совершающих возвратно-поступательное движение элементах. Нередко небольшие незначительные вибрации могут возбуждать резонансные частоты некоторых других деталей конструкции и усиливаться в крупные источники вибрации и шума.

ПОДРОБНЕЕ
ИЗМЕРЕНИЕ ВИБРАЦИИ

Однако иногда механическая вибрация выполняет полезную работу. Например, мы намеренно создаем вибрацию в устройствах подачи компонентов, бетоноуплотнителях, ваннах ультразвуковой очистки, перфораторах и сваебойных молотах. Машины для вибрационных испытаний широко используются для придания контролируемого уровня энергии вибрации продуктам и узлам, где требуется изучить их физическую или функциональную реакцию и установить их устойчивость к вибрационной среде.

Фундаментальным требованием во всех работах с вибрацией, будь то проектирование машин, использующих ее энергию, или создание и обслуживание плавно работающих механических изделий, является возможность получить точное описание вибрации путем измерения и анализа.

 

Амплитуда вибрации, которая является характеристикой, описывающей интенсивность вибрации, может быть количественно определена несколькими способами. На диаграмме показано соотношение между размахом, пиковым уровнем, средним уровнем и среднеквадратичным уровнем синусоиды.

Значение размаха ценно тем, что оно указывает максимальное отклонение волны, полезное значение, когда, например, вибрационное смещение детали машины имеет решающее значение для максимального напряжения или механического зазора.

Пиковое значение особенно ценно для указания уровня кратковременных толчков и т. д. Но, как видно из рисунка, пиковые значения показывают только, какой максимальный уровень имел место, без учета истории волны во времени.

Выпрямленное среднее значение, с другой стороны, учитывает историю волны во времени, но считается, что оно представляет ограниченный практический интерес, поскольку не имеет прямой связи с какой-либо полезной физической величиной.

Среднеквадратичное значение является наиболее подходящей мерой амплитуды, поскольку оно одновременно учитывает историю волны во времени и дает значение амплитуды, которое напрямую связано с содержанием энергии и, следовательно, разрушительными способностями вибрации.

Единицы измерения

Когда мы смотрели на вибрирующий камертон, мы рассматривали амплитуду волны как физическое смещение концов вилки в любую сторону от исходного положения. В дополнение к смещению мы также можем описать движение ножки вилки с точки зрения ее скорости и ускорения. Форма и период вибрации остаются неизменными, независимо от того, рассматривается ли смещение, скорость или ускорение. Основное отличие состоит в том, что существует разность фаз между амплитудно-временными кривыми трех параметров, как показано на рисунке.

Для синусоидальных сигналов амплитуды смещения, скорости и ускорения математически связаны функцией частоты и времени, это показано графически на диаграмме. Если пренебречь фазой, как это всегда бывает при проведении средневременных измерений, то уровень скорости можно получить, разделив сигнал ускорения на коэффициент, пропорциональный частоте, а смещение можно получить, разделив сигнал ускорения на коэффициент, пропорциональный квадрату частоты. Это деление выполняется цифровым способом в измерительной аппаратуре.

Параметры вибрации почти всегда измеряются в метрических единицах в соответствии с требованиями ISO, они показаны в таблице. Однако гравитационная постоянная «g» или, может быть, более правильно «g n » по-прежнему широко используется для уровней ускорения, хотя и находится за пределами системы когерентных единиц ISO. К счастью, коэффициент почти 10 (9,80665) связывает [MOP1] две единицы, так что мысленное преобразование в пределах 2% является простым делом.

Выбор параметров ускорения, скорости или смещения

Обнаружив виброускорение, мы не привязаны только к этому параметру. Мы можем преобразовать сигнал ускорения в скорость и перемещение. Большинство современных измерителей вибрации оборудованы для измерения всех трех параметров.

При проведении однократного измерения вибрации в широкой полосе частот выбор параметра важен, если сигнал содержит компоненты на многих частотах. Измерение смещения даст низкочастотным компонентам наибольший вес, и, наоборот, измерения ускорения будут взвешивать уровень в сторону высокочастотных компонентов.

Опыт показал, что общее среднеквадратичное значение скорости вибрации, измеренное в диапазоне от 10 до 1000 Гц, дает наилучшее представление о силе вибрации на вращающихся машинах. Вероятное объяснение состоит в том, что данный уровень скорости соответствует данному уровню энергии; вибрации на низких и высоких частотах имеют одинаковый вес с точки зрения энергии вибрации. На практике многие машины имеют достаточно плоский спектр скоростей.

При выполнении узкополосного частотного анализа выбор параметра будет отражаться только в том, как анализ будет наклонен на дисплее или в печати (как показано на средней диаграмме на противоположной странице). Это приводит нас к практическому соображению, которое может повлиять на выбор параметра. Предпочтительно выбирать параметр, дающий наиболее плоский частотный спектр, чтобы наилучшим образом использовать динамический диапазон (разницу между наименьшим и наибольшим значениями, которые можно измерить) прибора. По этой причине параметр скорости или ускорения обычно выбирается для целей частотного анализа.

Поскольку измерения ускорения относятся к высокочастотным компонентам вибрации, эти параметры, как правило, используются там, где интересующий частотный диапазон охватывает высокие частоты.

Природа механических систем такова, что заметные смещения возникают только при низких частотах; поэтому измерения смещения имеют ограниченное значение в общем изучении механической вибрации.